
Petri nets: Structural analysis

Structural Analysis: Motivation

We have seen how properties of Petri nets can be proved by constructing the
reachability graph and analysing it.

However, the reachability graph may become huge: exponential in the number of
places (if it is finite at all).

Structural analysis enables us to prove some properties without constructing the
reachability graph. The main techniques are:

Place invariants

Traps

2

Example 1

p4

p5

p7

p6p1

p2

p3 t4t1

t2

t3 t5

t6

3

Incidence Matrix

Let N = 〈P, T , F , W , M0〉 be a P/T net. The corresponding incidence matrix
C : P × T → Z is the matrix whose rows correspond to places and whose
columns correspond to transitions. Column t ∈ T denotes how the firing of t
affects the marking of the net: C(t , p) = W(t , p)− W(p, t).

The incidence matrix of Example 1:

t1 t2 t3 t4 t5 t6

−1 0 1 0 0 0

1 −1 0 0 0 0

0 1 −1 0 0 0

0 −1 1 0 −1 1

0 0 0 −1 0 1

0 0 0 1 −1 0

0 0 0 0 1 −1



p1

p2

p3

p4

p5

p6

p7

4

Markings as vectors

Let us now write markings as column vectors. E.g., the initial marking in
Example 1 is M0 = (1 0 0 1 1 0 0)T .

Likewise, we can write firing counts as column vectors with one entry for each
transition. E.g., if each of the transitions t1, t2, and t4 fires once, we can express
this with u = (1 1 0 1 0 0)T .

Then, the result of firing these transitions can be computed as M0 + C · u.

1

0

0

1

1

0

0


+



−1 0 1 0 0 0

1 −1 0 0 0 0

0 1 −1 0 0 0

0 −1 1 0 −1 1

0 0 0 −1 0 1

0 0 0 1 −1 0

0 0 0 0 1 −1


·



1

1

0

1

0

0


=



0

0

1

0

0

1

0



5

Let N be a P/T net with indicence matrix C, and let M, M ′ be two markings of N.
The following implication holds:

If M ′ ∈ reach(M), then there exists a vector u such that M ′ = M + C · u
such that all entries in u are natural numbers.

Notice that the reverse implication does not hold in general!

E.g., bi-directional arcs (an arc from a place to a transition and back) cancel each
other out in the matrix. For instance, if Example 1 contained a bi-directional arc
between p1 and t3, the matrix would remain the same, but the marking {p3, p6}
(obtained on the previous slide) would be unreachable!

6

Example 2

A more complicated example:

p1 p2p3

t2p4

t1

Even though we have
1

0

0

0

+


−1 1

1 −1

−1 1

0 1

 ·
(

1

1

)
=


1

0

0

1

 ,

none of the sequences corresponding to (1 1)T , i.e. t1t2 or t2t1, can happen.

7

Proving unreachability using the incidence matrix

To summarize: The markings obtained by computing with the incidence matrix
are an over-approximation of the actual reachable markings

However, we can sometimes use the matrix equations to show that a marking M
is unreachable. (Compare coverability graphs. . .)

I.e., a corollary of the previous implication is that if M ′ = M + Cu has no natural
solution for u, then M ′ /∈ reach(M).

Note: When we are talking about natural (integral) solutions of equations, we
mean those whose components are natural (integral) numbers.

8

Example 3

Consider the following net and the marking M = (1 1)T .

p2

p1 t1

t2

1

0

+

−1 1

1 −1

 ·

u1

u2

 =

1

1



has no solution, and therefore M is not reachable.

9

Transition invariants

Let N be a net and C its incidence matrix. A natural solution of the equation
Cu = 0 is called a transition invariant (or: T-invariant) of N.

Notice that a T-invariant is a vector with one entry for each transition.

For instance, in Example 3, u = (1 1)T is a T-invariant.

A T-invariant indicates a possible loop in the net, i.e. a sequence of transitions
whose net effect is null, i.e. which leads back to the marking it starts in.

10

Place invariants

Let N be a net and C its incidence matrix. A natural solution of the equation
CT x = 0 such that x 6= 0 is called a place invariant (or: P-invariant) of N.

