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Abstract. A data tree is a finite tree whose every node carries a label from a finite
alphabet and a datum from some infinite domain. We introduce a new model of automata
over unranked data trees with a decidable emptiness problem. It is essentially a bottom-up
alternating automaton with one register that can store one data value and can be used
to perform equality tests with the data values occurring within the subtree of the current
node. We show that it captures the expressive power of the vertical fragment of XPath
—containing the child, descendant, parent and ancestor axes— obtaining thus a decision
procedure for its satisfiability problem.

1. Introduction

We study formalisms for data trees. A data tree is a finite tree where each position carries
a label from a finite alphabet and a datum from some infinite domain. This structure has
been considered in the realm of semistructured data, timed automata, program verification,
and generally in systems manipulating data values. Finding decidable logics or automata
models over data trees is an important quest when studying data-driven systems.

In particular data trees can model xml documents. There exist many formalisms to
specify or query xml documents. For static analysis or optimization purposes it is often
necessary to test whether two properties or queries over xml documents expressed in some
formalism are equivalent. This problem usually boils down to a satisfiability question. One
such formalism to express properties of xml documents is the logic XPath—the most widely
used node selection language for xml. Although satisfiability of XPath in the presence of
data values is undecidable, there are some known decidable data-aware fragments [Fig09,
Fig10, Fig11, Fig13, BFG08, BMSS09]. Here, we investigate a rather big fragment that
nonetheless is decidable. Vertical XPath is the fragment that contains all downward and
upward axes, but no horizontal axis is allowed.

We introduce a novel automaton model that captures vertical XPath. We show that the
automaton has a decidable emptiness problem and therefore that the satisfiability problem
of vertical XPath is decidable. The Bottom-Up Data Automata (or BUDA) are bottom-up
alternating tree automata with one register to store and compare data values. Further, these
automata can compare the data value currently stored in the register with the data value of
a descendant node, reached by a downward path satisfying a given regular property. Hence,
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in some sense, it has a two-way behavior. However, they cannot test horizontal properties
on the siblings of the tree, like “the root has exactly three children”.

Our main technical result shows the decidability of the emptiness problem of this au-
tomaton model. We show this through a reduction to the coverability problem of a well-
structured transition system (wsts [FS01]), that is, the problem of whether, given two
elements x, y, an element greater or equal to y can be reached starting from x. Each BUDA
automaton is associated with a transition system, in such a way that a derivation in this
transition system corresponds to a run of the automaton, and vice-versa. The domain of the
transition system consists in the extended configurations of the automaton, which contain
all the information necessary to preserve from a (partial) bottom-up run of the automaton
in a subtree in order to continue the simulation of the run from there. On the one hand,
we show that BUDA can be simulated using an appropriate transition relation on sets of
extended configurations. On the other hand, we exhibit a well-quasi-order (wqo) on those
extended configurations and show that the transition relation is “monotone” relative to this
wqo. This makes the coverability problem (and hence the emptiness problem) decidable.

Our decision algorithm is not primitive recursive. However it follows from [FS09] that
there cannot be a primitive recursive decision algorithm for vertical XPath.

In terms of expressive power, we show that BUDA can express any node expression of
the vertical fragment of XPath. Core-XPath (term coined in [GKP05]) is the fragment of
XPath 1.0 that captures its navigational behavior, but cannot express any property involving
data. It is easily shown to be decidable. The extension of this language with the possibility
to make equality and inequality tests between data values is named Core-Data-XPath in
[BMSS09], and it has an undecidable satisfiability problem [GF05]. By “vertical XPath” we
denote the fragment of Core-Data-XPath that can only use the downward axes child and
descendant and the upward axes parent and ancestor (no navigation among siblings
is allowed). It follows from our work that vertical XPath is decidable, settling an open
question [BK08, Question 5.10].

Related work. A model of top-down tree automata with one register and alternating
control (ATRA) is introduced in [JL11], where the decidability of its emptiness problem
is proved. ATRA are used to show the decidability of temporal logics extended with
a “freeze” operator. This model of automata was extended in [Fig10] with the name
ATRA(guess, spread) in order to prove the decidability of the forward fragment of XPath,
allowing only axes navigating downward or rightward (next-sibling and following-
sibling). The BUDA and ATRA automata models are incomparable: ATRA can express all
regular tree languages, but BUDA cannot; while BUDA can express unary inclusion depen-
dency properties (like “the data values labeled by a is a subset of those labeled by b”), but
ATRA cannot. In order to capture vertical XPath, the switch from top-down to bottom-up
seems necessary to express formulas with upward navigation, and this also makes the de-
cidability of the emptiness problem considerably more difficult. In [Fig10], the decidability
of the forward fragment of XPath is also obtained using a wsts. However, the automata
model and therefore also the transition system derived from it, are significantly different
from BUDA and the transition system we derive from it. In particular they cannot traverse
a tree in the same way.

Another decidable fragment of XPath on data trees is the downward fragment of XPath,
strictly contained the vertical fragment treated here, where navigation can be done only
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through the child and descendant axes. This fragment is known to be decidable, ExpTime-
complete [Fig09, Fig12]. In [Fig13] it is shown the decidability of the satisfiability problem
for XPath where navigation can be done going downwards, rightwards or leftwards in the
XML document but using only reflexive-transitive axes. That is, where navigation is done
using the XPath axes ↓∗, →∗, and ∗←. The complexity is of 3ExpSpace, and this in
sharp contrast with the fact that having strict (non-reflexive) transitive axes makes the
satisfiability problem undecidable.

The paper [BK08] contains a comprehensive survey of the known decidability results
for various fragments of XPath, most of which cannot access data values. In the presence
of data values, the notable new results since the publication of [BK08] are the downward
[Fig09] and the forward [Fig10] fragments, as well as the fragment containing only the
successor axis [BMSS09] (the latter is closely related to first-order logic with two variables),
or containing reflexive-transitive relations (such as descendant, or the reflexive-transitive
closure of the next/previous sibling relation) [Fig11, Fig13]. As already mentioned, this
paper solves one of the remaining open problems of [BK08].

Organization. In Section 3 we introduce the BUDA model and we show that it captures
vertical XPath in Section 5. The associated well-structured transition system and the proof
to show the decidability of its reachability is in Section 4.

This paper is a journal version of [FS11]. Compared to the conference paper, we have
modified and simplified significantly the automata model and the associated wsts.

2. Preliminaries

Basic notation. Let ℘(S) denote the set of subsets of S, and ℘<∞(S) be the set of finite
subsets of S. Let N = {0, 1, 2, . . . }, N+ = {1, 2, 3, . . . }, and let [n] := {1, . . . , n} for any
n ∈ N+. We fix once and for all D to be any infinite domain of data values; for simplicity
in our examples we will consider D = N. In general we use letters A, B for finite alphabets,
the letter D for an infinite alphabet and the letters E and F for any kind of alphabet. By
E∗ we denote the set of finite sequences over E, by E+ the set of finite sequences with at
least one element over E, and by Eω the set of infinite sequences over E. We write ε for the
empty sequence and ‘·’ as the concatenation operator between sequences. We write |S| to
denote the length of S (if S is a finite sequence), or its cardinality (if S is a set).

Regular languages. We denote by REG(A) the set of regular expressions over the finite
alphabet A. We make use of the many characterizations of regular languages over a finite
alphabet A. In particular, we use that a word language L ⊆ A∗ is regular iff it satisfies
one the following equivalent properties:

• there is a deterministic (or non-deterministic) finite automaton recognizing L ,
• it is described by a regular expression,
• there is a finite monoid (M, ·) with a distinguished subset T ⊆ M , and a monoid

homomorphism h : A∗ →M such that w ∈ L iff h(w) ∈ T ,
• there is a finite semigroup (S, ·) with a distinguished subset T ⊆ S, and a semigroup

homomorphism h : A∗ → S such that for all w with |w| > 0, w ∈ L iff h(w) ∈ T .

Depending on the section, in order to clarify the presentation, we will use the charac-
terization that fits the best our needs.
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Unranked finite trees. By Trees(E) we denote the set of finite ordered and unranked
trees over an alphabet E. We view each position in a tree as an element of (N+)∗. Formally,
we define POS ⊆ ℘<∞((N+)∗) as the set of sets of finite tree positions, such that: X ∈ POS
iff (a) X ⊆ (N+)∗, |X| < ∞; (b) X is prefix-closed; and (c) if n·(i + 1) ∈ X for i ∈ N+,
then n·i ∈ X for n ∈ N+. A tree is then a mapping from a set of positions to letters of the
alphabet Trees(E) := {t : P → E | P ∈ POS}. By t|x we denote the subtree of t at position
x: t|x(y) = t(x·y). The root’s position is the empty string and we denote it by ‘ε’. The
position of any other node in the tree is the concatenation of the position of its parent and
the node’s index in the ordered list of siblings. In this work we use v, w, x, y, z as variables
for positions, and i, j, k, l,m, n as variables for numbers. Thus two positions x, y are sibling
if they are of the form x = z · i and y = z · j for some z, j; whereas x is the parent of y
(resp. y is the child of x) if y is of the form x · i for some i. Note that from the notation
x·i one knows that it is a position which is not the root, that has x as parent position, and
that has i− 1 siblings to the left.

Given a tree t ∈ Trees(E), pos(t) denotes the domain of t, which consists of the set of
positions of the tree, and alph(t) = E denotes the alphabet of the tree. From now on, we
informally refer by ‘node’ to a position x together with the value t(x).

Given two trees t1 ∈ Trees(E), t2 ∈ Trees(F) such that pos(t1) = pos(t2) = P , we
define t1 ⊗ t2 : P → (E×F) as (t1 ⊗ t2)(x) = (t1(x), t2(x)).

a, 2

a, 2 b, 2

b, 9 b, 5 b, 3

a, 2 b, 1 b, 2

Figure 1: A data tree.

The set of data trees over a finite alphabet A and an infinite domain D is defined
as Trees(A×D). Note that every tree t ∈ Trees(A×D) can be decomposed into two trees
a ∈ Trees(A) and d ∈ Trees(D) such that t = a⊗ d. Figure 1 shows an example of a data
tree. The notation for the set of data values used in a data tree is data(a ⊗ d) := {d(x) |
x ∈ pos(d)}. With an abuse of notation we write data(X) to denote all the elements of D
contained in X, for whatever object X may be.

Downward path. A downward path starting at a node x of a tree t is the sequence of
labels of a simple path whose initial node is x and going to a descendant of x. In other
words, it is the word of the form a1 · · · an where, for all 1 ≤ i ≤ n, ai = t(xi) with x1 = x
and xi+1 is a child of xi.

XPath on data trees. Finally we define vertical XPath, the fragment of XPath where
no horizontal navigation is allowed. We actually consider an extension of XPath allowing
the Kleene star on any path expression and we denote it by regXPath. Although here we
define XPath (a language conceived for XML documents) over data trees instead of over
XML documents, the main decidability result can be easily transfered to XPath over XML
documents through a standard translation (see for instance [BMSS09]).

Vertical regXPath is a two-sorted language, with path expressions (denoted by α, β, γ)
and node expressions (denoted by ϕ,ψ, η). Path expressions are binary relations resulting
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α, β ::= o | α[ϕ] | [ϕ]α | αβ | α ∪ β | α∗ o ∈ {ε, ↓, ↑} ,
ϕ, ψ ::= a | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | 〈α〉 | 〈α = β〉 | 〈α 6= β〉 a ∈ A .

The syntax of vertical XPath

[[↓]]t = {(x, x·i) | x·i ∈ pos(t)} [[↑]]t = {(x·i, x) | x·i ∈ pos(t)}
[[[ϕ]]]t = {(x, x) | x ∈ pos(t), x ∈ [[ϕ]]t} [[α∗]]t = the reflexive transitive closure of [[α]]t

[[ε]]t = {(x, x) | x ∈ pos(t)} [[αβ]]t = {(x, z) | ∃y . (x, y) ∈ [[α]]t,

[[α ∪ β]]t = [[α]]t ∪ [[β]]t (y, z) ∈ [[β]]t}
[[a]]t = {x ∈ pos(t) | a(x) = a} [[〈α〉]]t = {x ∈ pos(t) | ∃y . (x, y) ∈ [[α]]t}

[[¬ϕ]]t = pos(t) \ [[ϕ]]t [[ϕ ∧ ψ]]t = [[ϕ]]t ∩ [[ψ]]t

[[〈α=β〉]]t = {x ∈ pos(t) | ∃y,z . (x, y) ∈ [[α]]t, [[〈α 6=β〉]]t = {x ∈ pos(t) | ∃y,z . (x, y) ∈ [[α]]t,

(x, z) ∈ [[β]]t,d(y) = d(z)} (x, z) ∈ [[β]]t,d(y) 6= d(z)}
The semantics of vertical XPath over a data tree t = a⊗ d

Figure 2: The syntax and semantics of vertical XPath.

from composing the child and parent relations (which are denoted respectively by ↓ and
↑), and node expressions. Node expressions are boolean formulas that test a property of
a node, like for example, that it has a certain label, or that it has a child labeled a with
the same data value as an ancestor labeled b, which is expressed by 〈↓[a] = ↑∗[b]〉. We
write regXPath(V,=) to denote this logic. A formula of regXPath(V,=) is either a node
expression or a path expression of the logic. Its syntax and semantics are defined in Figure 2.

As another example, we can select the nodes that have a descendant labeled b with two
children also labeled by b with different data values by a formula ϕ = 〈↓∗[ b ∧ 〈↓ [b] 6=↓ [b]〉 ]〉.
Given a tree t as in Figure 1, we have [[ϕ]]t = {ε, 1, 12}.

The satisfiability problem for regXPath(V,=) is the problem of, given a formula ϕ,
whether there exists a data tree t such that [[ϕ]]t 6= ∅.

Our main result on XPath is the following.

Theorem 1. The satisfiability problem for regXPath(V,=) is decidable.

The proof of Theorem 1 goes as follows. We define a model of automata running over
data trees. This model of automata is interesting on its own and the second main result
of this paper shows that they have a decidable emptiness problem. Finally we show that
formulas of regXPath(V,=) can be translated into a BUDA.

3. The automata model

In this section we introduce our automata model. It is essentially a bottom-up tree au-
tomaton with one register to store a data value and an alternating control. We will see
in Section 5 that these automata are expressive enough to capture vertical regXPath. In
Section 4 we will show that their emptiness problem is decidable. Theorem 1 then follows
immediately.
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A Bottom-Up Data Automaton (BUDA) A runs over data trees of Trees(A×D) and it
is defined as a tuple A = (A,B, Q, q0, δ) where A is the finite alphabet of the tree, B is an
internal finite alphabet of the automaton (whose purpose will be clear later), Q is a finite
set of states, q0 is the initial state, and δ is the transition function which is a finite set of
pairs of the form (test,action) that will be described below.

Before we present the precise syntax and semantics of our automaton model, we first
give the intuition. The automaton has one register, where it can store and read a data value
from D, and it has alternating control. Hence, at any moment several independent threads
of the automaton may be running in parallel. Each thread has one register and consists of
a state from Q and a data value from D stored in the register. The automaton first guesses
a finite internal label from B for every node of the tree and all threads share access to this
finite information. This internal information can be viewed as a synchronization feature
between threads and will be necessary later for capturing the expressive power of vertical
regXPath. The automaton is bottom-up, and it starts with one thread with state q0 at every
leaf of the tree with an arbitrary data value in its register. From there, each thread evolves
independently according to the transition function δ: If the test part of a pair in δ is true
then the thread can perform the corresponding action, which may trigger the creation of
new threads. We first describe the set of possible tests the automata may perform and then
the set of their possible actions.

The tests may consist of any conjunction of the basic tests described below or their
negation. The automata can test the current state, the label (from A) and internal label
(from B) of the current node and also whether the current node is the root, a leaf or an
internal node. The automata can test equality of the current data value with the one
stored in the register (denoted by eq). Finally the automata can test the existence of some
downward path, starting from the current node and leading to a node whose data value
is (or is not) equal to the one currently stored in the register, such that the path matches
some regular expression on the labels. For example, for a regular expression exp over the
alphabet A×B, the test 〈exp〉= checks the existence of a downward path that matches exp,
which starts at the current node and leads to a node whose data value matches the one
currently stored in the register. Similarly, 〈exp〉6= tests that it leads to a data value different
from the one currently in the register.

The precise set of possible basic tests is:

BTests = {p, eq, 〈exp〉=, 〈exp〉6=, root, leaf, a, b | exp ∈ REG(A× B), p ∈ Q, a ∈ A, b ∈ B}.
If x is a basic test, we will write x to denote the test corresponding to the negation of x. For
instance eq tests whether the current data value differs from the one stored in the register.
The possible set of tests is then:

Tests = BTests ∪ BTests.

Based on the result of a test the thread can perform an action. A basic action either
accepts (accept) and the corresponding thread terminates, or specifies a new state p and a
new content for the register for each thread it generates, each of them moving up in the
tree to the parent node. The possible updates of the register are: keep the register’s data
value unchanged (denoted by keep), store the current data value in the register (denoted
by store), store an arbitrary data value non-deterministically chosen (guess), or start a new
thread for every data value of the subtree (univ) of the current node. Note that this last
action creates unboundedly many new threads. Altogether the precise set of possible basic
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actions is:

Actions = {accept, keep(p), store(p), guess(p), univ(p) | p ∈ Q}
and the set of actions is any conjunction of those. As usual, conjunction corresponds to
universality. For example with an action of the form a1 ∧ a2 the automaton starts two new
threads, one specified by a1 and one specified by a2. If a2 would be univ(p) then it actually
starts one new thread in state p and data value d per data data value d occurring in the
subtree of the current node.

A transition is therefore a pair (test,action) where test is a conjunction of basic tests
in Tests and action is a conjunction of basic actions in Actions. There might be several
rules involving the same tests, corresponding to non-determinism.

Before we move on to the formal definition of the language accepted by a BUDA, we
stress that the automaton model is not closed under complementation because its set of
actions are not closed under complementation: guess is a form of existential quantification
while univ is a form of universal quantification, but they are not dual. Actually, we will
show in Proposition 3 that adding their dual would yield undecidability of the model.

We now turn to the formal definition of the semantics of a BUDA. A data tree a⊗d ∈
Trees(A × D) is accepted by A iff there exists an internal labeling b ∈ Trees(B) with
pos(b) = pos(a⊗d) such that there is an accepting run of A on t = a⊗b⊗d. We focus
now on the definition of a run.

We say that a thread (q, d) makes a basic test t ∈ BTests true at a position x of t,
and write t, x, (q, d) |= t, if:

• t is one of the tests p, a, b, root, leaf, eq and we have respectively q = p, a(x) = a,
b(x) = b, x is the root of t, x is a leaf of t, d(x) = d,
• t is 〈exp〉= and there is a downward path in t matching exp, starting at x and ending

at y where d(y) = d. The case of 〈exp〉 6= is treated similarly replacing d(y) = d by
d(y) 6= d.

This definition and notation lifts to arbitrary Boolean combination of basic tests in the
obvious way. Note that 〈exp〉= is not 〈exp〉 6=. The former is true if there no downward path
matching exp and reaching the current data value, while the latter requires the existence of
a downward path matching exp and reaching a data value different from the current one.

A configuration of a BUDA A is a set C of threads, viewed as a finite subset of Q× D.
A configuration C is said to be initial iff it is the singleton {(q0, e)} for some e ∈ D.

A run ρ of A on t = a⊗b⊗d is a function associating a configuration to any node x
of t such that

• for any leaf x of t, ρ(x) is initial,
• for any inner position x of t, whose parent is the position y, and for any (q, d) ∈ ρ(x)

there exists (t,Ac) ∈ δ with Ac =
∧
j∈J Acj such that t, x, (q, d) |= t and for any

j ∈ J we have:
– if Acj is keep(p) then (p, d) ∈ ρ(y),
– if Acj is store(p) then (p,d(x)) ∈ ρ(y),
– if Acj is guess(p) then (p, e) ∈ ρ(y) for some e ∈ D,
– if Acj is univ(p) then for all e ∈ data(t|x), (p, e) ∈ ρ(y).

The run ρ on t is accepting if moreover for the root y of t and all (q, d) ∈ ρ(y) there
exists (t, accept) ∈ δ such that t, y, (q, d) |= t.
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3.1. Discussion.

