
Concepts et Model Checking

Stefan Schwoon

ENSIIE, Année 2025/2026

Organisation

Cours: lundi de 14h à 15h45

TD/TP: lundi de 16h à 17h45

Enseignant: Stefan Schwoon (schwoon@lmf.cnrs.fr)
http://www.lsv.fr/∼schwoon

Durée: 6 semaines (du 12 janvier au 2 mars)
pas de cours les 19 et 26 janvier

Évaluation: Examen (le 2 mars, au lieu du TD)

2

Connaissances préalables utiles :

logique, théorie d’automates

Littérature:

Clarke, Grumberg, Peled: Model Checking, MIT Press, 1999

Baier, Katoen: Principles of Model Checking, 2008

Emerson: Temporal and Modal Logic, chapı̂tre 16 du Handbook of
Theoretical Computer Science, vol. B, Elsevier, 1991

Vardi: An Automata-Theoretic Approach to Linear Temporal Logic, LNCS
1043, 1996

Holzmann: The SPIN Model Checker, Addison-Wesley, 2003

3

Partie 1: Introduction

4

Que veut dire “Model-Checking” ?

Notion de logique :

Tester si un object (p.ex. affectation des variables) est modèle d’une formule.

Ici : approche logique pour vérifier la correction d’un système.

Logique temporelle : extension de la logique du premier ordre

5

Rappels: Calcul/Logique propositionnel(le)

Formules avec prédicats :

A =̂ “Anne est architecte”

B =̂ “Bruno est boulanger”

et connecteurs, p.ex. ∧ (“et”), ∨ (“ou”), ¬ (“non”),→ (“implique”).

6

Exemples

Formules de logique propositionnelle :

A ∧ B (“Anne est architecte et Bruno est boulanger”)

¬B (“Bruno n’est pas un boulanger”)

Une telle formule, est-elle vraie ?

Évaluée en fonction d’une affectation des prédicats.

Certaines formules sont toujours vraies (A ∨ ¬A) ou toujours fausses
(B ∧ ¬B).

7

Logique propsitionnelle

Une affectation B est une fonction qui donne (1 ou 0) pour tout prédicat.

La semantique d’une formule (définie inductivement) est l’ensemble des
affactions qui rendent la formule vraie, notée [[F]]. P.ex.,

Si F = A alors [[F]] = {B | B(A) = 1 };

Si F = F1 ∧ F2 alors [[F]] = [[F1]] ∩ [[F2]]; . . .

D’autres notations: B |= F ssi B ∈ [[F]].
On dit : “B satisfait F ” ou “B est un modèle de F ”.

8

Model-checking pour logique propositionnelle

Problème:

Étant donné une affectation B et une formule F du calcul propositionnel,
tester si B est modèle de F .

Solution:

Remplacer les prédicats par leurs valeurs dans B, utiliser le tableau de
vérité pour voir si ça donne 1 ou 0.

Exemples: Soient B1(A) = 1 et B1(B) = 0. Alors B1 6|= A ∧ B et B1 |= ¬B.

Soient B2(A) = 1 et B2(B) = 1. Alors B2 |= A ∧ B et B2 6|= ¬B.

9

Logique temporelle

On considère des prédicats qui changent au fil de temps.

Exemple: Valeurs de A dans la vie d’Anne:

birth working life

study retirement

Propriétés qu’on veut exprimer :

Anne sera finalement architecte (à un point dans le futur).

Anne sera architecte jusqu’à ce qu’elle prend sa retraite.

=⇒ Extension de la logique propositionnelle avec des modalités temporelles
(“finalement”, “jusqu’à”).

10

Aperçu

Logique temporelles linéaire (exemple: LTL)

formules avec modalités temporelles

évaluées par rapport aux séquences (infinies) d’affectations

Le problème de model-checking pour LTL: Étant donné une formule de LTL et
une séquence de valuations, tester si la séquence est un modèle de la
formule.

Logique temporelles branchantes (CTL, CTL∗)

On considère des arbres (infinis) d’affectations.

Interprétation: nondéterminisme; plusieurs futurs potentiels.

