Logic, descriptive complexity and theory of databases. Lecture 3

Lecturer: Luc Segoufin Scribe: Jérémie Dimino

October 4, 2010

Exercise from last week:

Example 1. Connectivity is in ESO.

Proof. Follows immediately from:

 $\exists T, O \ O$ is a linear order

 $\begin{array}{l} \wedge T(i,x,y) \text{ iff there is a path of length } i \text{ from } x \text{ to } y \text{:} \\ \exists u \quad ``u \text{ is the minimum of } O'' \land \forall x, y E(x,y) \leftrightarrow T(0,x,y) \\ \forall x,y,u \quad (\exists z E(x,z) \land T(u,z,y)) \leftrightarrow T(u+1,x,y) \end{array}$

1 Expressive power of FO

1.1 Ehrenfeucht-Fraïssé games (EF-games)

Definition 1 (partial isomorphism). Given:

- \mathcal{A}, \mathcal{B} two σ -structures.
- $\overline{a} = (a_1, \ldots, a_n) \subseteq domain(\mathcal{A})$
- $\overline{b} = (b_1, \ldots, b_n) \subseteq domain(\mathcal{B})$

 $h: \overline{a} \to \overline{b}$ (where $h(a_i) = b_i$) is a partial isomorphism iff:

 $\left\{ \begin{array}{l} a_i = a_j \; \textit{iff} \; b_i = b_j \\ and \\ R(a_{i_1}, \dots, a_{i_k}) \; \textit{iff} \; R(b_{i_1}, \dots, b_{i_k}) \; \textit{for all relations} \; R \in \sigma \\ a_i = c \; \textit{iff} \; b_i = c \; \textit{for all constants} \; c \in \sigma \end{array} \right.$

We define the EF-game $EF_n(\mathcal{A}, \mathcal{B})$ by the game where:

- the board is the disjoint union of the two structures \mathcal{A} and \mathcal{B} ,
- there are two players: the Duplicator and the Spoiler,
- there are n rounds where round i is defined as follow:
 - The Spoiler selects either $a_i \in \mathcal{A}$ or $b_i \in \mathcal{B}$,
 - the duplicator respond in the opposite structure by choosing $b_i \in \mathcal{B}$ in the first case or $a_i \in \mathcal{A}$ in the second case.

In the end (a_1, \ldots, a_n) is selected in \mathcal{A} and (b_1, \ldots, b_n) is selected in \mathcal{B} . The Duplicator wins the game if there is a partial isomorphism $h : \overline{a} \to \overline{b}$.

Definition 2. The Duplicator has a winning strategy in $EF_n(\mathcal{A}, \mathcal{B})$ if no matter what the Spoiler plays, he wins. In this case we write $\mathcal{A} \equiv_n \mathcal{B}$.

Definition 3. Similarly we define $\mathcal{A}, \bar{a} \equiv_n \mathcal{B}, \bar{b}$, where \bar{a} and \bar{b} are tuples of elements of \mathcal{A} and \mathcal{B} respectively, if Duplicator has a winning strategy in $EF_n(\mathcal{A}', \mathcal{B}')$, where \mathcal{A}' is \mathcal{A} with new constants denoting \bar{a} (similarly for \mathcal{B}').

Example 2. Take $\sigma = \emptyset$ and S_n the set of size n. Then it is easy to see that we have for all n:

$$S_n \equiv_n S_{n+1}$$

Example 3. Take $\sigma = \{E\}$ (a graph) and C_n the circle of size n. Then we have for all n:

$$C_{2^n} \equiv_n C_{2^n+1}$$

Proof: fix an orientation for both cycles. This define a cyclic order between the elements of the cycles. Play while maintaining the following invariant at round i:

- The elements a_1, \dots, a_i appear in the same cyclic order as the elements of b_1, \dots, b_i .
- If a_{α} is close to a_{β} then the distance between b_{α} and b_{β} is the same as the distance between a_{α} and a_{β} . Here "close" means less than 2^{n-i} .
- If b_{α} is close to b_{β} then the distance between a_{α} and a_{β} is the same as the distance between b_{α} and b_{β} . Here "close" means less than 2^{n-i} .

