
Master in Computer Science speciality Research in Computer Science

Distributed Optimal Planning in Large
Distributed Systems
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Abstract: In this report we propose two approaches to factored planning (a relatively new method
of problem decomposition exploiting the locality of actions). The first approach is based on a message
passing algorithm and on weighted automata calculus. This approach suggests to always manipulate
all the plans of a component (e.g. an element of the decomposition of a planning problem) instead of
making assumptions on the coordination points between components (as previous approaches did). The
second approach is based on the A∗ algorithm and suggests a way to distribute it. The originality of
these two approaches is that we are able to ensure to find optimal plans.



Introduction

Various domains of computer science are related to planning. In particular automated planning is an area
of artificial intelligence (AI) which studies the planning process computationally. To be able to perform
planning automatically and in a safe way is clearly primordial in domains where a lot of money – or lives
– is involved. Indeed, some problems can involve so many variables that they can not be solved by a
human being in reasonable time (as for example an efficient reorganization of a network when a part of
it is down, the optimal management of several trucks transporting products between several places, or
even the schedule of a social event involving many people). But, more than in AI, a lot of problems in
computer science can be recasted as planning problems – in fact they can be recasted as the problem of
finding a path (potentially optimal) in a discrete state space, which is basically planning. For example,
some aspects of model checking, which is a formal verification technique, are based on the exploration
of the state space of a system in order to ensure that some property is verified [GNT04]: it can be seen
as planning. Another example is fault-diagnosis [SW05]: the problem is here to find paths in automata,
which is clearly a planning problem.

So, automated planning is the domain where one has to design a procedure to choose and schedule
actions in order to reach goal states from initial states. In fact automated planning is a vast domain and
contains different kind of problems. These problems can be separated in three main difficulty levels:

1. reachability problems consist in determining whether or not there exists a plan, these problems are
the simplest ones;

2. planning problems consist in finding a plan if there is one, these problems are a bit harder than
reachability problems (in fact, to solve a planning problem allows to answer to the corresponding
reachability problem, while solving a reachability problem does not necessary allow to exhibit a
plan);

3. optimal planning problems consist in finding a plan if there is one and ensure that this plan is
optimal (with respect to some costs associated to actions), this is the hardest problem (solving an
optimal planning problem ensures to solve the the corresponding planning problem while solving
a planning problem does not ensure to find an optimal plan).

Notice that that these three levels of difficulty do not handle every possible requirements: for example
one could need good plans but not necessarily optimal ones, which is not really a planning problem nor
an optimal planning problem.

An other important point to notice is that, even if, intuitively, a plan is a sequence of actions, this is
not a necessity: sometimes actions can occur in different orders without any difference in the outcome.
Hence, it is possible to express plans as partial orders of actions instead of sequences of actions [HRTW07].
Moreover, for a given problem, the representation of all the plans as partial orders of actions is more
compact than the representation of all the plans as sequences of actions.

The problems studied in automated planning can have very large state-spaces – sometimes even too
large to directly solve the problems. Thus, identify and exploit the structure of these problems is one of
the main challenges of automated planning. To be able to decompose problems is an important part of
this challenge: it allows to solve problems more easily or more quickly (or, for some of these problems,
allows to solve them, which is ever significant). Several ways to decompose planning problems have
inspired several efficient planning methods [Kno94] [BY94].
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In this report we focus on factored planning, a relatively new method which exploits locality of actions
in order to split a planning problem into several smaller planning problems (called components). Each
component has to be as much independent as possible from the other components. The problem can
then be solved by parts, with some consistency requirement between the local plans (solutions of the
components). What is really interesting about this method is that the components can be exponentially
more compact than the full problem (product of the components) they are extracted from, and, thus, the
algorithms involved in planning can be exponentially more efficient when manipulating these components.
However, the difficulty of this approach is to combinate local plans into global ones (e.g plans for the
full problem) which are feasible.

Several approach to factored planning currently exist [BD06] [BD08] but none of them considers the
costs of actions and, thus, none of them performs optimal planning.

