Concepts et Model Checking

Stefan Schwoon

ENSIIE, Année 2025/2026

Organisation

Cours: lundi de 14h a 15h45
TD/TP: lundi de 16h a 17h45

Enseignant: Stefan Schwoon (schwoon@Imf.cnrs. fr)
http://www.lsv.fr/~schwoon

Durée: 6 semaines (du 12 janvier au 2 mars)
pas de cours les 19 et 26 janvier

Evaluation: Examen (le 2 mars, au lieu du TD)

Connaissances préalables utiles :

logique, théorie d’automates

Littérature:

Clarke, Grumberg, Peled: Model Checking, MIT Press, 1999
Baier, Katoen: Principles of Model Checking, 2008

Emerson: Temporal and Modal Logic, chapitre 16 du Handbook of
Theoretical Computer Science, vol. B, Elsevier, 1991

Vardi: An Automata-Theoretic Approach to Linear Temporal Logic, LNCS
1043, 1996

Holzmann: The SPIN Model Checker, Addison-Wesley, 2003

Partie 1: Introduction

Que veut dire “Model-Checking” ?

Notion de logique :

Tester si un object (p.ex. affectation des variables) est modéle d’une formule.

Ici : approche logique pour vérifier la correction d’'un systeme.

Logique temporelle : extension de la logique du premier ordre

Rappels: Calcul/Logique propositionnel(le)

Formules avec prédicats :

A = “Anne est architecte”

B = “Bruno est boulanger”

et connecteurs, p.ex. A (“et”), v (“ou”), = (“non”), — (“implique”).

Exemples

Formules de logique propositionnelle :
ANB (“Anne est architecte et Bruno est boulanger”)

-B (“Bruno n’est pas un boulanger”)

Une telle formule, est-elle vraie ?

Evaluée en fonction d’une affectation des prédicats.

Certaines formules sont toujours vraies (A v —A) ou toujours fausses
(B N —B).

Logigue propsitionnelle

Une affectation B est une fonction qui donne (1 ou 0) pour tout prédicat.

La semantique d’une formule (définie inductivement) est 'ensemble des
affactions qui rendent la formule vraie, notée [F]. P.ex.,

SiF=Aalors [F| ={B | B(A) =1};
SiF=F ANFalors [F]] = [F]N[F; ...

D’autres notations: B = F ssi B € [[F].
On dit : “B satisfait F” ou “B est un modeéle de F”.

Model-checking pour logique propositionnelle

Probleme:

Etant donné une affectation 3 et une formule F du calcul propositionnel,
tester si B est modeéle de F.

Solution:

Remplacer les prédicats par leurs valeurs dans 3, utiliser le tableau de
vérité pour voir si ¢ca donne 1 ou 0.

Exemples: Soient B1(A) = 1 et B1(B) = 0. Alors B1 = AN Bet B{ = —B.
Soient Bo(A) = 1 et Bo(B) = 1. Alors B>, = AN Bet B> = —B.

Logique temporelle

On considere des prédicats qui changent au fil de temps.

Exemple: Valeurs de A dans la vie d’Anne:

study retirement

birth working life

Propriétés qu’on veut exprimer :

Anne sera finalement architecte (a un point dans le futur).
Anne sera architecte jusqu’a ce qu’elle prend sa retraite.

——> Extension de la logique propositionnelle avec des modalités temporelles
(“finalement”, “jusqu’a”).

10

Apercu

Logique temporelles linéaire (exemple: LTL)

formules avec modalités temporelles
évaluées par rapport aux sequences (infinies) d’affectations

Le probléme de model-checking pour LTL: Etant donné une formule de LTL et
une séquence de valuations, tester si la séquence est un modele de la
formule.

Logique temporelles branchantes (CTL, CTL*)

On considere des arbres (infinis) d’affectations.

Interprétation: nondéterminisme; plusieurs futurs potentiels.

11

Le rapport avec la vérification

Espace d’états d’un programme:

compteur d’instruction
valeurs de variables

contenu de la pile, du tas, ...

Prédicats, p.ex.

“variable x possede une valeur positive.”

“Le compteur d’instructions est dans la ligne £

Lensemble de ces prédicats peut étre évalué dans un état du programme.

12

Programmes et logique temporelle

Logique temporelle linéaire:

Toute exécution donne une séquence d’affectations.
Interprétation du programme: 'ensemble de ces séquences

Question : La formule, est-elle satisfaite par toutes les séquences ?

