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Introduction: planning problem

Planning problem

From an initial state, reach a goal state, by choosing and scheduling
actions

Useful in many domains:
◮ Artificial intelligence (actions of a robot)
◮ Industrial production (scheduling of tasks)

Three levels of difficulty

1 Is there a solution ?

2 Give a solution

3 What is the best solution ?

Solutions

Sequence of actions

Partial order of actions
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Modular planning

Factored planning

Exploits the weak dependencies between variables

P
⇒ p1 p2

p3

p4

p5

p6

Challenges

Find the factors (not explored here)

Find local plans that combine into an (optimal) global plan
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Outline

1 Modular optimal planning formalism

2 Message passing algorithm for modular optimal planning

3 Example
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Automated planning

Automaton

A = (S , T ,→, s0, λ, Λ, F )

Planning

Find a path which reaches the goal

Example

S = {s0, s1, s2, s3}

T = {t1, t2, t3, t4, t5}

Λ = {α, β}

λ(t1) = λ(t3) = λ(t5) = α

λ(t2) = λ(t4) = β

F = {s2}

s0

s1 s2

s3

α

β

α
β

α
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Modular planning

Planning problem

Network of automata

Composition by synchronous product

Local/global plans

Network of automata

A1 A2

A3

A4

A5

A6

α

β

γ

δ

ω

ρ

Synchronous product

a

b

c

d

t1 : αt2 : β t3 : αt4 : γ

ac bc

ad bd

(t1 , t3 )

(t2, ⋆)1

(⋆, t4)1 (⋆, t4)2

(t2, ⋆)2
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Modular optimal planning (1)

Weighted automaton

A = (S , T ,→, s0, λ, Λ, F , c , ci , cF )

Synchronous product

a

b

c

d

α, c2β, c1 α, c4γ, c3

ac bc

ad bd

α
, c

2 +
c
4

β, c1

γ, c3 γ, c3

β, c1

The problem

Given A = A1‖ . . . ‖An find an
accepted word wi in each Ai such that:

there is an accepted word w in A
such that ∀i , w|Λi

= wi ,

this w is optimal in A,

without computing A nor L(A)
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Modular optimal planning (2)

Network of weighted automata

γ,1

α,0

α,1 β,0

c,1

γ,1

γ,0

3A

d,5 γ,0b,0
a,1

α,1

β,1

A1 A2

β,0

Two approaches

Specialization of the message passing algorithm
◮ find all the optimal plans (top-down approach)

Distributed A∗ algorithm
◮ find one optimal plan (bottom-up approach)
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Weighted languages

Definition

set of couples (u, w) where u is a word and w a cost

from (non-deterministic) WA: accepted words associated to minimal
costs

Intuition

All the valid plans in an automaton associated with their optimal cost (a
plan is a word of the language)

Operations

Projection natural projection + cost minimisation:
P{α}({(αβ, 1), (βα, 2), (αα, 3)}) = {(α, 1), (αα, 3)}

Composition synchronous product of weighted languages (cost added
when interleaving two words):
L(A1)× L(A2) = L(A1 ×A2)
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Toward the message passing algorithm

From L = L1 × · · · × Ln consider the L′i = PΛi
(L). They have the

following properties:

if (ui , c) is optimal in L′i , then there is u such that u|Λi
= ui and

(u, c) is optimal in L

if (u, c) is optimal in L, then there is ui such that ui = u|Λi
and

(ui , c) is optimal in L′i

Objective

1 compute the L′i (without computing L)

2 find optimal local words in these L′i
3 interlace them to construct an optimal global plan

Axiom needed

∀Λ3 ⊇ Λ1 ∩ Λ2, PΛ3(L1 × L2) = PΛ3(L1)× PΛ3(L2)
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Message passing algorithm1

Based on the communication graph

The message passing algorithm

Mi ,j ← I, ∀(i , j) ∈ GL
until stability of messages do

select an edge (i , j)

Mi ,j ← PΛi∩Λj

(

Li ×
(

×k∈N (i)\jMk,i

))

done

L′i ← Li ×
(

×k∈N (i)Mk,i

)

, ∀i ∈ {1, . . . , n}

1Eric Fabre. Bayesian Networks of Dynamic Systems. HDR Thesis, 2007.
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Drawbacks

Limitations due to the MPA

Communication graphs have to be trees

1

2 3

4

1

2∧3

4

Limitations due to languages

Weighted languages are (potentially) infinite sets: necessity of a finite
representation