11

Le rapport avec la vérification

Espace d’états d’un programme:

compteur d’instruction

valeurs de variables

contenu de la pile, du tas, . . .

Prédicats, p.ex.

“variable x possède une valeur positive.”

“Le compteur d’instructions est dans la ligne `.”

L’ensemble de ces prédicats peut être évalué dans un état du programme.

12

Programmes et logique temporelle

Logique temporelle linéaire:

Toute exécution donne une séquence d’affectations.

Interprétation du programme: l’ensemble de ces séquences

Question : La formule, est-elle satisfaite par toutes les séquences ?

Logique branchante:

Le programme peut brancher à certains endroits, ses exécutions produisent
un arbre d’affectations.

Interprétation du programme: arbre avec l’état initial comme racine

Question : cet arbre-là, satisfait-il la formule ?

Donc: problème de vérification =̂ problème de model-checking

13

Motivation

Les ordinateurs pénètrent de plus en plus nos vies quotidiennes :

ordi personnel, smartphone, GPS, ...

systèmes embarqués (voiture, avion, . . .)

banque en ligne

Les erreurs informatiques ont un impact important économique, ou bien coûtent
même des vies.

Coût estimé des systèmes informatiques fautifs aux États-Unis : 60 bn de dollars
par an

14

Exemple: Quicksort - correct ou non ?

void quicksort (int left, int right) {
int lo,hi,piv;

if (left >= right) return;

piv = a[right]; lo = left; hi = right;

while (lo <= hi) {
if (a[hi] > piv) {

hi = hi - 1;

} else {
swap a[lo],a[hi];

lo = lo + 1;

}
}
quicksort(left,hi);

quicksort(lo,right);

}

15

Exemple : Quicksort

On considère que l’algorithme est correct si :

Il trie correctement.

Il termine pour tout argument légal.

Dans ce cas, l’algorithme ne termine pas toujours,
notamment quand a[right] est l’élément maximal.

Remarque : Cette erreur peut être trouvé par des tests rigureux.

16

Bug du processeur Pentium (1994)

Le Pentium produisait de faux résultats pour certains opérations mathématiques:

4195835− (4195835/3145727)× 3145727 = 256

La raison en étaient quelques valeurs fausses dans un tableau précalculé pour
effectuer la division.

Coût approximatif pour Intel : 500 millions de dollars

17

Exemple: Variables partagées

Démonstration : counter.c

On crée deux threads qui augmentent une variable partagée n fois.

Résultat attendu : 2n

Pourtant, le résultat réel est souvent moins que

Raison : Condition de compétition (race condition),
facile à manquer lors d’une inspection manuelle du code.

→ Solution : Assurer exclusion mutuelle sur l’accès à n.

18

Exemple: Variables partagées

Démonstration : counter.c

On crée deux threads qui augmentent une variable partagée n fois.

Résultat attendu : 2n

Pourtant, le résultat réel est souvent moins que 2n.

→ Condition de compétition (race condition),
facile à manquer lors d’une inspection manuelle du code.

→ Solution : Assurer exclusion mutuelle sur l’accès à n.

19

Exemple: Exclusion mutuelle (Peterson)

Variables partagées : flag[0], flag[1], victime, initialement 0

Code du processus i=0,1 (autour d’une zone critique) :

while (1) {
...
autre = 1-i;
flag[i] = 1;
victime = i;
while (victime == i && flag[autre]);
// zone critique
flag[i] = 0;
...

}

L’algorithme assure bien l’exclusion mutuelle. Pourtant, sa correction est mise au
mal par les optimisations faites sur les processeur modernes
(réordonanncements des read et write).

20

Exemple: Exclusion mutuelle (Peterson)

Variables partagées : flag[0], flag[1], victime, initialement 0

Code du processus i=0,1 (autour d’une zone critique) :

while (1) {
...
autre = 1-i;
flag[i] = 1;
victime = i;
while (victime == i && flag[autre]);
// zone critique
flag[i] = 0;
...

}

L’algorithme assure bien l’exclusion mutuelle. Pourtant, sa correction est déjoué
par les optimisations faites sur les processeur modernes (réordonanncements
des read et write).