3.1.1. Semigroup notation. For convenience of notation in the proofs, we shall use an equiv-
alent definition of BUDA using semigroup homomorphisms instead of regular expressions.
That is, we consider an automaton A ∈ BUDA as a tuple A = (A,B, Q, q0, δ,S, h) where
S is a finite semigroup, h is a semigroup homomorphism from (A × B)+ to S, and tests
of the form 〈µ〉= and 〈µ〉 6= contain a semigroup element µ ∈ S. Hence, 〈µ〉= is true at x
in t if there is a downward path in t starting at x and ending at a descendant y, evalu-
ating to µ via h and such that d(y) = d. The case of 〈µ〉6= is treated similarly replacing
d(y) = d by d(y) 6= d. Note that since regular languages are exactly those recognized by
finite semigroups (recall Section 2) this is an equivalent automata model.

3.1.2. Disjunction. As mentioned earlier the automata model does not allow for disjunctions
of actions or tests. But in fact these can be added without changing the expressivity of the
automaton, by modifying the transition relation δ:

• any automaton having transition with a disjunction of actions (t, a1∨a2) is equivalent
to the automaton resulting from replacing (t, a1∨a2) with the transitions (t, a1) and
(t, a2),
• any automaton having transition with a disjunction of tests (t1 ∨ t2, a) is equivalent

to the automaton resulting from replacing (t1∨ t2, a) with the transitions (t1, a) and
(t2, a).

For this reason we will sometimes write disjunction of actions or of tests, as a shorthand
for the equivalent automaton without disjunctions.

We will also make use of a test 〈µ〉 denoting 〈µ〉=∨〈µ〉6=; and 〈µ〉 denoting 〈µ〉=∧〈µ〉6=.

3.1.3. Closure properties. We say that a model is closed under effective operation O, if it is
closed under O and further the result of the application of the operation O is computable.

Proposition 2. The class BUDA is closed under effective intersection and effective union.

Proof. This is straightforward from the fact that the model has alternation and non-
determinism.

As already mentioned, the closure under complementation of BUDA yields an undecid-
able model.

Proposition 3. Any extension of BUDA closed under effective complementation and effec-
tive intersection has an undecidable emptiness problem.

Proof. The automaton model ARA(guess) introduced in [Fig12] is an alternating 1-register
automaton over data words, which are essentially data trees whose every position has at
most one child. The model is equivalent to a restricted version of BUDA without the tests
〈exp〉=, 〈exp〉6= and without the action univ running on data words. Indeed, the ARA(guess)
model is an alternating automaton with one register and a guess operator just like the one
of BUDA. Then, there is a simple reduction from the emptiness problem for the automata
model ARA(guess) into the emptiness problem of BUDA. Indeed, there is a straightforward
translation f from ARA(guess) to BUDA so that for every A ∈ ARA(guess)

• if a data word is accepted by A , then it is accepted by f(A), and
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• if a data tree is accepted by f(A), then any of its maximal branches (seen as data
words, starting at a leaf and ending at the root) is accepted by A .

By means of contradiction, suppose that there is a class of automata C that extends the
class BUDA and is closed under effective complementation and effective intersection. We
show undecidability by reduction from the emptiness problem for Minsky machines [Min67].
In [Fig12, Proof of Proposition 3.2], it is shown that for every Minsky machine M one can
build two properties P and P ′ expressible by ARA(guess) so that P ∧ ¬P ′ is satisfiable iff

M is non-empty. By the reduction above, the properties P̂ = every branch satisfies P and
P̂ ′ = every branch satisfies P ′ are expressible with C. Since C is closed under intersection
and complementation, then P̂ ∧ ¬P̂ ′ is expressible with C. Note that a data tree satisfies
P̂ ∧ ¬P̂ ′ iff it has a branch satisfying P ∧ ¬P ′, which happens iff M is non-empty. Hence,
C has an undecidable emptiness problem.

Since we will show that the emptiness problem for BUDA is decidable and BUDA is
closed under intersection, we then have that they are not closed under complementation.

Corollary 4. The class BUDA is not closed under effective complementation.

We do not know how to show that BUDA is not closed under complement. A possible
concrete example would be the property that on every branch of the data tree the data
values under a node of label a are the same as those under the nodes of label b. The
complement of this property is expressible by a BUDA, but it seems that a BUDA cannot
express it.

3.2. Automata normal form. We now present a normal form of BUDAs, removing re-
dundancy in its definition. This normal form simplifies the technical details in the proof of
decidability presented in the next section. We use the semigroup point of view.

(NF1) The semigroup S and homomorphism h have the property that different values are
used for paths of length one: For all w ∈ (A × B)+ and c ∈ A × B, h(w) = h(c) iff
w = c.

(NF2) All transitions (test, action) are such that test contains only conjuncts of the form p,
〈exp〉=, 〈exp〉6=, root as well as their negated · counterparts.

An automaton A ∈ BUDA is said to be in normal form if it satisfies (NF1), (NF2).

Proposition 5. For any A ∈ BUDA, there is an equivalent A ′ ∈ BUDA in normal form
that can be effectively obtained.

Proof. First, given a finite semigroup we can easily compute another one that satisfies
(NF1), only by adding some extra elements to the domain in order to tell apart all the one
letter words for each symbol of the finite alphabet.

To show that (NF2) can always be assumed, note that any test for label can be sim-
ulated using 〈µ〉. Indeed, a test a with a ∈ A can be simulated with

∨
b∈B〈h(a, b)〉,

ā with
∧
b∈B 〈h(a, b)〉, and similar tests can simulate b and b̄ for b ∈ B. Once this is

done, a test 〈µ〉 can be simulated using 〈µ〉= ∨ 〈µ〉 6=. The test eq can be simulated using∨
a∈A×B〈h(a)〉=. Similarly, eq can be simulated using 〈µ〉6=. Lastly, leaf and leaf can be

tested with
∧
µ6∈{h(a)|a∈A×B} 〈µ〉=∧〈µ〉6= and

∨
µ6∈{h(a)|a∈A×B}〈µ〉=∨〈µ〉 6= respectively. Thus,

we can suppose that the automaton A does not contain any transition that uses tests for
labels, eq, eq, leaf and leaf without any loss of generality.
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3.3. Non-moving actions. Here we introduce an extension to the automata model with
non-moving ε-transitions. The automaton can now perform actions while remaining at the
same node. We show that this extension does not change the expressive power of the model.
This extension will prove useful when translating vertical regXPath into BUDA in Section 5.

A BUDA automaton with ε-transitions, noted BUDAε, is defined as any BUDA automa-
ton, with the only difference that its state of states Q is split into two disjoint sets Qε and
Qmove. Moreover the set Q is partially ordered by <. Whenever an action act(p) is taken
where p ∈ Qε, then the automaton switches to state p, performs the action act , but does
not move to the parent node and stays instead at the same node. In order to avoid infinite
sequences of ε-transitions we require that when switching to a state q from a state p where
q ∈ Qε then p < q. Hence a thread can make at most |Qε| ε-steps before moving up in the
tree.

Formally a BUDAε is a tuple (A,B, Qε, Qmove, <, q0, δ,S, h) where Q = Qε ∪Qmove is a
set partially ordered by < and the set of transition δ contains only pairs (t, a) such that if
a contains a basic action act(p) where p ∈ Qε then t contains a basic test of the form q ∈ Q
with q < p. The rest is defined as for BUDA.

A run ρ of a BUDAε A = (A,B, Qε, Qmove, <, q0, δ,S, h) on t = a⊗b⊗d is defined as
for BUDA:

• for any leaf x of t, ρ(x) is initial,
• for any inner position x of t, whose parent is the position y, and any (p, d) ∈ ρ(x)

there exists (t, a) ∈ δ with a =
∧
j∈J aj such that t, x, (p, d) |= t and for any j ∈ J

we have:
– if aj is keep(q) with q ∈ Qmove, then (q, d) ∈ ρ(y),
– if aj is keep(q) with q ∈ Qε, then (q, d) ∈ ρ(x),
– if aj is store(q) with q ∈ Qmove, then (q,d(x)) ∈ ρ(y),
– if aj is store(q) with q ∈ Qε, then (q,d(x)) ∈ ρ(x),
– if aj is guess(q) with q ∈ Qmove, then (q, e) ∈ ρ(y) for some e ∈ D,
– if aj is guess(q) with q ∈ Qε, then (q, e) ∈ ρ(x) for some e ∈ D,
– if aj is univ(q) with q ∈ Qmove, then for all e ∈ data(t|x), (q, e) ∈ ρ(y),
– if aj is univ(q) with q ∈ Qε, then for all e ∈ data(t|x), (q, e) ∈ ρ(x).

As expected we show that adding ε-transitions does not increase the expressive power.

Proposition 6. There is an effective language-preserving translation from BUDAε into
BUDA.

Proof. Let A be a BUDAε. We say that a basic action is an ε-action if it is of the form
act(q) for some q ∈ Qε. The rank of an ε-action act(q) is the number of p ∈ Q such that
p < q.

We first assume without loss of generality that A contains no ε-action of the form
store(q), since those can be simulated by a guess ε-action followed by a eq test.

We also assume without loss of generality that all transitions (t, a) of A are such that t
contains exactly one conjunct of the form p and no conjunct of the form q̄, for p, q ∈ Q. This
can be enforced using non-determinism by always testing all the finitely many possibilities
for the states. All tests t now contain exactly one test for a state q and we call q the state
associated to t. We denote by t\q the new test constructed from t by removing the conjunct
q.

We now show how to remove the ε-actions of the form keep(q). We remove them one by
one computing at each step an equivalent automaton A ′ with the same set of states and the
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same partial order on it. A ′ is essentially A with one transition removed (the one containing
keep(q)) and several transitions added. The idea is classical and consists in performing the
actions executed by transitions associated to q instead of executing keep(q). The added
transitions may contain new ε-actions of the form keep(p) but those satisfy q < p. Hence
this process will eventually terminate. Assume that A has a transition (t, a) containing an
ε-action keep(q) where q has a minimal possible rank satisfying this property. We let â
denote the action computed from a by removing the conjunct keep(q). A ′ is copied from A
with the following modifications:

We remove (t, a) from the list of transitions and for each transition (t′, a′) of A such
that q is associated to t′ we add the new transition (t ∧ (t′ \ q), â ∧ a′). Notice that all
the ε-actions of the form keep(p) occurring in these new transitions come from a′ or â and
therefore are such that q < p as desired. Notice that since the action keep do not change
the data value stored in the register, the test t′ \ q can be equivalently performed before or
after executing this action. Hence the new automaton is equivalent to the old one.

We can now assume that A contains only ε-actions of the form guess(q) and univ(q).
We next show how to remove the ε-actions of the form guess(q). We again remove them

one by one computing an equivalent automaton A ′. This automaton has new states but
those do not modify the rank of the ε-actions of the form guess(p). As before it is essentially
A with one transition removed and several new transitions. The idea is to perform the
guessing of the data value at one of the children of the current node, while moving up in
the tree. The new transitions needed to do this may introduce new ε-actions of the form
guess(p), the rank of p being strictly smaller than the rank of q. Hence this process will
eventually terminate. Assume that A has a transition (t, a) containing an ε-action guess(q)
where q has a maximal possible rank satisfying this property. Let p be the state associated
to t (hence p < q) and â be the action computed from a by removing the conjunct guess(q).
A ′ is copied from A with the following modifications:

We add two new states q′ and q′′. If p ∈ Qmove then so are q′ and q′′. If p ∈ Qε then
so are q′ and q′′. We modify < by setting r < q′ and r < q′′ whenever r < p and q′ < r
and q′′ < r whenever p < r. In other words q′ and q′′ play the same role as p in the partial
order but are incomparable with p. Hence the rank of any state of Q is not modified by the
addition of these two states. Moreover the ranks of q′ and q′′ match the rank of p and are
therefore strictly less than the rank of q.

We now update the list of transitions by first removing (t, a). Then, consider a transition
(t′, a′) of A of state p′ and such that a′ contains an action of the form act(p). We add a
new transition (t′, a′′) where a′′ is the action constructed from a′ by removing act(p) and
adding act(q′) and guess(q′′) (this is consistent with the partial order). Finally we add in
A ′ a transition (q′ ∧ (t \ p), â) and a transition (q′′ ∧ (t′′ \ q), b) for any transition (t′′, b) such
that p is the state associated to t′′, both being consistent with the partial order.

The reader can now verify that A ′ is equivalent to A . If right after switching to state
p using the transition (t′, a′), where act(p) is a basic action of a′, A decides to use the
transition (t, a) then A ′ can simulate this as follows. First it uses the transition (t′, a′′).
This generates two new basic actions, act(q′) and guess(q′′) instead of act(p). The thread
generated by act(q′) will perform the tests and actions that A did by using the transition
(t, a), except for guess(q). But this latter action is simulated by guess(q′′) that has been
launched earlier. Hence A ′ does simulate A also in this case. The other direction, showing
that a run of A ′ can be simulated by a run of A is proved similarly.
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We can now assume that A contains only ε-actions of the form univ(q). Removing
those requires more care. The idea is, as above, to perform the action at the children of
the current node while moving up in the tree. As this is a universal move, all children are
concerned and we therefore need some synchronization. The internal alphabet will be used
for this. In a nutshell the new automaton will mark the nodes where the univ(q) should
be executed and mark all their children. Simple threads are launched at the leaves making
sure the marking is consistent. When encountering a node marked as a child, univ(q) can be
executed while moving up in the tree, taking care of all the data values of the corresponding
subtree. An extra thread need to be executed at the parent node to take care of its data
value. Note that different tests can be launched in different threads by the use of actions
like keep(q) ∧ keep(p) with p, q ∈ Qε. We now turn to the details.

Assume that A has a transition (t, a) containing an ε-action univ(q) where q has a
maximal possible rank satisfying this property. Let p be the state associated to t and â be
the action computed from a by removing the conjunct univ(q). A ′ is essentially a copy of
A with the following modifications:

We use B′ = B× {0, 1, 2} as internal alphabet for A ′. The nodes containing 1 in their
label are expected to simulate an action univ(q), and their children must contain 2 in their
label. On top of simulating A , A ′ starts a new thread at all the leaves of the tree, using a
fresh new state in Q′move. These threads make sure that all nodes whose label contain 2 have
a parent with 1 in their label and that all nodes having 1 in their label have no child without
2 in their label (this can be done with the appropriate 〈exp〉-test). Moreover, we assume
yet a new state q′ in Q′move and these new threads trigger an action univ(q′) each time the
symbol 2 is found. In other words, we make sure that any node x with internal label 1 has
a thread (q′, d) for every data value occurring strictly below x. We replace the transition
(t, a) with (t1, store(q) ∧ â) where t1 performs the same tests as t but also checks that the
internal label contains 1. Finally, to any transition (t′, a′) of A whose associated test is q we
add a new transition replacing q with q′ (note that we don’t remove any transition, hence
(t′, a′) is still a transition of A ′).

Note that this generates a new ε-action of the form store(q). However we have seen that
those could be simulated using guess ε-actions and we have seen above that such ε-actions
could be removed. As this last step does not introduce any new univ ε-actions, the resulting
automaton has strictly less ε-actions of that rank.

For correctness, assume that A accepts a data tree t with an accepting run ρ. A ′ marks
all positions where ρ uses transition (t, a), with 1, and the children of those nodes with 2.
The rest of the simulation of A is trivial. The run will be accepting because all the new
generated threads will have exactly the same effect as the action univ(q) at the marked
nodes: the action store(q) generates a thread with the current data value, while the actions
univ(q′) generate a thread for all the data values within the subtrees. Conversely, assume
that A ′ has an accepting run ρ′ on a data tree t. Let x be a node whose internal label has
1. If ρ′ does use the transition (t1, store(q) ∧ â) at node x then A can simulate A ′ using
the transition (t, a) as they produce the same threads. If ρ′ does not use the transition
(t1, store(q)∧ â) at that node, then the initial internal labeling was incorrectly guessed. But
this is not important as A can still simulate A ′ on a subset of the threads, hence will also
accept t. In other words, A ′ will have executed an action univ(p) at x that was not necessary
for accepting the tree.
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4. The emptiness problem for BUDA

This is the most technical section of the paper. Its goal is to show:

Theorem 7. The emptiness problem for BUDA is decidable.

This result is shown through methods from the theory of well-structured transition
systems, or wsts for short [FS01]. It is obtained by interpreting the execution of a BUDA
using a transition system compatible with some well-quasi-ordering (wqo). We start with
the notions of the theory of wsts that we will need.

A quasi-order ≤ (i.e., a reflexive and transitive relation) over a set S is said to be a well-
quasi-order (wqo) if there is no infinite decreasing sequence and no infinite incomparabe
sequence of elements of S. In orther words if for every infinite sequence s1 s2 · · · ∈ Sω there
are two indices i < j such that si ≤ sj . Given a wqo (S,≤) and T ⊆ S, we define the
downward closure of T as ↓ T := {s ∈ S | ∃ t ∈ T, s ≤ t} and T is downward closed if
↓T = T .

Given a BUDA A , a first goal could be to compute the set of reachable configurations,
i.e. the configurations C such that there is a data tree t and a run ρ of A on t such that
ρ(x) = C for the root x of t.

A näıve algorithm would be to start with the set of initial configurations and then to
enrich this set, step by step, by applying the transition function of A to some configurations
from the set, hence preserving reachability.

This idea immediately raises some issues. The first one is that the set of reachable
configurations is infinite and therefore we need a way to guarantee that the run of the
algorithm will eventually stop. Second, we need to make sure we can compute the con-
figurations reachable in one step from a finite set of configurations. In particular, as our
trees are unranked, we do not know in advance how many reachable configurations we need
to combine in order to derive the next ones. Moreover, in order to apply the transition
function of A , we need to know which of the tests of the form 〈µ〉= and 〈µ〉 6= are true in
the data trees that make a configuration reachable.

To overcome this last issue, we enrich the notion of configuration, initially a finite set
of pairs (q, d) ∈ Q × D, by including all the information of the current subtree that is
necessary to maintain in order to continue the simulation of the automaton from there.
This information consists in a finite set of pairs of the form (µ, d) ∈ S × D whose presence
indicate that from the current node the data value d can be reached following a downward
path evaluating to µ via the homomorphism h of A . This enriched configuration will be
henceforth called extended configuration.

To overcome the problem of termination we introduce a well-quasi-order on extended
configurations and we show that, as far as emptiness is concerned, it is not necessary to
consider extended configurations that are bigger than those already computed. We say that
such a wqo is compatible with the transition system.1 In other words it is enough to solve the
coverability problem relative to that wqo instead of the reachability problem. Coverability
can be decided by inserting a new extended configuration into the running set of reachable
configurations only if the new extended configuration is incomparable to or smaller than
those already present. Termination is then guaranteed by the well-quasi-order.

1In our case this will be assured by a property of the transition sytem (X,→) and wqo (X,≤) of the
following form: for every x, x′, y ∈ X so that x′ ≤ x and x→ y there is y′ ∈ X so that x′ →∗ y′ and y′ ≤ y.
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1. θ1
grow−−→ θ2. Given two abstract configurations θ1 and θ2 as above, we say θ1

grow−−→ θ2 if
r1 = m1 = false, and for all (q, d) ∈ ∆1, δup(q) is defined and θ2 is such that m2 = true,
∆1 �up ∆2, and Γ2 = {(µ�, e) : (µ, e) ∈ Γ1, µ

� = h(c)·µ}∪ {(h(c), d)}, for some c ∈ A × B
and d ∈ D. Notice that c and d are then the label and data value of θ2. As a consequence
of the normal form (NF1) of the semigroup, this operation preserves property (�).

2. θ1, θ2
merge−−−→ θ0. Given 3 abstract configurations θ1 = (∆1,Γ1, r1,m1), θ2 = (∆2,Γ2, r2,m2),

θ0 = (∆0,Γ0, r0,m0) we define θ1, θ2
merge−−−→ θ0 if they all have the same label and data

value, m1 = m2 = true, r1 = r2 = r0, ∆0 = ∆1 ∪ ∆2, and Γ0 = Γ1 ∪ Γ2. Notice that this
operation preserves property (�).

� Remark. inc(S, χ)−−−−−→ can be seen as a kind of merge−−−→ which preserves the truth of tests.

� Definition 5. We define that Θ1 ⇒ Θ0 if one the following conditions holds:

1. There is θ1 ∈ Θ1 and θ�
1 ∼ θ1 such that θ�

1 →� θ0 or θ�
1

inc(S, χ)−−−−−→ θ0 or θ�
1

grow−−→ θ0, for some
θ0, χ, and Θ0 = Θ1 ∪ {θ0}.

