
Logic, descriptive complexity and theory of databases

8 novembre 2010

Lecture 6
Lecturer : Luc Segou�n

Scribe : Arnaud de Mesmay

1 Recap

We have already seen the following results :
� FO ⊆ LOGSPACE, has 0-1 Laws, Locality and Ehrenfeucht-Fraïssé Games.
� ESO = NP
� LFP=IFP ⊆ PFP. They all satisfy 0-1 Laws (hence can't compute Parity). Can compute Connec-
tivity (they are designed for that !)

� LFP = IFP ⊆ PTIME.
� PFP ⊆ PSPACE.
� Immerman-Vardi Theorem : On ordered structures ,

LFP = IFP = PTIME.

PFP = PSPACE.

2 Abiteboul-Vianu Theorem

The goal of this course is to prove the following theorem.

[2.A] Theorem (Abiteboul-Vianu 91)

LFP=PFP if and only if PTIME=PSPACE

A natural idea to prove PTIME ∕= PSPACE would be to pick a PSPACE-complete problem (Quan-
ti�ed Boolean Formula..) and try to prove that it cannot be computed in PTIME. But it's very (too ?)
hard. This theorem enables us to pick a PSPACE-complete problem which is provably in PFP (like the
Game of Life) and prove that it is not in LFP, reducing a complexity problem expressed in terms of
Turing machines to an expressivity problem : the one of proving whether some semantics to compute
�xed points is stronger than another one.

Proof of [2.A].

There are two directions, the �rst one is easy, the reverse one is harder.
First direction : Assume LFP=PFP.
Fix �, take P a property over �-structures such that P ∈ PSPACE.
� On input I, compute a linear order on the domain of I, which gives us a new ordered structure I∗.
�

P ∈ PSPACE on I∗ →︸︷︷︸
I−V tℎm

∃Ψ ∈ PFP, I∗ ∣= P i� I∗ ∣= Ψ.

→︸︷︷︸
LFP=PFP

∃' ∈ LFP, I∗ ∣= Ψ i� I∗ ∣= '.

→ ∃ PTIME Turing Machine , I∗ ∣= ' i� M accepts I∗.

1



2. Abiteboul-Vianu Theorem 2

Reverse direction :
Let ' ∈ PFP , let k be the number of variables used in '. Let us assume to simplify things that k >

maximum arity in �.

Recall �rst the two equivalent meanings of the equivalence relation
k≡ :

(I, a)
k≡ (J, b)

1. ∀'(x) ∈ FO using k variables,

I ∣= '(a) i� J ∣= '(b)

2. D wins the k-pebble game on (I, J) with initial con�guration (a, b).

The proof is divided in three steps. The �rst step of the proof is to show that this equivalence relation
can be expressed in LFP :

[2.B] Proposition (1)

∃�(x, y) ∈ LFP ,

∀I, a, b, I ∣= �(a, b) i� (I, a)
k≡ (I, b).

The second step is to show that one can de�ne a preorder compatible with
k≡ on Ik in LFP.

[2.C] Proposition (2)

∃�(x, y) ∈ LFP ,

∀I, � de�nes a preorder on Ikwith
k≡ as associated equivalence relation

The last step of the proof needs some more de�nitions :
Starting with a signature � = (R1..Rl), de�ne a new signature, called canonical :

�∗ = (<,U,U1..Ul, S1..Sk, P1..Pt)

where < is binary, the U relations are unary, the S and P relations are binary and t = kk.
We can now build a structure on �∗ from a structure on � as follows :

I(�) → I∗(�∗)

V is the universe of I V k/
k≡ universe of I∗

< is �.

U([a]) i� a1 = a2.

Ui([a]) i� (a1..am) ∈ Ri where m ≤ k is the arity of Ri.

Sj([a], [b]) i� ∀�, a� = b� except maybe for � = j.

Π : {1..k} → {1..k}, PΠ([a], [b]) i� b = Π(a).

The idea is that these logics cannot distinguish things equivalent for
k≡, so we have to quotient. The

magic of the construction is that in this new universe V k/
k≡, we can have a linear order expressible in

LFP. The other de�nitions are just technicalities which will be justi�ed during the proof.
The third proposition states that any property using k-variables (de�ned with partial �xpoints) can

be lifted from � to �∗ and the converse is also true.