21

Approches pour assurer la correction des systèmes

Éviter les erreurs:

langages de programmation appropriés

méthodes du génie logiciel

Détecter les erreurs:

Simulation, testing

Prouver leur absence:

Vérification déductive (Hoare, preuve automatique)

Vérification automatique (model checking)

22

Simulation et testing

Trouver des erreurs dans la phase de conception (simulation) ou dans le produit
final (testing).

Méthodes: Blackbox/whitebox testing, critères de couverture, etc

Avantages: peut trouver des erreurs rapidement et économiquement

Inconvénients: incomplet

→ Aucun critère de couverture ne garantit l’absence d’erreurs.

→ Pas du tout adapté aux effets non-déterministes (concurrence).

23

Testing et vérification

Simulation et testing peuvent identifier des erreurs mais pas prouver leur
absence. Ces méthodes considèrent un sous-ensemble des exécutions
potentielles.

→ pas suffisant pour aspects de sécurité

La vérification considère toutes les exécutions d’un système

→ on peut prouver l’absence d’erreurs
(mais plus couteux/difficile à mettre en œuvre)

24

Vérification déductive

Preuve par sémantique formelle du programme (Dijkstra, Hoare et al.)

Exemple: Logique de Hoare:

{P} S {Q}

“Si P est vrai avant l’exécution de S, alors Q est vrai après.”

Règles de preuve, p.ex.:

{P} skip {P} {P[x/e]} x := e {P}
{P} S1 {Q} ∧ {Q} S2 {R}

{P} S1;S2 {R}

25

Exemple: régle de preuve pour les boucles

{P} while β do C {Q}

Il faut trouver une invariante I avec les propriétés suivantes :

P ⇒ I {I ∧ β} C {I} I ∧ ¬β ⇒ Q

Terminaison: trouver une fonction f(x , y , . . .) sur les variables telle que

{β ∧ f(x , y , . . .) = k} C {f(x , y , . . .) < k} f(x , y , . . .) ≤ 0⇒ ¬β

Le programme C est considéré correct si {true} C {P}, où P est la propriété
finale souhaitée.

26

Vérification déductive

Avantages:

Complète; limitée seulement par l’ingéniosité humaine.

Inconvénients:

voir ci-dessus

Preuves manuelles lourdes (peut-être aidé par la démonstration
automatique).

Le schéma ci-dessus marche pour les systèmes séquentielles
(pas de concurrence).

Plutôt conçu pour les programmes genre entrée/sortie,
mais pas pour les systèmes réactives.

27

Systèmes réactives

Exemples: système d’exploitation, serveurs, distributeur de billets, . . .

pas de “fonction” calculée, terminaison non souhaitée

On s’intéresse à certains propriétés de leur exécutions telles que :

Absence de blocage

Exclusion mutuelle dans une “zone critique”

Progrès: un processus qui souhaite entrer dans une zone critique y
parviendra finalement.

⇒ formalisation par logique temporelle

28

Model checking

Généralement parlant, le terme model checking est donné aux méthodes qui :

vérifient automatiquement si un système satisfait une spécification donnée;

soit prouvent la correction du système par rapport à la spécification;

soit trouvent un contre-exemple, une exécution qui ne respecte pas la
spécification (au moins dans le cadre de LTL).

29

Les “pros et cons” du model checking

Avantages:

automatique

bien adapté aux systèmes réactifs, concurrents, distribués

on peut tester des propriétés complexes

Inconvénients:

En général, les programmes sont aussi expressifs qu’une machine de Turing
→ indécidabilité

Approche: on étudie des sous-classes où le problème reste décidable,
p.ex. les automates finis

Espace d’états souvent très, très large→ (algorithmiquement) couteux

approche: algorithmes et structures de données efficaces

30

Limites du model checking

On ne peut pas espérer de vérifier n’importe quelle propriété de n’importe quel
programme !

Il faut éventuellement considérer un modèle simplifié d’un programme focalisé
sur ses aspects “importants”.

La construction d’un tel modèle, la spécification et la vérification elle-même sont
coûteuses et nécessitent un effort.