Example 4. Take $\sigma = \{<, P_a\}$ (words with one letter) and W_n the word of length n. Then we have for all n:

$$W_{2^n} \equiv_n W_{2^n+1}$$

Proof: same as for Example 3

Definition 4 (quantifier rank). Given three first-order formula φ , φ_1 and φ_2 , we define q_r inductively as follow:

- $q_r(\varphi) = 0$ if φ has no quantifier
- $q_r(\varphi_1 \land \varphi_2) = max\{q_r(\varphi_1), q_r(\varphi_2)\}$
- $q_r(\varphi_1 \lor \varphi_2) = max\{q_r(\varphi_1), q_r(\varphi_2)\}$
- $q_r(\exists x.\varphi) = q_r(\varphi) + 1$
- $q_r(\forall x.\varphi) = q_r(\varphi) + 1$
- $q_r(\neg \varphi) = q_r(\varphi)$

Theorem 1. We have:

- $\mathcal{A} \equiv_n \mathcal{B} iff \, \forall \varphi, q_r(\varphi) \leq n \Rightarrow (\mathcal{A} \vDash \varphi \Leftrightarrow \mathcal{B} \vDash \varphi)$
- $\mathcal{A}, \overline{a} \equiv_n \mathcal{B}, \overline{b} \text{ iff } \forall \varphi(\overline{x}), q_r(\varphi) \leq n \Rightarrow (\mathcal{A} \vDash \varphi(\overline{a}) \Leftrightarrow \mathcal{B} \vDash \varphi(\overline{b})$

Proof. : (\Rightarrow) assume $\exists \varphi \ q_r(\varphi) \leq n$, $\mathcal{A} \models \varphi$ and $\mathcal{B} \models \neg \varphi$. We show that Spoiler has a winning strategy.

• if $\varphi = \varphi_1 \lor \varphi_2$ then for $\delta = 1$ or 2, $\mathcal{A} \models \varphi_{\delta}$ and $\mathcal{B} \models \neg \varphi_{\delta}$ and we continue with a smaller formula

- if $\varphi = \varphi_1 \land \varphi_2$ then for $\delta = 1$ or 2, $\mathcal{A} \models \varphi_{\delta}$ and $\mathcal{B} \models \neg \varphi_{\delta}$ and we continue with a smaller formula
- if $\varphi = \neg \varphi_1$ then we swap the role of \mathcal{A} and \mathcal{B} and continue with a smaller formula
- if φ is $\exists x.\varphi_1$ then the Spoiler selects a in \mathcal{A} such that $\mathcal{A} \models \varphi_1(a)$. No matter what the Duplicator selects, we have $\mathcal{B} \models \neg \varphi_1(b)$.

In the end we have selected $a_1 \ldots a_i$ and $b_1 \ldots b_i$ with $i \leq n$ and we have $\mathcal{A} \models \Psi(a_1 \ldots a_i)$ and $\mathcal{B} \models \neg \Psi(b_1 \ldots b_i)$ where Ψ is an atom. This contradict the existence of an partial isomorphism and therefore Spoiler wins.

 (\Leftarrow) Harder, not done during the lecture, not used in this class.

Corollary 1. Let P be a property of σ -structures. $P \notin FO$ if $\forall n \in \mathbb{N}. \exists \mathcal{A}_n, \mathcal{B}_n$ such that:

- $1 \mathcal{A}_n \equiv_n \mathcal{B}_n$
- 2 $\mathcal{A}_n \vDash P$ and $\mathcal{B}_n \vDash \neg P$

Proof. Assume the right-hand side. If $P \in FO$, let φ define P. Let n be $q_r(\varphi)$.

- $\mathcal{A}_n \equiv_n \mathcal{B}_n \Rightarrow \mathcal{A}_n \vDash \varphi \Leftrightarrow \mathcal{B}_n \vDash \varphi$
- But φ defines P and second item implies $\mathcal{A}_n \vDash \varphi$ and $\mathcal{B}_n \vDash \neg \varphi$

Contradiction hence $P \notin FO$.

