
TP2 9 février 2026

Concepts et Model Checking – TP 2

Pour ce TP, nous allons travailler avec Spin, un outil qui sait vérifier
la logique de LTL sur des modèles spécifiés dans un langage qui s’appelle
Promela. La page web de Spin de trouve à https://spinroot.com.

Installation

1. Télécharger l’archive qui contient Spin dans la page web du cours
et l’extraire dans un nouveau dossier (disons spincmc). Cet archive
contient le code source de spin et quelques fichiers qu’on utilisera pour
les exercices. Ouvrir un terminal et aller dans ce dossier spincmc.

2. Obtenir l’exécutable spin :
— Si GCC est installé sur votre machine, utiliser make pour compiler.

Vous devriez obtenir un exécutable avec le nom de spin.
— Il est également possible de télécharger un exécutable précompilé

pour certains plateformes depuis le github de Spin :
https://github.com/nimble-code/Spin/tree/master/Bin

Si vous utilisez un tel exécutable, le renommer spin.

Premiers pas

Spin sait traduire les formules de LTL en des automates de Büchi. La
syntaxe utilise [] pour G, <> pour F et &&, ||, ! pour conjonction, disjonc-
tion, négation. P.ex. pour obtenir un automate pour G(p → F q), utiliser le
suivant dans la ligne de commande (il est recommandé d’inclure la formule
entre guillemets) :

spin -f ’[](p -> <>q)’

Les automates sont représentés commes des programmes simples qui uti-
lisent des goto pour aller d’un état à l’autre. Les états acceptants com-
mencent avec accept. Un état spécial accept_all accepte n’importe quelle
séquence.

1. Dessiner l’automate produit par Spin. Correspond-il à vos attentes ?

2. Idem pour l’une des formules du TD précédent : p U (q U r)

1/2

Langages Formels TP2

Verification avec Spin

On va utiliser l’algorithme de Dekker, une variante de celui de Peterson,
qui assure l’exclusion mutuelle entre deux processus (voir Wikipédia pour
une explication détaillé de l’algorithme). Une spécification de l’algorithme
se trouve dans dekker.pml. Pourtant, une erreur s’est glissée dans cette
réalisation.

Dans le dossier spincmc il y a deux scripts pour travailler avec Spin. Ils
s’appellent spinLTL et spinFairLTL, et ils prennent le nom d’un modèle et
une formule, p.ex :

./spinLTL dekker.pml ’[]!(crit0 && crit1)’

Si la formule tient dans toutes les exécutions, vous aurez un message
du genre no errors found. Sinon, vous aurez une exécution dans laquelle la
formule ne tient pas. La version spinFairLTL ne considère que des exécutions
où tout processus progresse infiniment souvent.

1. Utiliser Spin pour tester s’il est possible pour les deux processus d’at-
teindre leur section critique en même temps. Si c’est le cas, trouver
l’erreur en suivant l’exécution fautive et corriger le modèle.

2. Utiliser Spin pour tester si le processus p0 parvient à entrer dans
sa zone critique s’il l’essaye (une fois que flag0 est vrai, crit0 doit
finalement l’être aussi). Remarquez-vous une différence entre spinLTL
et spinFairLTL ?

Algorithme de Peterson

L’algorithme de Peterson a été présenté dans le cours.

1. Créer un nouveau modèle Promela qui réalise l’algorithme de Peterson.

2. Tester si votre modèle satisfait bien les deux propriétés exigées de
l’algo de Dekker.

2/2