In this report we give two new approaches to factored planning. Both performing optimal planning.
The first solution we propose consists in recasting the factored planning problem as an instance of a

more general theory of distributed optimization [Fab07] [Dec03]. This theory, combined with weighted
automata calculus [Moh09], leads to an algorithm for factored planning which generates optimal global
plans (when action costs are taken in a semiring, in our case (R+ ∪ {+∞},min,+,+∞, 0)). In fact,
in factored planning, as suggested before, a component is the restriction of a planning problem to a
subset of actions. There is interactions between components when some actions modify the variables
of several components. In our approach, each component is represented as a weighted automaton (e.g.
a transducer from action sequences – plans – to costs). The weighted automata operations allows to
manipulate all the locals plans of a component, at the same time and in an efficient way. Moreover these
operations ensure that the plans ultimately chosen are compatibles and part of optimal global plans. The
fact that we deal with all possible plans at the same time – thanks to weighted automata – is the main
difference between our approach to factored planning and the other ones (which make hypothesis on
coordination points between components). As we explain in this report, this first approach is practical
if: 1) components are small enough to make the necessary weighted automata operations tractable and
2) the interaction graph of the components is sparse enough. The complexity of our approach to factored
planning is related to the tree width of this interaction graph, as it was in previous approaches.

The second solution we propose is some kind of distributed A∗ algorithm. The A∗ algorithm [HNR68]
is an efficient algorithm for exploration of state-spaces, using heuristic functions to determinate in which
order the states have to be considered. Our algorithm is very close to A∗ but, instead of just exploring
the state-space of a planning problem, we focus on couples (v, w) where v is a state and w a sequence
of coordination points. For that we consider a new heuristic function, provided by the neighbors of
a component, which depends of w. We proved this second approach correct when there is only two
components and are still working on the general case.

This report is organized as follows. In the first chapter we start by introducing formally automated
planning and giving two known approaches to it: A∗ algorithm (which gives plans as sequences of actions)
and a petri-nets based method (which gives plans as partial orders of actions). After that we introduce
factored planning and give known methods to solve it: an approach based on landmarks (e.g. which try
to guess the coordination points) and an approach which was developed for fault diagnosis.

In the second chapter we present our first approach for factored optimal planning. We first give an
idea of the general theory we use, in particular the message passing algorithm on which is based our
approach. Then we explain how the message passing algorithm can be implemented in terms of weighted
automata operations and how it solves the factored optimal planning problem.

In the third chapter we present our second approach to factored optimal planning, first in the simple
case where only two components are involved, and then in the general case.
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Chapter 1

Planning

This chapter is a short introduction to automated planning and factored planning (the modular approach
to automated planning). In the first section we give the formal definition of a planning problem, and
present two solutions to it: a sequential one, based on the A∗ algorithm [HNR68], and a partial order
one, based on petri nets unfoldings [HRTW07]. In the second section we introduce the factored planning
problem. We also present two solutions to this problem: the first one is based on constraint solving
approaches [BD08], and the second one is based on synchronization between languages [SW05].

1.1 Automated Planning

This first section is focused on the traditional planning problem, also called automated planning problem.
We first introduce a classical formalization of planning problems. After that we focus on two solutions
of such a problem: 1) a solution based on the A∗ algorithm, which provide plans as sequences of actions,
2) a solution based on petri-nets and their unfoldings, which provide plans as partial orders of actions.

1.1.1 Basic definitions

We call planning problem the problem of choosing and scheduling a set of actions in order to reach some
final state from some initial state. To define such a problem formally we first have to introduce the
notion of planning operator. In the following, for a set A of variables, we denote by L = A∪ {¬a|a ∈ A}
the set of literals over A.

Definition 1. A planning operator over a set A of variables is a pair 〈p, e〉 such that p ∪ e ⊆ L, where
p is called the set of preconditions and e the set of effect literals.

In the following we define the complement l of a literal l by: a = ¬a and ¬a = a, for a a variable.
We extend this definition to the complement L = {l|l ∈ L} of a set L of literals.

Definition 2. A planning problem is a tuple P = (A, I,O,G) where: A is a finite set of variables,
called state variables; I : A → {0, 1} is an initial state; G is a set of goal states; O is a set of planning
operators over A.

A solution – also called a plan – to the planning problem P = (A, I,O,G) is a sequence s =
s0〈p0, e0〉s1〈p1, e1〉 . . . sk of states (a state is a valuation of all the variables of A) and planning operators
such that:

• s0 = I;

• sk ∈ G;

• ∀0 ≤ i < k, 〈pi, ei〉 ∈ O;

• ∀0 ≤ i < k, the following holds: pi ⊆ si and si+1 = si \ ei ∪ ei (in this case we say that we can go
from the state si to the state si+1 using operator 〈pi, ei〉).

