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1. (IN¥, <) is a wgo (Dickson’s Lemma)
Where1 egl (312;]) <>< (512)2) bUt (112)3) £>< (5/2;2)

2. (£*, <) is awqo (Higman’s Lemma)
where, e.g., abc <. bacbe but cha £, bacbce
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Intuition motivating this course:

Analyzing the complexity of algorithms based on WQO-theory

Bounding the index j (in the increasing pair above)
as a function of some relevant parameters
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All of these are actual examples of algorithms that terminate thanks
to wqgo-theoretical arguments

Question for Part lll—IV. terminate in how many steps exactly?



WSTS: WELL-STRUCTURED TRANSITION SYSTEMS

In verification, wqo’s appear prominently in the guise of WSTS.

Def. A WSTS is a system (S,—,<) where
1. (S,—) with =C § x S is a transition system

2. the set of states (S, <) is wqgo, and

3. the transition relation is compatible with the ordering (also called
“monotonic”): s — tand s < s’ imply s’ — ¢/ for some ¢/ >t
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Ordering states: (£,0,0,0) < (£;,0,1,2) but (¢1,0,0,0) £ (£»,0,1,2).
This is wqo as a product of wqo’s: (Loc, =) x (IN3,<«)

Compatibility: easily checked when guards are upward-closed and
assignments are monotonic functions of the variables.

NB. Other updates can be considered as long as they are monotonic.
Extending guards require using a finer ordering.

Question. How does this compare to Minsky (counter) machines?
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Guards: comparisons between counters and constants
Updates: assignments with counter values and constants

One does not use <x to compare states!! Rather

(all---,ak)gsparse(bll---;bk)
BIVij=1,....k: (a; <aj iff b < by) A (lai—al < Ibi—bl) .

Fact. (Zk,ésparse) is wgo

Compatibility: We use  (Lay,...,ar) < (U,by,...,0) &

<
€: el/\ (all"'lakl_lllo) <sparse (bll"'lbkl_lllo) .
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channel ¢;
- i ack ! ack : hup !
cilack
channel ¢,
- i msg istop!

A configuration o = (1,4, w,wy) with w; € £*.
E.g., w; =hup.ack.ack.

Reliable steps: o — ¢ p read in front of channels, write at end (FIFO)

Lossy steps: messages may be lost nondeterministically
oo ¥oa p —e p’ 3 o for some p,p’
where (S,C) is the wqo (Loc;,=) x (Locy,=) x (Z*,<,)leve!

A model useful for concurrent protocols but also timed automata,
metric temporal logic, products of modal logics, ...
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Def. A system terminates % there are no infinite runs (starting from
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Thm. “With minimal effectivity assumptions”, termination is decidable
for WSTS’s

Indeed, if a WSTS has an infinite run, the infinite run contains an
increasing pair sy = s; = s; > 5; (by Wqo)

But reciprocally, a finite run containing an increasing pair
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image-finite transition relation), it is decidable.

Problem. Evaluate the complexity of this algorithm
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