2



2. Abiteboul-Vianu Theorem 3

[2.D] Proposition (3)

1. ∀' ∈ PFP (�) using k-variables,

∃'∗ ∈ PFP (�∗),∀I, I ∣= ' i� I∗ ∣= '∗.

2. ∀Ψ∗ ∈ LFP (�∗),
∃Ψ ∈ LFP (�),∀I, I∗ ∣= Ψ∗ i� I ∣= Ψ.

Let us now prove the Abiteboul-Vianu theorem assuming these 3 propositions.
Assume PTIME=PSPACE. Take ' ∈ PFP , k the number of variables of '. By Prop 3.1, ∃'∗,∀I, I ∣=

' i� I∗ ∣= '∗.

PFP ⊆ PSPACE → '∗ ∈ PSPACE = PTIME.

I∗ is ordered, hence the Immerman-Vardi theorem tells us that ∃Ψ∗ ∈ LFP ,

I∗ ∣= '∗ i� I∗ ∣= Ψ∗

And by prop 3.2,

∃Ψ ∈ LFP, I∗ ∣= Ψ∗ i� I ∣= Ψ.

Altogether we have shown that ∀' ∈ PFP,∃Ψ ∈ LFP, I ∣= ' i� I ∣= Ψ. Hence LFP=PFP. □

Let us now prove the propositions. As the reader might have guessed, the harder one is the second
one, because building the linear order is the key step of the proof.

Onwards with the proof of Proposition 3 :

Proof of [2.D].

We start with 3.2, which works by induction on Ψ∗, it is just about translating naturally the formulas
on �∗ into formulas on �. To each variable of Ψ∗ we associate a tuple of k variables in Ψ. We denote by
→ this translation process.

� x = y, hence with proposition 1, → �(x, y).
� x < y, hence with proposition 2, → �(x, y).
� U(x)→ x1 = x2.
� Ui(x)→ Ri(x1..xm).
� Sj(x, y)→

⋀
i ∕=j xi = yi.

� PΠ(x, y)→
⋀
i yi = xΠ(i).

� ∃x'∗(x)→ ∃x'(x).
� ∧ → ∧
� ¬ → ¬
� �→ �

3.1 is proved again by induction on ', we translate ' which uses k free variables into '∗ using only 1
free variable, with the intended meaning that this only free variable matches the k original free variables.

� xi = xj → ∃y, PΠ(x, y) ∧ U(y) where Π is a function sending i to 1 and j to 2.
� Ri(xi1 ..xin)→ ∃y, PΠ(x, y) ∧ Ui(y) where Π is a function sending i1 to 1, i2 to 2.. im to m.
� ¬,∧ → ¬,∧.
� ∃xi'1(x)→ ∃y, Si(x, y)∧'∗1(y). (The predicate Si states exactly that x and y di�er only at position
i).

□

Proof of [2.B].

3



2. Abiteboul-Vianu Theorem 4

We de�ne an atomic k-type to be a consistent set of atomic formulas1 with k free variables, i.e. for
every tuple x there is either Ri(x) or ¬Ri(x) in a k-type. The k-type is viewed as the conjunction of its
formulas. There are �nitely many of them, we denote them with �1..�t.

We will de�ne the formula ¬� with a Least Fixed Point based on the game formulation of
k≡. The base

case is the case where the spoiler wins immediately, which means that there is no partial isomorphism,
which can be stated as follows with the types :

Ψ0(x, y) :
⋀
i ∕=j

�i(x) ∧ �j(y)

We now compute the formula with Least Fixed Point, it is just about stating the rules of the pebbles
game in the �rst order language :

Ψ(R, x, y) : Ψ0(x, y) ∨
⋁
i≤k

∃xi∀yiR(x, y) ∨
⋁
i≤k

∃yi∀xiR(x, y)

By induction one can show that if we assume that R(x, y) means that the spoiler wins in ≤ i steps
then Ψ(R, x, y) states that the spoiler wins in ≤ i+ 1 steps.

By setting : �(x, y) : ¬�R(Ψ(R, x, y)), we obtain the desired property. □

The proof of proposition 2 uses the same kind of ideas but is somewhat trickier.