⇒ utile dans les premières phases de conception

⇒ indispensable lorsque les erreurs sont très coûteuses ou même fatales
(processeur, protocôles de communication, avions, . . .)

31

Succès du model checking

Depuis les années 1970: recherche sur les fondations théoriques

Depuis les années 1990: applications dans l’industrie

D’abord vérification de matériel, puis logiciel :

vérification du protocôle de cohérence de cache dans le IEEE Futurebus+
(1992)

L’outil SMV était en mésure de trouver plusieurs bugs quatre ans après la conception

initial du bus.

vérification de l’unité arithmétique du Pentium4 (2001)

Static Driver Verifier (Microsoft, 2000–2004) (pilotes dans Windows)

groupes de recherche dans les grandes entreprises: IBM, Intel, Microsoft, . . .

Prix Turing 2007 pour les pionniers (Clarke, Emerson, Sifakis)

32

Objectifs du cours

Fondements du model checking, théorie, applications

Modélisation: systèmes de transition, structures de Kripke; outils: Spin, SMV

Spécification: LTL, CTL

Vérification: techniques fondamentales et extensions (BDDs, abstraction)

33

Partie 2: Structures de Kripke

34

Modèles

On étudie un modèle très générique, les systèmes de transitions (ST):

T = (S,→, r)

S =̂ espace d’états; les états qu’un système peut atteindre
(ensemble fini ou infini)

→ ⊆ S × S =̂ transitions; décrivent les actions possibles

r ∈ S =̂ état initial (“racine”)

35

Exemple 1: Producteur/Consommateur

Pseudocode avec variables et concurrence:

var turn {0,1} init 0;
cobegin {P ‖ K} coend

P = start;
while true do

w0: wait (turn = 0);
p0: /* produce */

turn := 1;
od;
end

K = start;
while true do

w1: wait (turn = 1);
c1: /* consume */

turn := 0;
od;
end

36

Exemple 1: ST correspondant

S = {w0, p0} × {w1, c1} × {0,1}; racine (w0,w1,0)

w0,w1,0

p0,w1,0

p0,w1,1

w0,c1,0

p0,c1,0

w0,c1,1

p0,c1,1

w0,w1,1

37

Exemple 2: Programme recursif

procedure p;
p0: if ? then
p1: call s;
p2: if ? then call p; end if;

else
p3: call p;

end if
p4: return

procedure s;
s0: if ? then return; end if;
s1: call p;
s2: return;

procedure main;
m0: call s;
m1: return;

S = {p0, . . . , p4, s0, . . . , s2,m0,m1}∗, racine m0

m0 s0 m1
s1 m1

m1 ε

p0 s2 m1

p3 s2 m1

p1 s2 m1

p0 p4 s2 m1

s0 p2 s2 m1

...

...

38

Notations pour ST

On écrit s → t si (s, t) ∈ →.

Si s → t alors s s’appelle prédecesseur direct de t et t successeur direct de s.

S∗ dénote les séquences (mots) finis, Sω les mots infinis sur S.

w = s0 . . . sn est un chemin de longueur n si si → si+1 pour tout 0 ≤ i < n.

ρ = s0s1 . . . est un chemin infini si si → si+1 pour tout i ≥ 0.

39

Notation pour ST II

ρ(i) dénote le i-ème élément de ρ et ρi le suffixe partant de ρ(i).

s →∗ t s’il existe un chemin de s à t .

s →+ t s’il existe un tel chemin de longueur au moins 1.

Si s →∗ t alors s est un predecesseur de t et t un successeur de s.

40

Exemple

s0 s1 s2

S = {s0, s1, s2}; racine s0

s0 → s0 s0 → s1 s1 → s2 s2 → s2

s0s1s2 est un chemin de longueur 2, s0 →∗ s2 et s0 →+ s2

s1 →∗ s1 mais s1 6→+ s1

ρ = s0s0s1s2s2s2 . . . est un chemin infini.

ρ(2) = s1 ρ1 = s0s1s2s2s2 . . .

