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IF YOU MISSED THE EARLIER EPISODES

(Nk,6×) and (Σ∗,6∗) are well-quasi-orderings: any infinite sequence
x = x0,x1,x2, . . . contains an increasing pair xi 6 xj (“is good”)

If a sequence like x cannot grow too quickly —we say it is
controlled— then the position i, j of the first increasing pair in x can be
bounded by some length function LX,control(|x0|)

This gave us upper bounds for the complexity of wqo-based
algorithms. Furthermore, these length functions can be precisely
pinned down inside elegant subrecursive hierarchies

For example, it gave Fω upper-bounds for the verification —e.g.,
termination and/or safety— of monotonic counter machines, and Fωω
upper bounds for lossy channel systems
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controlled— then the position i, j of the first increasing pair in x can be
bounded by some length function LX,control(|x0|)

This gave us upper bounds for the complexity of wqo-based
algorithms. Furthermore, these length functions can be precisely
pinned down inside elegant subrecursive hierarchies

For example, it gave Fω upper-bounds for the verification —e.g.,
termination and/or safety— of monotonic counter machines, and Fωω
upper bounds for lossy channel systems

Today we consider the “hardness” question: are these upper bounds
optimal? or do we have matching lowing bounds?

—the answer is often “positive” (?)
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OUTLINE FOR PART V

I What is the question exactly? And why isn’t obvious?

I A strategy for proving hardness

I Hardness for Lossy Counter Machines

I Hardness for Lossy Channel Systems
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PROBLEM STATEMENT
We have upper bounds on the complexity of verification for lossy
counter machines and lossy channel systems
Do we have matching lower bounds?

Could be for the simple-minded algorithms we presented in Part II
No for the underlying decision problems (witness: VASS’s)

Exercise. Give a decision problem solvable in Ackermannian time of
its input that requires Ackermannian time (where Ack(n) def

= A(n,n) and
A is the usual binary Ackermann function).

Pb 1. Input: x,y,z. Question: Does A(x,y) = z?

Pb 2. Input: x,y,x ′,y ′. Question: Is A(x,y)< A(x ′,y ′)?

Pb 3. Input: x,y. Question: Is A(x,y) prime?

Pb 4. Input: x,y. Question: Is A(x,y) a sum
∑

i∈K pFi
i ? where pi and Fi

are the ith prime (resp., Fibonacci) number

Pb 5. Input: x. Question: Does the Universal TM halts on x, and
furthermore halts in time Ack(x)?
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PROVING LOWER BOUNDS FOR UNRELIABLE MODELS

We shall adopt the following strategy:

1. Compute unreliably functions in the Hardy hierarchy

2. Use the result as an unreliable computational ressource

3. “Check” in the end that nothing was lost

4. Need computing unreliably the inverses of Hardy functions
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CM = COUNTER MACHINES

`0 `1 `2 `3

c1++ c2>0? c2-- c2=0?

c3:=0c2=c3?c1:=c3

0c2

1c1

4c3

A run of M: (`0,0,1,4)−→rel (`1,1,1,4)−→rel (`2,1,0,4)−→rel (`3,1,0,4)

Ordering states: (`1,0,0,0)6 (`1,0,1,2) but (`1,0,0,0) � (`2,0,1,2).

NB. A counter machine like M above is not monotonic.

Can test that a counter is zero⇒ steps not compatible with ordering

(And we allow other guards/updates that break compatibility).

In fact, the ordering is used to model unreliability.
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LCM = Lossy COUNTER MACHINES

`0 `1 `2 `3

c1++ c2>0? c2-- c2=0?

c3:=0c2=c3?c1:=c3

0c2

1c1

4c3

(`,a)−→ (` ′,b) def⇔ (`,a)> (`,x)−→rel (`
′,y)> (` ′,b) for some x,y

A run of M: (`0,0,1,4)−→ (`1,1,1,2)−→ (`2,1,0,2)−→(`1,1,0,0)

The unreliable counter machine is a WSTS

Paradox: It does much more than its reliable twin but can compute
much less

NB: These lossy counter machines are not a toy!!!
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RECALL: HARDY HIERARCHY

H0(n) def
= n Hα+1(n) def

= Hα(n+ 1) Hλ(n) def
= Hλn(n)

Fα(n) = Hω
α
(n) Hα(n)6 Hα(n+ 1)Recall:

αv α ′ implies Hα(n)6 Hα
′
(n)

Nb. Hα(n) can be evaluated by transforming a pair
α,n = α0,n0

H−→ α1,n1
H−→ α2,n2

H−→ ·· · H−→ αk,nk with α0 > α1 > α2 > · · ·
until eventually αk = 0 and nk = Hα(n) % tail-recursion!!

