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MOTIVATIONS FOR THE COURSE

» Well-quasi-orderings (wqo’s) proved to be a powerful tool for
decidability/termination in logic, Al, program verification, etc. NB:
they can be seen as a version of well-founded orderings with
more flexibility

» In program verification, wqo’s are prominent in well-structured
transition systems (WSTS’s), a generic framework for
infinite-state systems with good decidability properties.
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» Well-quasi-orderings (wqo’s) proved to be a powerful tool for
decidability/termination in logic, Al, program verification, etc. NB:
they can be seen as a version of well-founded orderings with
more flexibility

» In program verification, wqo’s are prominent in well-structured
transition systems (WSTS’s), a generic framework for
infinite-state systems with good decidability properties.

» Analysing the complexity of wqo-based algorithms is still one of
the dark arts . ..

» Purposes of these lectures = to disseminate the basic concepts
and tools one uses for the complexity analysis of wgo-based
algorithms.



OUTLINE OF THE COURSE

» (This) Lecture 1 = Basics of Wqo’s. Rather basic material:
explaining and illustrating the definition of wqo’s. Building new
wqo’s from simpler ones.

» Lecture 2 = Algorithmic Applications of Wqo’s.
Well-Structured Transition Systems, Program Termination,
Relevance Logic, etc.

» Lecture 3 = Complexity Classes for Wqo’s. Fast-growing
complexity. Working with subrecursive hierarchies.

» Lecture 4 = Proving Complexity Lower Bounds. Simulating
fast-growing functions with weak/unreliable computation models.

» Lecture 5 = Proving Complexity Upper Bounds. Bounding the
length of bad sequences (for Dickson’s and Higman’s Lemmas).
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Def. A non-empty (X, <) is a quasi-ordering (qo) %

and transitive relation.
(= a partial ordering without requiring antisymmetry, technically
simpler but essentially equivalent)

< is a reflexive

Examples. (IN,<), also (R, <), (NU{w}, <), ...

divisibility: (Z,_|-) where x|y ® 0 ax =y

tuples: (IN?,<prog), OF simply (N?,< ), where (0,1,2) <x (10,1,5)
and (1,2,3)#(3,1,2).

words: (£*,<pret) for some alphabet £ ={a,b,...} and ab <pet abba.

(2%, <jex) With e.g. abba <jgx abc (NB: this assumes X is linearly
ordered: a <b <c)

(Z*, <subword), Of simply (£*,<.), with aba < baabbaa.
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Def1. (X,<) isawqo & any infinite sequence xy,x1,x,,... contains an
increasing pair: x; < xj for some i <.

. def o .
Def2. (X,<) isawqo & any infinite sequence xy,x1,x,,... contains an
infinite increasing subsequence: x,, < X, <xu, <...

Def3. (X,<) isawqo % there is no infinite strictly decreasing
sequence xy > x; > xp > ... —i.e., (X, <) is well-founded— and no
infinite set {x,x1,x,...} of mutually incomparable elements x;#x; when
i #j —we say “(X,<) has no infinite antichain”—.

Fact. These three definitions are equivalent.

Clearly, Def2 = Def1 and Def1 = Def3 (think contrapositively). But
the reverse implications are non-trivial.

Recall Infinite Ramsey Theorem: “Let X be some countably infinite

set and colour the elements of X(") (the subsets of X of size n) in ¢
different colours. Then there exists some infinite subset M of X s.t.

the size n subsets of M all have the same colour.”
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More generally
Fact. For linear qo’s: well-founded < wqo.
Cor. Any ordinal is wqo.



SPOT THE WQO’S

linear? | well-founded? | wqo?
N, <
Z,| X X

N U{w}, <
N3, <« X
%, pref X

Z*, glex X

X<, X

(Z,]): The prime numbers {2,3,5,7,11,...} are an infinite antichain.



SPOT THE WQO’S
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More generally

(Generalized) Dickson’s lemma. If (X;,<), ..., (X,,<,)'s are
wqo’s, then [T, X;, <x is wqo.

Proof. Easy with Def2. Otherwise, an application of the Infinite
Ramsey Theorem.

(Usual) Dickson’s Lemma. (IN¥, <) is wqo for any k.
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(Z*,<pret) has an infinite antichain

bb, bab, baab, baaab, ...

(£*,<jex) is not well-founded:

b >lex ab >lex aab >lex aaab >lex *
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(X*,<4) is wgo by Higman’s Lemma (see next slide).

We can get some feeling by trying to build a bad sequence, i.e., some
wo, w1, wa,... Without an increasing pair w; <. w;.
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Def. The sequence extension of a qo (X, <) is the go (X*, <) of finite
sequences over X ordered by embedding:

def X1 <y, Ao A\xp, <y
W=X1...X < e - ! .
Lo X S Ve Im =V gor some 1 <y < b <. < Iy <m

¥\ < v’ for a length-n subsequence v’ of v

=

Higman’s Lemma. (X*,<.) is a wqo iff (X,<) is.

With (£*,<.), we are considering the sequence extension of (£,=)
which is finite, hence necessarily wqo.

Later we’ll consider the sequence extension of more complex wqo’s,
e.g., N%:
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Let (X,<) be wqo and assume by way of contradiction that (X*, <)
admits bad sequences (sequences with no increasing pairs).