Solution

Our weighted languages are ‘regular’... we will use weighted automata in
our computations
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Weighted automata2

Projection (on Σ)

1 replace any symbol from Σ by ǫ (keeping costs)

2 ǫ-removal

3 determinisation

4 minimisation

Composition

1 synchronous product

2 minimisation

Validity

These operations are just implementations of the operations on weighted
languages: they verify needed axioms

2Mehryar Mohri. Weighted automata algorithms. Springer, 2009.
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Remarks on determinisation

To use non-deterministic automata would work, but a part of
optimisation is performed in determinisation

Determinisation may have
exponential cost, but it often
reduces the size of the WA

Not all WA are determinisable, but
we can determinise partially

a,1

c,0

c,0

b,1
a,0

b,0

Experimental results

Random problemsa of 1 to 50 components with 2 to 10 states and 5
minutes time limit for solving

80% solved using determinisation

50% solved without determinisation (no more than 10 components)

aBonet et al. Directed unfolding of petri nets. ToPNoC, 2008.
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Example (1)

γ,1

α,0

α,1 β,0

c,1

γ,1

γ,0

3A

d,5 γ,0b,0
a,1

α,1

β,1

A1 A2

β,0

Messages from left to right:

A2

γ,0

5

A

d,5

3

α,1

 

c,1
γ,1

γ,1

β,1α,2

α,2

 A1A1 A21A A2

γ,0

γ,2

5

γ,0

α,2

d,5

β,1

A1

γ,2

α,βΠ    (    ) α,βΠ    (    )γΠ (                      )α,βΠ    (    ) α,βΠ    (    )γΠ (                      )
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Example (2)

γ,1

α,0

α,1 β,0

c,1

γ,1

γ,0

3A

d,5 γ,0b,0
a,1

α,1

β,1

A1 A2

β,0

Messages from right to left:

A

6

A3

β,0α,0

A3A2

α,1

b,0

A3

γ,5

1

α,1

A

β,0α,0

1

α,1 β,0

c,1

γ,6

γ,6

γ,5

β,1

A2

a,1

A3

6
β,0

α,2

1

2γΠ (    )α,βΠ    (                   )γΠ (    )α,βΠ    (                   ) γΠ (    ) γΠ (    )
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Example (3)

γ,1

α,0

α,1 β,0

c,1

γ,1

γ,0

3A

d,5 γ,0b,0
a,1

α,1

β,1

A1 A2

β,0

Reduced components and optimal plans:

α,2

Ac d
A

a,1

γ,2

β,1
5

6
α,1

b,0

A

α,2

a,b

1

d,5

d,5

γ,0

α,2

γ,6 γ,5

γ,6
c,1

β,1

α,β,Π          (   ) α,β,γ,Π          (   ) γ,Π     (   )
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Conclusion and further work

Conclusion

To our knowledge: the first method to perform factored optimal
planning

Some drawbacks:
◮ Undeterminisable weighted automata
◮ Communication graphs which are not trees

Further work

Partial determinisation

Turbo algorithms

Partially ordered local solutions

. . .
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Distributed A∗: context and principle

Context

a network of automata: A = A1‖ . . . ‖A2

a collection of agents: ϕ1, . . . , ϕn, one for each automaton

communication between agents by shared memory

Ai

vs i
0

w

ϕi maintains a queue Qi

(v , w) ∈ Qi

Ordering of Qi

Much promising elements have to
be at the head of Qi
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Distributed A∗: local cost

For v ∈ Si and w a synchronization word:

gi (v , w) is the best cost known to reach v from s0
i with

synchronization word w

hi (v) is a lower bound on the cost of a path from v to Fi

Ai

vs i
0

w

F i

gi (v , w) hi (v)
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Distributed A∗: global cost

For w a synchronization word:

H i
j (w) is a lower bound on the cost of accepted paths in Aj that

could be consistant with w

C i
j (w) will eventually be the optimal cost of an accepted path in Aj

which is consistant with w

Ai

vs i
0

w

F i

gi (v , w) hi (v)

Aj

H i
j (w)

C i
j (w)
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Distributed A∗: intuition

Ranking cost of (v , w)

g(v , w) + h(v) +
∑

j∈N (i)

H i
j (w)

Ordering of Qi

couples (v , w) are ordered by ranking cost

Termination and validity

special element o(w) – with optimal cost for w as ranking cost – to
terminate (when final state reached globally)

special element õ(w) to ensure validity (when final state reached
locally but not globally)
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