Master in Computer Science speciality Research in Computer Science University of Rennes 1

Distributed Optimal Planning in Large Distributed Systems

Loïg JEZEQUEL ENS Cachan Bretagne

Advisor:

Eric Fabre INRIA Rennes - Bretagne Atlantique

L. Jezequel (MRI)

Distributed Optimal Planning

Introduction: planning problem

Planning problem

- From an initial state, reach a goal state, by choosing and scheduling actions
- Useful in many domains:
 - Artificial intelligence (actions of a robot)
 - Industrial production (scheduling of tasks)

Three levels of difficulty

- Is there a solution ?
- Q Give a solution
- What is the best solution ?

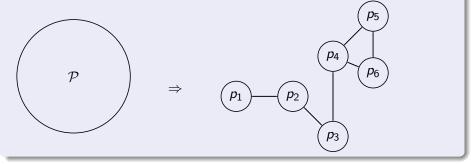
Solutions

- Sequence of actions
- Partial order of actions

Modular planning

Factored planning

Exploits the weak dependencies between variables



Challenges

- Find the factors (not explored here)
- Find local plans that combine into an (optimal) global plan

Outline

Message passing algorithm for modular optimal planning

Automated planning

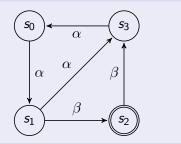
Automaton

$$\mathcal{A} = (S, T, \rightarrow, s_0, \lambda, \Lambda, F)$$

Planning

Find a path which reaches the goal

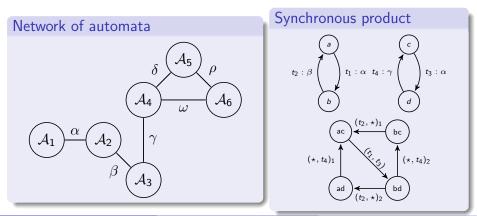
Example



Modular planning

Planning problem

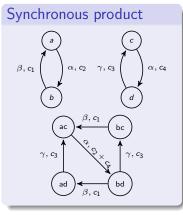
- Network of automata
- Composition by synchronous product
- Local/global plans



Modular optimal planning (1)

Weighted automaton

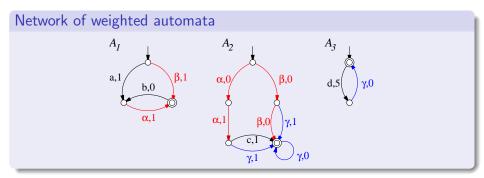
 $\mathcal{A} = (S, T, \rightarrow, s_0, \lambda, \Lambda, F, c, c_i, c_F)$



The problem

Given A = A₁ || ... ||A_n find an accepted word w_i in each A_i such that:
there is an accepted word w in A such that ∀i, w_{|A_i} = w_i,
this w is optimal in A,
without computing A nor L(A)

Modular optimal planning (2)



Two approaches

- Specialization of the message passing algorithm
 find all the optimal plans (top-down approach)
- Distributed A* algorithm
 - find one optimal plan (bottom-up approach)

Outline

Message passing algorithm for modular optimal planning

Weighted languages

Definition

- set of couples (u, w) where u is a word and w a cost
- from (non-deterministic) WA: accepted words associated to minimal costs

Intuition

All the valid plans in an automaton associated with their optimal cost (a plan is a word of the language)

Operations

Projection natural projection + cost minimisation: $P_{\{\alpha\}}(\{(\alpha\beta, 1), (\beta\alpha, 2), (\alpha\alpha, 3)\}) = \{(\alpha, 1), (\alpha\alpha, 3)\}$

Composition synchronous product of weighted languages (cost added when interleaving two words):

$$\mathcal{L}(\mathcal{A}_1) imes \mathcal{L}(\mathcal{A}_2) = \mathcal{L}(\mathcal{A}_1 imes \mathcal{A}_2)$$

Toward the message passing algorithm

From $\mathcal{L} = \mathcal{L}_1 \times \cdots \times \mathcal{L}_n$ consider the $\mathcal{L}'_i = P_{\Lambda_i}(\mathcal{L})$. They have the following properties:

- if (u_i, c) is optimal in \mathcal{L}'_i , then there is u such that $u_{|\Lambda_i} = u_i$ and (u, c) is optimal in \mathcal{L}
- if (u, c) is optimal in \mathcal{L} , then there is u_i such that $u_i = u_{|\Lambda_i|}$ and (u_i, c) is optimal in \mathcal{L}'_i

Objective

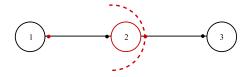
- compute the \mathcal{L}'_i (without computing \mathcal{L})
- 2 find optimal local words in these \mathcal{L}'_i
- interlace them to construct an optimal global plan

Axiom needed

$$\forall \Lambda_3 \supseteq \Lambda_1 \cap \Lambda_2, \ P_{\Lambda_3}(\mathcal{L}_1 \times \mathcal{L}_2) = P_{\Lambda_3}(\mathcal{L}_1) \times P_{\Lambda_3}(\mathcal{L}_2)$$

Message passing algorithm¹

Based on the communication graph



The message passing algorithm

$$\mathcal{M}_{i,j} \leftarrow \mathbb{I}, \forall (i,j) \in \mathcal{G}_{\mathcal{L}}$$
until stability of messages do
select an edge (i,j)
 $\mathcal{M}_{i,j} \leftarrow P_{\Lambda_i \cap \Lambda_j} \left(\mathcal{L}_i \times \left(\times_{k \in \mathcal{N}(i) \setminus j} \mathcal{M}_{k,i} \right) \right)$
done
 $\mathcal{L}'_i \leftarrow \mathcal{L}_i \times \left(\times_{k \in \mathcal{N}(i)} \mathcal{M}_{k,i} \right), \forall i \in \{1, \dots, n\}$

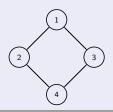
¹Eric Fabre. Bayesian Networks of Dynamic Systems. HDR Thesis, 2007.

