Architecture et Systemes

Stefan Schwoon

Cours L3, 2025/2026, ENS Paris-Saclay

Systeme de fichiers

Le terme systéme de fichiers peut désigner :

I'organisation logique des fichiers utilisés imposé par le systeme
(p.ex. /etc, /usr, /home) ;

les structures de données qui permettent I'organisation physique des
dossiers et fichiers ainsi que les opérations sur ces structures.

Exemples pour ce dernier cas : ext[234] sur Linux, FAT (diverses versions) sur
Windows

Rappel : Sous Unix/Linux, un systeme de fichiers dans le sens logique peut
comporter plusieurs systemes physiques organisés dans une méme
arborescence.

Disque dur

Image d’un disque dur :

Nl

Source: Wikimedia Commons, Utilisateur HubiB

Organisation d’'un disque dur

plusieurs plateaux qui tournent, chacun avec une téte de lecture
cylindre : zone équidistante de I'axe

secteur : partie d’'un cylindre qui contient un bloc de données
taille typique : entre 512 octets et 4 Ko

Les acces sont par secteur.

Lire ou écrire un secteur consiste a déplacer la téte d’'un plateau vers le cylindre,
puis attendre le passage du secteur.

Structures de base

La structure ci-dessous est a peu prées suivi par 'implémentation originale dans
Unix (et par Minix) :

, Inodes . Data Region
IDIDIDIDIDIDIDIDI D[D|D|D|D|D|D|D] DIDIDIDIDIDIDIDI
15 16 23 24
Data Region
DIDIDIDIDIDIDIDI [D]D]D|D|D|D|DI|D] [D]D]D|D|D|D]DI|D] D|D|D|D|D|D|D|D|
39 40 47 48 55 56

Source: Arpaci-Dusseau, Operating Systems: Three Easy Pieces

Les secteurs de divisent en cing types :
superbloc, i-tableau, d-tableau, inceuds, blocs de données

Superbloc et inceuds

Un inceaud contient les métadonnées associées avec un fichier:

proriétaire, droits d’acces, type, temps de derniere modif, taille en octets, lieu
de stocage, etc

VOIr stat (1), stat (2)

Un seul secteur stocke plusieurs inceuds ; 'ensemble de secteurs reservées aux
inceuds en réalise un tableau.

Le secteur appelés i-tableau (resp. d-tableau) contient un bitmap indiquant quels
inceuds (resp. blocs de données) sont occupées ou libres.

Superbloc : dans un secteur préalablement connu, contient le nombre d’'inceuds
et blocs de données, leurs endroits, inceud du dossier racine, ...

Pointeur direct ou indirect

Les inceuds soutiennent des fichiers de tailles diverses :

Wikimedia Commons, Utilisateur timtjtim

Pour des fichiers petits, 12 pointeurs directs indiquent les secteurs qui
contiennent le contenu du fichier.

Pour des fichiers de taille moyenne, on réserve un secteur de données qu’on
remplit avec les secteurs de données.

Les pointeurs doublement/triplement indirects permettent des fichiers tres larges
ou géants.

Alternatives

File Allocation Table (FAT): liste liée qui indique, pour tout secteur de données, le
secteur suivant du méme fichier

approche suivi par certains versions de MS-DOS/Windows

copie gardée en mémoire pour meilleure efficacité

Avantage: structure simple, fichiers de longueur illimitée

Probleme : acces aléatoire dans un fichier ?

Extent : indique une zone de secteurs consécutifs (p.ex., dans ext4)

Dosslers

Un dossier est un fichier spécial qui contient une liste d’inceuds et les noms
associées.

Note: Au lieu d’'une simple liste, on peut utiliser une structure plus sophistiquée.

Exemple : Acces en lecture d’un fichier /A/B

1. Consulter I'inceud de la racine (/) pour savoir ou est stocké sa liste de
fichiers.

2. Consulter cette liste pour y trouver I'entrée A et son inceud.
3. Consulter I'inceud de A pour trouver sa liste de fichiers.
4. Consulter cette liste pour y trouver I'entrée B et son inceud.

5. Une fois I'inceud de B est connu, tout acces en lecture utilise un pointeur
direct ou indirect pour en trouver le bon secteur.