In fact we are interested in finding optimal solutions to a given planning problem: solutions which,
if each operator (or action) has a cost, minimize the total cost of reaching the goal.
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1.1.2 The A
∗ algorithm

A first and well known way to find optimal solutions to a planning problem is to use the A∗ algorithm,
introduced in [HNR68] and improved in [HNR72]. This algorithm finds a minimum cost path in a
(directed) graph, using heuristics functions. Thus, we first explain how a planning problem can be
represented as a graph, and then define the notion of heuristic function and present the A∗ algorithm.

From planning problems to directed graphs We define as the path-finding problem G = (V, Vi, E, F ),
the problem of finding a path from Vi ∈ V to any element of F ⊆ V in the directed graph g = (V,E),
where the elements of V are called the vertices of g and the elements of E ⊆ V × V are called the
(directed) edges of g.

It is easy to see that solving the planning problem P = (A, I,O,G) is equivalent to solving the path-
finding problem G = (V, Vi, E, F ) where: the set of vertices V matches exactly the set of all possible
valuations over A (i.e. the states of P); the initial vertex Vi ∈ V corresponds to the state I; the set
of final vertices F matches exactly the set of states G; there is an edge (Vj , Vk) ∈ E, from Vj ∈ V to
Vk ∈ V , if and only if it is possible to go from state sj (corresponding to Vj) to state sk (corresponding
to Vk) in P using an operator from O.

If we assign to any edge e of E a weight corresponding to the cost associated to the operator from
O represented by this edge then a minimal-cost solution of the path-finding problem G = (V, Vi, E, F )
gives an optimal solution to the planning problem P = (A, I,O,G).

Heuristic functions and A∗ algorithm The A∗ algorithm gives a way to compute an optimal solution
to a path-finding problem G = (V, Vi, E, F ). It is based on an evaluation function f : V → N. The idea
is to refine, for any v ∈ V the value f(v), which is an estimate of the optimal path reaching F from Vi,
going through v. In fact f is the sum of two functions: g which gives the cost of the actual optimal path
from Vi to v; and h which gives an estimation of the cost of an optimal path from v to F . The function
h is called heuristic function and some conditions about it ensure that the A∗ algorithm computes an
optimal path.

Algorithm 1 is the A∗ algorithm. It involves some data structures: info is an array with an entry
for each vertex, info[v] is the entry corresponding to vertex v and contains a tuple (vp, g, f) where vp is
the predecessor of v on the current shortest path from vi to v; g is the cost of this path; f = g + h(v)
where h is the function described above. The stack open contains the next vertices to threat and the
operation add(v, open) add the vertex v to the stack open before v1 and after v2 such that info[v2].f ≤
info[v].f ≤ info[v1].f (if v1 does not exist then v is the last element of the stack and if v2 does not exist
then v is the first element of the stack).

Algorithm 1 A∗ algorithm

1: info[s]← (Nil, 0, h(s))
2: add(s, open)
3: let v = pop(open)
4: if v ∈ F then

5: return v
6: else

7: foreach v′ such that (v, v′) ∈ E do

8: compute fv(v′)
9: if fv(v′) < info[v′].f then

10: info[v′]← (v, g(v′, v), fv(v′))
11: add(v′, open)
12: endif

13: done

14: goto 3
15: endif

In [HNR68] is proved that, if h(v) is smaller than the minimal cost to reach F from v, then the A∗

algorithm is admissible: it will always terminate and find a path with minimal cost. Hence it is possible
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to use the A∗ algorithm to give an optimal solution to a planning problem, by first translating this
problem into a path-finding problem and then applying the A∗ algorithm to this new problem.

The main challenge when using A∗ algorithm is to find heuristics. In fact these heuristic functions
can be automatically generated from a problem. However this generation has to be done in an efficient
way: heuristic functions have to be easily computable (e.g. in polynomial time) and should provide
tight lower bounds. A classical way to compute heuristic functions is to use abstractions (i.e. mappings
reducing the state-space). The heuristic function computed from an abstraction G′ of a graph G is just
the exact distance in this abstraction (which can be much more simple to compute than the distance in
G if G′ is well-chosen). Some example of abstraction is given, for example, in [HHH08].

One can notice that the A∗ algorithm only gives one optimal solution – i.e. a sequence of operators,
or actions – to a given planning problem. In the following we discuss another way to solve planning
problems, based on petri net unfoldings, which gives a partially ordered solution to a given planning
problem.

1.1.3 Partial orders

Another way to solve planning problems was proposed in [HRTW07]. This solution is based on petri net
unfoldings (and more precisely 1-safe place-transition nets, which can be unfolded by tools such as MOLE)
which are an exact reachability analysis. In this section we first focus on the translation of a planning
problem into a 1-safe place-transition net, and then give some intuitions about the link between petri
net unfoldings and reachability analysis. For more information about petri nets and unfoldings we refer
the reader to [McM93], [ERV96] and [BHHT08].