2. There are θ1, θ2 ∈ Θ1 and θ�
1 ∼ θ1, θ�

2 ∼ θ2 such that θ�
1, θ

�
2

merge−−−→ θ0 for some θ0, and
Θ0 = Θ1 ∪ {θ0}.
In the definition of the transition system, the m flag is simply used to constrain the

transition system to have all its merge−−−→ operations right before grow−−→. Thus, if we take a
derivation and examine the kind of → transitions that originated each ⇒ transition, we
obtain a word described by the following regular expression

�
(→� | inc(S, χ)−−−−−→)∗( merge−−−→)∗ grow−−→

�∗(→� | inc(S, χ)−−−−−→)∗( merge−−−→)∗. (†)

4.4 Compatibility
We now show that all the previous definitions were chosen appropriately and that the trans-
ition system defined in Section 4.3 is compatible with the wqo defined in Section 4.2. The
proof of this result is very technical and consists in a case analysis over each possible kind of
transition. In this proof, the operation inc(S, χ)−−−−−→ becomes crucial to show that the downwards
compatibility can always be done in a bounded amount of N steps. The detailed proof will
appear in the journal version of this paper.

� Theorem 6. (℘<∞(AC),⇒) is N-downward compatible with respect to (℘<∞(AC),≤min),
for N := 2.(|S|.|Q|)2 + 1.

Let ≡ be the equivalence relation over ℘<∞(AC) such that Θ ≡ Θ� iff Θ ≤min Θ� and
Θ� ≤min Θ. Given a BUDA A , the wsts (℘<∞(AC)/≡,⇒,≤min) as built in the previous
section is called the wsts associated to A . From Theorem 6 and Proposition 1 we obtain:

� Corollary 7. Given a BUDA A, it is decidable whether the wsts associated to A can reach
an accepting abstract configuration from its initial abstract configuration.

As shown next, this implies the decidability for the emptiness problem for BUDA.

4.5 From BUDA to its abstract configurations
As expected, the wsts associated to a BUDA A reflects its behavior. That is, reachability of
one corresponds exactly to accessibility of the other. One direction is easy as the transition
system can easily simulate A . The other direction requires more care. As evidenced in (†),
the wsts may perform a inc(S, χ)−−−−−→ transition anytime. However, BUDA can only make the
tree grow in width when moving up in the tree. This issue is solved by showing that all
other transitions commute with inc(S, χ)−−−−−→. Finally we obtain the following.
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Figure 3: The grow and merge operations.

Finally, in order to overcome the problem coming from the tree unrankedness, we
decompose a transition of A into two basic steps of a transition system (see Figure 3). The
first step simulates a transition of A assuming the current node is the only child. The second
step “merges” two configurations by simulating what A would have done if the roots of the
corresponding trees were identified. Repeating this last operation yields trees of arbitrary
rank. Altogether the unrankedness problem is also transferred to the coverability problem.

To summarize, we associate to a given BUDA A a transition system based on the
configurations of A and the transition relation of A , we exhibit a compatible wqo, and can
then decide emptiness of A using the coverability algorithm sketched above.

4.1. Extended configurations. We define here the set of extended configurations of a
given BUDA A = (A,B, Q, q0, δ,S, h) in normal form.

In order to get a good intuition about the definition of extended configurations it
is necessary to have a glimpse of what transitions will be performed on them. We will
simulate each transition τ ∈ δ by several steps of the transition system. Recall that each
τ ∈ δ consists of several tests and several actions. The first step of the simulation of τ will
generate as many threads as there are tests and actions in τ . Each of these threads will then
have the task of performing the corresponding test or action. We will also use symbols, ⊥,
> and >g, to distinguish respectively: threads where no transition has yet been executed,
threads on which a transition (other than guess) has been successfully applied, and threads
on which a guess transition has been successfully applied.

Let TA = Tests ∪ Actions ∪ {>,>g,⊥}. An extended configuration of A is a tuple
(∆,Γ, r,m) where r and m are either true or false, ∆ is a finite subset of Q× TA× D and
Γ is a finite subset of S × D such that

Γ contains exactly one pair of the form (h(c), d) with c ∈ A× B. (?)

This unique element of A×B is denoted as the label of the extended configuration and the
unique associated data value is denoted as the data value of the extended configuration.

Intuitively, r says whether the current node should be treated as the root or not, m
says whether the extended configuration is ready to be merged with another one or not,
and ∆ represents the set of ongoing threads at the current node. Its elements have the form
(q, α, d). If α ∈ Tests∪Actions then this thread is expected to perform the corresponding
test or action. If α ∈ {>,>g} then this thread is ready to move up in the tree. If α = ⊥
then no transition has yet been applied on this thread. On the other hand, a pair (µ, d) ∈ Γ
simulates the existence of a downward path evaluating to µ and whose last node carries the
data value d. The condition (?) is here for technical reasons. In particular it permits to
recover the data value and label of the current tree root.

Consider θ = (∆,Γ, r,m). Remember that ∆ is the set of threads, Γ is the set of pairs
“(path evaluation, data value)” present in the abstracted subtree, r states whether the
extended configuration is the root, and m whether it is in merge mode. In the sequel we
will use the following notation for θ = (∆,Γ, r,m):
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∆(d) = {(q, α) | (q, α, d) ∈ ∆},
Γ(d) = {µ | (µ, d) ∈ Γ},

[θ](d) = (∆(d),Γ(d)),

data(θ) = {d | (q, α, d) ∈ ∆ ∨ (µ, d) ∈ Γ}.
We will also use the inverses of these, for (R,χ) ∈ ℘(Q× TA)× ℘(S):

∆−1(R) = {d | ∆(d) = R},
Γ−1(χ) = {d | Γ(d) = χ},

[θ]−1(R,χ) = {d | [θ](d) = (R,χ)},

Note that ∆(d) gives the information about the current threads carrying d in the regis-
ter; Γ(d) gives the information about downward paths that lead to the data value d; [θ](d)
is the aggregation of this information; data(θ) is the set of all data values present in θ;
∆−1(R) is the set of data values whose thread information is precisely R; Γ−1(χ) is the set
of data values whose downward paths information is precisely χ; and [θ]−1(R,χ) is the set
of data values whose aggregated [θ]-information is precisely the pair (R,χ).

We use the letter θ to denote an extended configuration and we write EC to denote the
set of all extended configurations. Similarly, we use Θ to denote a finite set of extended
configurations.

An extended configuration θ = (∆,Γ, r,m) is said to be initial if it corresponds to a
leaf node, i.e., is such that ∆ = {(q0,⊥, d)} and Γ = {(h(a), d′)} for some d, d′ ∈ D and
a ∈ A×B. Note that every initial extended configuration verifies condition (?). An extended
configuration is said to be accepting if ∆ = ∅.

We will very often use this notation for components of extended configuations:

θ = (∆,Γ, r,m)

θ′ = (∆′,Γ′, r′,m′)
(‡)

Two extended configurations θ1 and θ2 are said to be equivalent if they are identical
modulo a bijection between data values, i.e. there is a bijection f : D → D such that
f(θ1) = θ2 (with some abuse of notation). We denote this by θ1 ∼ θ2.

Finally, we write ΘI to denote the set of all initial extended configurations modulo ∼
(i.e. a set containing at most one element for each ∼ equivalence class). Note that ΘI is
finite and can be computed. A set of extended configurations is said to be accepting if it
contains an accepting extended configuration.

4.2. Well-quasi-orders. We now equip EC with a well-quasi-order (EC,�).
The profile of an extended configuration θ = (∆,Γ, r,m), denoted by profile(θ), is the

tuple (A0, A1, r,m) with

A0 = {χ ⊆ S : |Γ−1(χ)| = 0},
A1 = {χ ⊆ S : |Γ−1(χ)| = 1}.

The idea behind the definition of A0 and A1 is that the automata model can only test
whether there exists either (i) none, (ii) exactly one, or (iii) more than one data values that
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are reachable by a downward path µ. If it is zero, we store this information in A0, if it is
one we store it into A1. However an automaton cannot count more than this. And this is
a key for decidability.

Given two extended configurations θ1 = (∆1,Γ1, r1,m1) and θ2 = (∆2,Γ2, r2,m2), we
denote by θ1 � θ2 the fact that

• profile(θ1) = profile(θ2), and
• there is a function f : D → D such that data(θ1) ⊆ f(D) (henceforth called the

surjectivity condition) and for all d ∈ D:
– ∆1(f(d)) ⊆ ∆2(d),
– Γ1(f(d)) = Γ2(d).

We write θ1 �f θ2 if we want to make explicit the function f witnessing the relation.

Remark 8. Assume that θ1 �f θ2 and consider a thread (q, α, d) ∈ ∆1. Then by the surjec-
tivity condition of f there is a data value e such that f(e) = d. From ∆1(f(e)) ⊆ ∆2(e) it fol-
lows that (q, α, e) is a thread in ∆2. Similarly if θ1 contains k threads (q, α, d1), . . . , (q, α, dk)
then so would θ2. The converse is however not true as f need not be injective. In fact, the
equality between the profiles is here to guarantee a minimal version of the converse: if for
some χ ⊆ S, θ2 contains no data value in Γ2(χ), then neither does θ1, and if Γ2(χ) contains
only one data value, so does θ1. We will use these remarks implicitly in the sequel.

Remark 9. Notice that from the previous remark and condition (?), it follows that if
θ1 �f θ2 then θ1 and θ2 have the same label. Moreover if d is the data value of θ2 then f(d)
is the data value of θ1.

Remark 10. Notice that if θ1 and θ2 are equivalent (θ1 ∼ θ2), then θ1 �f θ2 where f is
the function witnessing the equivalence.

The following lemmas are key observations:

Lemma 11. (EC,�) is a wqo.

This is a simple consequence of Dickson’s Lemma, that we state next. Let ≤k be the
componentwise order of vectors of natural numbers of dimension k. That is, (x1, . . . , xk) ≤k
(y1, . . . , yk) if xi ≤ yi for all i ∈ [k].

Lemma 12 (Dickson’s Lemma [Dic13]). For every k, (Nk,≤k) is a wqo.

Proof of Lemma 11. Note that θ �ι θ for all θ ∈ EC through the identity function ι : D→ D,
and that θ1 �f◦g θ3 assuming θ1 �f θ2 and θ2 �g θ3. Thus, � is a quasi-ordering. We next
show that in fact it is a wqo.

Given an extended configuration θ = (∆,Γ, r,m), let us define x̄(θ) as a function from
℘(Q×TA)×℘(S) to N. We define x̄(θ)(R,χ) = |[θ]−1(R,χ)|. Notice that x̄(θ) can be seen
as a vector of natural numbers of dimension k = |℘(Q× TA)× ℘(S)|. It then follows that
for every θ1, θ2, if

{(R,χ) ∈ ℘(Q× TA)× ℘(S) : |[θ1]−1(R,χ)| = i}
is equal to

{(R,χ) ∈ ℘(Q× TA)× ℘(S) : |[θ2]−1(R,χ)| = i}
for every i ∈ {0, 1}, and x̄(θ1) ≤k x̄(θ2), then profile(θ1) = profile(θ2) and further θ1 � θ2.

Consider an infinite sequence (θi)i∈N. As there are only finitely many possible values
for profile, there must be an infinite subsequence (θ′i)i∈N of (θi)i∈N so that profile(θ′i) =
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profile(θ′j) for all i 6= j. By Dickson’s Lemma (Lemma 12), there are indices i < j so

that x̄(θ′i) ≤k x̄(θ′j). Hence, there are indices i < j so that profile(θi) = profile(θj) and

x̄(θi) ≤k x̄(θj). This means that |[θi]−1(R,χ)| ≤ |[θj ]−1(R,χ)| for every R,χ. Let f :
data(θi) → data(θj) be so that f([θj ]

−1(R,χ)) = [θi]
−1(R,χ) for every R,χ. Note that

∆i(f(d)) = ∆j(d) and Γi(f(d)) = Γj(d) for every d. Thus, θi �f θj , and hence (EC,�) is
a wqo.

Finally we will need the fact that the set of accepting extended configurations is down-
ward closed.

Lemma 13. If θ ∈ EC is accepting and θ′ ∈ EC is such that θ′ � θ then θ′ is accepting.

Proof. If θ′ �f θ then, by the surjectivity condition of f , we have that for all d ∈ data(θ′),
∆′(d) ⊆ ∆(d′) for some d′ such that f(d′) = d. As θ is accepting this implies that ∆(d′) = ∅
for all d′ ∈ D. Hence θ′ is also accepting.

4.3. Transition system. We now equip EC with a transition relation → that reflects the
transition function δ of A . As mentioned earlier, we decompose each transition of A into
several basic steps. The first kind can be viewed as ε-transitions, each of them concerning a
single thread, which perform a basic test or action but without moving up in the tree. When
all threads of an extended configuration have performed their ε-transition, the extended
configuration switches to a merging state and is ready for the next step. The second kind
merges several extended configurations with the same label and data value that are in a
merge state (i.e., m = true) in order to combine their immediate subtrees, this operation is
merely a union. A third kind concludes the simulation of the transition by “adding a root”
to an extended configuration over a data tree.

We will denote by
grow−−−→ the third kind of transition, by

merge−−−→, the second kind, and
by →ε the union of all the ε-transitions. In order to obtain our compatibility result with

respect to the partial order, we will need one extra transition
inc−→ that makes our trees in

some sense “fatter”, by duplicating immediate subtrees of the root, and whose purpose will

be essential for showing compatibility for the
merge−−−→ transition (Lemma 21). The union of

all these transitions will form the transition relation → of EC.
We start with the description for ε-transitions. Those are defined in a straightforward

way in order to simulate the tests and actions of the initial automaton.
Given two extended configurations θ1 = (∆1,Γ1, r1,m1) and θ2 = (∆2,Γ2, r2,m2), we

say that θ1 →ε θ2 if m1 = m2 = false (the merge information is used for simulating an
up-transition as will be explained later), r2 = r1 (whether the current node is the root
or not should not change), θ1 and θ2 have the same label and data value, Γ2 = Γ1 and,
furthermore, one of the following holds:

1. θ1
δ−→ θ2. This transition can happen if there is (q,⊥, d) ∈ ∆1 for some state q ∈ Q

and data d ∈ D. In this case, for some transition τ ∈ δ, θ2 is such that: ∆2 = (∆1 \
{(q,⊥, d)}) ∪ {(q, αi, d) : i ≤ |τ |}, where (αi)i≤|τ | are all the tests and actions occurring
in τ .

2. θ1
univ−−→ θ2. This transition can happen if there is (q, univ(p), d) ∈ ∆1 for some states

p, q ∈ Q and data d ∈ D. In this case θ2 is such that ∆2 = (∆1 \ {(q, univ(p), d)}) ∪
{(p,>, e) : ∃µ . (µ, e) ∈ Γ1}.
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3. θ1
guess−−−→ θ2. This transition can happen if there is (q, guess(p), d) ∈ ∆1 for some states

p, q ∈ Q and data d ∈ D. In this case θ2 is such that ∆2 = (∆1 \ {(q, guess(p), d)}) ∪
{(p,>g, d′)} for some d′ ∈ D.

4. θ1
store−−→ θ2. This transition can happen if there is (q, store(p), d) ∈ ∆1 for some states

p, q ∈ Q and data d ∈ D. In this case θ2 is such that ∆2 = (∆1 \ {(q, store(p), d)}) ∪
{(p,>, d′)} where d′ is the data value of both θ1 and θ2 given by (?).

5. θ1
keep−−→ θ2. This transition can happen if there is (q, keep(p), d) ∈ ∆1 for some states p, q ∈

Q and data d ∈ D. In this case θ2 is such that ∆2 = (∆1 \ {(q, keep(p), d)})∪ {(p,>, d)}.
6. θ1

accept−−−→ θ2. This transition can happen if there is (q, accept, d) ∈ ∆1 for some state
q ∈ Q and data d ∈ D. In this case θ2 is such that ∆2 = ∆1 \ {(q, accept, d)}.

7. θ1
〈µ〉=−−−→ θ2. This transition can happen if there is (q, 〈µ〉=, d) ∈ ∆1 for some state q ∈ Q

and data d ∈ D with (µ, d) ∈ Γ1. In this case θ2 is such that ∆2 = ∆1 \ {(q, 〈µ〉=, d)}.
8. θ1

〈µ〉 6=−−−→ θ2. This transition can happen if there is (q, 〈µ〉6=, d) ∈ ∆1 for some state q ∈ Q
and data d ∈ D and there exists a data e ∈ D, e 6= d such that (µ, e) ∈ Γ1. In this case
θ2 is such that ∆2 = ∆1 \ {(q, 〈µ〉 6=, d)}.

9. θ1
root−−→ θ2. This transition can happen if r1 = true and there is (q, root, d) ∈ ∆1 for some

state q ∈ Q and data d ∈ D. In this case θ2 is such that ∆2 = ∆1 \ {(q, root, d)}.
10. θ1

q−→ θ2. This transition can happen there is (q, q, d) ∈ ∆1 for some data d ∈ D. In this
case θ2 is such that ∆2 = ∆1 \ {(q, q, d)}.

11. The negation of these tests:
q−→,

〈µ〉=−−−→,
〈µ〉6=−−−→ and

root−−→, are defined in a similar way. For

instance θ1
〈µ〉 6=−−−→ θ2 can happen if there is (q, 〈µ〉 6=, d) ∈ ∆1 for some state q ∈ Q and

data d ∈ D but no data e ∈ D, e 6= d such that (µ, e) ∈ Γ1. In this case θ2 is such that

∆2 = ∆1 \ {(q, 〈µ〉 6=, d)}.

Notice that we do not include transitions for the tests eq, leaf, a and b as we work with
abstractions of BUDA in normal form (cf. Proposition 5).

Remark 14. Notice that all the transitions above do not modify the profile of the extended
configuration as their Γ part remains untouched.

As mentioned earlier, for technical reasons we will need a transition that makes our trees
fatter. The idea is that this transition corresponds to duplicating an immediate subtree of
the root, using a fresh new name for one of its data value of a given type, where the type
of a data value d with an extended configuration θ is [θ](d). This transition assumes the
same constraints as for →ε except that we no longer have Γ2 = Γ1.

12. θ1
inc(S, χ)−−−−−→ θ2. This transition can happen if |[θ1]−1(S, χ)| ≥ 1 and |(Γ1)−1(χ)| ≥ 2. Then

θ2 is such that data(θ2) = data(θ1) ∪ {e} for some data e 6∈ data(θ1), [θ2](e) = (Ŝ, χ)

where Ŝ = S \ {(q,>g) : (q,>g) ∈ S}, and for all d 6= e, [θ2](d) = [θ1](d).

Observe that the conditions required for using
inc(S, χ)−−−−−→ enforce that the truth value of

any test is not changed. Indeed, condition |[θ1]−1(S, χ)| ≥ 1 says that there are at least one
data value of type (S, χ). On the other hand, condition |(Γ1)−1(χ)| ≥ 2 ensures in fact this
is not a ‘special’ data value in the sense that it is the only data value accessible through
χ. This is essential to make sure that there is at least one data value that can be ‘copied’
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6. θ1
accept−−→ θ2. This transition can happen if there is (q, accept, d) ∈ ∆1 for some q ∈ Q and

d ∈ D. In this case θ2 is such that ∆2 = ∆1 \ {(q, accept, d)}.

7. θ1
�µ�=−−−→ θ2. This transition can happen if there is (q, �µ�=, d) ∈ ∆1 for some q ∈ Q and

d ∈ D with µ ∈ Γ1(d). In this case θ2 is such that ∆2 = ∆1 \ {(q, �µ�=, d)}.

8. θ1
�µ��=−−−→ θ2. This transition can happen if there is (q, �µ� �=, d) ∈ ∆1 for some q ∈ Q and

d ∈ D and there exists e ∈ D, e �= d such that µ ∈ Γ1(e). In this case θ2 is such that
∆2 = ∆1 \ {(q, �µ� �=, d)}.

9. θ1
root−−→ θ2. This transition can happen if r1 = true and there is (q, root, d) ∈ ∆1 for some

q ∈ Q and d ∈ D. In this case θ2 is such that ∆2 = ∆1 \ {(q, root, d)}.
10. θ1

q−→ θ2. This transition can happen there is (q, q, d) ∈ ∆1 for some d ∈ D. In this case
θ2 is such that ∆2 = ∆1 \ {(q, q, d)}.

11. The negation of these tests:
q−→,

�µ�=−−−→,
�µ��=−−−→ and

root−−→, are defined in a similar way.

