Algorithmic Aspects
of WQO (Well-Quasi-Ordering) Theory

Part 1l: Algorithmic applications of wqo’s

Sylvain Schmitz & Philippe Schnoebelen
LSV, CNRS & ENS Cachan

ESSLLI 2012, Opole, Aug 6-15, 2012

Lecture notes & exercices available at http://tinyurl.com/essllil2wgo

http://tinyurl.com/esslli12wqo

IF YOU MISSED PART |

(X, <) is a well-quasi-ordering (a wqgo) if any infinite sequence
Xo,X1,X2 ... over X contains an increasing pair x; < x; (for some i < j)

Examples.
1. (IN¥, <) is a wgo (Dickson’s Lemma)
Where1 egl (312;]) <>< (512)2) bUt (112)3) £>< (5/2;2)

2. (£*, <) is awqo (Higman’s Lemma)
where, e.g., abc <. bacbe but cha £, bacbce

IF YOU MISSED PART |

(X, <) is a well-quasi-ordering (a wqgo) if any infinite sequence
Xo,X1,X2 ... over X contains an increasing pair x; < x; (for some i < j)

Examples.
1. (IN¥, <) is a wgo (Dickson’s Lemma)
Wherey egl (312;]) <>< (512;2) bUt (112)3) £>< (5r2;2)

2. (£*, <) is awqo (Higman’s Lemma)
where, e.g., abc <. bacbe but cha £ bacbc

Intuition motivating this course:

Analyzing the complexity of algorithms based on WQO-theory

Bounding the index j (in the increasing pair above)
as a function of some relevant parameters

OUTLINE FOR PART Il

v

Well-structured transition systems (WSTS’s) and their decision
algorithms

v

Automatic termination proofs for programs

v

Relevance logics and their decidability

v

Karp-Miller trees

OUTLINE FOR PART Il

v

Well-structured transition systems (WSTS’s) and their decision
algorithms

v

Automatic termination proofs for programs

v

Relevance logics and their decidability

v

Karp-Miller trees

All of these are actual examples of algorithms that terminate thanks
to wqgo-theoretical arguments

Question for Part lll—IV. terminate in how many steps exactly?

WSTS: WELL-STRUCTURED TRANSITION SYSTEMS

In verification, wqo’s appear prominently in the guise of WSTS.

Def. A WSTS is a system (S,—,<) where
1. (S,—) with =C § x S is a transition system

2. the set of states (S, <) is wqgo, and

3. the transition relation is compatible with the ordering (also called
“monotonic”): s — tand s < s’ imply s’ — ¢/ for some ¢/ >t

SOME WSTS’S: MONOTONIC COUNTER MACHINES

“
co>07? cp—— .=
F (o —(v)
e [0]
Cr:=cC3 c1>=107?
o

SOME WSTS’s: MONOTONIC COUNTER MACHINES

C1
>O? - =
F@ (o —(v)
c2
Cp:=cs3 0?
)= ()

c1>=1
@

A run of M: (£y,0,1,4) — (£1,1,1,4) — ({,,1,0,4) — ({3,1,0,0

SOME WSTS’s: MONOTONIC COUNTER MACHINES

i cy>07?

C1

(w) @ czm
c1>=10?

A run of M: (£,0,1,4) — (£1,1,1,4) — ({»,1,0,4) — (¢3,1,0,0)

Ordering states: (£,0,0,0) < (£;,0,1,2) but (¢1,0,0,0) £ (£»,0,1,2).
This is wqo as a product of wqo’s: (Loc, =) x (IN3,<«)

SOME WSTS’s: MONOTONIC COUNTER MACHINES

cl++ c2>07
(w) —() c@
c1>=107?

A run of M: (£,0,1,4) — (£1,1,1,4) — ({»,1,0,4) — (¢3,1,0,0)

Ordering states: (£,0,0,0) < (£;,0,1,2) but (¢1,0,0,0) £ (£»,0,1,2).
This is wqo as a product of wqo’s: (Loc, =) x (IN3,<«)
Compatibility: easily checked when guards are upward-closed and
assignments are monotonic functions of the variables.

NB. Other updates can be considered as long as they are monotonic.
Extending guards require using a finer ordering.

SOME WSTS’s: MONOTONIC COUNTER MACHINES

. cy>07?
(D= === c@
c1>=107?

A run of M: (£,0,1,4) — (£1,1,1,4) — ({»,1,0,4) — (¢3,1,0,0)

Ordering states: (£,0,0,0) < (£;,0,1,2) but (¢1,0,0,0) £ (£»,0,1,2).
This is wqo as a product of wqo’s: (Loc, =) x (IN3,<«)

Compatibility: easily checked when guards are upward-closed and
assignments are monotonic functions of the variables.

NB. Other updates can be considered as long as they are monotonic.
Extending guards require using a finer ordering.

Question. How does this compare to Minsky (counter) machines?