For the following we denote by P = (A, I,O,G) a planning problem.

Definition 3. A planning operator 〈p, e〉 ∈ O is 1-safe if e ⊆ p.

The first step of the translation from planning problems to petri nets is to map any planning problem
to an equivalent one such that all planning operators are 1-safe (it will ensure that the petri net built with
our transformation is 1-safe). In fact each operator is replaced by 2|e\p| operators. Given an operator
o = 〈p, e〉 ∈ O, for all possible e′ ⊆ e \ p we define a new operator which works like o when o changes all
the literals in e′. These new operators are 〈p∪ e′ ∪ (e \ p) \ e′, e′ ∪ e∩ p〉. In fact, with an example this is
much more intuitive: if o = 〈{a}, {¬a, b}〉 the new operators which replace o will be o1 = 〈{a, b}, {¬a}〉
(when e′ = ∅) and o2 = 〈{a,¬b}, {¬a, b}〉 (when e′ = {b}).

Definition 4. A planning operator 〈p, e〉 ∈ O has positive preconditions if none of the elements of p is
of the form ¬a for a ∈ A.

The second step of the translation is to map our planning problem with only 1-safe operators to
an equivalent problem where all planning operators are 1-safe and have positive preconditions, indeed
negative preconditions does not exist in petri nets. The idea is to introduce a new set Â of state variables
defined as {â|a ∈ A}. Then each negative precondition ¬a is replaced by a corresponding positive
precondition â and the variable â is forced to have the value opposite to a. Formally, o = 〈p, e〉 ∈ O is
replaced by o′ = 〈p′, e′〉, where p′ = (p ∩A) ∪ {â|¬a ∈ p} and e′ = e ∪ {¬â|a ∈ e ∩A} ∪ {â|¬a ∈ e ∩A}.

For example o2 = 〈{a,¬b}, {¬a, b}〉 will become o′2 = 〈{a, b̂}, {¬a, b, â,¬b̂}〉.

Definition 5. A place-transition net is a tuple (P, T, F,M0) where P and T are disjoint finite sets –
of places and transitions respectively – the flow relation F : (P × T ) ∪ (T × P ) → {0, 1} indicates the
presence or absence of arcs, and M0 : P → N is the initial marking.

A marking M : P → N enables a transition t if ∀p ∈ P, F (p, t) ≤ M(p). The firing of a transition t
moves the net from the marking M to the new marking M ′ such that ∀p ∈ P , M ′(p) = M(p)−F (p, t) +
F (t, p).

A place-transition net is 1-safe if, after any number of firings, the number of tokens in each place
does not exceed 1.

One can now map our planning problem P = (A, I,O,G) to the place-transition net (P, T, F,M0)
defined as follows, an example of such a mapping is given in Figure 1.1:

• P = A ∪ Â;
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• T = ∪o∈OS(o), where S(o) is the set of 1-safe operators with positive precondition obtained from
o;

• F is obtained from t = 〈p, e〉 ∈ T as {(a, t)|a ∈ p} ∪ {(t, a)|a ∈ e ∨ a ∈ p ∧ ¬a /∈ e};

• ∀a ∈ A,M0(a) = 1 if and only if I(a) = 1 and M0(â) = 1 if and only if I(a) = 0, and ∀a ∈
A ∪ Â,M0(a) = 0 ∨M0(a) = 1.

1-safe operators associated with o:

o1 = 〈{a, b}, {¬a}〉

o2 = 〈{a,¬b}, {¬a, b}〉

1-safe operators with positive preconditions

associated with o:

o′1 = 〈{a, b}, {¬a, â}〉

o′2 = 〈{a, b̂}, {¬a, b, â,¬b̂}〉

Place-transition net associated with o:

a b

o′1 o′2

â b̂

Figure 1.1: Mapping of the operator o = 〈{a}, {¬a, b}〉 into a place-transition net (we do not care about
marking because we only transform an operator and not a full planning problem)

Once this place-transition net is built it is possible to use some unfolding program, such as MOLE, to
find a solution to the corresponding planning problem. Indeed the unfolding of petri nets is an exact
reachability analysis method. It produces, from a petri net, an occurrence net ; whose nodes are called
conditions and events, and represent particular occurrences of places and transitions, respectively, in
potential runs – i.e. sequences of firings – of the original petri net (in fact an unfolding is not always
finite, that is why programs such as MOLE construct finite complete prefixes of the unfoldings, which give
the same knowledge as the whole unfolding). The unfolding eliminates cycles and backward conflicts,
which allows one to know exactly which transitions were fired to reach a given marking. Returning to
our planning problems these unfoldings allows to know exactly which operators – or actions – were used
to give a certain value to some variable at some point of the plan.