Notice that we don’t include transitions for the tests eq, leaf, a and b as we work with
abstractions of BUDA in normal form (cf. Proposition 3.4).

Remark 4.8. Notice that all the transitions above do not modify the profile of the
abstract configuration as their Γ part remains untouched.

For technical reasons, we will need one extra �-transition that makes our trees fatter.
This transition assumes the same constraints as for →� except that we no longer have
Γ2 = Γ1. The idea is that this transition corresponds to duplicating an immediate subtree
of the root, using a fresh new name for one of its data value of a given type.

12. θ1
inc(S, χ)−−−−−→ θ2. This transition can happen if |[θ1]−1(S,χ)| ≥ 1 and, either χ = ∅ or

|(Γ1)
−1(χ)| ≥ 2. Then θ2 is such that data(θ2) = data(θ1) ∪ {e} for some e �∈ data(θ1),

[θ1](e) = (Ŝ,χ) where Ŝ = S \ {(q,�g) : (q,�g) ∈ S}, and for all d �= e, [θ2](d) = [θ1](d).

Observe that the conditions required for using
inc(S, χ)−−−−−→ enforces that the truth Luc: What if Ŝ = ∅?

Diego: If Ŝ = ∅ this means
that we make the tree fatter
but the threads remain the
same. I don’t see a problem
here.

value of any test is not changed. This operation is, intuitively, a way of duplicating

Diego: I’m trying to give
some intuition on the reason
for the definition of Ŝ. But
I’m not sure if I’m succeed-
ing...

the derivation of θ1 in the transition system but everywhere using e instead of d.
However, note that the �g-flagged threads are not duplicated in this operation. This
is because their data value is the result of a guess operation. If we were duplicating
these values, we could have that from θ2 we could not reach a final configuration
because of one of these �g-flagged threads with data value e. However, if these threads
would have guessed d instead of e, a final configuration could have been reached.
This is to avoid this case, and it is without loss of generality (as we will show in a
forthcoming section), since we can always assume that in an accepting run, every two
simultaneous threads performing guess(p) for the same state p guess the same data value.

TO BE IMPROVED

We use
inc−→ as the union of all

inc(S, χ)−−−−−→ for all (S,χ).

We now turn to the simulation of an abstract configuration moving up in the tree. We
split this part into two phases: adding a new root symbol and merging the roots.

1. θ1
grow−−→ θ2. Given two abstract configurations θ1 and θ2 as above, we say θ1

grow−−→ θ2
if r1 = m1 = false, and for all (q,α, d) ∈ ∆1, α ∈ {�,�g}. In this case θ2 is such
that ∆2 = {(q,⊥, d) : (q,�, d) ∨ (q,�g, d) ∈ ∆1}; Γ2 = {(µ�, e) : (µ, e) ∈ Γ1, µ

� =
h(c)·µ} ∪ {(h(c), d)}, for some c ∈ A × B and d ∈ D. Notice that c and d are then the
label and data value of θ2 and that r2 and m2 could be true or false. As a consequence
of the normal form (NF1) of the semigroup, this operation preserves property (�).
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Figure 4: The inc operation.

multiple times since the automaton can express properties like “there is exactly one data
value accessible through µ ∈ χ”. This operation is, intuitively, a way of duplicating the
derivation of θ1 in the transition system. The idea is that it would correspond to a run on
an expansion of the tree that would yield the extended configuration θ1, by duplicating the
immediate subtrees of the root, renaming the data value d with e (see Figure 4). However,
note that the >g-flagged threads are not duplicated in this operation. This corresponds to
assuming that when applying this operation, the new threads do not guess a ‘new’ value
e but they stick to guessing the ‘old’ one d. This ensures that θ2 reaches all accepting
configurations that θ1 reaches.

We use
inc−→ as the union of all

inc(S, χ)−−−−−→ for all (S, χ).

Remark 15. Notice that the preconditions of
inc(S, χ)−−−−−→ implies that the profile of the ex-

tended configuration is not changed.

We now turn to the simulation of an extended configuration moving up in the tree.
We split this part into two phases: adding a new root symbol and merging the roots (see
Figure 3).

13. θ1
grow−−−→ θ2. Given two extended configurations θ1 and θ2 as above, we define θ1

grow−−−→ θ2

if r1 = m1 = false, and for all (q, α, d) ∈ ∆1, we have α ∈ {>,>g}. In this case θ2 is such
that

∆2 = {(q,⊥, d) : (q, α, d) ∈ ∆1}, and

Γ2 = {(µ′, e) : (µ, e) ∈ Γ1, µ
′ = h(c)·µ} ∪ {(h(c), d′)},

for some c ∈ A × B and d′ ∈ D. Notice that c and d′ are then the label and data value
of θ2 and that r2 and m2 could be true or false. As a consequence of the normal form
(NF1) of the semigroup, this operation preserves property (?).

14. θ1, θ2
merge−−−→ θ0. Given 3 extended configurations θ1 = (∆1,Γ1, r1,m1), θ2 = (∆2,Γ2, r2,m2),

θ0 = (∆0,Γ0, r0,m0) we say that θ1, θ2
merge−−−→ θ0 if they all have the same label and data

value, m1 = m2 = true, r1 = r2 = r0, ∆0 = ∆1 ∪∆2, and Γ0 = Γ1 ∪ Γ2. Notice that this
operation preserves property (?) and that m0 could be either true or false.

Given a finite set Θ of extended configurations and θ ∈ EC we write Θ⇒ θ if there are
extended configurations in Θ generating θ according to the transition rules 1 to 14. Based
on this, we define by induction Θ⇒+ θ if:

(1) Θ⇒ θ, or
(2) there is an extended configuration θ′ ∈ EC such that Θ⇒ θ′ and Θ ∪ {θ′} ⇒+ θ.

In the definition of the transition system, the m flag is simply used to constrain the

transition system to have all its
merge−−−→ operations right after

grow−−−→ and before any→ε. Thus
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We now turn to the simulation of an abstract configuration moving up in the tree. We
split this part into two phases: adding a new root symbol and merging the roots.

1. θ1
grow−−→ θ2. Given two abstract configurations θ1 and θ2 as above, we define θ1

grow−−→ θ2
if r1 = m1 = false, and for all (q,α, d) ∈ ∆1, α ∈ {�,�g}. In this case θ2 is such that

∆2 = {(q,⊥, d) : (q,α, d) ∈ ∆1,α ∈ {�,�g}}, and

Γ2 = {(µ�, e) : (µ, e) ∈ Γ1, µ
� = h(c)·µ} ∪ {(h(c), d)},

for some c ∈ A × B and d ∈ D. Notice that c and d are then the label and data value
of θ2 and that r2 and m2 could be true or false. As a consequence of the normal form
(NF1) of the semigroup, this operation preserves property (�).

2. θ1, θ2
merge−−−→ θ0. Given 3 abstract configurations θ1 = (∆1,Γ1, r1, m1), θ2 =

(∆2,Γ2, r2, m2), θ0 = (∆0,Γ0, r0, m0) we say that θ1, θ2
merge−−−→ θ0 if they all have the

same label and data value, m1 = m2 = true, r1 = r2 = r0, ∆0 = ∆1 ∪ ∆2, and
Γ0 = Γ1 ∪ Γ2. Notice that this operation preserves property (�).

Remark 4.9. Notice that
inc(S, χ)−−−−−→ does not change the profile of the abstract configura-

tion as we duplicate a data value whose image by Γ has more than two witnesses.

Given a finite set Θ of abstract configurations and θ ∈ AC we write Θ ⇒ θ if there are
abstract configurations in Θ generating θ according to the rules described above. Based on
this, we define by induction Θ⇒+ θ if:

(1) Θ⇒ θ, or
(2) there is θ� ∈ AC such that Θ⇒ θ� and Θ ∪ {θ�}⇒+ θ.

In the definition of the transition system, the m flag is simply used to constrain the
transition system to have all its

merge−−−→ operations right after
grow−−→ and before any→�. Thus,

if we take a derivation and examine the kind of → transitions that originated each ⇒
transition, we obtain a word described by the following regular expression

�
(→� | inc−→)∗

grow−−→ (
merge−−−→)∗

�∗
(→� | inc−→)∗ . (†)

4.4. Compatibility

Given two finite sets of abstract configurations Θ and Θ� we write Θ ≤min Θ� iff for all
θ� ∈ Θ� there is θ ∈ Θ such that θ � θ�. That is, every element from Θ� is minorized by an
element of Θ.

The following proposition essentially shows that bigger abstract configurations can be
safely ignored in order to test for emptiness. This will be the main technical contribution
of this section.

Proposition 4.10. If Θ,Θ� are finite set of abstract configurations such that Θ ≤min Θ�

and θ� ∈ AC is such that Θ� ⇒ θ� then there exists θ � θ� such that Θ ⇒n θ, for some n
computable from Θ.

The key ingredient is to show that transitions on AC are compatible with the order of
AC. We treat the case of

merge−−−→ in a separate lemma later.

We first show useful lemmas illustrating the power of
inc−→.Luc: Lemma 4.11 is new

Lemma 4.11. Let θ, θ� ∈ AC such that θ� � θ. Let D ⊆ D be a finite set of data values.
Then there exists θ̃ such that:

(1 ) θ� (
inc−→)n θ̃, for some n ≤ |D|,

(2 ) θ̃ �f θ,
(3 ) f is injective on D.
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We now turn to the simulation of an abstract configuration moving up in the tree. We
split this part into two phases: adding a new root symbol and merging the roots.

1. θ1
grow−−→ θ2. Given two abstract configurations θ1 and θ2 as above, we define θ1

grow−−→ θ2
if r1 = m1 = false, and for all (q,α, d) ∈ ∆1, α ∈ {�,�g}. In this case θ2 is such that

∆2 = {(q,⊥, d) : (q,α, d) ∈ ∆1,α ∈ {�,�g}}, and

Γ2 = {(µ�, e) : (µ, e) ∈ Γ1, µ
� = h(c)·µ} ∪ {(h(c), d)},

for some c ∈ A × B and d ∈ D. Notice that c and d are then the label and data value
of θ2 and that r2 and m2 could be true or false. As a consequence of the normal form
(NF1) of the semigroup, this operation preserves property (�).

2. θ1, θ2
merge−−−→ θ0. Given 3 abstract configurations θ1 = (∆1,Γ1, r1, m1), θ2 =

(∆2,Γ2, r2, m2), θ0 = (∆0,Γ0, r0, m0) we say that θ1, θ2
merge−−−→ θ0 if they all have the

same label and data value, m1 = m2 = true, r1 = r2 = r0, ∆0 = ∆1 ∪ ∆2, and
Γ0 = Γ1 ∪ Γ2. Notice that this operation preserves property (�).

Remark 4.9. Notice that
inc(S, χ)−−−−−→ does not change the profile of the abstract configura-

tion as we duplicate a data value whose image by Γ has more than two witnesses.

Given a finite set Θ of abstract configurations and θ ∈ AC we write Θ ⇒ θ if there are
abstract configurations in Θ generating θ according to the rules described above. Based on
this, we define by induction Θ⇒+ θ if:

(1) Θ⇒ θ, or
(2) there is θ� ∈ AC such that Θ⇒ θ� and Θ ∪ {θ�}⇒+ θ.

In the definition of the transition system, the m flag is simply used to constrain the
transition system to have all its

merge−−−→ operations right after
grow−−→ and before any→�. Thus,

if we take a derivation and examine the kind of → transitions that originated each ⇒
transition, we obtain a word described by the following regular expression

�
(→� | inc−→)∗

grow−−→ (
merge−−−→)∗

�∗
(→� | inc−→)∗ . (†)

4.4. Compatibility

Given two finite sets of abstract configurations Θ and Θ� we write Θ ≤min Θ� iff for all
θ� ∈ Θ� there is θ ∈ Θ such that θ � θ�. That is, every element from Θ� is minorized by an
element of Θ.

The following proposition essentially shows that bigger abstract configurations can be
safely ignored in order to test for emptiness. This will be the main technical contribution
of this section.

Proposition 4.10. If Θ,Θ� are finite set of abstract configurations such that Θ ≤min Θ�

and θ� ∈ AC is such that Θ� ⇒ θ� then there exists θ � θ� such that Θ ⇒n θ, for some n
computable from Θ.

The key ingredient is to show that transitions on AC are compatible with the order of
AC. We treat the case of

merge−−−→ in a separate lemma later.

We first show useful lemmas illustrating the power of
inc−→.Luc: Lemma 4.11 is new

Lemma 4.11. Let θ, θ� ∈ AC such that θ� � θ. Let D ⊆ D be a finite set of data values.
Then there exists θ̃ such that:

(1 ) θ� (
inc−→)n θ̃, for some n ≤ |D|,

(2 ) θ̃ �f θ,
(3 ) f is injective on D.
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We now turn to the simulation of an abstract configuration moving up in the tree. We
split this part into two phases: adding a new root symbol and merging the roots.
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for some c ∈ A × B and d ∈ D. Notice that c and d are then the label and data value
of θ2 and that r2 and m2 could be true or false. As a consequence of the normal form
(NF1) of the semigroup, this operation preserves property (�).

2. θ1, θ2
merge−−−→ θ0. Given 3 abstract configurations θ1 = (∆1,Γ1, r1, m1), θ2 =

(∆2,Γ2, r2, m2), θ0 = (∆0,Γ0, r0, m0) we say that θ1, θ2
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same label and data value, m1 = m2 = true, r1 = r2 = r0, ∆0 = ∆1 ∪ ∆2, and
Γ0 = Γ1 ∪ Γ2. Notice that this operation preserves property (�).

Remark 4.9. Notice that
inc(S, χ)−−−−−→ does not change the profile of the abstract configura-

tion as we duplicate a data value whose image by Γ has more than two witnesses.

Given a finite set Θ of abstract configurations and θ ∈ AC we write Θ ⇒ θ if there are
abstract configurations in Θ generating θ according to the rules described above. Based on
this, we define by induction Θ⇒+ θ if:

(1) Θ⇒ θ, or
(2) there is θ� ∈ AC such that Θ⇒ θ� and Θ ∪ {θ�}⇒+ θ.

In the definition of the transition system, the m flag is simply used to constrain the
transition system to have all its

merge−−−→ operations right after
grow−−→ and before any→�. Thus,

if we take a derivation and examine the kind of → transitions that originated each ⇒
transition, we obtain a word described by the following regular expression

�
(→� | inc−→)∗

grow−−→ (
merge−−−→)∗

�∗
(→� | inc−→)∗ . (†)

4.4. Compatibility

Given two finite sets of abstract configurations Θ and Θ� we write Θ ≤min Θ� iff for all
θ� ∈ Θ� there is θ ∈ Θ such that θ � θ�. That is, every element from Θ� is minorized by an
element of Θ.

The following proposition essentially shows that bigger abstract configurations can be
safely ignored in order to test for emptiness. This will be the main technical contribution
of this section.

Proposition 4.10. If Θ,Θ� are finite set of abstract configurations such that Θ ≤min Θ�

and θ� ∈ AC is such that Θ� ⇒ θ� then there exists θ � θ� such that Θ ⇒n θ, for some n
computable from Θ.

The key ingredient is to show that transitions on AC are compatible with the order of
AC. We treat the case of

merge−−−→ in a separate lemma later.

We first show useful lemmas illustrating the power of
inc−→.Luc: Lemma 4.11 is new

Lemma 4.11. Let θ, θ� ∈ AC such that θ� � θ. Let D ⊆ D be a finite set of data values.
Then there exists θ̃ such that:

(1 ) θ� (
inc−→)n θ̃, for some n ≤ |D|,

(2 ) θ̃ �f θ,
(3 ) f is injective on D.
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We now turn to the simulation of an abstract configuration moving up in the tree. We
split this part into two phases: adding a new root symbol and merging the roots.

1. θ1
grow−−→ θ2. Given two abstract configurations θ1 and θ2 as above, we define θ1

grow−−→ θ2
if r1 = m1 = false, and for all (q,α, d) ∈ ∆1, α ∈ {�,�g}. In this case θ2 is such that

∆2 = {(q,⊥, d) : (q,α, d) ∈ ∆1,α ∈ {�,�g}}, and

Γ2 = {(µ�, e) : (µ, e) ∈ Γ1, µ
� = h(c)·µ} ∪ {(h(c), d)},

for some c ∈ A × B and d ∈ D. Notice that c and d are then the label and data value
of θ2 and that r2 and m2 could be true or false. As a consequence of the normal form
(NF1) of the semigroup, this operation preserves property (�).

2. θ1, θ2
merge−−−→ θ0. Given 3 abstract configurations θ1 = (∆1,Γ1, r1, m1), θ2 =

(∆2,Γ2, r2, m2), θ0 = (∆0,Γ0, r0, m0) we say that θ1, θ2
merge−−−→ θ0 if they all have the

same label and data value, m1 = m2 = true, r1 = r2 = r0, ∆0 = ∆1 ∪ ∆2, and
Γ0 = Γ1 ∪ Γ2. Notice that this operation preserves property (�).

Remark 4.9. Notice that
inc(S, χ)−−−−−→ does not change the profile of the abstract configura-

tion as we duplicate a data value whose image by Γ has more than two witnesses.

Given a finite set Θ of abstract configurations and θ ∈ AC we write Θ ⇒ θ if there are
abstract configurations in Θ generating θ according to the rules described above. Based on
this, we define by induction Θ⇒+ θ if:

(1) Θ⇒ θ, or
(2) there is θ� ∈ AC such that Θ⇒ θ� and Θ ∪ {θ�}⇒+ θ.

In the definition of the transition system, the m flag is simply used to constrain the
transition system to have all its

merge−−−→ operations right after
grow−−→ and before any→�. Thus,

if we take a derivation and examine the kind of → transitions that originated each ⇒
transition, we obtain a word described by the following regular expression

�
(→� | inc−→)∗

grow−−→ (
merge−−−→)∗

�∗
(→� | inc−→)∗ . (†)

4.4. Compatibility

Given two finite sets of abstract configurations Θ and Θ� we write Θ ≤min Θ� iff for all
θ� ∈ Θ� there is θ ∈ Θ such that θ � θ�. That is, every element from Θ� is minorized by an
element of Θ.

The following proposition essentially shows that bigger abstract configurations can be
safely ignored in order to test for emptiness. This will be the main technical contribution
of this section.

Proposition 4.10. If Θ,Θ� are finite set of abstract configurations such that Θ ≤min Θ�

and θ� ∈ AC is such that Θ� ⇒ θ� then there exists θ � θ� such that Θ ⇒n θ, for some n
computable from Θ.

The key ingredient is to show that transitions on AC are compatible with the order of
AC. We treat the case of

merge−−−→ in a separate lemma later.

We first show useful lemmas illustrating the power of
inc−→.Luc: Lemma 4.11 is new

Lemma 4.11. Let θ, θ� ∈ AC such that θ� � θ. Let D ⊆ D be a finite set of data values.
Then there exists θ̃ such that:

(1 ) θ� (
inc−→)n θ̃, for some n ≤ |D|,

(2 ) θ̃ �f θ,
(3 ) f is injective on D.
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Proof. Fix θ =
(∆,Γ, r,m) and θ �

=
(∆ �,Γ �, r �,m �).

Assume that θ � �
f θ, d, d � ∈

D, d �=
d �

but f(d) =
f(d �). Let (S,χ) =

[θ �](f(d)).

Then
we have χ

=
Γ(d) =

Γ(f(d)) =
Γ(f(d �)) =

Γ(d �). From
θ � �

θ
it follows that

profile(θ) =
profile(θ �). Therefore θ �

must contain another data value e �=
f(d) such that

Γ �(e) =
χ. Hence we can apply inc(S, χ)

−−−−−→
to θ �

and add a copy d̃ of d. The reader can verify

that the resulting abstract configuration θ ��
is such that θ ���

g θ where g is the mapping

identical to f except that g(d) =
d̃ �=

d =
g(d �). Repeating this operation at most |D| times

yields the desired result.
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Lemma
4.12.

Let θ, θ �∈ AC
such that θ ��

θ. Then there exists θ̃ such that:

(1 ) θ �
( inc−→

) n
θ̃, for some n ≤

3 · 2 |S|,

(2 ) θ̃ �
θ,

(3 ) for all χ ⊆ S, if θ contains strictly more than
2 data values d with Γ(d) =

χ, then
so

does θ̃.Proof. We apply Lemma 4.11 to the set D
defined by selecting for each χ ⊆ S

three

data values e such that Γ(e) =
χ, if this is possible.