SOME WSTS’s: RELATIONAL AUTOMATA

C]<C2? Cp:i=77;, C1:=C3
@ = [0]
c3i=-1 c1=10>cyo=c3?
8

Guards: comparisons between counters and constants
Updates: assignments with counter values and constants

SOME WSTS’s: RELATIONAL AUTOMATA

cp:=??; cj:=cC3

o [1]
- [1]
C3

c1=10>cyo=c3?
Guards: comparisons between counters and constants
Updates: assignments with counter values and constants

One does not use <x to compare states!! Rather
(all---,ak)gsparse(bll---;bk)
BIVij=1,....k: (a; <aj iff b < by) A (lai—al < Ibi—bl) .

SOME WSTS’s: RELATIONAL AUTOMATA
cp:=??; cj:=cC3 1

[T]
c3

c1=10>cyo=c3?
Guards: comparisons between counters and constants
Updates: assignments with counter values and constants

One does not use <x to compare states!! Rather
(all---,ak)gsparse(bll---;bk)

BIVij=1,....k: (a; <aj iff b < by) A (lai—al < Ibi—bl) .

Fact. (Zk,ésparse) is wgo

SOME WSTS’s: RELATIONAL AUTOMATA
cp:=??; cj:=cC3 °l

=[o]
c3

c1=10>cp=c3?

Guards: comparisons between counters and constants
Updates: assignments with counter values and constants

One does not use <x to compare states!! Rather

(all---,ak)gsparse(bll---;bk)
BIVij=1,....k: (a; <aj iff b < by) A (lai—al < Ibi—bl) .

Fact. (Zk,ésparse) is wgo

Compatibility: We use (Lay,...,ar) < (U,by,...,0) &

<
€: el/\ (all"'lakl_lllo) <sparse (bll"'lbkl_lllo) .

SOME WSTS’s: LCS / LossY CHANNEL SYSTEMS

channel ¢;
- i ack ! ack : hup !
cilack
channel ¢,
-~ i msg istop!

A configuration o = (1,4, w,wy) with w; € £*.
E.g., w; =hup.ack.ack.

Reliable steps: o — ¢ p read in front of channels, write at end (FIFO)

SOME WSTS’s: LCS / LossY CHANNEL SYSTEMS

channel ¢;
- i ack ! ack : hup !
cilack
channel ¢,
-~ i msg istop!

A configuration o = (1,4, w,wy) with w; € £*.
E.g., w; =hup.ack.ack.

Reliable steps: o — ¢ p read in front of channels, write at end (FIFO)

Lossy steps: messages may be lost nondeterministically
7 def / / /
00— 0" S o0dp—e p’ Jo’ forsome p,p
where (S,C) is the wqo (Loc;,=) x (Locy,=) x (Z*,<,)leve!

SOME WSTS’s: LCS / LossY CHANNEL SYSTEMS

channel ¢;
- i ack ! ack : hup !
cilack
channel ¢,
- i msg istop!

A configuration o = (1,4, w,wy) with w; € £*.
E.g., w; =hup.ack.ack.

Reliable steps: o — ¢ p read in front of channels, write at end (FIFO)

Lossy steps: messages may be lost nondeterministically
oo ¥oa p —e p’ 3 o for some p,p’
where (S,C) is the wqo (Loc;,=) x (Locy,=) x (Z*,<,)leve!

A model useful for concurrent protocols but also timed automata,
metric temporal logic, products of modal logics, ...

WSTS VERIFICATION: TERMINATION

Def. A system terminates % there are no infinite runs (starting from
some given sg)

WSTS VERIFICATION: TERMINATION

Def. A system terminates % there are no infinite runs (starting from
some given sg)

Thm. “With minimal effectivity assumptions”, termination is decidable
for WSTS’s

WSTS VERIFICATION: TERMINATION

Def. A system terminates % there are no infinite runs (starting from
some given sg)

Thm. “With minimal effectivity assumptions”, termination is decidable
for WSTS’s

Indeed, if a WSTS has an infinite run, the infinite run contains an
increasing pair sy = s; = s; > 5; (by Wqo)

WSTS VERIFICATION: TERMINATION

Def. A system terminates % there are no infinite runs (starting from
some given sg)

Thm. “With minimal effectivity assumptions”, termination is decidable
for WSTS’s

Indeed, if a WSTS has an infinite run, the infinite run contains an
increasing pair sy = s; = s; > 5; (by Wqo)

But reciprocally, a finite run containing an increasing pair

S0 =5 51 5 s; > s; can be extended to an infinite run (by compatibility),
hence is a finite witness for non-termination!

WSTS VERIFICATION: TERMINATION

Def. A system terminates % there are no infinite runs (starting from
some given sg)

Thm. “With minimal effectivity assumptions”, termination is decidable
for WSTS’s

Indeed, if a WSTS has an infinite run, the infinite run contains an
increasing pair sy = s; = s; > 5; (by Wqo)

But reciprocally, a finite run containing an increasing pair
S0 =5 51 5 s; > s; can be extended to an infinite run (by compatibility),
hence is a finite witness for non-termination!