Logique branchante:

Le programme peut brancher a certains endroits, ses exécutions produisent
un arbre d’affectations.

Interprétation du programme: arbre avec I'état initial comme racine

Question : cet arbre-la, satisfait-il la formule ?

Donc: probleme de vérification = probleme de model-checking

13

Motivation

Les ordinateurs pénétrent de plus en plus nos vies quotidiennes :

ordi personnel, smartphone, GPS, ...
systemes embarqués (voiture, avion, ...)

banque en ligne

Les erreurs informatiques ont un impact important économique, ou bien coltent
méme des vies.

Colt estimé des systémes informatiques fautifs aux Etats-Unis : 60 bn de dollars
par an

14

Exemple: Quicksort - correct ou non ?

void quicksort (int left, int right) {
int lo,hi,piv;
1f (left >= right) return;
piv = al[right]; lo = left; hi = right;
while (lo <= hi) {
if (alhi] > piv) {
hi = hi - 1;
} else {
swap al[lol,alhi];
lo = lo + 1;

}
}

quilcksort (left,hi);
quicksort (lo, right) ;

15

Exemple : Quicksort

On considere que l'algorithme est correct si :

Il trie correctement.

Il termine pour tout argument légal.

Dans ce cas, I'algorithme ne termine pas toujours,
notamment quand a [right] est 'élément maximal.

Remarque : Cette erreur peut étre trouvé par des tests rigureux.

16

Bug du processeur Pentium (1994)

Le Pentium produisait de faux résultats pour certains opérations mathématiques:

4195835 — (4195835/3145727) x 3145727 = 256

La raison en étaient quelques valeurs fausses dans un tableau précalculé pour
effectuer la division.

Cout approximatif pour Intel : 500 millions de dollars

17

Exemple: Variables partagées

Démonstration : counter.c
On crée deux threads qui augmentent une variable partagée n fois.

Résultat attendu : 2n

18

Exemple: Variables partagées

Démonstration : counter.c

On crée deux threads qui augmentent une variable partagée n fois.
Résultat attendu : 2n

Pourtant, le résultat réel est souvent moins que 2n.

— Condition de compétition (race condition),
facile a manquer lors d’'une inspection manuelle du code.

— Solution : Assurer exclusion mutuelle sur 'acces a n.

19

Exemple: Exclusion mutuelle (Peterson)

Variables partagées : f1ag[0], flag[l], victime, initialementO
Code du processus i=0,1 (autour d’'une zone critique) :

while (1) {

autre = 1-1;

flagli] = 1;

victime = 1;

while (victime == 1 && flaglautre]);
// zone critique

flag[i] = 0O;

20

Exemple: Exclusion mutuelle (Peterson)

Variables partagées : f1ag[0], flag[l], victime, initialementO
Code du processus i=0,1 (autour d’'une zone critique) :

while (1) {

autre = 1-1;
flagli] = 1;
victime = 1i;
while (victime == 1 && flaglautre]);

// zone critique
flag[i] = 0O;

}

Lalgorithme assure bien I'exclusion mutuelle. Pourtant, sa correction est déjoué
par les optimisations faites sur les processeur modernes (réordonanncements
des read et write).

21

Approches pour assurer la correction des systemes

Eviter les erreurs:

langages de programmation appropriés

méthodes du génie logiciel
Détecter les erreurs:
Simulation, testing

Prouver leur absence:

Vérification déductive (Hoare, preuve automatique)

Vérification automatique (model checking)

22

Simulation et testing

Trouver des erreurs dans la phase de conception (simulation) ou dans le produit
final (testing).

Méthodes: Blackbox/whitebox testing, criteres de couverture, etc
Avantages: peut trouver des erreurs rapidement et économiquement

Inconvénients: incomplet

— Aucun critére de couverture ne garantit 'absence d’erreurs.

— Pas du tout adapté aux effets non-déterministes (concurrence).

23

Testing et vérification

Simulation et testing peuvent identifier des erreurs mais pas prouver leur
absence. Ces méthodes considérent un sous-ensemble des exécutions
potentielles.

— pas suffisant pour aspects de sécurité

La vérification considere toutes les exécutions d’'un systeme

— on peut prouver 'absence d’erreurs
(mais plus couteux/difficile a mettre en ceuvre)

24

Vérification déductive

Preuve par sémantique formelle du programme (Dijkstra, Hoare et al.)