L. Jezequel (MRI)

Drawbacks

Limitations due to the MPA

Communication graphs have to be trees



Limitations due to languages

Weighted languages are (potentially) infinite sets: necessity of a finite representation

Solution

Our weighted languages are 'regular'... we will use weighted automata in our computations

L. Jezequel (MRI)

Distributed Optimal Planning

Weighted automata²

Projection (on Σ)

- replace any symbol from Σ by ϵ (keeping costs)
- 2 ϵ -removal
- determinisation
- Inimisation

Composition

- synchronous product
- 2 minimisation

Validity

These operations are just implementations of the operations on weighted languages: they verify needed axioms

²Mehryar Mohri. Weighted automata algorithms. Springer, 2009.

Remarks on determinisation

- To use non-deterministic automata would work, but a part of optimisation is performed in determinisation
- Determinisation may have exponential cost, but it often reduces the size of the WA
- Not all WA are determinisable, but we can determinise partially

Experimental results

Random problems^a of 1 to 50 components with 2 to 10 states and 5 minutes time limit for solving

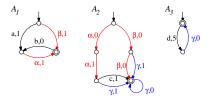
- 80% solved using determinisation
- 50% solved without determinisation (no more than 10 components)

^aBonet et al. *Directed unfolding of petri nets*. ToPNoC, 2008.

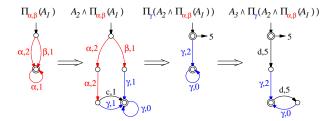
Outline

Message passing algorithm for modular optimal planning

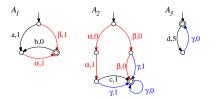
Example (1)



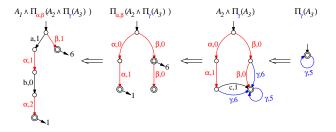
Messages from left to right:



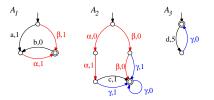
Example (2)



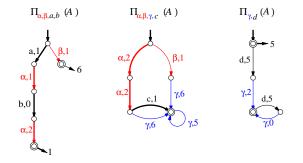
Messages from right to left:



Example (3)



Reduced components and optimal plans:



Conclusion and further work

Conclusion

- To our knowledge: the first method to perform factored optimal planning
- Some drawbacks:
 - Undeterminisable weighted automata
 - Communication graphs which are not trees

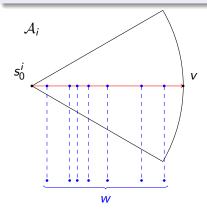
Further work

- Partial determinisation
- Turbo algorithms
- Partially ordered local solutions
- . . .

Distributed A^* : context and principle

Context

- \bullet a network of automata: $\mathcal{A}=\mathcal{A}_1\|\ldots\|\mathcal{A}_2$
- a collection of agents: $\varphi_1, \ldots, \varphi_n$, one for each automaton
- communication between agents by shared memory



 $arphi_i$ maintains a queue $oldsymbol{Q}_i$ $(oldsymbol{v},oldsymbol{w})\in oldsymbol{Q}_i$

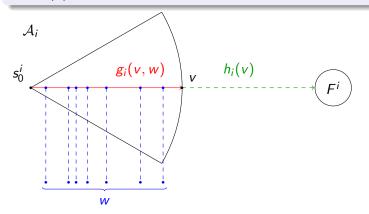
Ordering of Q_i

Much promising elements have to be at the head of Q_i

Distributed A^* : local cost

For $v \in S_i$ and w a synchronization word:

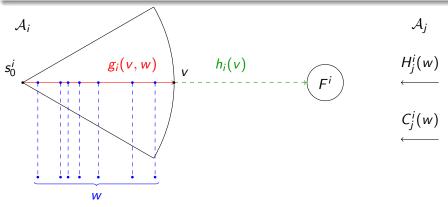
- g_i(v, w) is the best cost known to reach v from s_i⁰ with synchronization word w
- $h_i(v)$ is a lower bound on the cost of a path from v to F_i



Distributed A^* : global cost

For w a synchronization word:

- *H*ⁱ_j(w) is a lower bound on the cost of accepted paths in *A*_j that could be consistant with w
- Cⁱ_j(w) will eventually be the optimal cost of an accepted path in A_j which is consistant with w



Distributed A^* : intuition

Ranking cost of (v, w)

$$g(v,w) + h(v) + \sum_{j \in \mathcal{N}(i)} H_j^i(w)$$

Ordering of Q_i

couples (v, w) are ordered by ranking cost

Termination and validity

- special element o(w) with optimal cost for w as ranking cost to terminate (when final state reached globally)
- special element
 õ(w) to ensure validity (when final state reached locally but not globally)