Below we compute fast-growing functions and their inverses
by encoding α,n H−→α ′,n ′ and α ′,n ′ H−→−1 α,n
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ENCODING ORDINALS <ωω IN TUPLES OF NUMBERS

Write α in CNF with coefficients α=ωm.am +ωm−1.am−1 + · · ·+ω0a0

Encoding of α,n is 〈am, . . . ,a0;n〉 ∈Nm+2.

〈am, . . . ,a0+1;n〉 H−→ 〈am, . . . ,a0;n+1〉 %Hα+1(n) = Hα(n+ 1)

〈am, . . . ,ak+1,

k>0︷   ︸︸   ︷
0, . . . ,0;n〉 H−→ 〈am, . . . ,ak,n,

k−1︷   ︸︸   ︷
0, . . . ,0;n〉 %Hλ(n) = Hλn(n)
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Recall: (γ+ωk+1)n
def
= γ+ωk · n
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ℓH ℓ1 ℓ′1 ℓ′′1

ℓ2 ℓ′2 ℓ′′2

· · · · · ·
ℓm ℓ′m ℓ′′m

r

a0>0?

a0--
n++

am=0?

a0=0?

a1=0?

a2=0?

am−1=0?

a1>0?a1-- a0:=n

a2>0?a2-- a1:=n

am>0?am-- am−1:=n

...

n

a0

a1

am
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NOW FOR
H−→−1

〈am, . . . ,a0;n+1〉 H−→−1 〈am, . . . ,a0+1;n〉 %Hα+1(n) = Hα(n+ 1)

〈am, . . . ,ak,n,

k−1︷   ︸︸   ︷
0, . . . ,0;n〉 H−→−1 〈am, . . . ,ak+1,

k︷   ︸︸   ︷
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...

n

a0

a1

am
· · ·

· · ·

· · ·

ℓH−1
n>0?

n--

a0++ a1++ a2++ am++

a0:=0 a1:=0 am−1:=0

a0=n? a1=n? am−1=n?

a0=0? ∧m−2
i=1 ai=0?

a0=0?

Prop. [Robustness] a 6× a ′ and n6 n ′ imply Hα(n)6 Hα
′
(n ′)

10/20



COUNTER MACHINES ON A BUDGET

M

ℓ0

ℓ1

ℓ2 ℓ3

c3=0?

c1++

c2>0?c2--

4

3

0

c1

c2

c3 ⇒

Mb (=on budget)

ℓ0

ℓ1

ℓ2 ℓ3

c3=0?

B>0?B--

c1++

c2>0?c2-- B++

4

3

0

93 c1

c2

c3

B

Ensures:
1. Mb ` (`,B,a) ∗−→rel (`

′,B ′,a ′) implies B+ |a|= B ′+ |a ′|
2. Mb ` (`,B,a) ∗−→rel (`

′,B ′,a ′) implies M ` (`,a) ∗−→rel (`
′,a ′)

3. If M ` (`,a) ∗−→rel (`
′,a ′) then ∃B,B ′: Mb ` (`,B,a) ∗−→rel (`

′,B ′,a ′)
4. If Mb ` (`,B,a) ∗−→ (` ′,B ′,a ′)

then Mb ` (`,B,a) ∗−→rel (`
′,B ′,a ′) iff B+ |a|= B ′+ |a ′|
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M(m): WRAPPING IT UP

MH

MH−1

Mb (=on budget)

ℓini

ℓfin

m

0

0

0

0
...

...