Exemple: Logique de Hoare:
{P} S{Q}

“Si P est vrai avant I'exécution de S, alors Q est vrai apres.”

Regles de preuve, p.ex.:

| B {P} S1 {Q} A {Q} S5 {R}
{P?} skip {P} {Plx/el} x := e {P} 1P} 51, S2 {R}

25

Exemple: régle de preuve pour les boucles

{P} while 8 do C {Q}

Il faut trouver une invariante I avec les propriétés suivantes :

P=1 {INB} C{l} IN—8= Q
Terminaison: trouver une fonction f(x, y,...) sur les variables telle que

{BAF(X,y,...) =k} C{f(x,y,...) < k} f(x,y,..)<0= -0

Le programme C est considéré correct si {true} C {P}, ou P est la propriété
finale souhaitée.

26

Vérification déductive

Avantages:

Compléte; limitée seulement par I'ingéniosité humaine.
Inconvénients:

VOIr ci-dessus

Preuves manuelles lourdes (peut-étre aidé par la démonstration
automatique).

Le schéma ci-dessus marche pour les systemes séquentielles
(pas de concurrence).

Plutot congu pour les programmes genre entrée/sortie,
mais pas pour les systemes réactives.

27

Systemes réactives

Exemples: systéme d’exploitation, serveurs, distributeur de billets, . ..
pas de “fonction” calculée, terminaison non souhaitée

On s’intéresse a certains propriétés de leur exécutions telles que :
Absence de blocage

Exclusion mutuelle dans une “zone critique”

Progres: un processus qui souhaite entrer dans une zone critique y
parviendra finalement.

= formalisation par logique temporelle

28

Model checking

Généralement parlant, le terme model checking est donné aux méthodes qui :

vérifient automatiquement si un systeme satisfait une spécification donnée;
soit prouvent la correction du systéme par rapport a la spécification;
soit trouvent un contre-exemple, une exécution qui ne respecte pas la

spécification (au moins dans le cadre de LTL).

29

Les “pros et cons” du model checking

Avantages:

automatique
bien adapté aux systemes réactifs, concurrents, distribués
on peut tester des propriétés complexes

Inconvénients:

En général, les programmes sont aussi expressifs qu’une machine de Turing
— indécidabilité

Approche: on étudie des sous-classes ou le probleme reste décidable,
p.ex. les automates finis

Espace d’états souvent trés, trés large — (algorithmiquement) couteux

approche: algorithmes et structures de données efficaces

30

Limites du model checking

On ne peut pas espérer de vérifier n’importe quelle propriété de n’importe quel
programme !

Il faut éventuellement considérer un modele simplifié d’un programme focalisé
sur ses aspects “importants”.

La construction d’'un tel modele, la spécification et la vérification elle-méme sont
colteuses et nécessitent un effort.

= utile dans les premieres phases de conception

= indispensable lorsque les erreurs sont tres colteuses ou méme fatales
(processeur, protocdles de communication, avions, ...)

31

Succes du model checking

Depuis les années 1970: recherche sur les fondations théoriques
Depuis les années 1990: applications dans I'industrie

D’abord vérification de matériel, puis logiciel :

vérification du protocole de cohérence de cache dans le IEEE Futurebus+
(1992)

Loutil SMV était en mésure de trouver plusieurs bugs quatre ans apres la conception
initial du bus.

vérification de l'unité arithmétique du Pentium4 (2001)
Static Driver Verifier (Microsoft, 2000—2004) (pilotes dans Windows)

groupes de recherche dans les grandes entreprises: IBM, Intel, Microsoft, ...

Prix Turing 2007 pour les pionniers (Clarke, Emerson, Sifakis)

32

Obijectifs du cours

Fondements du model checking, théorie, applications

Modélisation: systemes de transition, structures de Kripke; outils: Spin, SMV

Spécification: LTL, CTL

Vérification: techniques fondamentales et extensions (BDDs, abstraction)

33

Partie 2: Structures de Kripke

34

Modeles

On étudie un modele tres générique, les systemes de transitions (ST):

T=(S—=r)

S = espace d’états; les états qu’un systeme peut atteindre
(ensemble fini ou infini)

—-CSx S = transitions; décrivent les actions possibles

reS = état initial (“racine”)

