Distributed Reachability Test in Large Distributed Systems

> Loïg JEZEQUEL Supervisor: Eric Fabre

> > M2R

Monday, the 2nd of February 2009

(3)

Introduction : planning problem

Planning problem

- From an initial state, reach a goal state...with allowed actions
- Useful in many domains :
 - Artificial intelligence (actions of a robot)
 - Industrial production (scheduling of tasks)

Three levels of difficulty

- Is there a solution ? (Reachability test)
- Q Give a solution.
- What is the best solution?

Solutions

- Sequence of actions
- Partial order of actions

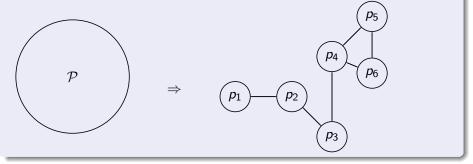
Image: A matrix

→ 3 → 4 3

Modular planning

Factored planning

Exploits the weak dependencies between variables.



Challenges

- Find the factors (not explored here)
- Find local plans that combine into a global plan

< ロ > < 同 > < 三 > < 三

Outline

Modular planning

An approach by language theory

- Global consistency
- Local consistency

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Automated planning

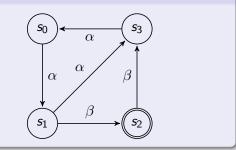
Automaton

$$\mathcal{A} = (S, T, \rightarrow, s_0, \lambda, \Lambda, F)$$

Planning

Find a path which reaches the goal.

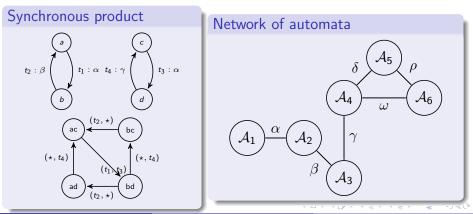
Example



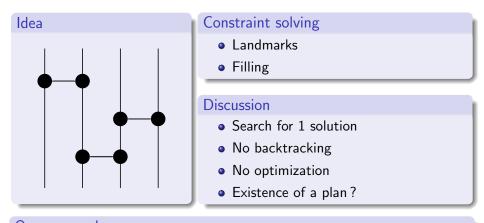
Modular planning

Planning problem

- Network of automata
- Composition by synchronous product
- Local/global plans



A solution



Our approach Search for all the plans!

A B < A B </p>

Outline

Modular planning

2 An approach by language theory

- Global consistency
- Local consistency

(3)

Language theory

From automata to languages

- A language associated to each automaton (in classical manner) : L(A)
- $L(\mathcal{A})$ is the set of all local plans for \mathcal{A}
- Synchronous product : $L(\mathcal{A}_1 \|_a \mathcal{A}_2) = L(\mathcal{A}_1) \|_I L(\mathcal{A}_2)$

Modular planning problem as languages

A set of languages $\{L_i \subseteq \Sigma_i^* | i \in I\}$ indexed by I

Solutions

- All global plans : $L = L_1 \| \dots \| L_N$ (very big)
- Another view : $L = E_1 || ... || E_N$, where $E_i = P_{I,\{i\}}(L)$

Important notions

- Global consistency
- Local consistency

Global Consistency

Definition

 $\mathcal{E} = \{E_i \subseteq L_i | i \in I\} \text{ is globally consistent with respect to } I \text{ if, } \forall i \in I, \\ E_i = P_{I,\{i\}}(||_{j \in I}E_j).$

Intuition

For each E_i , knowing all E_j $(j \neq i)$ can not help to reduce E_i .

Relation with planning (supremal global support)

A maximal set \mathcal{E} globally consistent with respect to a set of index I gives all the solutions to the global planning problem.

• • = • • = •

Algorithm for global consistency

How to construct supremal global support?

By computing $L = ||_{i \in I} L_i$ and then $E_i = P_{I,\{i\}}(L)$...this is not efficient.

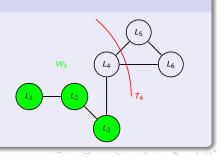
Idea of an algorithm

Alternation of projections and synchronous product, adding components one by one.

Algorithm

1
$$T_0 \leftarrow \Sigma_1, W_0 \leftarrow \Sigma_1^*$$

2 for $k = 1$ to $n - 1$ do
1 $J_k \leftarrow \{1, \dots, k\}$
2 $T_k \leftarrow \Sigma_{J_k} \cap \Sigma_{I \setminus J_k}$
3 $W_k \leftarrow P_{T_{k-1} \cup \Sigma_k, T_k}(W_{k-1} || L_k)$
3 $E_n \leftarrow W_{n-1} || L_n$



Local consistency

Definition

 $\mathcal{E} = \{ E_i \subseteq L_i | i \in I \} \text{ is locally consistent with respect to } I \text{ if, } \forall i, j \in I, \\ P_{\{i\},\{j\}}(E_i) = P_{\{j\},\{i\}}(E_j).$

Intuition

For E_i , knowing E_j ($j \neq i$) for all neighbors can not help to reduce E_i .

Relation with global consistency

$$\Sigma_1 = \{\alpha, \beta\}, \Sigma_2 = \{\alpha, \gamma\}, \Sigma_3 = \{\beta, \gamma\}$$
$$L_1 = \{\alpha\beta\}, L_2 = \{\gamma\alpha\}, L_3 = \{\beta\gamma\}$$

local : $P_{\{1\},\{2\}}(L_1) = P_{\{2\},\{1\}}(L_2)$ $P_{\{1\},\{3\}}(L_1) = P_{\{3\},\{1\}}(L_3)$ $P_{\{2\},\{3\}}(L_2) = P_{\{3\},\{2\}}(L_3)$ global : $L_1 || L_2 || L_3 = \emptyset$

Local consistency

Interests of supremal local support

- An over-approximation of supremal global support
- Simpler to compute than supremal global support
- Sometimes equivalent to supremal global support

Algorithm for supremal local support

- Based on the communication graphs of the problem
- Message passing algorithm
- Communication graphs coincide with trees : supremal global support

Outline

Modular planning

An approach by language theory

- Global consistency
- Local consistency

< ∃ > < ∃

< 67 ▶

Research plan

First step

Implement algebraic computations on languages in terms of automata.

Second step

Extend to distributed/modular search for optimal plans.

Third step?

Could we parallelize the A^* algorithm and compute an optimal and sequential plan in a distributed way? Is it also possible for a partially ordered plan?

< ∃ > < ∃