Moreover, unfoldings preserve concurrency information. The plans obtained from an unfolding will
be partially ordered: if some operators can be used at the same time in a plan then they will not be
ordered in it. This notion of concurrency is simpler to understand with an example. Figure 1.2 represents
an occurrence net, the conditions are represented by circles and the events by squares. The events e2

and e3 are concurrent: one can not know which will occur first.

• e1

e2

e3

e4

Figure 1.2: An occurrence net

In [HRTW07] and [BHHT08] some solutions are proposed to improve the efficiency of MOLE unfolding
by heuristic approaches (taking inspiration from A∗ algorithm). The idea is, when testing the reachability
of a given state – or set of states – to use a function to estimate the best next step in the unfolding (e.g.
the step which seems to be the more relevant for reaching the goal). When using these techniques it is
important to ensure that the finite prefix obtained is complete.
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1.2 Factored Planning

Sometimes planning problems involve a lot of variables, making such problems untractable if threated
directly. A natural idea to solve these large problems is to separate them in several smaller subproblems
(called factors), solve these subproblems independently, and merge the results. This way to solve planning
problems, called factored planning or modular planning, was presented for example in [BD06]. Factored
planning can be considered as two independent problems, both hard to solve: 1) separate a problem in
factors, 2) solve each factor independently, ensuring that all the solutions are compatible (e.g. they can
be combined into a solution for the original problem). In the following we focus on the second point
which we call the factored planning problem.

We first describe several ways to define formally factored planning problems. Then we present two
different solutions to these problems: one which was described in [BD08], and another based on a work
about fault diagnosis [SW05].

1.2.1 From automated planning to factored planning

A first representation of a factored planning problem is developed in [BD08], and suggests to define
subproblems by subsets of the operators of a classical planning problem. This representation is described
more formally in the definition below.

Definition 6. A factored planning problem is given by a tuple (A, I, {Oi}ki=1, G) such that: A is a set
of state variables, I is an initial state, and G is a set of goal states, as in a planning problem. The set
Oi contains the operators 〈p, e〉 (as in a planning problem) that can be used to solve the ith subproblem.

One can note that a factored planning problem – or modular planning problem – is a collection of
several planning problems with interactions between them: some state variables are shared and, thus,
using an operator in one problem could change another problem variables values. Of course one could
consider such a problem as a unique planning problem, with strong independence of variables, and solve
it in one time. But this is not an acceptable solution as factored planning problems can have a huge
number of variables. In fact it is more relevant to solve it in a modular way: each planning problem
should be solved independently, in a way such that the global plan, reunion of all the plans obtained for
the subproblems, is a valid plan and, if possible, an optimal plan, for the whole planning problem. It is
clear that such a way to solve planning problems leads to distributed solving: each subproblem can be
solved by a independent agent, while the other subproblems are solved by other agents. However, the
main argument in favor of a modular solving of planning problems is that it can be impossible (or very
difficult) to solve a given planning problem in one time, while it will be feasible in a modular way: the
number of potential plans in the whole problem can be much higher than in each subproblem.

In other words a factored planning problem is a collection of smaller planning problems (Ai, Ii, Oi, Gi)
k
i=1,

where: Ai is the set of variables from A involved in the operators of Oi; the local state Ii is the projec-
tion over Ai of I; and the set Gi is the projection over Ai of G. These problems have to be solved, as
much independently as possible, in a way such that the global plan – reunion of all the local plans of the
subproblems – is a solution to the planning problem (A, I,O =

⋃

i Oi, G). Instead of considering the sub-
problems (Ai, Ii, Oi, Gi) we could consider the subproblems (Ai, Ii, O|Ai

, Gi), where O|Ai
= {o|Ai

|o ∈ O},
and o|Ai

is the restriction of o = 〈p, e〉 to the variables of Ai: o|Ai
= 〈p ∩ Li, e ∩ Li〉, where Li is the set

of literals over Ai.

It is also possible to represent a factored planning problem as a network of automata. The idea is
that each automaton represents a subproblem and synchronizes with the automata which share variables
with it. We give an idea of how to transform a factored planning problem as described in Definition 6
into a network of automata.