41

ST finis et infinis

Plusieurs raisons rendent un ST potentiellement infini:

Données: entiers, réels, listes, arbres, pointeurs, . . .

Contrôle: récursion, création de threads dynamique . . .

Communication: canaux FIFO . . .

Paramètres: nombre de participants dans un protocôle . . .

Temps réel: continu ou discret

Certains (pas tout!) de ces caractéristics donnent lieu à des problèmes de
vérification indécidables. Ici, on se concentrera sur les systèmes à états finis.

42

Structures de Kripke (SK)

Idée: Extraire des affectations de chaque état:

K = (S,→, r ,AP, ν)

(S,→, r) =̂ le ST sous-jacent

AP =̂ ensemble de prédicats

ν : S → 2AP =̂ interprétation des prédicats

Remarques:

2AP dénote les parties de AP.

On représente une affectation par le sous-ensemble des prédicats vrais.

43

Exemple d’une SK

ST (S,→, r) comme dans l’Exemple 1.

Supposons qu’on s’intéresse aux actions de production et consommation:

Soit AP = {prod , cons};

ν−1(prod) = {p0} × {w1, c1} × {0,1};

ν−1(cons) = {w0, p0} × {c1} × {0,1}.

44

Rappel: Exemple 1

Dans l’Exemple 1, . . .

w0,w1,0

p0,w1,0

p0,w1,1

w0,c1,0

p0,c1,0

w0,c1,1

p0,c1,1

w0,w1,1

45

. . . les affectations sont ainsi :

{}

{prod}

{prod}

{cons}

{prod,cons}

{cons}{}

{prod,cons}

46

Séquences et arbres

Dans la logique linéaire, on considère les séquences :

p.ex. ∅ ∅ {prod} ∅ {cons} . . . ou ∅ {prod} {prod} {prod} . . .

Dans la logique branchante on considère l’arbre des exécutions :

{prod}

{}

{cons}

...

...

{}

{}

{prod}

... ...

... ...

47

Exemples de propriétés

“prod et cons ne sont jamais vrais en même temps.”

(exemple d’une invariante)

“Après une production il peut y avoir une consommation.”

(exemple d’une propriété de vivacité)

48

Partie 3: Logique temporelle linéaire

49

Préliminaires

Idée: le temps progress de façon discrète et linéaire, chaque moment possède
un seul successeur dans le futur

origines dans la philosophie et la logique

Exemple le mieux connu : LTL

utilisé pour la vérification depuis les années 1970

50

Syntaxe de LTL

Soit AP un ensemble de prédicats. Les formules de LTL sur AP sont définies
comme suit :

Si p ∈ AP, alors p est une formule.

Si φ1, φ2 sont des formules, alors aussi les suivants:

¬φ1, φ1 ∨ φ2, Xφ1, φ1 U φ2

Intuition: X =̂ “next” (prochain), U =̂ “until” (jusqu’à).

51

Remarques

C’est une syntaxe minimale qu’on utilisera pour des preuves.

Pour plus d’expressivité, on définit quelques raccourcis (voir suite).

Comparaison de logique propositionnelle (LP) and LTL:

LP LTL

Syntaxe prédicats, opérateurs logiques + modalités temporelles

Évaluée sur. . . affectations séquences d’affectations

Semantique ensemble d’affectations ensemble de séquences

52

Semantique de LTL

Soit φ une formule de LTL formula et σ une séquence d’affectations.
On écrit σ |= φ pour “σ satisfait φ.”

σ |= p if p ∈ AP and p ∈ σ(0)
σ |= ¬φ if σ 6|= φ

σ |= φ1 ∨ φ2 if σ |= φ1 or σ |= φ2

σ |= Xφ if σ1 |= φ

σ |= φ1 U φ2 if ∃i :
(
σi |= φ2 ∧ ∀k < i : σk |= φ1

)

Semantique de φ: [[φ]] = {σ | σ |= φ }

53

Exemples

Soit AP = {p, q, r}. Trouver si la séquence

σ = {p} {q} {p}ω

satisfait les formules suivantes :

p

q

X q

X¬p

p U q

q U p

(p ∨ q)U r

54

Raccourcis

On utilisera les définitions suivantes :