Notice that a P-invariant is a vector with one entry for each place.

For instance, in Example 1, x1 = (1 1 1 0 0 0 0)T , x2 = (0 0 1 1 0 0 1)T , and
x3 = (0 0 0 0 1 1 1)T are all P-invariants.

A P-invariant indicates that the number of tokens in all reachable markings
satisfies some linear invariant (see next slide).

11

Properties of P-invariants

Let M be marking reachable with a transition sequence whose firing count is
expressed by u, i.e. M = M0 + Cu. Let x be a P-invariant. Then, the following
holds:

MT x = (M0 + Cu)T x = MT
0 x + (Cu)T x = MT

0 x + uT CT x = MT
0 x

For instance, invariant x2 means that all reachable markings M satisfy (switching
to the functional notation for markings):

M(p3) + M(p4) + M(p7) = M0(p3) + M0(p4) + M0(p7) = 1 (1)

As a special case, a P-invariant in which all entries are either 0 or 1 indicates a
set of places in which the number of tokens remains unchanged in all reachable
markings.

12

Note that linear combinations of P-invariants (i.e. multiplying an invariant by a
constant or component-wise addition of two invariants) will again yield a
P-invariant.

We can use P-invariants to prove mutual exclusion properties.

Example: According to equation 1, in every reachable marking of Example 1
exactly one of the places p3, p4, and p7 is marked. In particular, p3 and p7

cannot be marked concurrently!

13

More remarks on P-invariants

P-invariants can also be useful as a pre-processing step for reachability analysis.

Suppose that when computing the reachability graph, the marking of a place is
normally represented with n bits of storage. E.g. the places p3, p4, and p7

together would require 3n bits.

However, as we have discovered invariant x2, we know that exactly one of the
three places is marked in each reachable marking.

Thus, we just need to store in each marking which of the three is marked, which
required just two bits.

14

Algorithms for P-invariants

To compute some P-invariants, one can use the algorithm due to J. Farkas
(1902).

Unfortunately there are P/T-nets with an exponential number of linearly
independent P-invariants (in the number of places of the net). Thus the Farkas
algorithm may take exponential time in the worst case.

15

Farkas Algorithm

Input: the incidence matrix C with n rows (places), and m columns (transitions).

Output: A set of place invariants.

Notation: (C | En) denotes the juxtaposition of C by En, the n × n identity matrix.

16

D0 := (C | En);
for i := 1 to m do

for d1, d2 rows in Di−1 such that d1(i) and d2(i) have opposite signs do
d := |d2(i)| · d1 + |d1(i)| · d2; (* d(i) = 0 *)
d ′ := d/gcd(d(1), d(2), . . . , d(m + n));
augment Di−1 with d ′ as last row;

endfor;
delete all rows of the (augmented) matrix Di−1 whose i-th component
is different from 0, the result is Di ;

endfor;
delete the first m columns of Dm

17

An example

Let us assume the following incidence matrix:

C =



−1 1 1 −1

1 −1 −1 1

0 0 1 0

1 0 0 −1

−1 0 0 1



D0 = (C | E5) =



−1 1 1 −1 1 0 0 0 0

1 −1 −1 1 0 1 0 0 0

0 0 1 0 0 0 1 0 0

1 0 0 −1 0 0 0 1 0

−1 0 0 1 0 0 0 0 1



18

Addition of the rows 1 and 2, 1 and 4, 2 and 5, 4 and 5:

D1 =



0 0 1 0 0 0 1 0 0

0 0 0 0 1 1 0 0 0

0 1 1 −2 1 0 0 1 0

0 −1 −1 2 0 1 0 0 1

0 0 0 0 0 0 0 1 1


Addition of rows 3 und 4:

D2 =


0 0 1 0 0 0 1 0 0

0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 0 1 1

0 0 0 0 1 1 0 1 1


19

D3 = D4 =


0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 0 1 1

0 0 0 0 1 1 0 1 1



Minimal P-invariants are (1,1,0,0,0) and (0,0,0,1,1).

20

An example with many P-invariants

Incidence matrix for a net with 2n places:

CT =


−1 −1 1 1 0 0 · · · 0 0

−1 −1 0 0 1 1 · · · 0 0
...