Definition 7. An automaton is a tuple A = (S, T, f, s0, λ,Λ, F ) where: S is a set of states; s0 is the
initial state; T is a set of transitions; f ⊆ (S × T ) ∪ (T × S) is a flow relation such that ∀t ∈ T,∃!s ∈
S, (s, t) ∈ f ∧ ∃!s ∈ S, (t, s) ∈ f ; λ : T → Λ affects labels to the transitions; and F is a set of final, or
goal, states.

From this definition comes an intuitive mapping of a subproblem Pi = (Ai, Ii, O|Ai
, Gi), as described

above, into an automaton A = (S, T, f, s0, λ,Λ, F ):
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• s0 corresponds to Ii;

• S corresponds to all the possible states of Pi;

• Λ corresponds to the operators of O;

• there is a transition T between s1 ∈ S and s2 ∈ S if and only if an operator o|Ai
∈ O|Ai

allows to
move from the state corresponding to s1 to the state corresponding to s2;

• λ associates to each transition the corresponding operator o;

• F corresponds to Gi.

In such a subproblem Pi defined as an automaton A = (S, T, f, s0, λ,Λ, F ) a solution is a path from
s0 to F (e.g. a sequence s0, t0, s1, . . . , tk−1, sk where ∀0 ≤ i < k, (si, ti) ∈ f and (ti, si+1) ∈ f and
sk ∈ F ). One can clearly deduce from such a solution π = s0, t0, s1, . . . , tk−1, sk a plan for Pi just by
applying λ to π in the following way: λ(π) = λ(t0) . . . λ(tk−1).

In fact, for a factored planning problem (A, I, (Oi)
k
i=1, G), we map each local problem (Ai, Ii, O|Ai

, Gi)
to an automaton Ai = (Si, Ti, fi, s0i, λi,Λi, Fi). The transitions ti of Ai and tj of Aj which corresponds
to the same operator o – e.g ti corresponds to o|Ai

and tj corresponds to o|Aj
– are called shared

transitions. Our automata have to synchronize: if Ai ∩ Aj 6= ∅ then if the local plan in automaton
Ai uses a transition shared with Aj , then the local plan in automaton Aj also has to use this shared
transition “at the same time”. This notion of “same time” can be formalized by the synchronous product
of automata.

Definition 8. The synchronous product A1‖aA2 of the automata A1 = (S1, T1, f1, s01, λ1,Λ1, F1) and
A2 = (S2, T2, f2, s02, λ2,Λ2, F2) is A = (S, T, f, s0, λ,Λ, F ) defined by:

• S = S1 × S2 and s0 = (s01, s02);

• T = {(t1, t2)|t1 ∈ T1∧t2 ∈ T2∧λ1(t1) = λ2(t2)}∪{(t1, ⋆2)|t1 ∈ T1∧λ1(t1) ∈ Λ1\Λ2}∪{(⋆1, t2)|t2 ∈
T2 ∧ λ2(t2) ∈ Λ2 \ Λ1};

• f is given by:

– ((s1, s2), (t1, t2)) ∈ f and ((t1, t2), (s
′
1, s

′
2)) ∈ f if and only if (si, ti) ∈ fi and (ti, s

′
i) ∈ fi for

i ∈ {1, 2},

– ((s1, s2), (t1, ⋆2)) ∈ f and ((t1, ⋆2), (s
′
1, s2)) ∈ f if and only if (s1, t1) ∈ f1 and (t1, s

′
1) ∈ f1,

– ((s1, s2), (⋆1, t2)) ∈ f and ((⋆1, t2), (s1, s
′
2)) ∈ f if and only if (s2, t2) ∈ f2 and (t2, s

′
2) ∈ f2;

• Λ = Λ1 ∪ Λ2.

• F = F1 × F2

One can notice that the automaton A, synchronous product of all the automata of a network gives
all the solutions to the corresponding planning problem.

Finally we can represent the factored planning problem in terms of languages: if in the formalization
with automata networks, described above, we replace each automaton by its language, we can use
operations about languages instead of operations about automata to solve the planning problem. This
formalization was developed in [SW05] for the fault diagnosis problem.