We now
show

the first monotonicity lemma regarding all transitions except m
erge
−−−→

. In this

case n is constant, i.e. it does not depend on the abstract configurations involved.

Lemma
4.13.

Let θ
1 , θ

2 and θ �
1 be abstract configurations such that θ

1 →
θ
2 and θ �

1 �
θ
1 ,

where →
is either grow−−→

or in →
� . Then there exists an abstract configuration θ �

2 such that

θ �
2 �

θ
2 and θ �

1 → n
θ �
2 for some n ≤

3 · 2 |S|
+

1.

Proof. This is done by a case analysis depending on where→
comes from. Throughout

the proof we use the following notation: θ
i =

(∆
i ,Γ

i , r
i ,m

i ), similarly for θ �
i . Moreover a

i

and d
i denote the label and data value associated to θ

i (similarly for θ �
i ). We also denote

by f
the function witnessing θ �

1 �
θ
1 . In particular (Recall Remark 4.3) we have a

1 =
a �
1

and f(d
1 ) =

d �
1 .

In view
of Lemma 4.12 we now

further assume that Item
(3) of the conclusion of that

claim
holds for θ

1 and θ �
1 . We now

turn to the case analysis.

1. Suppose θ �
1 �

f θ
1 grow−−→

θ
2 .

We first show
that grow−−→

can also be applied to θ �
1 . Assume towards a contradiction that

this is not the case. Then θ �
1 contains a thread (q,α, e �) such that α �∈ {�,�

g }. Then

by
Remark

refremark-order a thread
of the form

(q,α, e), with
f(e) =

e �
is in

θ
1 , a

contradiction from
the fact that grow−−→

was applied to θ
1 .

Let θ �
2 be the abstract configuration

such
that θ �

1 grow−−→
θ �
2 , r �

2 =
r
2 , a �

2 =
a
2 and

d �
2 =

f(d
2 ). We show

that θ �
2 �

f θ
2 concluding this case. Note that f

still satisfies

the surjectivity condition. It remains to show
that profile(θ �

2 ) =
profile(θ

2 ), and for every

d, ∆ �
2 (f(d)) ⊆

∆
2 (d) and Γ �

2 (f(d)) =
Γ
2 (d).

(i) ∆ �
2 (f

2 (d)) ⊆
∆

2 (d) and
Γ �
2 (f

2 (d)) =
Γ
2 (d). By definition

of grow−−→
, we have that

Γ
2 (d) is completely determined from

Γ
1 (d), a

2 and the fact that d is equal to d
2 or

not. In a similar way, whether a thread (q,⊥) is in ∆
2 (d) is determined by whether

(q,�) or (q,�
g ) is in

∆
1 (d). But by

construction, modulo f , all these facts are

identical for θ �
2 and θ

2 . Hence, since ∆ �
1 (f(d)) ⊆

∆
1 (d) and Γ �

1 (f(d)) =
Γ
1 (d), we

have that ∆ �
2 (f(d)) ⊆

∆
2 (d) and Γ �

2 (f(d)) =
Γ
2 (d).

(ii) profile(θ �
2 ) =

profile(θ
2 ). We already have by construction r �

2 =
r
2 and m �

2 =
m

2 .

From
the previous item

we have for all χ, |Γ �
2

−1
(χ)| >

0 implies |Γ −12 (χ)| >
0 and

that |Γ �
2

−1
(χ)| >

1 implies |Γ −12 (χ)| >
1. It remains to show

the converse of these
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We now turn to the simulation of an abstract configuration moving up in the tree. We
split this part into two phases: adding a new root symbol and merging the roots.

1. θ1
grow−−→ θ2. Given two abstract configurations θ1 and θ2 as above, we define θ1

grow−−→ θ2
if r1 = m1 = false, and for all (q,α, d) ∈ ∆1, α ∈ {�,�g}. In this case θ2 is such that

∆2 = {(q,⊥, d) : (q,α, d) ∈ ∆1,α ∈ {�,�g}}, and

Γ2 = {(µ�, e) : (µ, e) ∈ Γ1, µ
� = h(c)·µ} ∪ {(h(c), d)},

for some c ∈ A × B and d ∈ D. Notice that c and d are then the label and data value
of θ2 and that r2 and m2 could be true or false. As a consequence of the normal form
(NF1) of the semigroup, this operation preserves property (�).

2. θ1, θ2
merge−−−→ θ0. Given 3 abstract configurations θ1 = (∆1,Γ1, r1, m1), θ2 =

(∆2,Γ2, r2, m2), θ0 = (∆0,Γ0, r0, m0) we say that θ1, θ2
merge−−−→ θ0 if they all have the

same label and data value, m1 = m2 = true, r1 = r2 = r0, ∆0 = ∆1 ∪ ∆2, and
Γ0 = Γ1 ∪ Γ2. Notice that this operation preserves property (�).

Remark 4.9. Notice that
inc(S, χ)−−−−−→ does not change the profile of the abstract configura-

tion as we duplicate a data value whose image by Γ has more than two witnesses.

Given a finite set Θ of abstract configurations and θ ∈ AC we write Θ ⇒ θ if there are
abstract configurations in Θ generating θ according to the rules described above. Based on
this, we define by induction Θ⇒+ θ if:

(1) Θ⇒ θ, or
(2) there is θ� ∈ AC such that Θ⇒ θ� and Θ ∪ {θ�}⇒+ θ.

In the definition of the transition system, the m flag is simply used to constrain the
transition system to have all its

merge−−−→ operations right after
grow−−→ and before any→�. Thus,

if we take a derivation and examine the kind of → transitions that originated each ⇒
transition, we obtain a word described by the following regular expression

�
(→� | inc−→)∗

grow−−→ (
merge−−−→)∗

�∗
(→� | inc−→)∗ . (†)

4.4. Compatibility

Given two finite sets of abstract configurations Θ and Θ� we write Θ ≤min Θ� iff for all
θ� ∈ Θ� there is θ ∈ Θ such that θ � θ�. That is, every element from Θ� is minorized by an
element of Θ.

The following proposition essentially shows that bigger abstract configurations can be
safely ignored in order to test for emptiness. This will be the main technical contribution
of this section.

Proposition 4.10. If Θ,Θ� are finite set of abstract configurations such that Θ ≤min Θ�

and θ� ∈ AC is such that Θ� ⇒ θ� then there exists θ � θ� such that Θ ⇒n θ, for some n
computable from Θ.

The key ingredient is to show that transitions on AC are compatible with the order of
AC. We treat the case of

merge−−−→ in a separate lemma later.

We first show useful lemmas illustrating the power of
inc−→.Luc: Lemma 4.11 is new

Lemma 4.11. Let θ, θ� ∈ AC such that θ� � θ. Let D ⊆ D be a finite set of data values.
Then there exists θ̃ such that:

(1 ) θ� (
inc−→)n θ̃, for some n ≤ |D|,

(2 ) θ̃ �f θ,
(3 ) f is injective on D.
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We now turn to the simulation of an abstract configuration moving up in the tree. We
split this part into two phases: adding a new root symbol and merging the roots.

1. θ1
grow−−→ θ2. Given two abstract configurations θ1 and θ2 as above, we define θ1

grow−−→ θ2
if r1 = m1 = false, and for all (q,α, d) ∈ ∆1, α ∈ {�,�g}. In this case θ2 is such that
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Γ2 = {(µ�, e) : (µ, e) ∈ Γ1, µ
� = h(c)·µ} ∪ {(h(c), d)},

for some c ∈ A × B and d ∈ D. Notice that c and d are then the label and data value
of θ2 and that r2 and m2 could be true or false. As a consequence of the normal form
(NF1) of the semigroup, this operation preserves property (�).

2. θ1, θ2
merge−−−→ θ0. Given 3 abstract configurations θ1 = (∆1,Γ1, r1, m1), θ2 =

(∆2,Γ2, r2, m2), θ0 = (∆0,Γ0, r0, m0) we say that θ1, θ2
merge−−−→ θ0 if they all have the

same label and data value, m1 = m2 = true, r1 = r2 = r0, ∆0 = ∆1 ∪ ∆2, and
Γ0 = Γ1 ∪ Γ2. Notice that this operation preserves property (�).

Remark 4.9. Notice that
inc(S, χ)−−−−−→ does not change the profile of the abstract configura-

tion as we duplicate a data value whose image by Γ has more than two witnesses.

Given a finite set Θ of abstract configurations and θ ∈ AC we write Θ ⇒ θ if there are
abstract configurations in Θ generating θ according to the rules described above. Based on
this, we define by induction Θ⇒+ θ if:

(1) Θ⇒ θ, or
(2) there is θ� ∈ AC such that Θ⇒ θ� and Θ ∪ {θ�}⇒+ θ.

In the definition of the transition system, the m flag is simply used to constrain the
transition system to have all its

merge−−−→ operations right after
grow−−→ and before any→�. Thus,

if we take a derivation and examine the kind of → transitions that originated each ⇒
transition, we obtain a word described by the following regular expression

�
(→� | inc−→)∗

grow−−→ (
merge−−−→)∗

�∗
(→� | inc−→)∗ . (†)

4.4. Compatibility

Given two finite sets of abstract configurations Θ and Θ� we write Θ ≤min Θ� iff for all
θ� ∈ Θ� there is θ ∈ Θ such that θ � θ�. That is, every element from Θ� is minorized by an
element of Θ.

The following proposition essentially shows that bigger abstract configurations can be
safely ignored in order to test for emptiness. This will be the main technical contribution
of this section.

Proposition 4.10. If Θ,Θ� are finite set of abstract configurations such that Θ ≤min Θ�

and θ� ∈ AC is such that Θ� ⇒ θ� then there exists θ � θ� such that Θ ⇒n θ, for some n
computable from Θ.

The key ingredient is to show that transitions on AC are compatible with the order of
AC. We treat the case of

merge−−−→ in a separate lemma later.

We first show useful lemmas illustrating the power of
inc−→.Luc: Lemma 4.11 is new

Lemma 4.11 (Figure 5). Let θ, θ� ∈ AC such that θ� � θ. Let D ⊆ D be a finite set of

data values. Then there exists θ̃ such that:

(1 ) θ� (
inc−→)n θ̃, for some n ≤ |D|,

(2 ) θ̃ �f θ,
(3 ) f is injective on D. |f(D)| = |D|.
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Figure 5: Lemma 17.

any transition ⇒+ complies to the following regular expression:
(
(→ε | inc−→)∗

grow−−−→ (
merge−−−→)∗

)∗
(→ε | inc−→)∗ . (†)

4.4. Compatibility. Given two finite sets of extended configurations Θ and Θ′ we write
Θ ≤min Θ′ if for all θ′ ∈ Θ′ there is θ ∈ Θ such that θ � θ′. That is, every element from Θ′

is minorized by an element of Θ.
Given a finite set Θ of extended configurations, we denote by Θ∼ the set of all extended

configurations equivalent to some configuration in Θ. In other words, Θ∼ is the closure of
Θ under bijections on data values.

The following proposition essentially shows that bigger extended configurations can be
safely ignored in order to test for emptiness. This will be the main technical contribution
of this section.

Proposition 16. If Θ,Θ′ are finite sets of extended configurations such that Θ ≤min Θ′

and θ′ ∈ EC is such that Θ′ ⇒ θ′ then there exists θ � θ′ such that Θ∼ ⇒n θ, for some n
computable from Θ.

The key ingredient to prove this, is to show that transitions on EC are compatible with

the order of EC. We treat the case of
merge−−−→ in a separate lemma later.

We first show useful lemmas illustrating the power of
inc−→.

Lemma 17 (Figure 5). Let θ, θ′ ∈ EC such that θ′ � θ. Let D ⊆ D be a finite set of data

values. Then there exists θ̃ such that:

(1) θ′ (
inc−→)n θ̃, for some n ≤ |D|,

(2) θ̃ �f θ,
(3) f is injective on D.

Proof. Fix θ = (∆,Γ, r,m) and θ′ = (∆′,Γ′, r′,m′). Assume that θ′ �f θ. We will modify
θ′ and f until f becomes injective.

If f is not injective then we have d, d′ ∈ D, d 6= d′ but f(d) = f(d′).
Let (S, χ) = [θ′](f(d)). Then we have χ = Γ(d) = Γ′(f(d)) = Γ′(f(d′)) = Γ(d′). From

θ′ � θ it follows that profile(θ) = profile(θ′). Therefore θ′ must contain another data value

e 6= f(d) such that Γ′(e) = χ. Hence we can apply θ′
inc(S, χ)−−−−−→ θ′′ adding a copy d̃ of f(d), so

that [θ′′](d̃) = (Ŝ, χ) where Ŝ = S \ {(q,>g) : (q,>g) ∈ S}. The reader can verify that the
resulting extended configuration θ′′ is such that θ′′ �g θ where g is the mapping identical

to f except that g(d) = d̃ 6= f(d′) = g(d′). Repeating this operation at most |D| times we

obtain the desired θ̃.
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Lemma 18. Let θ, θ′ ∈ EC as in (‡) such that θ′ � θ. Then there exists θ̃ such that:

(1) θ′ (
inc−→)n θ̃, for some n ≤ 3 · 2|S|,

(2) θ̃ � θ,
(3) for all χ ⊆ S, if θ contains strictly more than 2 data values d with Γ(d) = χ, then so

does θ̃.

Proof. We apply Lemma 17 to the set D defined by selecting for each χ ⊆ S three data
values e such that Γ(e) = χ, if this is possible. This gives an upper bound of 3 · 2|S|
applications of

inc−→.

Lemma 19. Let θ, θ′ ∈ EC as in (‡) such that θ′ � θ and let d ∈ D. Then there exists θ̃
such that:

(1) θ′ (
inc−→)n θ̃, for some n ≤ 2|S| + 1,

(2) θ̃ �f θ,
(3) f−1(f(d)) = {d}.
Proof. For every S ⊆ Q × TA, let ES ⊆ D be a subset of f−1(f(d)) containing one data
value e 6= d so that ∆(e) = S, or no data values otherwise.

Then, we can apply Lemma 17 with D = {d}∪⋃S⊆Q×TAES and we obtain an extended

configuration θ̃ so that θ′ (
inc−→)≤|D| θ̃ and θ̃ �f ′ θ for some f ′ that is injective on D. From

f ′ we can create the desired f , by sending each e 6= d, e ∈ f−1(f(d)) to f ′(e′) where
{e′} = E∆(e).

We now show the first monotonicity lemma regarding all transitions except
merge−−−→. In

this case n does not depend on the extended configurations involved, only on size of the
monoid S.

Lemma 20. Let θ1, θ2 and θ′1 be extended configurations such that θ1 → θ2 and θ′1 � θ1,

where → is either
grow−−−→ or in →ε. Then there exists an extended configuration θ′2 such that

θ′2 � θ2 and θ′1 →n θ′2 for some n ≤ 4 · 2|S| + 1.

Proof. This is done by a case analysis depending on where → comes from. Throughout
the proof we use the following notation for i ∈ {1, 2}: θi = (∆i,Γi, ri,mi), similarly for θ′i.
Moreover ai and di denote the label and data value associated to θi (similarly for θ′i). We
also denote by f a function witnessing θ′1 � θ1. In particular (recall Remark 9) we have
a1 = a′1 and f(d1) = d′1.

By Lemma 18, applying at most 3 · 2|S| transition steps on θ′1 we can now further
assume that the conclusion of Lemma 18 holds for θ1 and θ′1. We now turn to the case
analysis. Each case will transform further θ′1 in order to get the desired property. This last

transformation will require at most max(3, 2|S| + 1) steps.

(a) Suppose θ′1 �f θ1
grow−−−→ θ2.

We first show that
grow−−−→ can also be applied to θ′1. Assume towards a contradiction

that this is not the case. Then θ′1 contains a thread (q, α, e′) such that α 6∈ {>,>g}.
Then by Remark 8 a thread of the form (q, α, e), with f(e) = e′ is in θ1, a contradiction

from the fact that
grow−−−→ was applied to θ1.

Let θ′2 be the extended configuration such that θ′1
grow−−−→ θ′2, r′2 = r2, a′2 = a2 and

d′2 = f(d2). We show that θ′2 �f θ2 concluding this case. Note that f still satisfies the
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surjectivity condition. It remains to show that profile(θ′2) = profile(θ2), and for every
d, ∆′2(f(d)) ⊆ ∆2(d) and Γ′2(f(d)) = Γ2(d).

(i) ∆′2(f(d)) ⊆ ∆2(d) and Γ′2(f(d)) = Γ2(d). By definition of
grow−−−→, we have that

Γ2(d) is completely determined from Γ1(d), a2 and the fact that d is equal to d2 or
not. In a similar way, whether a thread (q,⊥) is in ∆2(d) is determined by whether
(q,>) or (q,>g) is in ∆1(d). But by construction, modulo f , all these facts are
identical for θ′2 and θ2. Hence, since ∆′1(f(d)) ⊆ ∆1(d) and Γ′1(f(d)) = Γ1(d), we
have that ∆′2(f(d)) ⊆ ∆2(d) and Γ′2(f(d)) = Γ2(d).

(ii) profile(θ′2) = profile(θ2). We already have by construction r′2 = r2 and m′2 = m2.

From the previous item we have for all χ, |Γ′2−1(χ)| > 0 implies |Γ−1
2 (χ)| > 0 and

that |Γ′2−1(χ)| > 1 implies |Γ−1
2 (χ)| > 1. It remains to show the converse of these

implications. We only show the second one as the first one is similar and simpler.
We thus only show that if |Γ−1

2 (χ)| > 1 then |Γ′2−1(χ)| > 1.
Assume we have two distinct data values e1 6= e2 such that Γ2(e1) = Γ2(e2) = χ.
Let χ1 = Γ1(e1) and χ2 = Γ1(e2). From profile(θ′1) = profile(θ1) we know that
there exist data values e′1 and e′2 such that χ1 = Γ′1(e′1) and χ2 = Γ′1(e2). Even in
the case where χ1 = χ2 we get from profile(θ′1) = profile(θ1) that e′1 and e′2 can
be chosen distinct. Moreover, as Γ′1(f(d2)) = Γ1(d2), if e1 = d2 (resp. e2 = d2)
then we can pick e′1 = f(d2) (resp. e′2 = f(d2)). In the case where both e1 and
e2 are different from d2 we pick e′1 and e′2 different from f(d2). The latter is
always possible because of Item (3) of Lemma 18. Altogether we have ei = d2 iff
e′i = f(d2) for i = 1, 2.

Hence, since a2 = a′2 and f(d2) = d′2, by definition of
grow−−−→ we have Γ′2(e′1) =

Γ′2(e′2) = χ.

(b) Suppose θ′1 �f θ1
univ−−→ θ2.

By definition of
univ−−→ there is (q, univ(p), d) ∈ ∆1 and a2 = a1, d2 = d1, Γ2 = Γ1, and

∆2 = (∆1 \ {(q, univ(p), d)}) ∪ {(p,>, e) : ∃µ . (µ, e) ∈ Γ1}. Applying Lemma 19 to d,
we can assume that f−1(f(d)) = {d}.
• If (q, univ(p), f(d)) 6∈ ∆′1, then we show that θ′1 �f θ2. First, it is immediate that

profile(θ′1) = profile(θ2) since profile(θ2) = profile(θ1) by definition of
univ−−→ (recall

Remark 14) and profile(θ1) = profile(θ′1) since θ′1 � θ1. Furthermore:
– for all ê 6= d, we have that Γ′1(f(ê)) = Γ1(ê) = Γ2(ê) and ∆′1(f(ê)) ⊆ ∆1(ê) ⊆

∆2(ê),
– for d we have Γ′1(f(d)) = Γ1(d) = Γ2(d) and ∆′1(f(d)) ⊆ ∆1(d)\{(q, univ(p))} ⊆

∆2(d), since (q, univ(p)) 6∈ ∆′1(f(d)).

• If (q, univ(p), f(d)) ∈ ∆′1, we perform a
univ−−→ transition on θ′1 and obtain θ′2 so that

θ′1
univ−−→ θ′2 and θ′2 � θ2. Let θ′2 be so that r′2 = r′1, m′2 = m′1, Γ′2 = Γ′1, and

∆′2 = (∆′1 \ {(q, univ(p), f(d))}) ∪ {(p,>, e) : ∃µ . (µ, e) ∈ Γ′1}. Hence, θ′1
univ−−→ θ′2.

We now show that θ′2 �f θ2. We have that profile(θ′2) = profile(θ′1) and profile(θ2) =

profile(θ1) by definition of
univ−−→, and that profile(θ1) = profile(θ′1) by θ′1 � θ1.

