Initiation à la Vérification

Emptiness Test for Büchi automata

Stefan Schwoon

November 14, 2025

Overview

Result from the first half of the course:

Model-checking LTL reduces to checking emptiness of some Büchi automaton \mathcal{B} .

Reminder (for universal model-checking, existential is analogus):

 \mathcal{B} is the intersection of a Kripke structure \mathcal{K} with a BA for the *negation* of an LTL formula ϕ .

If *B* accepts some word, we call such a word a counterexample.

 $\mathcal{K} \models \phi$ iff \mathcal{B} accepts the empty language.

Complexity: $\mathcal{O}(|\mathcal{K}| \cdot |\mathcal{B}_{\neg \phi}|)$

Typical instances:

Size of K: between several hundreds to millions of states.

Size of $\mathcal{B}_{\neg \phi}$: exponential in $|\phi|$, but usually just a couple of states.

Typical setting:

 \mathcal{K} indirectly given by some concise description (modelling or programming language); model-checking tools will generate \mathcal{K} internally.

 $\mathcal{B}_{\neg \phi}$ can be generated from ϕ before start of emptiness check.

Typical setting:

 ${\cal B}$ generated "on-the-fly" from (the description of) ${\cal K}$ and from ${\cal B}_{\neg\phi}$ and tested for emptiness at the same time.

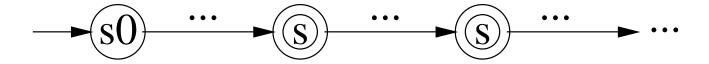
As a consequence, the size of K (and of B) is not known initially!

At the beginning, only the initial state is known, and we have a function succ: $S \rightarrow 2^S$ for computing the immediate successors of a given state (where succ implements the semantics of the description).

Naïve solution: Check for Lassos

Let $\mathcal{B} = (\Sigma, S, s_0, \delta, F)$ be a Büchi automaton.

 $\mathcal{L}(\mathcal{B}) \neq \emptyset$ iff there is $s \in F$ such that $s_0 \to^* s \to^+ s$



Naïve solution:

Check for each $s \in F$ whether there is a cycle around s; let $F_o \subseteq F$ denote the set of states with this property.

Check whether s_0 can reach some state in F_0 .

Time requirement: Each search takes linear time in the size of \mathcal{B} , altogether quadratic run-time \rightarrow unacceptable for millions of states.

Strongly connected components

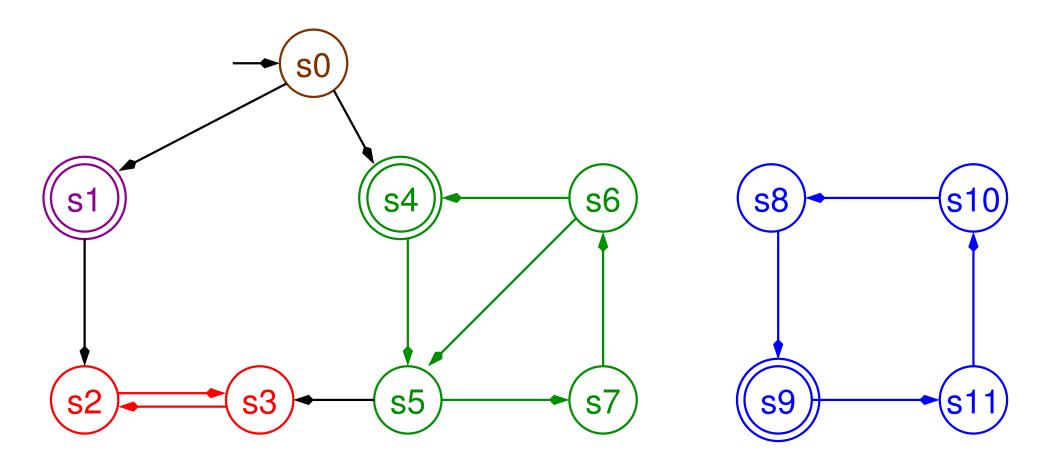
 $C \subseteq S$ is called a strongly connected component (SCC) iff

$$s \to^* s'$$
 for all $s, s' \in C$;

C is maximal w.r.t. the above property, i.e. there is no proper superset of *C* satisfying the above.