Exemple : Création d’'un nouveau fichier (court) /a/C

1. et 2. voir ci-dessus

3. Consulter I'inceud de a pour trouver sa liste de fichiers.
4. Vérifier dans cette liste que C n’y existe pas encore.

5. Trouver un inceud et un bloc de données disponibles pour stocker les
métadonnées et le contenu de C.

6. Ecrire ces secteurs sur disques et mettre a jour les tableaux.

7. Ajouter C a la liste de A et la réécrire sur disque.

Note: fsync(2)

10

Optimisations

En pratique, certaines optimisations s'imposent :

Cache : garder les secteurs les plus utilisés en mémoire

Tamponnage : retarder/grouper les écritures
Néanmoins, un implémentation directe s’avere inefficace.

Pire, la performance dégrade avec le temps. Raisons :

manque de localité, fragmentation

11

Prise en compte de localité

Lefficacité des acces disque dur dépendent de I'ordre des secteurs.

Or, le systéme proposé précédemment (et implémenté a 'origine dans Unix)
traite tous les secteurs comme si leur temps d’acces était toujours identique.

ldée : grouper des données reliés dans des secteurs proches.

12

Fast File System (FFS)

Solution proposé a Berkeley 1984, idées reprises par ext2 (Linux)

Grouper le disque en plusieurs zones physiques, p.ex. trois cylindres consécutifs.
Note : les disques plus récents proposent de telles zones.

Chaque groupe a sa propre décomposition en superbloc, tableaux, inceds,
données.

Superbloc : copie rédondant du master

13

FFS: Allocation de groupes

Observation : Les acces consécutifs sont souvent dans un méme dossier
(environ 40% selon des données statistiques, 25% supplémentaires dans des
dossiers qui partagent le méme parent).

Lorsqu’un dossier est crée, on I'affecte a un groupe (p.ex. un groupe).
Ainsi, son inceud et contenu est stocké dans ce groupe, ainsi que les inceuds et
données de ses fichiers.

Exception : pour des fichiers larges, on cherche un zone de secteurs consécutifs
dans des groupes sépareés.

— éviter qu’un seul fichier prend toutes les ressources dans un groupe

— faciliter la lecture en masse

Attention : En fonction du fonctionnement du disque, la lecture de deux secteurs
physiqguement consécutifs n’est pas toujours la solution la plus efficace (reglé par
auto-paramétrage de FFS).

14

Cohérence/intégrité

Un probléme intervient si le systeme s’arréte au milieu d’'une opération d’écriture
(perte d’alimentation électrique, bougues, ...).

Exemple: étendre un fichier par un secteur supplémentaire

Trois écritures : d-tableau, inoeud, données

— Qu’est-ce qui arrive si le systeme s’arréte apres une seule écriture ou
deux ?

Solution : Lorsque le systeme n’a pas terminé correctement, on vérifie I'état du
systeme de fichiers au redémarrage (opération lourde; voir chkdsk, fsck).

vérifier cohérence entre d-tableau et blocs mentionnés dans inosuds

vérifier cohérence entre i-tableau et contenu de dossiers

etc.

15

Alternative : Journal de transactions

Une transaction est une suite d’écritures qui, ensemble, laissent le systeme dans
un état cohérent.

On réserve une zone du disque pour un journal de transactions.
Exemple de transaction:

TxB Iv2] | Bv2] | Db [TxE >

Journal

Source: Arpaci-Dusseau, Operating Systems: Three Easy Pieces

On écrit d’abord les données de la transaction dans le journal.

Puis, a un moment donneée, le systeme de fichiers est mis a jour et la transaction
marqué comme terminée.

16

Transactions : traitement d’erreurs

Lors d’un redémarrage du systeme, toute transaction non-terminée est répétée.
Toute transaction incompléte (sans TxE) dans le journal est écartée.

Attention : le systeme doit assurer que TxE n’est jamais écrit avant le reste de la
transaction.

Exemple d’implémentation: ext3 (Linux)

Points divers:

tamponnage des mises a jour

variante : omission des données de fichier dans le journal
alternative: copy-on-write (toute écriture se fait dans un secteur non utilisé)

autre alternative : LFS (systeme construit par une séquence de modifications)

17

RAID

RAID = redundant array of inexpensive/independent disks

ldée : utiliser plusieurs disques en paralléle afin de gérer les secteurs
endommageés. Quelques exemples :

RAID niveau 0 : (rien de spécial, tout secteur est stocké dans un seul disque,
comme d’habitude)

RAID niveau 1 : tout secteur est sauvegardé en parallele sur tous les disques
RAID niveau 5 : I'un des disques stocke la parité d’'un secteur

RAID niveau 2 : la méme idée avec les codes de Hamming

18