Let wg € X* be the shortest word that can start a bad sequence.

Let w; € X* be the shortest word that can continue, i.e., such that
there is a bad sequence starting with wg, w;

Continue. This way we pick an infinite sequence S = wg, wy,ws,ws,...
Claim. S too is bad (easy with Def1)

Write w; under the form w; = x;v;. Since X is wqo, there is an infinite
increasing sequence x,, < x,, <xu, < --- (here we use Def2)

Now consider 5/ %' WO, Wi e ey Wng—1,Vigs Viy» Vigs -+ -

It cannot be bad (otherwise w,, would not have been shortest).

But an increasing pair v,, < vy, leads to x,v, <i« Xuvm, i.€., Wy, <4 Wiy, @
contradiction.



MORE WQO’S

> Finite Trees ordered by embeddings (Kruskal's Tree Theorem)

R N
SN\ I\
R b d f
| AN
d c. b
« /N
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Let (X,<) be wqo and assume, b.w.o.c., that (T(X),C) is not wqo.

We pick a “minimal” bad sequence S =1,1;,1,... —Def1
Write every #; under the form ¢; =f;(u;1,...,uix,).

Claim. The set U ={u;;} of the immediate subterms is wqo.

(Indeed, an infinite bad sequence u;,,,u;, ;... could be used to show
that 7, was not shortest).

Since U is wqo, and using Higman’s Lemma on U*, there is some
(u"ll:]”"’unl»knl) <4 (”nz,lw-f”nz,knz) <4 (un3,],...,un3’kn3) <4 -+ —Def2

Further extracting some f;,, </, <--- exhibits an infinite increasing
subsequence #,; Ty, C -+ in S, a contradiction
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» Finite Trees ordered by embeddings (Kruskal’'s Tree Theorem)

g T — a/g\a
SN N
b e e - bdf
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d - c b
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» Finite Graphs ordered by embeddings (Robertson-Seymour
Theorem)

Cn <minor K, and Cn <minor Cn+l
» (X9, <) for X linear wqo.
> (Pr(X),Cx) for X wgo, where

UEHV(ngeU:EIyGV:xgy



FINITE-BASIS CHARACTERIZATION

Defn. (X,<) is awqo & every non-empty subset V of X has at least
one and at most finitely many (non-equivalent) minimal elements.

Say V C X is upward-closed if x > y € V implies x € V. (There is a
similar notion of downward-closed sets).

For B C X, the upward-closure T B of Biis {x | x > b for some b € B}.
Note that 1 (UJ;B;) = J; T Bi, and that V is upward-closed iff V =1 V.
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Defn. (X, <) is awqo & every non-empty subset V of X has at least
one and at most finitely many (non-equivalent) minimal elements.

Say V C X is upward-closed if x > y € V implies x € V. (There is a
similar notion of downward-closed sets).

For B C X, the upward-closure 1 B of Biis {x | x > b for some b € B}.
Note that 1 (U;B;) = J; T Bi, and that V is upward-closed iff V =1 V.

Cor1. Any upward-closed U C X has a finite basis, i.e., U is some

T{ml,...,mk}.

Cor2. Any downward-closed V C X can be defined by a finite set of
excluded minors:

xeVem L£x/N\---Nmy £x

E.g, Kuratowksi Theorem: a graph is planar iff it does not contain K5
or K3’3.

Gives polynomial-time characterization of closed sets.



FINITE-BASIS CHARACTERIZATION

Defn. (X, <) is awqo % every non-empty subset V of X has at least
one and at most finitely many (non-equivalent) minimal elements.

Say V C X is upward-closed if x >y € V implies x € V. (There is a
similar notion of downward-closed sets).

For B C X, the upward-closure 1 B of Bis {x | x > b for some b € B}.
Note that 1 (|J; Bi) = J; T Bi, and that V is upward-closed iff V =1 V.

Cor1. Any upward-closed U C X has a finite basis, i.e., U is some
THmy,...,m}.

Cor2. Any downward-closed V C X can be defined by a finite set of
excluded minors:

xeVem £xN\--Am £x

Cor3. Any sequence 1 Vy Ct V; €1V, C --- of upward-closed subsets
converges in finite-time: Im: (U; T Vi) =1 Vi =1 Vipgr1 = ...
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For (X, <), we consider (P(X),Cg) defined with

UESVC«ite;VyGV:EIXGU:xgy (gTUDTV)

Fact. P(X) is well-founded iff X is wqo —Defn’

NB. X well-founded = P(X) well-founded
Question. Does X wgo = P(X) wqo? (Equivalently P¢(X) wgo?)
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BEYOND WQO’S
For (X, <), we consider (P(X),Cg) defined with

vesv B wev:irev:x<sy  (Eruotv

Fact. P(X) is well-founded iff X is wqo —Defn’

NB. X well-founded = P(X) well-founded
Question. Does X wgo = P(X) wqo? (Equivalently P¢(X) wgo?)

L

0,4 1,4 2,4 34

X% ((a,b) e N? | a < b)

! ’
;. def [ a=a’ andb<b
(a,b) < (a ,b]@{ orb<a

0,1 Fact. (X, <) is WQO

Thm. 1. (P4(X),Cg) is not wqo: rows are incomparable
2. (P(Y),Cs) is wqo iff Y does not contain X