An SCC C is called trivial if |C| = 1 and for the unique state $s \in C$ we have $s \not\rightarrow s$ (single state without loop).

Example: SCCs



The SCCs $\{s_0\}$ and $\{s_1\}$ are trivial.

Depth-first search (basic version)

```
nr = 0;
hash = { } { };
dfs(s0);
exit;
dfs(s) {
   add s to hash;
   nr = nr+1;
   s.num = nr;
   for (t in succ(s)) {
      // deal with transition s -> t
      if (t not yet in hash) { dfs(t); }
```

Memory usage

Global variables: counter *nr*, hash table for states

Auxiliary information: "DFS number" s.num

search path: Stack for memorizing the "unfinished" calls to dfs

Solution (1): based on SCCs

The algorithm of Tarjan (1972) can identify the SCCs in linear time (i.e. proportional to $|S| + |\delta|$).

Said algorithm is a slight extension of basic DFS with some additional constant-time operations on each state and transition.

Given the SCCs, one can then check if there exists a non-trivial SCC containing an accepting state.

Solution (2): nested DFS

Algorithm proposed by Courcoubetis, Vardi, Wolper, Yannakakis (1992).

The nested-DFS algorithm is an alternative requiring only two bits per state.

States are "white" initially.

A first DFS makes all the states that it visits blue.

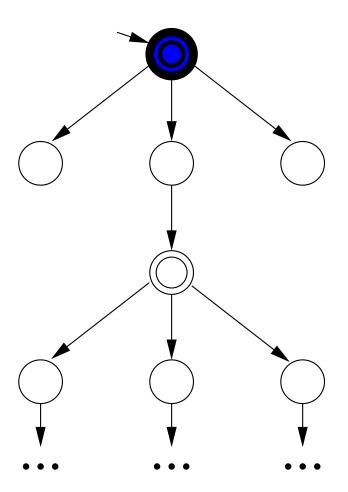
Whenever the first (blue) DFS backtracks from an *accepting* state *s*, it starts a second (red) DFS to see if there is a cycle around *s*.

The red DFS only visits states that are not already red (including from a previous visit). Thus, every state and edge are considered at most twice.

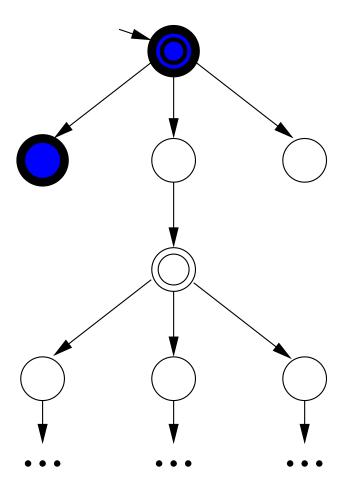
Nested depth-first search: Algorithm

```
hash = \{\};
blue (s0);
report "no accepting run"
blue(s) {
   add (s,0) to hash;
   for t in succ(s)
      if (t,0) not in hash { blue(t) }
   if s is accepting and (s,1) not in hash { seed=s; red(s) }
red(s) {
   add (s,1) to hash;
   for t in succ(s)
      if t=seed { report "accepting run found"; exit }
      if (t,1) not in hash { red(t) }
```

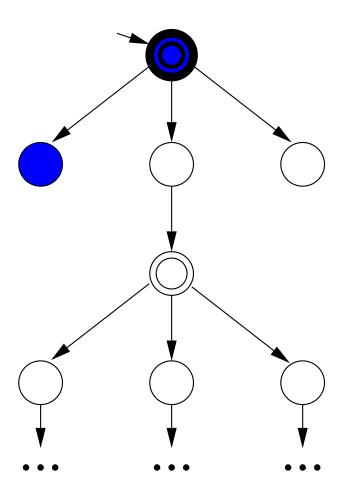
Blue phase: Start at initial state.



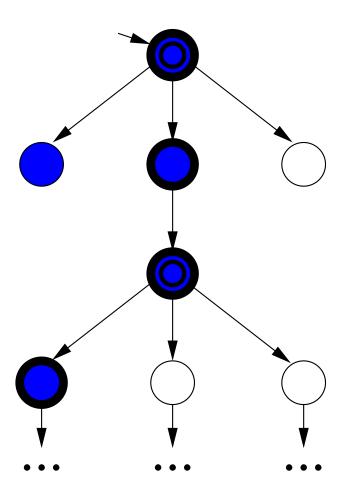
Visit states depth-first, colouring them blue.