−1 −1 0 0 0 0 · · · 1 1



(y1,1− y1, y2,1− y2, . . . , yn,1− yn) is an invariant for every
y1, y2, . . . , yn ∈ {0,1}, and so there are 2n linearly independent P-invariants.

21

Traps

Let 〈P, T , F , W , M0〉 be a P/T net. A trap is a set of places S ⊆ P such that
S• ⊆ •S.

In other words, each transition which removes tokens from a trap must also put
at least one token back to the trap.

A trap S is called marked in marking M iff for at least one place s ∈ S it holds
that M(s) ≥ 1.

Note: If a trap S is marked initially (i.e. in M0), then it is also marked in all
reachable markings.

22

In Example 4 (see next slide), S1 = {nc1, nc2} is a trap.

The only transitions that remove tokens from this set are t2 and t5. However,
both also add new tokens to S1.

S1 is marked initially, and therefore in all reachable markings M the following
inequality holds: M(nc1) + M(nc2) ≥ 1

Traps can be useful in combination with place invariants to recapture information
lost in the incidence matrix due to the cancellation of self-loop arcs.

23

Example 4

Consider the following attempt at a mutual exlusion algorithm for cr1 and cr2:

t1

t3
q1

pend1
t2

cr1
nc1

nc2
t4

t5

t6
q2

pend2

cr2

The idea is to achieve mutual exclusion by entering the critical section only if the
other process is not already there.

24

Proving mutual exclusion properties using traps

In Example 4, we want to prove that in all reachable markings M, cr1 and cr2
cannot be marked at the same time. This can be expressed by the following
inequality:

M(cr1) + M(cr2) ≤ 1

The P-invariants we can derive in the net yield these equalities:

M(q1) + M(pend1) + M(cr1) = 1 (2)
M(q2) + M(pend2) + M(cr2) = 1 (3)

M(cr1) + M(nc1) = 1 (4)
M(cr2) + M(nc2) = 1 (5)

However, these equalities are insufficient to prove the desired property!

25

Recall that S1 = {nc1, nc2} is a trap.

S1 is marked initially and therefore in all reachable markings M. Thus:

M(nc1) + M(nc2) ≥ 1 (6)

Now, adding (4) and (5) and subtracting (6) yields M(cr1) + M(cr2) ≤ 1, which
proves the mutual exclusion property.

26

Petri nets: Unfoldings

Unfoldings

Unfoldings are a data structure that represents the reachable markings of a Petri
net.

They are used for bounded nets! In the following, we assume 1-boundedness;
the technique can be extended to arbitrary bounds.

Unfoldings represent a trade-off in terms of time/space requirements; their size is
in between that of a net and its reachability graph, and checking whether a
marking is reachable becomes easier than for the net, but more difficult than
from the reachability graph.

Unfoldings exploit the inherent concurrency of a Petri net.

28

Unfoldings for finite transition systems

Let T be a finite transition system with initial state X . One can define the acyclic
unfolding UT (which is used for CTL model checking):

X

Y Z

X

Y Z

X

Y Z

...

Remark: UT can be viewed as a structure in which every state is labelled by a
state from T . We denote this labelling by the function B.

UT contains the same behaviours as T (and the same reachable states).
Additionally, UT has a simpler structure (acyclic, in fact, a tree). However, in
general, UT is infinite.

29

Prefixes

P is called a prefix of UT if P is obtained by “pruning” arbitrary branches of UT .
Example:

X

Y Z

X

X

Y Z

X

Y Z

...

Observation: One can always find a finite prefix containing the same reachable
states as the infinite unfolding (by unrolling loops exactly once). We shall call
such a prefix complete.

30

Construction of complete prefixes

Let us discuss an algorithm to obtain a complete prefix of UT .

The algorithm maintains a set E , the set of states observed so far.

Some arcs in the prefix will be called cutoffs, we shall mark them red.

31

1. Initially, the prefix contains only the root, labelled by X . We set E := {X}.

2. Select a node n on the prefix that is not the target of a cutoff edge. Let
B(n) = Y be the label of the node, and let Z be a state with Y → Z such that
the prefix does not contain any edge from n to a Z -labelled node.