Hence, profile(θ′2) = profile(θ2).
– For all ê so that f(ê) 6= f(d) (and hence ê 6= d), we have that Γ′2(f(ê)) =

Γ′1(f(ê)) = Γ1(ê) = Γ2(ê) and ∆′2(f(ê)) = ∆′1(f(ê)) ∪ {(p,>) : Γ′1(f(ê)) 6=
∅)} ⊆ ∆1(ê) ∪ {(p,>) : Γ1(ê) 6= ∅)} = ∆2(ê).
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– For d, we have Γ′2(f(d)) = Γ′1(f(d)) = Γ1(d) = Γ2(d) and, on the other
hand, ∆′2(f(d)) = ∆′1(f(d)) \ {(q, univ(p))} ∪ {(p,>) : Γ′1(f(d)) 6= ∅)} ⊆
∆1(d) \ {(q, univ(p))} ∪ {(p,>) : Γ1(d) 6= ∅)} = ∆2(d).

– Finally, for any ê such that f(ê) = f(d) we have that ê = d since f−1(f(d)) =
{d}, and we apply the previous item.

Hence, θ′2 �f θ2.

(c) Suppose θ′1 �f θ1
guess−−−→ θ2.

By definition of
guess−−−→ there is (q, guess(p), d) ∈ ∆1 and a2 = a1, d2 = d1, r2 = r1,

m2 = m1, Γ2 = Γ1 and ∆2 = (∆1 \ {(q, guess(p), d)}) ∪ {(p,>g, e)} for some data value

e. We show that either θ′1 � θ2 or there is some θ′2 so that θ′1
guess−−−→ θ′2 � θ2. By applying

Lemma 17 for D = {d, e}, we can assume without any loss of generality that if d 6= e
then f(d) 6= f(e).
• If (q, guess(p), f(d)) 6∈ ∆′1, then we show that θ′1 �f θ2. First, it is immediate that

profile(θ′1) = profile(θ2) since profile(θ2) = profile(θ1) by definition of
guess−−−→ and

profile(θ1) = profile(θ′1) since θ′1 � θ1. For all data values ê we have Γ′1(f(ê)) =
Γ1(ê) = Γ2(ê). Furthermore:

– for all ê 6∈ {d, e}, we have ∆′1(f(ê)) ⊆ ∆1(ê) = ∆2(ê),
– for d we have ∆′1(f(d)) ⊆ ∆1(d)\{(q, guess(p))} ⊆ ∆2(d) (since (q, guess(p)) 6∈

∆′1(f(d))),
– for e, assuming that e 6= d (otherwise the previous item applies), we have

∆′1(f(e)) ⊆ ∆1(e) ⊆ ∆2(e).
Hence, θ′1 �f θ2.
• If (q, guess(p), f(d)) ∈ ∆′1, we show that can perform the same action and we obtain

θ′2 so that θ′1
guess−−−→ θ′2 and θ′2 � θ2. Let θ′2 be so that r′2 = r′1, m′2 = m′1, Γ′2 = Γ′1,

and ∆′2 = (∆′1 \ {(q, guess(p), f(d)}) ∪ {(p,>g, f(e))}. Hence, θ′1
guess−−−→ θ′2.

We now show that θ′2 �f θ2. We have that profile(θ′2) = profile(θ′1) and profile(θ2) =

profile(θ1) by definition of
guess−−−→, and that profile(θ1) = profile(θ′1) by θ′1 � θ1.

Hence, profile(θ′2) = profile(θ2). By construction we also have for all ê, Γ′2(f(ê)) =
Γ′1(f(ê)) = Γ1(ê) = Γ2(ê). Furthermore:

– for all ê 6∈ {d, e}, we have that ∆′2(f(ê)) = ∆′1(f(ê)) ⊆ ∆1(ê) = ∆2(ê),
– for d, we have

∗ if d 6= e, then (since we assumed we have applied Lemma 17 with
D = {d, e}) we have f(d) 6= f(e), and hence ∆′2(f(d)) = ∆′1(f(d)) \
{(q, guess(p))} ⊆ ∆1(d) \ {(q, guess(p))} = ∆2(d),
∗ if d = e, ∆′2(f(d)) = (∆′1(f(d)) \ {(q, guess(p))}) ∪ {(p,>g)} ⊆ (∆1(d) \
{(q, guess(p))}) ∪ {(p,>g)} = ∆2(d),

– for e, assuming that e 6= d (otherwise the previous item applies), we have
∆′2(f(e)) = ∆′1(f(e)) ∪ {(p,>g)} ⊆ ∆1(e) ∪ {(p, a)} = ∆2(e).

Hence, θ′2 �f θ2.

(d) Suppose we have θ′1 �f θ1
inc(S, χ)−−−−−→ θ2.

By definition of
inc(S, χ)−−−−−→, this implies that |[θ1]−1(S, χ)| ≥ 1 and |Γ−1

1 (χ)| ≥ 2.

Let d be the only data value in data(θ2) \data(θ1) given by the definition of
inc(S, χ)−−−−−→.

Let d̂ ∈ [θ1]−1(S, χ). We further have that [θ2](e) = [θ1](e) for all e 6= d, and [θ2](d) =

(Ŝ, χ) where Ŝ = S \ {(q,>g) : (q,>g) ∈ S}.
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From θ′1 �f θ1 it follows that [θ′1](f(d̂)) = (S′, χ) for some S′ ⊆ S. Further, by

profile(θ′1) = profile(θ1) we have that |Γ′1−1(χ)| ≥ 2. We can then apply
inc(S′, χ)−−−−−→ to θ′1.

Let θ′2 be so that θ′1
inc(S′, χ)−−−−−→ θ′2 and f(d) is chosen as the new data value duplicating

f(d̂). Note that ∆′1(f(d)) ⊆ ∆1(d) and Γ′1(f(d)) = Γ1(d) and ∆1(d) = ∅ = Γ1(d), and
hence f(d) has all the desired properties. We show that θ′2 �f θ2 concluding this case.
Note that f satisfies the surjectivity condition. It remains to show that profile(θ′2) =
profile(θ2) and for all e ∈ D we have ∆′2(f(e)) ⊆ ∆2(e) and Γ′2(f(e)) = Γ2(e).

(i) profile(θ′2) = profile(θ2). This is immediate from the fact that profile(θ′2) =

profile(θ′1), profile(θ2) = profile(θ1) by definition of
inc−→ (recall Remark 15), and

profile(θ′1) = profile(θ1) by definition of θ′1 � θ1.
(ii) ∆′2(f(e)) ⊆ ∆2(e) and Γ′2(f(e)) = Γ2(e). For every e 6= d, it is immediate as [θ](e)

is not affected by
inc−→.

For the data value d, note that from θ′1 �f θ1 and the definition of
inc−→ it follows

that Γ′2(f(d̂)) = Γ′1(f(d̂)) = Γ1(d̂) = Γ1(d) = Γ2(d), as desired. Similarly we

obtain that ∆′2(f(d)) = Ŝ′ and ∆2(d) = Ŝ, where Ŝ′ = S′ \ {(q,>g) : (q,>g) ∈ S′}.
Since S′ ⊆ S, we have Ŝ′ ⊆ Ŝ, and hence ∆′2(f(d)) ⊆ ∆2(d).

(e) Suppose we have θ′1 � θ1
store−−→ θ2. This is treated like for

guess−−−→.

(f) Suppose we have θ′1 � θ1
keep−−→ θ2. This is treated like for

guess−−−→.

(g) Suppose we have θ′1 � θ1
accept−−−→ θ2. This is treated like for

guess−−−→.

(h) Suppose we have θ′1 �f θ1
δ−→ θ2. Then, there is (q,⊥, d) ∈ ∆1 and some τ ∈ δ so that

Γ2 = Γ1, r2 = r1, m2 = m1, and ∆2 = (∆1 \ {(q,⊥, d)}) ∪ {(q, αi, d) : i ≤ |τ |}, where
(αi)i≤|τ | are all the tests and actions occurring in τ . Applying Lemma 19 to d, we can

assume that f−1(f(d)) = {d}.
• If (q,⊥, f(d)) 6∈ ∆′1, it is immediate that θ′1 �f θ2.

• If (q,⊥, f(d)) ∈ ∆′1, let θ′2 the result of a similar transition
δ−→ triggered by τ on

(q,⊥, f(d)). That is, Γ′2 = Γ′1, r′2 = r′1, m′2 = m′1, and ∆′2 = (∆′1 \ {(q,⊥, f(d))}) ∪
{(q, αi, f(d)) : i ≤ |τ |}. Hence, θ′1

δ−→ θ′2. We show that θ′2 �f θ2. First note
that profile(θ′2) = profile(θ′1) and profile(θ2) = profile(θ1) by Remark 14, and that
profile(θ′1) = profile(θ1) by θ′1 � θ1; thus, profile(θ′2) = profile(θ2). On the other
hand, since Γ′2 = Γ′1 and Γ2 = Γ1 and Γ1 = Γ′1, we are only left with checking that
for every e, ∆′2(f(e)) ⊆ ∆′1(e).

– For every e so that f(e) 6= f(d) this is true since ∆′2(f(e)) = ∆′1(f(e)) ⊆
∆1(e) = ∆2(e).

– For d we have ∆′2(f(d)) = (∆′1(f(d)) \ {(q,⊥)}) ∪ {(q, αi) : i ≤ |τ |} ⊆
(∆1(d) \ {(q,⊥)}) ∪ {(q, αi) : i ≤ |τ |} = ∆2(d).

– Finally, for any e so that f(e) = f(d) we have that e = d since f−1(f(d)) =
{d}, and the previous item applies.

(i) Suppose we have θ′1 �f θ1
〈µ〉=−−−→ θ2.

By definition of
〈µ〉=−−−→ there is (q, 〈µ〉=, d) ∈ ∆1 and θ2 is defined as a2 = a1, d2 = d1,

Γ2 = Γ1 and ∆2 = ∆1 \ {(q, 〈µ〉=, d)}.
• Assume first that (q, 〈µ〉=, f(d)) 6∈ ∆′1. We show that θ′1 �f θ2. By construction f

satisfies the surjectivity condition. Moreover the profiles remain untouched during
the transition hence profile(θ′1) = profile(θ2) and for all e ∈ D, Γ′1(f(e)) = Γ2(e). It
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remains to show that for all e ∈ D, ∆′1(f(e)) ⊆ ∆2(e). For e 6= d this is immediate
as ∆1(f(e)) = ∆2(f(e)). For e = d we know by hypothesis that ∆′1(f(d)) does
not contain (q, 〈µ〉=) which is the only one affected by the transition. The result
follows.
• Assume now that (q, 〈µ〉=, f(d)) ∈ ∆′1. As Γ′1(f(d)) = Γ1(d), µ ∈ Γ′1(f(d)) and we

can apply a transition
〈µ〉=−−−→ to θ′1 using this thread. Let θ′2 be the resulting extended

configuration. Applying Lemma 19 to d, we can assume that f−1(f(d)) = {d}.
We show that θ′2 �f θ2. Notice that f does satisfies the surjectivity condition. It
remains to show that profile(θ′2) = profile(θ2) and for all e ∈ D we have ∆′2(f(e)) ⊆
∆2(e) and Γ′2(f(e)) = Γ2(e).

(i) ∆′2(f(e)) ⊆ ∆2(e) and Γ′2(f(e)) = Γ2(e). Let (S, χ) = [θ2](e).

If e 6= d then it follows from the definition of
〈µ〉=−−−→ that [θ2](e) = [θ1](e)

and [θ′2](f(e)) = [θ′1](f(e)) (since f(e) 6= f(d) by f−1(f(d)) = {d}). From
θ′1 �f θ1 it follows that [θ′1](f(e)) = (S′, χ) with S′ ⊆ S. The result follows.
In the case where e = d, [θ2](e) = [θ′2](f(e)) = (S, χ).

(ii) profile(θ2) = profile(θ′2). This is obvious as by Remark 14, the transition
does not affect profiles.

(j) The cases
〈µ〉 6=−−−→, root−−→, q−→ and their negative counterparts are treated similarly.

We only need to verify that whenever θ′1 � θ1, if θ1 satisfies the condition for any

transition in { 〈µ〉 6=−−−→, root−−→, q−→} or their negative counterparts, then θ′1 also satisfies this
condition. For all these cases this is a simple consequence of θ1 and θ′1 having the same
profile.

In the case 〈µ〉=, if µ 6∈ Γ1(d), then the same hold in θ′1 for f(d).
For the case 〈µ〉 6=, if µ ∈ Γ1(d′) for some d′ 6= d, then by equality of profiles there is

a data value e such that [θ′1](e) = [θ1](d′). Notice that even in the case when [θ1](e) =
[θ1](d), the definition of profile and the fact that d 6= d′ guarantees that we can always
choose e 6= d. Hence µ ∈ Γ1(e) and e 6= d as required.

For the case 〈µ〉6=, if µ 6∈ Γ1(d′) for all d′ 6= d, Γ1(d) is the unique one that may
contain µ. By equality of the profile, this must also be the case for Γ′1(d) as desired.

The cases
root−−→ and

root−−→ are straightforward as the value of r is preserved by �.

The cases
q−→ and

q−→ are also immediate.

We now do the same for
merge−−−→. In this case n depends on the size of the extended

configurations and we may need to perform a permutation on the data values. In this case,

the use of
inc−→ becomes essential. Indeed, while it is not true that a transition θ1, θ2

merge−−−→ θ0

can be downward-simulated with a transition
merge−−−→, it can be simulated by a sequence of

transitions (
inc−→)∗

merge−−−→ as we show next, which is the reason why we needed to introduce
inc−→ in our transition system. More precisely, while for θ′1 � θ1, θ′2 � θ2 we have that

θ1, θ2
merge−−−→ θ0 may not be simulated from applying a merge transition to θ′1, θ

′
2, it still

could be simulated from some “fatter” versions of θ′1, θ
′
2 (i.e., from the result of applying a

number of
inc−→ transitions).

Lemma 21. Let θ1, θ2, θ0 be extended configurations such that θ1, θ2
merge−−−→ θ0. If θ′1 � θ1

and θ′2 � θ2, then there are θ̂1 ∼ θ′1, θ̂′2 ∼ θ′2 and θ′0 such that θ′0 � θ0 and {θ̂′1, θ̂′2} ⇒n θ′0
for some n computable from θ′1 and θ′2.
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Figure 6: Argument of Lemma 21.

Proof. Throughout the proof we use the following notation for i ∈ {0, 1, 2}: θi = (∆i,Γi, ri,mi),
similarly for θ′i. Moreover ai and di denote the label and data value associated to θi (simi-

larly for θ′i). By definition of
merge−−−→ we have a1 = a2 and d1 = d2. Suppose θ′1 �f1 θ1 and

θ′2 �f2 θ2. In particular (recall Remark 9) we have a1 = a′1 = a2 = a′2, f1(d1) = d′1 and
f2(d2) = d′2.

By definition of
merge−−−→, θ0 is constructed by taking the union of θ1 and θ2. Hence, for

all d we have [θ0](d) = [θ1](d) ∪ [θ2](d).
We need to merge θ′1 and θ′2 in order to reflect the way the union of θ1 and θ2 is done.

For instance if d is a data value that occurs both in data(θ1) and data(θ2) then we would
like to identify f1(d) with f2(d). We also need to keep track of the number of data values
having the same type, up to 2. This is essentially what we do below.

Let I = data(θ1) ∩ data(θ2), J1 = data(θ1) \ I, J2 = data(θ2) \ I. Figure 6 contains a
depiction of the main argument that will be described in the next paragraphs.

We first define sets S1 = SI ∪ SJ1 and S2 = SI ∪ SJ2 of special data values. SI is
constructed as follows: For each pair χ1, χ2 ⊆ S we put in SI two (if possible) elements
d ∈ I such that Γ1(d) = χ1 and Γ2(d) = χ2. If only one such data value exists we put in SI
only this one. Note that SI contains d1 and hence d2. Similarly, SJ1 is constructed as follows:
For each χ1 ⊆ S we add to SJ1 two (if possible) elements d ∈ J1 such that Γ1(d) = χ1. If
only one such data value exists we add only this one. SJ2 is defined analogously. Note that

the size of S1 and S2 are bounded by 2 · 22·|S|.
We then apply Lemma 17 on θ′1 � θ1 with S1 and on θ′2 � θ2 with S2 and further

assume that f1 and f2 are injective on S1 and S2.

Next we establish a bijection between f1(I) and f2(I). Let h be the relation {(f1(d), f2(d)) |
d ∈ I}. Note that if we have the property f1(d) = f1(d′) iff f2(d) = f2(d′) for all d ∈ I,
then h is a bijection: it is an injective function due to the property, and it is surjective
since we define it from f1(I) to f2(I). Although this property may not necessarily hold,
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we show next that in this case we can apply a number of
inc−→ transitions to θ′1 and θ′2 in

order to obtain extended configurations in which the property holds, and thus that we can
safely assume that the property holds for the remaining of the proof. Indeed, suppose the
property does not hold: for some d, d′ we have f1(d) = f1(d′) but f2(d) 6= f2(d′) (the other
case of the failing of the property is, of course, symmetrical), and let (S, χ) = [θ′1](f1(d)).
Note that we have

χ = Γ1(d) = Γ′1(f1(d)) = Γ′1(f1(d′)) = Γ1(d′).

Since profile(θ1) = profile(θ′1), θ′1 must contain another data value e 6= f1(d) such that

Γ′1(e) = χ. Hence we are enabled to apply
inc(S, χ)−−−−−→ to θ′1 and add a fresh copy d̂ of f1(d).

The resulting extended configuration θ̂′1 is still smaller than θ1 by means of a function f̂1

identical to f1 except that f̂1(d) = d̂ 6= f1(d′) = f̂1(d′). Note that now there is one less pair

d, d′ ∈ I contradicting f̂1(d) = f̂1(d′) iff f2(d) = f2(d′), for θ̂′1 �f̂1 θ1 and θ′2 �f2 θ2. Thus, we

can apply
inc−→ to θ′1 and θ′2 a number of times —bounded by |data(θ′1)|+|data(θ′2)|— in order

to obain extended configurations θ̂′1 �f̂1 θ1 and θ̂′2 �f̂2 θ2 so that {(f̂1(d), f̂2(d)) | d ∈ I} is a

bijection. For the rest of the proof, and in order to avoid introducing more symbols, we are
simply going to assume that h is a bijection from f1(I) to f2(I) without loss of generality.

We extend h to a bijection on D making sure that h(d) 6∈ SJ2 for all d ∈ SJ1 , and
h(d) 6∈ SJ1 for all d ∈ SJ2 . The fact that we can extend h follows easily from D being
infinite, as we show next. For i = 1, 2, let Di ⊆ D \ (SJ1 ∪ SJ2 ∪ f1(I) ∪ f2(I)) be so that
|Di| = |SJi | so that D1 ∩D2 = ∅, and let hi be a bijection between SJi and Di. Now take
any bijection h′ between D \ (f1(I) ∪ SJ1 ∪ SJ2) and D \ (f2(I) ∪D1 ∪D2) —it exists since
these sets have the same cardinality ℵ0— and define the extension as h ∪ h1 ∪ h2 ∪ h′.

Finally, consider the extended configuration θ′′1 resulting from replacing every data value
d ∈ data(θ′1) with h(d) in θ′1. The intuition is that in this way we make equal the data
values of f1(I) with those of f2(I) without making equal any other values between θ′1 and
θ′2. Let f ′1 = f1 ◦ h; we now have that θ′′1 �f ′1 θ1.

θ′′1 and f ′1 satisfy the same hypothesis as the previous θ′1 and f1 but now f ′1(d) = f2(d)
for all d ∈ I (in particular d′′1 = d′2) and furthermore f ′1(I) = data(θ′′1) ∩ data(θ′2) = f2(I).

Note that we are implicitly using that transitions (in particular
inc−→) are closed under data

bijections; that is, θ
inc−→ θ′ iff f(θ)

inc−→ f(θ′) for any data bijection f .

Let θ′0 be the extended configuration obtained by applying
merge−−−→ to θ′′1 and θ′2. We

claim that θ′0 � θ0. This is witnessed by the function f(d) = f ′1(d) if d ∈ data(θ1) and
f(d) = f2(d) otherwise. Note that f satisfies the surjectivity condition. It remains to show
that profile(θ′0) = profile(θ0) and for all e ∈ D we have ∆′0(f(e)) ⊆ ∆0(e) and Γ′0(f(e)) =
Γ0(e).