Proof of [2.C].

We denote again the atomic k-types by �1..�t and add the notations :

a = (a1..ak)

ai←a = (a1..ai−1, a, ai+1..ak)

We de�ne our preorder using a �xpoint such that the preorder <j , obtained at step j, is a preorder
whose associated equivalence relation is the complement of the relation Rj computed at the jtℎ stage of
the computation of the formula � in Proposition [2.C]. In the beginning, it is just about ordering k-types,
which can be done arbitrarily since they are explicitly de�ned :

�0(x, y) :
⋀
i<j

�i(x) ∧ �k(y)

We then de�ne the preorder by re�ning at each step the tuples it orders, and then taking the limit
with a �xed point. The general idea is the following : At each step, we have to order the tuples which
were equivalent (according to the R of Proposition [2.C]) at step j but become nonequivalent at stage
j + 1. Depending on the pebble the spoiler moves, the linear ordering of one tuple may evolve in one
direction or the other one, so we have to choose which pebble is moved and how it is moved in a canonical
way ; this canonical way will be to move the smallest possible pebble to the smallest possible place in the
ordering. Thus we need formulas to check whether two tuples have been di�erentiated yet (eq), whether
they will be di�erentiated at the next stage (i), to choose the smallest pebble to move (�i) and a last
one to �gure out the new order at the step j + 1 (�i).

eq(x, y) : ¬S(x, y) ∧ ¬S(y, x)

i(x, y) : ∀xi∃yieq(x, y) ∧ ∀yi∃xieq(x, y)

�i(x, y) :
⋀
p<i

p(x, y) ∧ ¬i(x, y)

�i(x, x, y) : ∀y
[
S(xi←x, yi←y) ∨ S(yi←y, xi←y)

]
We can now de�ne �, and � by taking its �xed point.

1atom or negated atom

4



3. Monadic second order logic 5

�(S, x, y) : �0(x, y) ∨ ¬eq(x, y) ∧
⋁
i≤k

�i(x, y) ∧ ∃x�i(x, x, y) ∧ ∀yS(xi←x, yi←x)

The reader may notice that because of the negations, this is not a Least Fixed Point formula but
using In�ationary Fixed Point semantics instead it still works (by the Gurevich-Shelah theorem).

□

Though the technicalities in this proof may be initially scary, the general idea that a linear order can

be computed with least/in�ationary �xed points on the k-tuples quotiented by the
k≡ relation is worth

remembering.

3 Monadic second order logic

MSO is second order logic with quanti�cation over sets, the general syntax is as follows : ∃S, ∀S,∃x, ∀y, S(x), x ∈
S,∧,∨,¬, atoms.

Examples :
� 3-Colorability :

∃S1, S2, S3, ∀x, S1(x) ∨ S2(x) ∨ S3(x) ∧
∀x, S1(x)→ ¬S2(x) ∧ ¬S3(x) ∧

S2(x)→ ... ∧
S3(x)→ ... ∧

∀x, y
⋀
i

(Si(x) ∧ Si(y)→ ¬E(x, y))

� Non-connectivity :

∃S,∃x ∈ S ∧ ∃x /∈ S ∧ ∀x, yE(x, y)→ (S(x) ∧ S(y) ∨ ¬S(x) ∧ ¬S(y))

� (aa)∗ ∈MSO :

∃S,∀xPa(x) ∧min ∈ S ∧ ∀xS(x)↔ ¬S(x+ 1) ∧max ∈ S

The complexity results concerning MSO are summarized in the following theorem :

[3.A] Theorem (Complexity of MSO)

MSO ⊆ PSPACE MSO ⊆ PH

The following theorem is left as an exercise :

[3.B] Theorem (0-1 laws)

MSO does not verify 0-1 laws

The main result of this section (which will be only be proved in the next course) is the following :

[3.C] Theorem (Ehrenfeucht-Fraïssé)

There is an equivalent E-F game for MSO.

Let's end this lecture with the proof of [3.A] :
We already know that FO ⊆ LOGSPACE, and a formula of MSO looks like ∃S'(S), hence it is

natural to try all the sets, which can be done in PSPACE because each set requires n log n memory. In
total, the memory needed is f(∣'∣)n log n.

5