In the next sections we examine these formalizations, given two modular solutions to factored planning
problem: one in the context of Definition 6 (Section 1.2.2) and the other in the context of languages
(Section 1.2.3).
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1.2.2 A solution based on landmarks

A distributed way to solve factored planning problems was proposed in [BD08], using the representation
of the problem proposed in Definition 6. The idea is to assume that each subproblem has a finite and
determined maximum number δ of coordination points: in a solution to this subproblem no more than
δ operators which uses variables shared with other subproblems will be used. Then the assignation of
operators to these coordination points is considered as some constraint problem – as described in [Dec03]
– with two kinds of constraints (coordination constraints to decide which operator should be used at each
coordination point, and internal-planning constraints to find a plan with only private actions of a unique
agent between the coordination points). The resolution of the whole problem involves coordination
between subproblems, in order to solve this constraint problem. If it does not lead to a solution the
maximum number of coordination points is incremented.

More formally, using the notations of Definition 6 (and assuming that each operator has positive
preconditions), for the ith subproblem Pi = (A, I,Oi, G), we denote by Ai the variables involved in oper-
ators of Pi, defined as:

⋃

〈p,e〉∈Oi
p∪ e. For the subproblem Pi we also distinguish two types of variables:

internal variables and public variables (or shared variables), defined as Aint
i = Ai \

⋃

j∈{1,...,k}\{i} Aj and

Apub
i = Ai \ Aint

i . From this we define for each subproblem Pi a set of internal operators Oint
i = {o =

〈p, e〉|o ∈ Oi ∧ p ∪ e ⊆ Aint
i } and a set of public operators Opub

i = Oi \Opub
i .

A constraint satisfaction problem, as presented in [Dec03], is defined by a finite set of variables
U = {u1, . . . , uk}, an associated set of domains D = {D1, . . . ,Dk} which list the possible values for each
variable: Di = {v1, . . . , vn}, and a set of constraints C = {C1, . . . , Ct} over these variables. A constraint
Ci is a relation defined on a subset of variables. The relation denotes the variables’ simultaneous legal
value assignments.

Here we associate a variable to each subproblem: U = {ui}ki=1 where ui is associated to the ith

subproblem Pi = (A, I,Oi, G). The variable ui represents the choices of coordination points for the
subproblem Pi. It is a sequence ui = u1

i , . . . , u
δ
i which size is δ (the maximum number of coordination

points) and where uj
i is either a public operator from Opub

i or an empty symbol. The value of ui gives
the public part of the plan si which will used to solve the ith subproblem: it is a subsequence of si which
contains all the occurrences of public operators in si.

As suggested above we have two types of constraints, here defined in a high level manner instead of
in terms of relations:

Coordination constraints: an assignment (θ1, . . . , θk) to U satisfies this constraint if and only if, for

1 ≤ i ≤ k, 〈pi, ei〉 is at position t in θi implies that for each p ∈ pi ∩Apub
i the following holds:

• for some θj , 〈pj , ej〉 is at position t′ in θj and p ∈ ej and t′ < t (“someone supplies p before
t”); and

• for no θl, 〈pl, el〉 is at position t′′ in θl and ¬p ∈ el and t′ ≤ t′′ ≤ t (“nobody destroys p in
[t′, t]”).

Internal-planning constraints: an assignment (θ1, . . . , θk) to U satisfies this constraint if and only
if, for each θi = o1 . . . oδ, the problem (Ai, I ∩ Ai, O

int
i , ∅, (o1|int, . . . , oδ|int)), called problem with

operator landmarks, has a solution. The goal of the problem with operator landmarks is to find a
solution to the planning problem (Ai, I∩Ai, O

int
i ∪{o1|int, . . . , oδ|int}, ∅) such that (o1|int, . . . , oδ|int)

is a subsequence of this solution, where ol|int is the projection on Ai of the public operator ol.

We denote by CSPδ the constraint satisfaction problem described above. One can define if such a
problem has a solution, and, if it exists, find one of its solutions. This is the purpose of Algorithm 2,
which solves in a modular way the factored planning problem.

In [BD08] two important properties are given, which prove the validity of Algorithm 2:

1. if an assignment (θ1, . . . , θk) is a satisfying assignment to CSPδ, then it can be used to build a full
solution for (A, I, {Oi}

k
i=1, G);

2. for each problem (A, I, {Oi}ki=1, G) there exist δ such that CSPδ is solvable.