Hence w.m.e.a. non-termination is r.e., i.e., termination is co-r.e.

WSTS VERIFICATION: TERMINATION

Def. A system terminates % there are no infinite runs (starting from
some given sg)

Thm. “With minimal effectivity assumptions”, termination is decidable
for WSTS’s

Indeed, if a WSTS has an infinite run, the infinite run contains an
increasing pair sy = s; = s; > 5; (by Wqo)

But reciprocally, a finite run containing an increasing pair
S0 =5 51 5 s; > s; can be extended to an infinite run (by compatibility),
hence is a finite witness for non-termination!

Hence w.m.e.a. non-termination is r.e., i.e., termination is co-r.e.

Since w.m.e.a. termination is also r.e. (for systems with an
image-finite transition relation), it is decidable.

WSTS VERIFICATION: TERMINATION

Def. A system terminates % there are no infinite runs (starting from
some given sg)

Thm. “With minimal effectivity assumptions”, termination is decidable
for WSTS’s

Indeed, if a WSTS has an infinite run, the infinite run contains an
increasing pair sy = s; = s; > 5; (by Wqo)

But reciprocally, a finite run containing an increasing pair
S0 =5 51 5 s; > s; can be extended to an infinite run (by compatibility),
hence is a finite witness for non-termination!

Hence w.m.e.a. non-termination is r.e., i.e., termination is co-r.e.
Since w.m.e.a. termination is also r.e. (for systems with an
image-finite transition relation), it is decidable.

Problem. Evaluate the complexity of this algorithm

WSTS VERIFICATION: SAFETY

Consider a set B C § of “bad” states that is upward-closed.
E.g., a given error location, or a given location and some erroneous
message.

. . f . ..
Def. s¢ is safein S % ho runs issued from so ever visit B

WSTS VERIFICATION: SAFETY
Consider a set B C § of “bad” states that is upward-closed.
E.g., a given error location, or a given location and some erroneous
message.

. . f . ..
Def. s¢ is safein S % ho runs issued from so ever visit B

Fact. Pre*(B) = {s € S | 3t € B with s = 1}, the “unsafe states”, is
upward-closed (by compatibility)

Furthermore, Pre*(B) can be computed as the limit of
B C PreS'(B) C PreS*(B) € -+ C U, PreS™(B) = Pre* (B)
(NB: PreSi(B) too is upward-closed)

WSTS VERIFICATION: SAFETY
Consider a set B C § of “bad” states that is upward-closed.
E.g., a given error location, or a given location and some erroneous
message.

. . f . ..
Def. s¢ is safein S % ho runs issued from so ever visit B

Fact. Pre*(B) = {s € S | 3t € B with s = 1}, the “unsafe states”, is
upward-closed (by compatibility)

Furthermore, Pre*(B) can be computed as the limit of
B C PreS'(B) C PreS*(B) € -+ C U, PreS™(B) = Pre* (B)
(NB: PreSi(B) too is upward-closed)

But a strictly increasing sequence of upward-closed subsets of a
WQO is finite (recall: (P(X),Cs) is well-founded iff X is wqo)

WSTS VERIFICATION: SAFETY

Consider a set B C § of “bad” states that is upward-closed.
E.g., a given error location, or a given location and some erroneous
message.

. . f . ..
Def. s¢ is safein S % ho runs issued from so ever visit B

Fact. Pre*(B) = {s € S | 3t € B with s = 1}, the “unsafe states”, is
upward-closed (by compatibility)

Furthermore, Pre*(B) can be computed as the limit of

B C PreS'(B) C PreS*(B) € -+ C U, PreS™(B) = Pre* (B)

(NB: PreSi(B) too is upward-closed)

But a strictly increasing sequence of upward-closed subsets of a
WQO is finite (recall: (P(X),Cs) is well-founded iff X is wqo)

Cor. W.m.e.a. safety is decidable for WSTS’s (& definable by
excluded minors)

WSTS VERIFICATION: SAFETY

Consider a set B C § of “bad” states that is upward-closed.
E.g., a given error location, or a given location and some erroneous
message.

Def. s¢ is safein S % ho runs issued from so ever visit B
Fact. Pre*(B) = {s € S | 3t € B with s = 1}, the “unsafe states”, is
upward-closed (by compatibility)

Furthermore, Pre*(B) can be computed as the limit of
B C PreS'(B) C PreS*(B) € -+ C U, PreS™(B) = Pre* (B)
(NB: PreSi(B) too is upward-closed)

But a strictly increasing sequence of upward-closed subsets of a
WQO is finite (recall: (P(X),Cs) is well-founded iff X is wqo)
Cor. W.m.e.a. safety is decidable for WSTS’s (& definable by
excluded minors)

Problem. Evaluate the complexity of this algorithm