01

n

a0

a1

am

B

c1

c2

ck

ℓH

ℓH−1

∆H

∆H−1

no op

no op

Prop. M(m) has a lossy run

(`H ,am :1,0, . . . ,n :m,0, . . .) ∗−→ (`H−1 ,1,0, . . . ,m,0, . . .)

iff M(m) has a reliable run

(`H ,am : 1,0, . . . ,n : m,0, . . .) ∗−→rel (`H−1 ,am : 1,0, . . . ,n : m,0, . . .)

iff M has a reliable run from `ini to `fin that is bounded by Hω
m
(m), i.e.,

by Ackermann(m)

Cor. LCM verification is Ackermann-hard (hence ...-complete)
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RECALL: LCS / LOSSY CHANNEL SYSTEMS

A configuration σ= (`1,`2,w1,w2) with wi ∈ Σ∗.
E.g., w1 = hup.ack.ack.

Reliable steps: σ−→rel ρ read in front of channels, write at end (FIFO)

Lossy steps: messages may be lost nondeterministically
σ−→ σ ′

def⇔ σw ρ−→rel ρ
′ w σ ′ for some ρ,ρ ′

where (S,v) is the wqo (Loc1,=)× (Loc2,=)× (Σ∗,6∗){c1,c2}

A model useful for concurrent protocols but also timed automata,
metric temporal logic, products of modal logics, ...
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ENCODING ORDINALS <ωωω IN CHANNELS

We use Σ= {a0, . . . ,am}∪ { } to encode ordinals α <ωω
m+1

.

Two-level “differential” encoding:

β : {a0, . . . ,am}
∗→ωm+1

β(ar1 . . .ark)
def
= ωr1 + · · ·+ωrk E.g. β(ε) = 0, β(a3a0a0) =ω

3 + 2

α : Σ∗→ωω
m+1

α(a1 a2 . . .al )
def
= ωβ(a1a2...al)+ · · ·+ωβ(a1a2)+ωβ(a1)

E.g. α( ) =ω0 +ω0 +ω0 = 3 α(a1a0 a1 ) =ωω·2 +ωω+1 · 2

Property: w 6∗ w ′ implies α(w)6 α(w ′)

Difficulty. α(w) is not always a CNF
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WEAKLY COMPUTING
H−→ WITH LCS’S

( w,n) H−→ (w,n+ 1) %Hα+1(n) = Hα(n+ 1)

(ua0 w,n) H−→ (u n+1a0w,n) %Hγ+ω
k+1

(n) = Hγ+ω
k·(n+1)(n)

(uar+1 w,n) H−→ (uan+1
r arw,n) %Hγ+ω

β+ωk+1

(n) = Hγ+ω
β+ωk·(n+1)

(n)

(· · · similar rules for H−→−1 · · ·)

Prop. [Robustness]
w 6∗ w ′ and n 6 n ′ and w ′ pure imply Hα(w)(n)6 Hα(w ′)(n ′)

where purity means that w ′ has no superfluous symbols
(a regular condition that can be enforced by LCS’s)
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COMPUTING
H−→ WITH LCS’S: FIRST RULE

We now store u and n as two strings (with endmarker #) on two
channels p and d.

p : u#

d : n#

∗−→ u#

n+1#

16/20



COMPUTING
H−→ WITH LCS’S: SECOND RULE

p : ai1 . . .aipa0 u#

d : n#

∗−→ ai1 . . .aip
n+1a0u#

n#

17/20



WRAPPING IT UP (SKETCHILY)

As we did for lossy counter machines, this time with channels

Bottom line: a LCS with |Σ|= m+ 3

— can build a workspace of size Hω
ωm+1

(m) = Hω
ωω

(m) = Fωω(m),
— use this as a computational resource,
— and fold back the workspace by computing the inverse of H

Checking that the above computation is performed reliably can be
stated as (reduces to) a reachability (or termination) question

Cor. LCS verification is hard for Fωω (hence ..-complete)

Confirms: the main parameter for complexity is the size of the
message alphabet
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CONCLUSION FOR THE COURSE

Length of bad sequences is key to bounding the complexity of
WQO-based algorithms

Here computer scientists need results/theories from other fields:
proof-theory and combinatorics

Proving matching lower bounds is not necessarily tricky (and is easy
for LCM’s or LCS’s) but we still lack:
— a collection of hard problems: Post Embedding Problem, . . .
— a tutorial/textbook on subrecursive hierarchies (like fast-growing
and Hardy hierarchies)
— a toolkit of coding tricks for computing with ordinals
— a large enough user community

The approach is workable: we could characterize the complexity of
Timed-Arc Petri nets and Data Petri Nets at level Fωωω
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Thanks for your participation!
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