2a. If no such pair n, Z exists, we are done.

2b. Otherwise, add a new, Z -labelled node to the prefix and add an edge from n
to it.

2c. If Z ∈ E , then the new edge is a cutoff. Otherwise, set E := E ∪ {Z}.

3. Continue at step 2.

32

Example

Step-by-step construction of the prefix in the previous example:

X

Z

X

X

Y Z

X

Z

XX

Observation (1): A complete prefix contains as many transitions as T .

Observation (2): The shape of the prefix depends on the order in which edges
are added!

33

Unfoldings for Petri nets

We generalize unfoldings for Petri nets, as follows:

The unfolding of a Petri net P (or, a prefix of the same) is an acyclic Petri net
Q.

Assumption: Suppose that P is 1-safe.

Remark: In the following, we call the places of Q conditions, the transitions of
Q events. This merely serves to better distinguish the elements of P and Q,
functionally they are the same!

34

Every condition of Q is labelled by a place of P,
every event of Q by a transition of P .

Every event t ′ is of the form (P′, t), where P′ is the preset of t ′ and t the label
of t ′.

Let P′ be a set of conditions. B(P′) denotes the set of places labelling the
elements of P′.

Every condition has exactly one incoming arc.

Some events in a complete prefix are labelled as cutoffs.

35

Prefix construction for Petri nets

1. Let M0 be the initial marking of P . Then Q initially contains one condition for
each place in M0. The initial marking of Q contains exactly these conditions. We
set E := {M0}.

2. Let t be a transition of P and P′ a set of conditions none of which is the output
place of a cutoff transition. Moreover, let P′ be coverable in Q (i.e., part of a
reachable marking), let B(P′) = •t , and suppose that (P′, t) is not yet contained
in Q.

2a. If no such pair (P′, t) exists, we are done.

2b. Add the event t ′ := (P′, t) to the prefix (with P′ as preset and label t).
Moreover, extend the prefix by one condition for every output place of t and make
it an output place of t ′.

2c. We associate with t ′ a marking M′t (which is reachable in P) (see below). If
Mt ′ ∈ E , then t ′ is a cutoff. Otherwise E := E ∪ {Mt ′}.

36

Remark: If we omit step 2c (no cutoffs), then we obtain the full unfolding of P .

The shape of Q again depends on the order in which events are added. (More
on this in a moment!)

37

Example 1: Petri net. . .

p4

p5

p7

p6p1

p2

p3 t4t1

t2

t3 t5

t6

38

. . . and a possible prefix of the unfolding

p1 p4

t1 t4

p2 p6

p5

t2 t5

p3 p7

t3 t6

p4 p4
p1 p5

39

Determining Mt ′

When adding t ′ = (P′, t) to the prefix, Mt ′ is determined as follows:

Idea: Mt ′ is the marking obtained by making the “minimal” effort to fire t ′.

Let x , y be two nodes (conditions or events) in Q. Let < be the smallest partial
order where x < y if there is an edge from x to y .

Let x be a node of Q. We define bxc := { y | y ≤ x }.

Let Mt ′ be the marking obtained by firing the transitions of bt ′c (in any order).
Note: Such a firing sequence exists since P′ is coverable.

40

p1 p4

t1 t4

p2 p6

p5

t2 t5

p3 p7

t3 t6

p4 p4
p1 p5

{p3,p5}

{p2,p4,p5} {p1,p4,p6}

{p1,p7}

{p1,p4,p5} {p1,p4,p5}

41

Remarks

The construction of Q terminates since Mt ′ is reachable in P and since there are
only finitely many reachable markings in P .

In most cases, the prefix is

bigger than P ;

smaller than its reachability graph.

42

Conflict, causality, concurrency

From the structure of the unfolding we can derive statements about the mutual
relationships of conditions:

Let p, q be two (different) conditions of Q.

p, q are called causally dependent if p < q or q < p. (I.e., in every firing
sequence containing both conditions, one condition must be consumed to
generate the other.)

p, q are in conflict if there are events t , u (where t 6= u), t ∈ bpc, u ∈ bqc,
and •t ∩ •u 6= ∅. (I.e., p, q can never occur in a reachable marking!)

p, q are called concurrent if they are neither causally dependent nor in conflict
with one another (I.e., p, q can occur together in some reachable marking!)