35

Exemple 1: Producteur/Consommateur

Pseudocode avec variables et concurrence:

var turn {0,1} init O;
cobegin {P || K} coend

P = start; K =
while true do
Wo: wait (turn = 0);
pPo: /* produce */
turn = 1;
od;
end

start;
while true do
wy: wait (turn = 1);
ci1. /" consume */
turn .= 0;
od;
end

36

Exemple 1: ST correspondant

S ={wp,po} x {wy,c1} x{0,1}; racine (wp, wy,0)

o>

\e

37

Exemple 2: Programme recursif

procedure p; procedure s;
po: if ?7then So: if ? then return; end if;
p1: call s; s1: call p;
po: if ? then call p; end if; So>: return;
else
p3: call p; procedure main;
end if mg: call s;
ps4: return my . return;
S={po,.-.-,Ps4,50,---,S2, Mg, M }*, racine mg

mil — ¢
— m0 — sO m1 \ pis2mi — sOp2s2m1 — -
si1m1 — p0s2 mi

p3s2mi — p0pds2mit — ..

38

Notations pour ST

On écrits — tsi (s, t) € —.

Si s — t alors s s’appelle prédecesseur direct de t et t successeur direct de s.
S* dénote les séquences (mots) finis, S“ les mots infinis sur S.

W = Sp ... Spestun chemin de longueur nsi s; — s;4 1 pourtout 0 </ < n.

p = SpS1 - .. estun chemin infini si s; — s;4 1 pour tout / > 0.

39

Notation pour ST |l

o(i) dénote le i-eme élément de p et p' le suffixe partant de p(i).

s —* t s’il existe un chemin de s a t.

s —1 t s'il existe un tel chemin de longueur au moins 1.

Si s —* talors s est un predecesseur de t et f un successeur de s.

40

Exemple

S = {sg, 51, 5}; racine sg

So — S0 So — S1 S1 — So So> — S

SpS15> est un chemin de longueur 2, sp —* s> et sp =71 s
s1 —* sy mais 51 AT 51

P = 805051525555 . .. est un chemin infini.

p(2) = 81 pl = sps1508085 . ..

41

ST finis et infinis

Plusieurs raisons rendent un ST potentiellement infini:

Données: entiers, réels, listes, arbres, pointeurs, ...
Contréle: récursion, création de threads dynamique ...
Communication: canaux FIFO ...

Parametres: nombre de participants dans un protocdle ...

Temps réel: continu ou discret

Certains (pas tout!) de ces caractéristics donnent lieu a des problemes de
vérification indécidables. Ici, on se concentrera sur les systemes a états finis.

42

Structures de Kripke (SK)

|dée: Extraire des affectations de chaque état:

K=(S,—,r,AP,v)

(S, —,r) = le ST sous-jacent
AP = ensemble de prédicats
v: S — 24P = interprétation des prédicats

Remarques:

2AP dénote les parties de AP.

On représente une affectation par le sous-ensemble des prédicats vrais.

43

Exemple d’'une SK

ST (S, —,r) comme dans 'Exemple 1.

Supposons qu’on s’intéresse aux actions de production et consommation:
Soit AP = {prod, cons};

v (prod) = {po} x {wi,c1} x {0,1};

v=1(cons) = {wp, po} x {c1} x {0, 1}.

44

Rappel: Exemple 1

Dans I'Exemple 1, ...

Cwoeto

G

45

... les affectations sont ainsi :

-

S

P

A

i

{prod,cons

~Cprod,consp

46

Séquences et arbres

Dans la logique linéaire, on considére les séquences :

p.ex. 00 {prod} 0 {cons}... ou O {prod} {prod} {prod} ...

Dans la logique branchante on considere I'arbre des exécutions :

@

47

Exemples de propriétés

“prod et cons ne sont jamais vrais en méme temps.”

(exemple d’une invariante)

“Apres une production il peut y avoir une consommation.”

(exemple d’une propriété de vivacité)

48

Partie 3: Logique temporelle linéaire

49

Préliminaires

ldée: le temps progress de facon discrete et linéaire, chaque moment possede
un seul successeur dans le futur

origines dans la philosophie et la logique

Exemple le mieux connu : LTL

utilisé pour la vérification depuis les années 1970

50

Syntaxe de LTL

Soit AP un ensemble de prédicats. Les formules de LTL sur AP sont définies
comme suit :

Si p € AP, alors p est une formule.