(1) Let us first show ∆′0(f(e)) ⊆ ∆0(e) and Γ′0(f(e)) = Γ0(e).
(a) Assume e ∈ I. Then ∆′0(f(e)) = ∆′′1(f(e))∪∆′2(f(e)) = ∆′′1(f ′1(e))∪∆′2(f2(e)) ⊆

∆1(e)∪∆2(e) ⊆ ∆0(e). Similarly, Γ′0(f(e)) = Γ′′1(f(e))∪Γ′2(f(e)) = Γ′′1(f ′1(e))∪
Γ′2(f2(e)) = Γ1(e) ∪ Γ2(e) = Γ0(e).

(b) If e ∈ data(θ1) \ I we have: ∆′0(f(e)) = ∆′′1(f(e)) ∪ ∆′2(f(e)) = ∆′′1(f ′1(e)) ⊆
∆1(e) ⊆ ∆0(e). Similarly, Γ′0(f(e)) = Γ′′1(f(e)) ∪ Γ′2(f(e)) = Γ′′1(f ′1(e)) =
Γ1(e) = Γ0(e).

(2) Let us now show profile(θ′0) = profile(θ0). This is an immediate consequence of the
injectivity of f ′1 and f2 on the special values.
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Proof of Proposition 16. It follows directly from Lemma 20 and Lemma 21.

Corollary 22. Given a BUDA A , it is decidable whether an accepting extended configura-
tion is derivable from Θ∼I in the transition system associated with A .

Proof. Let f be the function computing the maximum value of n as specified in Proposi-
tion 16. Consider the following procedure.

1. Initialize Θ to ΘI .
2. While there is some θ so that Θ 6≤min {θ} and Θ∼ ⇒n θ for n ≤ f(Θ): add θ to Θ.
3. Accept if there is an accepting extended configuration in Θ, otherwise reject.

Because � is a wqo, the procedure always terminates. It should also be noted that the
second step is computable. Indeed there are only finitely many elements within Θ∼ to
consider, those derived from Θ via a permutation of the data values data(Θ), as the other
ones would derive an extended configuration equivalent to one already derived. This means
that for example if n = 1, it suffices to consider all distinct θ modulo bijection of data values
so that Θ 6≤min {θ} and

• θ1 → θ for some θ1 ∈ Θ for any transition except
merge−−−→, or

• θ′1, θ′2
merge−−−→ θ for some θ′1 ∼ θ1, θ′2 ∼ θ2, and θ1, θ2 ∈ Θ. However, in this case we

only need to consider all pairs (θ′1, θ
′
2) that are images of (θ1, θ2) via a bijection of

data(θ1) ∪ data(θ2), and there are only finitely many such bijections.

Note that due to transitions
guess−−−→ and

grow−−−→ there may be infinitely many such θ, but only
finitely many modulo ∼.

Let Θ be the final set after the evaluation of the algorithm. First, note that all the
extended configurations θ from Θ are so that Θ∼I ⇒+ θ. Therefore, if the algorithm accepts,
there is an accepting extended configuration derivable from Θ∼I . We therefore show the
converse.

Suppose that Θ∼I ⇒t θt and let θ1, . . . , θt be the extended configurations derived at
each step. We show by induction that for every i we have Θ ≤min ΘI ∪ {θ1, . . . , θi}.
The base case when i = 0 is trivial since ΘI ⊆ Θ. For the inductive case, suppose that
Θ ≤min ΘI ∪ {θ1, . . . , θi}. By Proposition 16, since ΘI ∪ {θ1, . . . , θi} ⇒ θi+1 there is some
n ≤ f(Θ) so that Θ∼ ⇒n θ with θ � θi+1. By the condition of the algorithm, it must be so
that Θ ≤min {θ} and hence Θ ≤min {θi+1}. Therefore, Θ ≤min ΘI ∪ {θ1, . . . , θi+1}.

As a consequence of this property, if there is an accepting configuration θF so that
Θ∼I ⇒+ θF , then in particular we have Θ ≤min {θF } and hence there must be some θ ∈ Θ
so that θ � θF . Since θF is accepting, and the set of accepting extended configurations is
downward closed (Lemma 13), it follows that θ is accepting.

As shown next, this implies the decidability for the emptiness problem for BUDA.

4.5. From BUDA to its extended configurations. The transition system WA associated
to a BUDA A is then defined as follows. Its elements are the extended configurations of A
as defined in Section 4.1. Its transition relation is as defined in Section 4.3. As shown in
Section 4.4 the wqo defined in Section 4.2 is compatible with the transition system. Hence
coverability of WA is decidable. It remains to show that WA has the desired behavior, i.e.
that its coverability problem is equivalent to the emptiness problem of A . This is what we
do in this section.
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One direction is easy as the transition system can easily simulate A . The other direction

requires more care. As evidenced in (†), WA may perform a
inc(S, χ)−−−−−→ transition anytime.

Remember that the effect of
inc(S, χ)−−−−−→ can be seen as a result of the tree growing in width.

We will see that this can be simulated by a BUDA only when it moves up in the tree. This

issue is solved by showing that all transitions except
grow−−−→ commute with

inc(S, χ)−−−−−→ hence all

transitions
inc(S, χ)−−−−−→ can be grouped just before a

grow−−−→ and combined with it in order to
form an up-transition of a BUDA. As a consequence, we obtain the following.

Proposition 23. Let A be a BUDA. Let WA be the transition system associated with
A . Then A has an accepting run if, and only if, WA can reach an accepting extended
configuration from the set of initial extended configurations.

In the sequel, we say that Γ ⊆ (S × D) is consistent with a data tree t = a⊗b⊗d ∈
Trees(A × B × D) when for every possible (µ, d), Γ contains (µ, d) iff there is a downward
path in t that starts at the root and ends at some position x such that d(x) = d and
evaluates to µ via h. In particular this implies that the label and data value of Γ are the
label and data value of the root of t.

We first show that the transition system associated with a BUDA at least simulates its
behavior.

Lemma 24. Consider an A ∈ BUDA and its associated transition system WA . If A has
an accepting run then WA can reach an accepting extended configuration from its initial
extended configuration.

Proof. We show that from every accepting run ρ of A on t = a⊗b⊗d there exists a finite
sequence of transitions in WA starting in Θ∼I and ending in an accepting configuration.

Given a position x ∈ pos(t), we define the extended configuration of t|x as θx =
(∆x,Γx, rx,mx), where rx = false (unless x is the root position), mx = false, (a⊗b)(x) is
the label of θx, d(x) is the data value of θx, Γx is consistent with t|x, and ∆x = {(q,⊥, d) |
(q, d) ∈ ρ(x)}.

We show by bottom-up induction on x that θx is reachable from Θ∼I . By definition of
Θ∼I , for any leaf node x of t we do have θx ∈ Θ∼I and hence our inductive process can start.

Let now x be a node of t and let x·1, . . . , x·n be its children. By induction θx·1, . . . , θx·n
are reachable from Θ∼I . For each i, and thread (q,⊥, d) in θx·i there exists a transition
τi,q,d ∈ δ witnessing the fact that ρ is a valid run. We derive θx from there as follows:

(1) for each i, and each thread (q,⊥, d) let θi be the extended configuration obtained

from θx·i using a transition
δ−→ based on τi,q,d,

(2) for each i, we derive the extended configuration θ′i from θi using the appropriate
transitions for each thread newly introduced at the previous step. Note that because
ρ is accepting, each operation is successful and each new thread has> or>g as second
component. Hence,

(3) for each i we can apply
grow−−−→ to θ′i and derive the extended configuration θ′′i using

d(x) and (a⊗b)(x) as the data value and label of the new extended configuration,

(4) we then make a sequence of (n − 1) applications of
merge−−−→ adding one by one θ′′i to

the previously derived extended configuration,

Repeating this simulation we finally derive the configuration θε of the root of t. Since
ρ is accepting, for every (q, d) ∈ ρ(ε) there is τ = (t, accept) ∈ δ so that t, ε, (q, d) |= t.
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This means that for every (q,⊥, d) ∈ ∆ε one can apply a
δ−→ transition based on τ arriving

to an extended configuration θ′ε = (∆,Γ, r,m) with r = true and ∆ = ∅ which is hence
accepting.

The other direction requires more care. First, we need to prove the following lemma.

Lemma 25. If we have θ1 →ε θ2
inc(S, χ)−−−−−→ θ3 then either

• θ̂1
inc(S′, χ)−−−−−→ θ′ →ε θ3, or

• θ̂1
inc(S′, χ)−−−−−→ θ′ →ε θ

′′ →ε θ3

for some extended configuration θ̂1, θ
′, θ′′ and set S′ ⊆ Q such that θ̂1 ∼ θ1.

Proof. Suppose that θ1 →ε θ2
inc(S, χ)−−−−−→ θ3. Notice that Γ1 = Γ2 by definition of→ε, and that

|[θ2]−1(S, χ)| ≥ 1 by definition of
inc(S, χ)−−−−−→. Let e be a data value so that [θ2](e) = (S, χ),

and let e′ ∈ data(θ3) \ data(θ2) be the new data value added as a result of θ2
inc(S, χ)−−−−−→ θ3.

We thus have [θ3](e′) = (Ŝ, χ) with Ŝ = S \ {(q,>g) : (q,>g) ∈ S}. Modulo replacing θ1 by
an equivalent extended configuration we can further assume without any loss of generality
that e′ 6∈ data(θ1).

Let (q, α, d) be the thread of ∆1 that triggers →ε. We will treat all cases of →ε at
once, independently of which particular transition it is. Let H ⊆ ∆2 be the new threads
generated from (q, α, d) by θ1 →ε θ2 (note that H may be empty). We then have that:

∆2 = (∆1 \ {(q, α, d)}) ∪H (4.1)

∆3 = ∆2 ∪ (Ŝ × {e′}) (4.2)

Γ2 = Γ1 (4.3)

Γ3 = Γ2 ∪ (χ× {e′}) (4.4)

Let (S′, χ) = [θ1](e) (recall that Γ1(e) = Γ2(e) = χ). We show that
inc(S′, χ)−−−−−→ can be

applied to θ1. In other words we show that |Γ−1
1 (χ)| ≥ 2. As

inc(S, χ)−−−−−→ was applied to θ2 we

have that |Γ−1
2 (χ)| ≥ 2. Since Γ1 = Γ2, this implies |Γ−1

1 (χ)| ≥ 2 and we are done.

We then define θ′ = (∆′,Γ′, r1,m1) such that θ1
inc(S′, χ)−−−−−→ θ′ with

∆′ = ∆1 ∪ (Ŝ′ × {e′}) (4.5)

Γ′ = Γ1 ∪ (χ× {e′}) (4.6)

where Ŝ′ = S′ \ {(q,>g) : (q,>g) ∈ S′}.
Notice that by (4.3), (4.4) and (4.6) we get Γ′ = Γ3.

We show that θ′ →ε θ3 or θ′ →ε θ
′′ →ε θ3 for some θ′′. We distinguish between two

possibilities: either ∆1(e) = ∆2(e) or not.

• The easiest case is when ∆1(e) = ∆2(e) (in particular S = S′). This means that

the two transitions of θ1 →ε θ2
inc(S, χ)−−−−−→ θ3 do not interact with one another. Since

a transition
inc−→ preserves the truth of tests, the same transition as the one between

θ1 and θ2 can be applied to θ′. We show that this yields θ3. As already mentioned,
Γ3 = Γ′.

Let H ′ be the new threads generated from (q, α, d) by applying this transition (i.e.
the set of threads in the resulting extended configuration is (∆′ \ {(q, α, d)}) ∪H ′).
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Figure 7: General idea of how to commute
inc(S, χ)−−−−−→ with →ε. In the figure we use a general

→ε which creates new threads with the same data value and with fresh data value.

If the transition was a
guess−−−→ then we make sure that the guessed data value is

the one that was guessed in θ2. It is therefore immediate to verify that H = H ′

unless the transition was a
univ−−→. In this latter case, assuming α = univ(p), we have

H ′ = H ∪ {(p,>, e′)}. But we also have (p,>, e) ∈ ∆2 because e ∈ data(θ1) and

θ1
univ−−→ θ2. As ∆1(e) = ∆2(e) we have (p,>, e) ∈ ∆1 and therefore (p,>, e′) ∈ ∆′.

In all cases we get (∆′ \ {(q, α, d)}) ∪H ′ = (∆′ \ {(q, α, d)}) ∪H. Further:

(∆′ \ {(q, α, d)}) ∪H ′ = (∆′ \ {(q, α, d)}) ∪H (by the previous remark)

=
(
(∆1 ∪ (Ŝ′ × {e′})) \ {(q, α, d)}

)
∪H (by (4.5))

= (∆1 \ {(q, α, d)}) ∪H ∪ (Ŝ′ × {e′}) (since e′ 6= d)

= ∆2 ∪ (Ŝ′ × {e′}) (by (4.1))

= ∆2 ∪ (Ŝ × {e′}) (since S = S′)

= ∆3. (by (4.2))

Hence, we have that θ′ →ε θ3.
• If ∆1(e) 6= ∆2(e), we distinguish again between two possibilities depending on

whether d = e or not.
– Assume first that d = e. We are in a situation as the one depicted in Figure 7.

In this case we simply apply twice the same transition to θ′, the first time using

the thread (q, α, e) and the second time using (q, α, e′) (in the case of
guess−−−→ we

guess twice the same data value). The resulting extended configuration is θ3.
– The remaining situation is when d 6= e and ∆1(e) 6= ∆2(e). It could come from

a transition
univ−−→,

guess−−−→ or
store−−→ (the other transitions only affect the data value

d and therefore ∆1(e) = ∆2(e)).
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Suppose first that α = guess(p), and that it produces the thread (p,>g, e) as a

result. We show that θ′
guess−−−→ θ3.

Notice that since e is with a thread (p,>g), we have that Ŝ′ = Ŝ, and we can

apply the previous reasoning. Indeed, by definition of
guess−−−→ we have that the

resulting ∆ is

(∆′ \ {(q, guess(p), d)}) ∪ {(p,>g, e)}
= ((∆1 ∪ (Ŝ′ × {e′})) \ {(q, guess(p), d)}) ∪ {(p,>g, e)} (by (4.5))

= (∆1 \ {(q, guess(p), d)}) ∪ {(p,>g, e)} ∪ (Ŝ′ × {e′}) (since e′ 6= d)

= ∆2 ∪ (Ŝ′ × {e′}) (by (4.1))

= ∆2 ∪ (Ŝ × {e′}) (since Ŝ′ = Ŝ)

= ∆3. (by (4.2))

The fact that the resulting Γ is Γ3 is immediate. Hence, θ′
guess−−−→ θ3.

Suppose now that α = univ(p). We show that θ′
univ−−→ θ3.

By definition of
univ−−→ we have that S = S′ ∪ {(p,>)}. Furthermore we have:

(∆′ \ {(q, univ(p), d)}) ∪ {(p,>, d′) : d′ ∈ data(Γ′)}
= ((∆1 ∪ (Ŝ′ × {e′})) \ {(q, univ(p), d)}) ∪ {(p,>, d′) : d′ ∈ data(Γ′)} (by (4.5))

= (∆1 \ {(q, univ(p), d)}) ∪ {(p,>, d′) : d′ ∈ data(Γ′)} ∪ (Ŝ′ × {e′}) (since e′ 6= d)

= (∆1 \ {(q, univ(p), d)}) ∪ {(p,>, d′) : d′ ∈ data(Γ1)} ∪ {(p,>, e′)} ∪ (Ŝ′ × {e′})
(since e′ 6= d)

= ∆2 ∪ {(p,>, e′)} ∪ (Ŝ′ × {e′}) (by definition of
univ−−→)

= ∆2 ∪ (Ŝ × {e′}) (since S = S′ ∪ {(p,>)})
= ∆3. (by (4.2))

Hence, θ′
univ−−→ θ3.

The case of
store−−→ is treated similarly.

Finally we show:

Lemma 26. Consider a BUDA A and its associated transition system WA . If WA can reach
an accepting extended configuration from the set of initial extended configurations then A
has an accepting run.

Proof. An extended configuration θ = (∆,Γ, r,m) is called starting if for all (q, α, d) in ∆
we have α = ⊥. Note that by definition of the transition relations, a starting extended

configuration can only be obtained from a non starting extended configuration via a
grow−−−→

transition. Moreover starting extended configurations are preserved only by
merge−−−→ and

inc−→
transitions.

We show by induction on the length of the derivation that for every starting reachable
extended configuration θ (by reachable we mean such that Θ∼I ⇒+ θ), there exists a tree tθ
and a run ρθ of A on tθ, such that Γ is consistent with tθ and ρ(x) is ∆ for the root x of tθ.

This is clearly the case for all extended configurations in Θ∼I .
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For the inductive argument it is useful to notice that if a starting extended configuration
θ can be associated with a tree tθ and a run ρθ of A on tθ satisfying the inductive hypothesis
then, for any bijection h on the data values, h(θ′), h(tθ) and h(ρθ) satisfy also the inductive
hypothesis.

Assume θ1 and θ2 are both starting reachable extended configurations and that θ1, θ2
merge−−−→

θ0. By induction we have trees tθ1 and tθ2 and runs ρθ1 and ρθ2 satisfying the induction

hypothesis. By definition of
merge−−−→, θ1 and θ2 have the same label and data value. Hence

by consistency of Γ1 and Γ2, the roots of tθ1 and tθ2 have the same label and data value.
Let t be the tree constructed from the union of tθ1 and tθ2 by identifying their roots. We
show that t is the desired tθ0 . The reader can easily verify that ρ, constructed by taking
the union of ρθ1 and ρθ2 , is a run of A on t and that Γ0 is consistent with t.

Assume now that θ is a starting reachable extended configuration and that θ
inc(S, χ)−−−−−→ θ′.

Let e be the data value such that (S, χ) = [θ](e) and let e′ be the new data value added
in θ′. By induction we have a tree tθ and a run ρθ satisfying the induction hypothesis.

Notice that by definition of
inc(S, χ)−−−−−→ the data value e duplicated cannot be the one of the

root of tθ (because the associated χ′ occurs only once). Let t′θ be the tree obtained from
tθ by replacing e with e′. Let t be the tree constructed from the union of tθ and t′θ by
identifying their roots. We show that t is the desired tree. The reader can easily verify that
ρ, constructed by taking the union of ρθ and ρ′θ, is a run of A on t, where ρ′θ is the copy of
ρθ on t′θ and that Γ′ is consistent with t.

It remains to show that a starting extended configuration obtained via
grow−−−→ corresponds

to a real configuration of A . Assume θ′ is a reachable extended configuration and that θ

is such that θ′
grow−−−→ θ. By definition, all threads (q, α, d) ∈ ∆′ are such that α ∈ {>,>g}.

Consider a derivation witnessing the fact that θ′ is reachable. Let θ1 be a starting extended
configuration in this derivation such that all other extended configurations between θ1 and

θ′ are not starting. Hence we have θ1(→ε | inc−→)+θ′ (no
grow−−−→ nor

merge−−−→ can occur in this

derivation as a
merge−−−→ can only appear right after a

grow−−−→, because of the m flag, and a
grow−−−→ would derive a starting extended configuration). By Lemma 25, θ′ can equivalently

be derived from θ̂1 ∼ θ1 using a derivation of the form
inc−→∗ →+

ε (a sequence of
inc−→ followed

by a sequence of →ε). As
inc−→ preserves startingness, this shows that there is a reachable

starting extended transition θ2 such that θ2 →+
ε θ
′ grow−−−→ θ. By induction hypothesis we have

a tree tθ2 and a run ρθ2 satisfying the induction hypothesis. Let t be the tree constructed
from tθ2 by adding a new node, having for label and data value those of θ, and a unique
immediate subtree tθ2 . Let ρ be constructed from ρθ2 as follows: If x is a node of t occurring
in tθ2 then ρ(x) = ρθ2(x). If y is the new root of t then, for each thread (p,⊥, d) ∈ ∆2 there

must be a transition
δ−→ in the derivation from θ2 to θ′ using that thread (otherwise that

thread would never disappear and a
grow−−−→ transition would not be applicable on θ′). Let

τ = (t, a) ∈ δ be the corresponding transition of A . Because of the consistency condition of
Γ2 on tθ2 we have that tθ2 , x, (p, d) |= t, where x is the root of tθ2 and we add to ρ(y) the
effect of the action a. The reader can now easily verify that this gives the desired tree and
run.

