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IF YOU MISSED PART I

(X,6) is a well-quasi-ordering (a wqo) if any infinite sequence
x0,x1,x2 . . . over X contains an increasing pair xi 6 xj (for some i< j)

Examples.
1. (Nk,6×) is a wqo (Dickson’s Lemma)

where, e.g., (3,2,1)6× (5,2,2) but (1,2,3) �× (5,2,2)

2. (Σ∗,6∗) is a wqo (Higman’s Lemma)
where, e.g., abc 6∗ bacbc but cba �∗ bacbc

Intuition motivating this course:

Analyzing the complexity of algorithms based on WQO-theory
'

Bounding the index j (in the increasing pair above)
as a function of some relevant parameters
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OUTLINE FOR PART II

I Well-structured transition systems (WSTS’s) and their decision
algorithms

I Automatic termination proofs for programs

I Relevance logics and their decidability

I Karp-Miller trees

All of these are actual examples of algorithms that terminate thanks
to wqo-theoretical arguments

Question for Part III—IV. terminate in how many steps exactly?
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WSTS: WELL-STRUCTURED TRANSITION SYSTEMS

In verification, wqo’s appear prominently in the guise of WSTS.

Def. A WSTS is a system (S,−→,6) where
1. (S,−→) with −→⊆ S× S is a transition system

2. the set of states (S,6) is wqo, and

3. the transition relation is compatible with the ordering (also called
“monotonic”): s−→ t and s 6 s ′ imply s ′ −→ t ′ for some t ′ > t

4/9



SOME WSTS’S: MONOTONIC COUNTER MACHINES

`0 `1 `2 `3
c1++

c2>0? c2-- c3:=0

c1>=10?c1:=c3

0c2

1c1

4c3

A run of M: (`0,0,1,4)−→ (`1,1,1,4)−→ (`2,1,0,4)−→ (`3,1,0,0)

Ordering states: (`1,0,0,0)6 (`1,0,1,2) but (`1,0,0,0) � (`2,0,1,2).
This is wqo as a product of wqo’s: (Loc,=)× (N3,6×)

Compatibility: easily checked when guards are upward-closed and
assignments are monotonic functions of the variables.

NB. Other updates can be considered as long as they are monotonic.
Extending guards require using a finer ordering.

Question. How does this compare to Minsky (counter) machines?
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SOME WSTS’S: RELATIONAL AUTOMATA

`0 `1 `2

c1<c2? c2:=??; c1:=c3

c3:=-1 c1=10>c2=c3?

0c2

1c1

−4c3

Guards: comparisons between counters and constants
Updates: assignments with counter values and constants

One does not use 6× to compare states!! Rather

(a1, . . . ,ak)6sparse(b1, . . . ,bk)

def⇔∀i, j = 1, . . . ,k :
(
ai 6 aj iff bi 6 bj

)
∧
(
|ai − aj|6 |bi − bj|

)
.

Fact. (Zk,6sparse) is wqo

(`,a1, . . . ,ak)6 (` ′,b1, . . . ,bk)
def⇔Compatibility: We use

`= ` ′∧ (a1, . . . ,ak,−1,10)6sparse (b1, . . . ,bk,−1,10) .
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SOME WSTS’S: LCS / LOSSY CHANNEL SYSTEMS

A configuration σ= (`1,`2,w1,w2) with wi ∈ Σ∗.
E.g., w1 = hup.ack.ack.

Reliable steps: σ−→rel ρ read in front of channels, write at end (FIFO)

Lossy steps: messages may be lost nondeterministically
σ−→ σ ′

def⇔ σw ρ−→rel ρ
′ w σ ′ for some ρ,ρ ′

where (S,v) is the wqo (Loc1,=)× (Loc2,=)× (Σ∗,6∗){c1,c2}

A model useful for concurrent protocols but also timed automata,
metric temporal logic, products of modal logics, ...
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WSTS VERIFICATION: TERMINATION

Def. A system terminates def⇔ there are no infinite runs (starting from
some given s0)

Thm. “With minimal effectivity assumptions”, termination is decidable
for WSTS’s

Indeed, if a WSTS has an infinite run, the infinite run contains an
increasing pair s0

∗−→ si
+−→ sj > si (by wqo)

But reciprocally, a finite run containing an increasing pair
s0
∗−→ si

+−→ sj > si can be extended to an infinite run (by compatibility),
hence is a finite witness for non-termination!

Hence w.m.e.a. non-termination is r.e., i.e., termination is co-r.e.

Since w.m.e.a. termination is also r.e. (for systems with an
image-finite transition relation), it is decidable.

Problem. Evaluate the complexity of this algorithm
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WSTS VERIFICATION: SAFETY
Consider a set B⊆ S of “bad” states that is upward-closed.
E.g., a given error location, or a given location and some erroneous
message.

Def. s0 is safe in S def⇔ no runs issued from s0 ever visit B

Fact. Pre∗(B) = {s ∈ S | ∃t ∈ B with s ∗−→ t}, the “unsafe states”, is
upward-closed (by compatibility)

Furthermore, Pre∗(B) can be computed as the limit of
B⊆ Pre61(B)⊆ Pre62(B)⊆ ·· · ⊆

⋃
m Pre6m(B) = Pre∗(B)

(NB: Pre6i(B) too is upward-closed)

But a strictly increasing sequence of upward-closed subsets of a
WQO is finite (recall: (P(X),vS) is well-founded iff X is wqo)

Cor. W.m.e.a. safety is decidable for WSTS’s (& definable by
excluded minors)

Problem. Evaluate the complexity of this algorithm
9/9
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