Si ¢1, o sont des formules, alors aussi les suivants:

—Q1, 1V P2, X @1, »1 U ¢2

Intuition: X = “next” (prochain), U = “until” (jusqu’a).

51

Remarques

C’est une syntaxe minimale qu’on utilisera pour des preuves.
Pour plus d’expressivité, on définit quelques raccourcis (voir suite).

Comparaison de logique propositionnelle (LP) and LTL:

LP LTL
Syntaxe prédicats, opérateurs logiques + modalités temporelles
Evaluée sur. .. affectations séquences d’affectations
Semantique ensemble d'affectations ensemble de séquences

52

Semantique de LTL

Soit ¢ une formule de LTL formula et o une séquence d’affectations.
On écrit o = ¢ pour “o satisfait ¢.”

ocE= p if pe APand p € o(0)

o= —¢ if o = ¢

o= ¢1Vdo if o |=¢10ro = ¢o

o= X¢ it ol = ¢

o= ¢1Ugy i3 (ol =g A VK <i: ok =)

Semantique de ¢: [¢] ={oc|oc=¢}

93

Exemples

Soit AP = {p, q, r}. Trouver si la séquence

o= {p} {9} {pP}*

satisfait les formules suivantes :

X q
X —p
pUq
qgUp
(pvaq)Ur

o4

Raccourcis

On utilisera les définitions suivantes :

AN)
»1 — @2

true

false

—(—¢1 V ~¢2)
=1 V @2
av -a

—true

F ¢
G ¢
¢1 W @2
¢1 R ¢2

(1 U g2) VG o1
—(—¢1 U —¢9)

Signification: F = “finalement”, G = “globalement” (toujours),

W = “weak until’, R = “release”.

95

Des exemples

Invariant: G —(cs1 A ¢so)

csy et ¢s> ne sont jamais vrais en méme temps.

Sdreté: (—x) W y

X n‘apparait pas avant y

Remarque: Si y n'apparait jamais, alors x n’apparait non plus.

Vivacité: (—x) U y

X n‘apparait pas avant y et y apparait sirement.

o6

Des exemples

GFp

p apparait infiniment souvent.

FGp

A partir d’'un moment, p tient toujours.
G(try; — Fcsy)

Pour exclusion mutuelle: Si processus 1 essaie d’entrer dans la zone critique,
il'y parviendra.

57

Tautologie, équivalence

Tautologie: formule ¢ avec [¢] = (2AF)«

Insatisfaisable: formule ¢ avec [¢] = 0

Equivalence: formules ¢1, ¢» avec iff [¢1] = [#2].
Notation: ¢1 = ¢»

o8

Equivalences: relations entre modalités

X(P1V ¢2)
X(P1 A ¢2)
X =
F(¢1V ¢2)
- F¢

G(P1 N ¢2)
-G ¢

(p1 AN p2) U
¢ U (1 Vo)

(p1 UY) A (92U)
(¢ U1) V (¢1 Uo)

99

Equivalences: idempotence et recursion

F ¢

¢ Uy

F ¢

¢ U
¢ Wy

FF¢
GGo¢
U (¢ U)

¢V XF ¢
¢ ANXG ¢
YV (¢ A X (¢ U))
YV (¢ AX(9W 1))

60

Interprétation de LTL sur une SK

Soit K = (S, —,r, AP,v) une SK.
On s’intéresse aux séquence genérees par k.

Soit p € S§* un chemin infini dans K.

On affecte & p son “image” v(p) dans (24P)«: pour tout i > 0 soit

v(p) (1) = v(p(i))

alors v(p) est la séquence d’affectations correspondante.

On note [[K] 'ensemble de ces séquences :

1K = {v(p) | pis an infinite path of K }

61

Le probleme de model-checking pour LTL

Probleme: Etant donné une SK K = (S, —, r, AP, v) et une formula de LTL ¢
sur AP, tester si [K] C [¢].

Définition: Si [[K]| C [[¢] alors on écrit I = ¢.

Interprétation: Toute exécution de /C satisfait ¢.

Remarque: Il est possible que have K &= ¢ et K = —¢!

62

Exemple

On considéere la SK suivante IC avec AP = {p}:

~(ip) {11)

sO sl

ll'y a deux especes de chemins infinis dans K:

(i) soit le systeme reste dans sy a jamais,
(i) soit il parvient a s, via s1.

On a:

KE=FGp
K= Gp

S2

63