By combining the previous Lemmas we immediately obtain the proof of Proposition 23.
Hence, combining Proposition 23 and Corollary 22 Theorem 7 is proven.
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5. Satisfiability of vertical XPath.

In order to conclude the proof of Theorem 1 it remains to show that BUDA can capture
emptiness of regXPath(V,=) expressions. Given a formula η of regXPath(V,=), we say that
a BUDA A is equivalent to η if for every data tree t, t is accepted by A iff [[η]]t 6= ∅. The
main contribution of this section is the following.

Proposition 27. For every η ∈ regXPath(V,=) there exists an equivalent A ∈ BUDA
computable from η.

We first give the general idea of the construction. From η ∈ regXPath(V,=) we actually
compute an equivalent BUDAε. By Proposition 6 this is enough to prove the result. Note
that BUDAε can easily simulate any positive test 〈α = β〉 or 〈α 6= β〉 of regXPath(V,=)
using a guess action and tests of the form 〈exp〉= and 〈exp〉6=. In the following examples, we
disregard the internal alphabet B in the expressions exp for clarity. Consider, for example,
the property 〈↓∗[a] 6= ↑↓[b]〉, which states that there is a descendant labeled a with a different
data value than a sibling labeled b. A BUDAε automaton can test this property as follows.

(1) It guesses a data value d and stores it in the register.
(2) It tests that d can be reached by ↓∗[a] with a test 〈A∗a〉=.
(3) It moves up to its parent.
(4) It tests that a data value different from d can be reached in one of its children

labeled with b, using the test 〈Ab〉6=.

On the other hand, the simulation of negative tests (¬〈α = β〉 or ¬〈α 6= β〉) is more
complex as BUDAε is not closed under complementation. Nevertheless, the automaton has

enough universal behavior (in the operations univ, 〈exp〉= and 〈exp〉6=) in order to do the
job. Consider for example the formula ¬〈↑∗[b]↓[a] = ↓∗[c]〉, that states that no data value is
shared between a descendant labeled c and any a-child of a b-ancestor. To test this property,
the automaton behaves as follows.

(1) It creates one thread in state q for every data value in the subtree, using univ(q).
(2) A thread in state q tests whether the data value of the register is reachable by ↓∗[c],

using a test 〈A∗c〉=. If the test is successful, it changes to state p, otherwise it stops
and accepts.

(3) A thread in state p moves up towards the root, and each time it finds a b, it tests
that the currently stored data value cannot be reached by ↓[a]. This is done with a

test of the kind 〈ba〉=.

This is essentially what we do. As usual the details are slightly more complicated. In
particular we will have to deal with more complicated regular expressions involving possibly
complex node expressions. As our automaton is bottom-up, we will need to compute all
loops within a subtree. We will use the internal alphabet B for this purpose.

Proof of Proposition 27. Let η be a node expression in regXPath(V,=). We construct a
BUDAε Aη that tests whether η holds at all the leaves of the tree. Note that this is without
any loss of generality, since it is then easy to test any formula η at the root with 〈↑∗[¬〈↑〉∧η]〉.

We denote by nsub(η) the node subformulas of η, and by psub(η) the path subformulas
of η. For any ϕ ∈ nsub(η) we denote by ϕ its simple negation, that is, ϕ = ψ if ϕ is of
the form ¬ψ, and ϕ = ¬ϕ otherwise. By nsub¬(η) we denote the closure of nsub(η) under
simple negations.
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For technical reasons, we distinguish between the nesting levels of the formulas in
nsub(η). Node expressions of nesting level 0 are those testing node labels and any boolean
combination of those. Node expressions of nesting level i + 1 are those of nesting level i
plus those the form 〈α = β〉 or 〈α 6= β〉, and any boolean combination of them, where α
and β are path expressions using only node subexpressions of nesting level i. We denote by
nsubi(η) the subset of nsub¬(η) containing node expressions of nesting level i. Similarly we
denote by psubi(η) the path expressions of psub(η) using only formulas in nsubi(η) as node
subexpressions. Note that the maximal nesting level n is bounded by |η|.

For each i ≤ n, consider now the finite alphabet

Aη,i = {↑, ↓, [ϕ] | ϕ ∈ nsubi(η)}.
Every path expression α ∈ psubi(η) can then be interpreted as a regular expression over
Aη,i, and every word w ∈ A∗η,i can be interpreted as a path expression.

A path π of t is a non-empty string of node positions of t (i.e., π ∈ pos(t)+) so that
every two consecutive elements of π are in a parent/child relation (i.e., one is the parent
of the other). A path π is looping if the first and last elements are the same, and it is
non-ascending if each of its elements is either a descendant of the first element or equal to
it. We say that a path π of t verifies w ∈ A∗η,i if π behaves according to the sequence of
letters of w. More formally this means:

• w = ε and |π| = 1;
• w = ↑w′, π = uvπ′ and v is the parent of u in t and vπ′ verifies w′;
• w = ↓w′, π = uvπ′ and v is a child of u in t and vπ′ verifies w′; or
• w = [ϕ]w′, π = uπ′ and u ∈ [[ϕ]]t and π verifies w′.

By the characterizations of regular languages, for each i ≤ n, there exists a finite
monoid2 Mi and a homomorphism gi : A∗η,i → Mi such that for every α ∈ psubi(η) there

is a set Sα ⊆Mi so that w ∈ A∗η,i is recognized by α iff gi(w) ∈ Sα. Let us denote by 1Mi

the neutral element of Mi and by νi, ν
′
i the elements of Mi.

The internal alphabet of Aη is B = ℘(M0)× · · · ×℘(Mn). Intuitively, Aη accepts trees

t ⊗ b so that for each i ≤ n and any node x, the ith component of b(x), denoted bi(x) in
the sequel, contains the set of all νi ∈Mi so that there is w ∈ A∗η,i where

1. gi(w) = νi, and
2. there is a non-ascending looping path π of t so that π starts and ends in x and verifies
w.

In other words, b(x) contains all the information about the non-ascending looping paths
at x and one of the chief tasks of Aη is to ensure that the b(x) are properly set. For this,
we have in the set of states Q of Aη a state 〈〈ϕ〉〉 for any ϕ ∈ nsub¬(η). We will design
Aη such that in an accepting run, if a thread in state 〈〈ϕ〉〉 is started at a node x ∈ t then
x ∈ [[ϕ]]t. When this is the case, properties 1 and 2 are enforced by starting a thread at
each leaf of t with a state qiB. A thread in state qiB moves up in the tree while performing
the following tests and actions at any node x, where Λi(x) is the set of all ϕ ∈ nsubi(η) such
that x ∈ [[ϕ]]t:

• If x is a leaf, then bi(x) is the submonoid of Mi generated by gi(Λi(x)). This
property can be enforced by guessing a maximally consistent set Li ⊆ nsubi(η) of
formulas that hold at the node, testing whether bi(x) has the desired form (i.e.,

2Unlike in Section 3.1 we work here with an automata model with ε transitions. Therefore it is more
convenient to use monoids instead of semigroups.
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that it is the submonoid generated by gi(Li)), and verifying that Li = Λi(x) by
starting a thread with state 〈〈ϕ〉〉 for every ϕ ∈ Li.
• If x is not a leaf then bi(x) is the submonoid of Mi generated by gi(Λi(x))∪Si where
Si =

⋃
y child of x gi(↓)bi(y)gi(↑). This is done by guessing Li and Si, performing the

same tests and actions as above concerning Li and testing that Si is correct by
testing the internal labels of the children of the current nodes using tests of the
form 〈(A× B)·(A× {b})〉 and 〈(A× B)·(A× {b})〉 for appropriate b ∈ B.

Thus, the initial state q0 of Aη will simply create n+ 2 threads, with states qiB for every
i, and one with state 〈〈η〉〉.

Intuitively, the automaton that verifies ϕ starts with one thread in state 〈〈ϕ〉〉 at every
leaf. The boolean connectives ∧,∨ are treated by the alternation/nondeterminism. If ϕ is
〈α = β〉, the automaton guesses the witness data value and verifies that we can reach that
value through α (resp. β) by going to a state 〈〈α〉〉=1M . To verify this, the state 〈〈α〉〉=1M checks
that either the data in the register is reachable through α in the subtree and through a
test 〈eα〉= for a suitable regular expression eα, or it is elsewhere as a result of α starting
with an upward axis, and the automaton recursively moves up to some 〈〈α〉〉=ν remembering
the ‘history’ of labels when going up in ν. Tests of the form 〈α = β〉 are treated similarly.
Finally, for a test ¬〈α = β〉 (resp. ¬〈α 6= β〉), the automaton uses the power of unbounded
alternation: it creates a new thread for each data value in the subtree reachable through

α and passes the control to the states 〈〈β〉〉¬=
ν (resp. 〈〈β〉〉¬6=ν ), which are in charge of testing

that no node can be reached through α with = (resp. 6=) data value. Again, this has
to be repeated for every ancestor as well, taking into account the type of the path in ν.
Symmetrical conditions are also requested on β.

More concretely, the automaton Aη uses states of the from 〈〈ψ〉〉 or 〈〈α〉〉�ν , where ψ is a
subformula of ϕ, α is a path expression of ϕ, and � ∈ {=, 6=,¬=,¬6=} and ν ∈ ⋃iMi. It
now remains to explain how Aη can test whether x ∈ [[ϕ]]t by starting a thread with state
〈〈ϕ〉〉 at node x. We explain this by induction on the structure of ϕ. Using alternation of the
automata model we can easily simulate disjunctions and conjunctions. Testing node labels
is also a simple task. Altogether it remains to explain how formulas of the form 〈α = β〉
and 〈α 6= β〉, or their negations can be tested by Aη. In order to do so, for any i ≤ n,
νi ∈ Mi, α, β ∈ psubi(η),~ ∈ {=, 6=,¬=,¬6=},� ∈ {¬=,¬6=}, we have in Q the states
〈〈α〉〉~νi and 〈〈α, β〉〉�νi , where α, β ∈ psubi(η).

We say that a thread (q, d) ∈ Q×D has an accepting run from y if there is an accepting
run ρ where instead of requiring that for every leaf x of t, ρ(x) is initial, we require that

• for every leaf x of t, ρ(x) contains a thread in state qiB, where i is the maximum
nesting level of the formulas in the state q and
• ρ(y) contains the thread (q, d).

The transitions of Aη will be built so that the following conditions are met, for every d ∈ D.

(a) A thread (〈〈ϕ〉〉, d) has an accepting run from x implies x ∈ [[ϕ]]t.

(b) A thread (〈〈α〉〉=νi , d) (resp. (〈〈α〉〉 6=νi , d)) has an accepting run from x implies there is a
path π and a word w ∈ A∗η,i so that

• π starts at x and ends at a node with the same (resp. different) data value as d,
and
• π verifies w and νi·gi(w) ∈ Sα.
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(c) A thread (〈〈α〉〉¬=
νi
, d) (resp. (〈〈α〉〉¬6=νi , d)) has an accepting run from x implies there is no

path π and no word w ∈ A∗η,i so that

• π starts at x and ends at a node with the same (resp. different) data value as d,
and
• π verifies w and νi·gi(w) ∈ Sα.

(d) A thread (〈〈α, β〉〉¬=
νi
, d) (resp. (〈〈α, β〉〉¬6=νi , d)) has an accepting run from x implies there

are no paths π, π′ and no words w,w′ ∈ A∗η,i so that

• both π and π′ start at x and end at nodes with the same (resp. different) data
value, and
• π verifies w where νi·gi(w) ∈ Sα, and π′ verifies w′ where νi·gi(w′) ∈ Sβ.

Note that condition (a) is enough to conclude the correctness of the construction. The
other conditions are here to help enforcing this condition.

It now remains to set the transition function of Aη in order to ensure all the properties
stated above. First note the following observation. For every i ≤ n and νi ∈ Mi and
α ∈ psubi(η) the set of all words (a1, b1), . . . , (am, bm) of (A × B)+ such that there are
νi,1 ∈ b1, . . . , νi,m ∈ bm with

νi·(νi,1·gi(↓)·νi,2·gi(↓)· · · · ·νi,m−1·gi(↓)·νi,m) ∈ Sα
is a regular language and we denote by exp(α, νi) the corresponding regular expression.

We now describe the behavior of each thread at a node x depending on its state. In
this description we assume that α and β are in psubi(η).

• 〈〈〈α = β〉〉〉: In this case Aη guesses a data value, stores it in its register using guess
and continues the execution with both states 〈〈α〉〉=1Mi

and 〈〈β〉〉=1M,i
, that will test if

there exist two nodes accessible by α and β respectively such that both carry the
data value of the register.

• 〈〈〈α 6= β〉〉〉: Similarly as above, Aη guesses a data value, stores it in its register and

continues the execution with both states 〈〈α〉〉=1Mi
and 〈〈β〉〉 6=1Mi

, which are responsible

of testing that there is a α path leading to a node with the same data value as the
one in the register and a β path leading to a node with a different data value.

• 〈〈α〉〉=νi or 〈〈β〉〉 6=νi: We denote by � the symbol = or 6= occurring in superscript. In
this case Aη chooses non-deterministically between one of the following actions.
• It checks that the required data value is already in the subtree, making the test
〈exp(α, νi)〉�.
• It moves up and switches state to 〈〈α〉〉�νi·ν′i·gi(↑) for some ν ′i ∈ bi(x).

• 〈〈¬〈α = β〉〉〉 or 〈〈¬〈α 6= β〉〉〉: We denote by � the symbol = or 6= occurring in the
middle. In this case Aη continues the execution with state 〈〈α, β〉〉¬�1Mi

.

• 〈〈α, β〉〉¬=
νi

or 〈〈α, β〉〉¬6=νi : We denote by � the symbol = or 6= occurring in superscript.
In this case Aη performs all the following actions using alternation:

• If the test root succeeds, it moves up, and creates a thread in state 〈〈α, β〉〉¬�νi·ν′i·gi(↑)
for each ν ′i ∈ bi(x).
• For every data value d in the subtree that can be reached via exp(α, νi) it moves

to state 〈〈β〉〉¬�νi with data value d. This can be achieved by performing a univ
operation and then by choosing non-deterministically to perform one of the
following transitions

– test 〈exp(α, νi)〉= and move to state 〈〈β〉〉¬�νi , or
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– test 〈exp(α, νi)〉= and accept.
• Analogously, for every data value d in the subtree that can be reached via

exp(β, νi), it moves to state 〈〈α〉〉¬�νi with data value d.

• 〈〈α〉〉¬=
νi

or 〈〈α〉〉¬6=νi : We denote by � the symbol = or 6= occurring in superscript. In
this case Aη performs all the following actions using alternation:
• if the test root succeeds, for all ν ′i ∈ bi(x), it starts a new thread in state to

〈〈α〉〉¬�νi·ν′i·gi(↑) at the parent of the current node.

• tests that 〈exp(α, νi)〉� holds.

Correctness. We show, for every position x and state that conditions (a)–(d) hold. We
proceed by induction on the nesting level of the expressions involved. Recall that once
the node expressions of nesting level i are correctly enforced by a thread of the form 〈〈ϕ〉〉
then the behavior of Aη enforces that bi(x) contains the correct information for all x (i.e
verify 1 and 2). Therefore exp(α, νi) does find a downward path evaluating to ν ′i such that
νi·ν ′i ∈ Sα.

The base case is the nesting level 0. At this level node expressions only test the labels
of the current node and this is exactly what the automaton does. Hence b0(x) verifies 1
and 2.

We now assume a correct behavior for nesting level i and show the same for level i+ 1.
For this we need to show that (a) holds for ϕ ∈ nsubi+1(η) and that (b)–(d) holds for
α, β ∈ psubi(η) and νi ∈Mi.

We prove (b) by induction on the depth of x starting from the root.
Suppose that there is an accepting run of (〈〈α〉〉=νi , d) from x on a ⊗ b ⊗ d. By

definition of the transition set, one of the following must hold.
– The test 〈exp(α, νi)〉= succeeded. Then, by inductive hypothesis on i, there is

a downward path π starting at x and ending at some position with data value
d so that the path verifies some w ∈ A∗η,i with νi · gi(w) ∈ Sα and we are done.
Note that this is the only possible case at the root of t, hence proving the base
case.

– (〈〈α〉〉=νi·ν′i·gi(↑), d) has an accepting run from the parent y of x. By inductive

hypothesis on i there is a non-ascending looping path π′′ that starts and ends at
x, and verifying a word w′′ ∈ Aη,i so that gi(w

′′) = ν ′i. By inductive hypothesis
on the depth of x, this means that there is a path π that starts at y and
ends at a node with data value d, so that π verifies some w ∈ A∗η,i where

νi · ν ′i · gi(↑) · gi(w) ∈ Sα. Therefore the path π′ = π′′ · π starts at x and ends
at a node with data value d, and π′ verifies w′ = w′′↑w, where νi · gi(w′) ∈ Sα.

Suppose now there is a path π starting in x and ending at a node with a data
value d, verifying some w ∈ A∗η,i so that νi · gi(w) ∈ Sα. We want to show that the

thread (〈〈α〉〉=νi , d) has an accepting run starting at x. Then either
– π is non-ascending, then by induction on i, w ∈ exp(α, νi) and the test 〈exp(α, νi)〉=

succeeds.
– π = π′ ·π′′ where π′ is the maximal prefix of π that is looping and non-ascending

and π′′ starts at the parent y of x. Let w′ be such that w = w′w′′, π′ verifies w′

and π′′ verifies w′′. Let ν ′i = gi(w
′). By induction on the depth of x, we know

that the thread (〈〈α〉〉=νi·ν′i·gi(↑), d) has an accepting run starting at y.
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The case of 〈〈α〉〉6=νi is treated similarly.

The cases (c) and (d) are treated similarly.

Consider for example (c). The proof is again by induction on the depth of x starting
from the root. We do only the case 〈〈α〉〉¬=

νi
as the other one is proven identically.

Suppose that there is an accepting run of (〈〈α〉〉¬=
νi
, d) from x on a ⊗ b ⊗ d. By

definition of the transition set, all of the following must hold.
– The test 〈exp(α, νi)〉= succeeded. Then, by inductive hypothesis on i, there is

no downward path π starting at x and ending at some position with data value
d so that the path verifies some w ∈ A∗η,i with νi · gi(w) ∈ Sα. Note that this is
the only possible case at the root of t, hence proving the base case.

– (〈〈α〉〉¬=
νi·ν′i·gi(↑)

, d) has an accepting run from the parent y of x for any ν ′i ∈ bi(x).

By inductive hypothesis on the depth of x, this means that there is no path π
that starts at y and ends at a node with data value d, so that π verifies some
w ∈ A∗η,i where νi · ν ′i · gi(↑) · gi(w) ∈ Sα. Assume now that there was a path

π′ starting from x and ending at some position with data value d so that the
path verifies some w ∈ A∗η,i with νi · gi(w) ∈ Sα. If this path is not ascending
then it is a contradiction with the previous case. If this path is ascending then
it starts with a non-ascending loop at a and the continue from y. By induction
on i the non-ascending loop part evaluates to ν ∈ b(x) and therefore we also
get a contradiction with the the fact that (〈〈α〉〉¬=

νi·ν′i·gi(↑)
, d) has an accepting run

from y.
The converse direction is treated similarly.

A similar reasoning shows the case (d) and is omitted here.

Property (a) is now a simple consequence of (b)–(d).

6. Concluding remarks

We have exhibited a decidable class of automata over data trees. This automaton model is
powerful enough to code node expressions of regXPath(V,=). Therefore, since these expres-
sions are closed under negation, we have shown decidability of the satisfiability, containment
and equivalence problems for node expressions of regXPath(V,=).

Consider the containment problem for path expressions as the problem of, given two
path expressions α and β of our logic, whether [[α]]t ⊆ [[β]]t for all data trees t. It is
straigtforward that the technique used in [tCL09, Proposition 4] to reduce containment of
path expresions into the satisfiability problem for node expressions works also in our context.
Indeed, this technique is independent of having data equality tests and only requires that
the logic be closed under boolean connectives. We therefore obtain a decision procedure for
this problem as a corollary of Theorem 1.

Proposition 28. The containment problem for path expressions of regXPath(V,=) is de-
cidable.

Our decision algorithm relies heavily on the fact that we work with unranked data
trees. As already shown in [FS09] without this assumption XPath(V,=) would be unde-
cidable. In particular if we further impose the presence of a DTD, XPath(V,=) becomes
undecidable, unless the DTD is simple enough for being expressible as a BUDA.
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