Applications:

- parity of sets is not in FO: Take $\mathcal{A}_n = S_{2n}$ and $\mathcal{B}_n = S_{2n+1}$. We have seen that $S_{2n} \equiv_n S_{2n+1}$. Hence the result follows from Corollary 1.
- $(aa)^* \notin FO$

Take $\mathcal{A}_n = W_{2^n} \in (aa)^*$ and $\mathcal{B}_n = W_{2^n+1} \notin (aa)^*$. We have seen that $W_{2^n} \equiv_n W_{2^n+1}$. Hence the result follows from Corollary 1.

• 2-colorability is not in FO

A cycle is 2-colorable iff it has even length. Take $\mathcal{A}_n = C_{2^n}$, $\mathcal{B}_n = C_{2^{n+1}}$. We have seen $C_{2^n} \equiv_n C_{2^n+1}$. Hence the result follows from Corollary 1.

Exercice 1. Show that:

- planarity is not in FO
- halmitonicity is not in FO
- connectivity is not in FO
- being a tree is not in FO

1.2 Locality:

 σ relational (no functions).

Let I be a structure.

Definition 5. G(I) is the Gaifman graph of I, defined as follow:

- the vertices are the elements of I
- there is an edge (a, b) iff a and b appear in the same tuple of a relation of I.

Definition 6. In I, d(a, b) is the distance between a and b in G(I).

 $N_k^I(\overline{a})$ is the k-neighborhood of \overline{a} in I, where \overline{a} is a tuple of elements of I and $k \in \mathbb{N}$, is defined as the substructure of I induced by the elements of I at distance less than k from \overline{a} follow: $N_k^I(\overline{a}) := I/_{\{b : d(b,\overline{a}) \leq k\}}.$

We write $N_k^I(\bar{a}) \sim N_k^J(\bar{b})$ to say that the two neighborhoods are isomorphic. That is there is an isomorphism h:

$$\begin{array}{ll} \exists h: N_k^I(\overline{a}) & \rightarrow N_k^J(\overline{b}) \\ \overline{a} & \mapsto \overline{b} \end{array}$$

Definition 7. I and J are two σ -structures. $\overline{a} \in I$ and $\overline{b} \in J$.

$$\begin{array}{c} (I,\overline{a})\rightleftharpoons_k (J,\overline{b}) \\ iff \\ \exists h \ (bijection) \ : I \ \rightarrow J \\ \overline{a} \ \mapsto \overline{b} \\ \forall c \ N_k^I(\overline{a}c) \sim N_k^J(\overline{b}h(c)) \end{array}$$

Theorem 2 (Hanf locality). $\forall \varphi \in FO, \exists k \text{ such that } \forall I, J$

$$(I,\overline{a}) \rightleftharpoons_k (J,\overline{b}) \quad implies \quad I \vDash \varphi(\overline{a}) \Leftrightarrow J \vDash \varphi(\overline{b})$$

Proof. Next week.

Corollary 2. Let P be a property of σ -structures. $P \notin FO$ if $\forall k \in \mathbb{N}. \exists A_k, B_k$ such that:

 $1 \ \mathcal{A}_k \rightleftharpoons_k \mathcal{B}_k$ $2 \ \mathcal{A}_k \vDash P \ and \ \mathcal{B}_k \vDash \neg P$

Proof. If P is in FO, let φ defining it. Let k be the number for φ given by Theorem 2. If we have $\mathcal{A}_k \rightleftharpoons_k \mathcal{B}_k$ then by Theorem 2 we have $\mathcal{A} \vDash \varphi \Leftrightarrow \mathcal{B} \vDash \varphi$. Hence we cannot have $\mathcal{A}_k \vDash P$ and $\mathcal{B}_k \vDash \neg P$.

Application: connectivity is not in FO.

Take $\overline{\mathcal{A}} = C_{2k+2}$, the cycle of length 2k+2 and $\mathcal{B} = C_{k+1} \cup C_{k+1}$. It is easy to see that $\mathcal{A}_k \rightleftharpoons_k \mathcal{B}_k$.