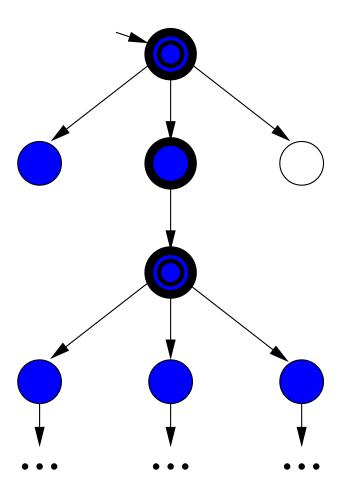
Simply backtrack from non-accepting states.



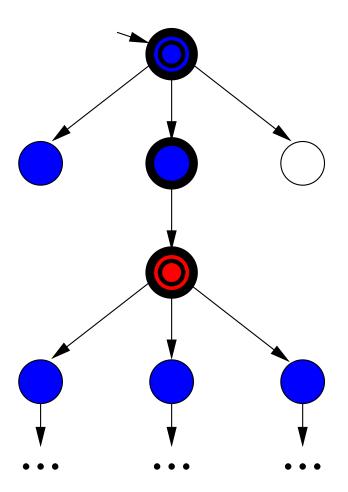
Continue blue search ...



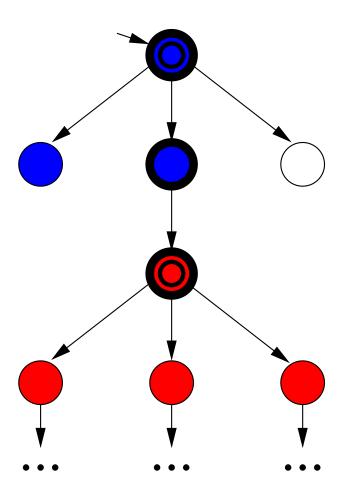
Continue blue search until backtracking from an accepting state.



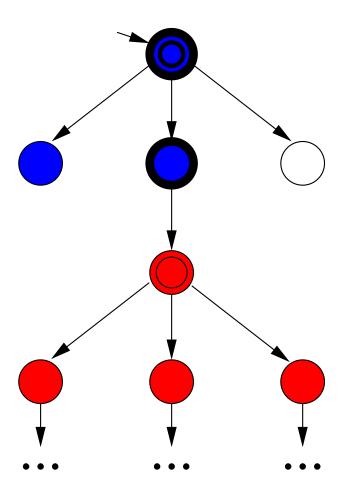
Before backtracking, start a "red" DFS ...



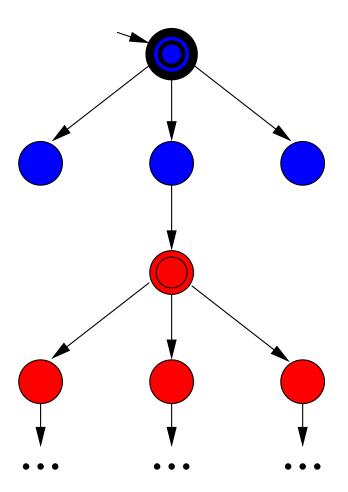
... that searches for a loop back to that accepting state.



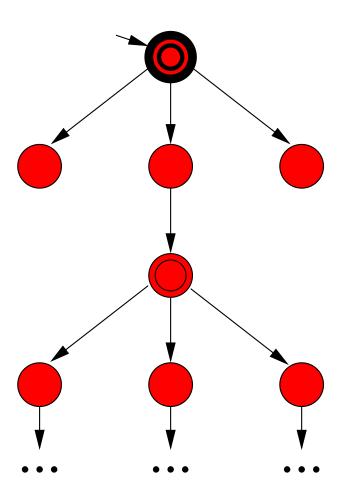
If red search is unsuccessful, backtrack.



Carry on ...



Future red searches only consider non-red states.



Properties of Nested DFS

Very economic in terms of memory

Implemented in state-of-the-art tools like Spin

Can be combined with further optimization (partial-order reduction)

Tends to prefer long counterexamples "deep down" in the state graph

→ variants of Tarjan (not shown) can identify counterexamples more quickly, but are less economic on memory and more difficult to combine with other optimizations