φ1 ∧ φ2 ≡ ¬(¬φ1 ∨ ¬φ2) Fφ ≡ true U φ

φ1 → φ2 ≡ ¬φ1 ∨ φ2 Gφ ≡ ¬F¬φ
true ≡ a ∨ ¬a φ1 W φ2 ≡ (φ1 U φ2) ∨Gφ1

false ≡ ¬true φ1 R φ2 ≡ ¬(¬φ1 U ¬φ2)

Signification: F =̂ “finalement”, G =̂ “globalement” (toujours),
W =̂ “weak until”, R =̂ “release”.

55

Des exemples

Invariant: G¬(cs1 ∧ cs2)

cs1 et cs2 ne sont jamais vrais en même temps.

Sûreté: (¬x)W y

x n’apparaı̂t pas avant y

Remarque: Si y n’apparaı̂t jamais, alors x n’apparaı̂t non plus.

Vivacité: (¬x)U y

x n’apparaı̂t pas avant y et y apparaı̂t sûrement.

56

Des exemples

GF p

p apparaı̂t infiniment souvent.

FG p

À partir d’un moment, p tient toujours.

G(try1 → F cs1)

Pour exclusion mutuelle: Si processus 1 essaie d’entrer dans la zone critique,
il y parviendra.

57

Tautologie, équivalence

Tautologie: formule φ avec [[φ]] = (2AP)ω

Insatisfaisable: formule φ avec [[φ]] = ∅

Équivalence: formules φ1, φ2 avec iff [[φ1]] = [[φ2]].
Notation: φ1 ≡ φ2

58

Équivalences: relations entre modalités

X(φ1 ∨ φ2) ≡ Xφ1 ∨ Xφ2

X(φ1 ∧ φ2) ≡ Xφ1 ∧ Xφ2

X¬φ ≡ ¬Xφ

F(φ1 ∨ φ2) ≡ Fφ1 ∨ Fφ2

¬Fφ ≡ G¬φ

G(φ1 ∧ φ2) ≡ Gφ1 ∧ Gφ2

¬Gφ ≡ F¬φ

(φ1 ∧ φ2)U ψ ≡ (φ1 U ψ) ∧ (φ2 U ψ)

φU (ψ1 ∨ ψ2) ≡ (φU ψ1) ∨ (φ1 U ψ2)

59

Équivalences: idempotence et recursion

Fφ ≡ FFφ

Gφ ≡ GGφ

φU ψ ≡ φU (φU ψ)

Fφ ≡ φ ∨XFφ

Gφ ≡ φ ∧XGφ

φU ψ ≡ ψ ∨ (φ ∧X(φU ψ))

φW ψ ≡ ψ ∨ (φ ∧X(φW ψ))

60

Interprétation de LTL sur une SK

Soit K = (S,→, r ,AP, ν) une SK.
On s’intéresse aux séquence générées par K.

Soit ρ ∈ Sω un chemin infini dans K.

On affecte à ρ son “image” ν(ρ) dans (2AP)ω; pour tout i ≥ 0 soit

ν(ρ)(i) = ν(ρ(i))

alors ν(ρ) est la séquence d’affectations correspondante.

On note [[K]] l’ensemble de ces séquences :

[[K]] = { ν(ρ) | ρ is an infinite path of K}

61

Le problème de model-checking pour LTL

Problème: Étant donné une SK K = (S,→, r ,AP, ν) et une formula de LTL φ
sur AP, tester si [[K]] ⊆ [[φ]].

Définition: Si [[K]] ⊆ [[φ]] alors on écrit K |= φ.

Interprétation: Toute exécution de K satisfait φ.

Remarque: Il est possible que have K 6|= φ et K 6|= ¬φ!

62

Exemple

On considère la SK suivante K avec AP = {p}:

s0

{ }{p}

s1 s2

{p}

Il y a deux espèces de chemins infinis dans K:

(i) soit le système reste dans s0 à jamais,

(ii) soit il parvient à s2 via s1.

On a:

K |= FG p

K 6|= G p

63