43

Reachability in prefixes

Remark: A set of conditions P′ in Q is coverable iff all pairs p, q ∈ P′ are
concurrent.

The concurrency relation C (where p C q iff p, q are concurrent) can be
computed efficiently while generating the unfolding.

If P′ is reachable (resp. coverable) in Q, then so is B(P′) in P .
Question: Does the reverse hold?

44

Properties of a complete prefix

For finite-state systems T we have:

A state Y is reachable in T iff a Y -labelled node is reachable in any prefix of
T constructed according to our algorithm.

This holds independently of the order in which events are added to the prefix.

For Petri nets P (and a prefix Q) we would like to have the following
completeness property:

A marking M is reachable in P iff a marking M ′ with B(M ′) = M is reachable
in any prefix Q constructed according to our algorithm.

Unfortunately, this does not holds for all prefixes. For Petri net unfoldings,
whether Q is complete, does depend on the order in which events are generated!

45

Example 2

Consider the following Petri net:

a cb d

k

A B

T

p
C D

e f

l

E F

46

In Example 2 the marking {p} is reachable, e.g. by firing A B T .

The net can also reach the marking {e, f} by firing either A C or B D, and then
return by firing E F to the initial marking.

We shall see that a prefix generated according to depth-first order will “overlook”
the transition T .

47

Depth-first order generated the prefix shown below (order and cutoffs indicated
in red):

A C E

F

b

c

1

{k,c,d}

k

a

d

8

{a,b,l}

l

B

{e,f}
2
e

f

a

b

c

d

{a,c,f}

3

4

{b,d,e}

5

{k,c,d}

A

6

{a,b,l}

B

l

k

f

e

{e,f}

7

D

48

Adequate orders

Let Q∗ be the (usually infinite) unfolding of P obtained from constructing the
prefix without cutoff conditions.

Let ≺ be a total order of the events that refines < (i.e. t < t ′ implies t ≺ t ′).

Intuition: ≺ is a possible order in which the events of Q∗ can be generated.

Let Q≺ be the (unique!) prefix of Q∗, where the events are added in the order
given by ≺.

We call ≺ adequate iff Q≺ is complete.

49

Configurations

Let M be a reachable marking in Q∗. Then we call CM :=
⋃

p∈Mbpc a
configuration.

When given a configuration C, its maximal (w.r.t. <) conditions constitute the
corresponding reachable marking, denoted MC.

Remark: For every event t , the set btc ∪ t• ∪ M0 =: Ct is a configuration. We
have MCt

= Mt .

We call E an extension of C iff C ∩ E = ∅ and C ∪ E is a configuration. In this
case, we write C ⊕ E to denote the configuration C ∪ E .

Let M, M ′ be two markings of Q∗ such that B(M) = B(M ′). If E is an extension
of CM , then there is an extension E ′ of CM ′ that is isomorphic to E .

50

A sufficient condition for adequate orders

The following condition guarantees that ≺ is adequate:

Let t , t ′ be two events with t ≺ t ′ and Mt = Mt ′, and E an extension of Ct
and E ′ the extension of Ct ′ isomorphic to E . Then u ≺ u′ must hold,
where Cu = Ct ∪ E and Cu′ = Ct ′ ∪ E ′.

E.g., this is implied by taking a total order satisfying t ≺ t ′ if |Ct | < |Ct ′|.

Proof: Let ≺ be an order satisfying the above constraint. We show that Q≺ is
complete. So let M be a marking reachable in P . Then there is a marking M ′ in
Q∗ with B(M ′) = M. Either CM ′ is contained in Q≺, or CM ′ = Ct ⊕ E for some
cutoff event t . But then there is another event t ′ with Mt ′ = Mt and t ′ ≺ t and
therefore a configuration C′ := Ct ′ ⊕ E ′, where E ′ is isomorphic to E , and we
have B(MC′) = B(M ′) = M. Either C′ is contained in Q≺, or one repeats the
argument, but only finitely often since ≺ is well-founded.

51