Hence, Algorithm 2 provide a solution to a factored planning problem. The main part of this algo-
rithm is to find a solution to CSPδ. This resolution involves two phases: first the landmarks – i.e. the
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Algorithm 2 solution to (A, I, {Oi}
k
i=1, G)

1: δ ← 1
2: loop

3: construct CSPδ

4: if CSPδ has a solution then

5: build a solution ρ to (A, I, {Oi}
k
i=1, G) from a solution to CSPδ

6: return ρ
7: else

8: δ ← δ + 1
9: endif

10: endloop

coordination points – have to be chosen (using the coordination constraints) and then it is necessary to
fill the local plans, using these landmarks (it corresponds to internal-planning constraints). This way
to solve the problem does not really use all the characteristics of planning problems. The choice of
coordination points could be improved, involving methods such as backtracking: instead of trying to find
coordination points for all the subproblems at once it could be possible to find potential coordination
points for one subproblem and then try to extend them to another subproblem, and so on. If for one
subproblem it is impossible to find coordination points consistent with the current coordination points
for other problems then the coordination points for the previous subproblem have to be changed.

Moreover this solution does not necessary give an optimal plan and there is no result in [BD08] about
a way to find an optimal one. The only fact is that the solution obtained is optimal with regard to δ:
the number of coordination points used is minimal.

In the next part we discuss another solution to factored planning problem, based on languages, which
gives all the possible plans for a given problem.

1.2.3 A solution based on languages

In this section we focus on two algorithms proposed in [SW05], that can potentially be applied to solve the
factored planning problem, using the formalism of language theory, as it was suggested in Section 1.2.1.
These algorithms were introduced for distributed fault diagnosis but are also relevant for planning. One
important point about this language theory approach is that instead of searching for a single plan, as in
Section 1.2.2, we search for all the plans for a given planning problem. This induces potential increasings
of complexity but conducts to the solution of a more general problem.

We first give basic notions of language theory, in particular the notions of local and global consis-
tencies, then define the factored planning problem in terms of languages, and finally give algorithms to
achieve local and global consistencies and discuss about the links between these consistencies and the
planning problem.

Definitions Let Σ be an alphabet. A word over Σ is a finite sequence of elements of Σ. We denote
by Σ+ the set of all possible words over Σ. Let ǫ be the empty word, we denote by Σ∗ the set of words
Σ+ ∪ {ǫ}. A language L is a subset of Σ∗.

Let Σ′ ⊆ Σ, we define the natural projection P : Σ→ Σ′ as:

• P (ǫ) = ǫ;

• ∀σ ∈ Σ, P (σ) =

{

σ if σ ∈ Σ′

ǫ if σ /∈ Σ′ ;

• ∀ω ∈ Σ∗,∀σ ∈ Σ, P (ωσ) = P (ω)P (σ).

Let A ⊆ Σ∗, we denote by P (A) the set {P (ω)|ω ∈ A}. The inverse image function of P is P−1 : 2Σ′∗

→
2Σ∗

, defined by:
∀U ⊆ Σ′∗, P−1(U) = {ω ∈ Σ∗|P (ω) ∈ U}.

10



Let Σ1 and Σ2 be two alphabets, such that Σ = Σ1∪Σ2. We denote by P1 : Σ∗ → Σ1 and P2 : Σ∗ → Σ2

the natural projections over Σ1 and Σ2. Let L1 ⊆ Σ∗
1 and L2 ⊆ Σ∗

2 be two languages. The synchronous
product of L1 and L2 is defined by L1‖L2 = P−1

1 (L1) ∩ P−1
2 (L2). One can notice that L1‖L2 = {ω ∈

Σ∗|P1(ω) ∈ L1 ∧ P2(ω) ∈ L2}. The synchronous product is commutative and associative. Hence, for an
index set I, a set of alphabets {Σi|i ∈ I}, and a corresponding set of languages {Li ⊆ Σ∗

i |i ∈ I}, the
synchronous product ‖i∈ILi is well defined.

Let I be an index set, {Σi|i ∈ I} is a set of alphabets, and {Li ⊆ Σ∗
i |i ∈ I} is a corresponding set of

languages. By PJ,K we denote the natural projection from J ⊆ I to K ⊆ I. We can define two notions
of consistency, as in [SW05]:

Global consistency: A set E = {Ei ⊆ Li|i ∈ I} is globally consistent with respect to I if, ∀i ∈ I,
Ei = PI,{i}(‖j∈IEj).

Local consistency: A set E = {Ei ⊆ Li|i ∈ I} is locally consistent with respect to I if, ∀i, j ∈ I,
P{i},{j}(Ei) = P{j},{i}(Ej).

To express the factored planning problem in terms of language theory one can use the automata
version of this problem presented in 1.2.1. Each automaton is replaced by its language, Li with the
notations defined above, and the synchronous product between automata is replaced by the synchronous
product between languages. In fact we are interested in computing E which are globally consistent with
respect to I. Moreover we would like to obtain the maximal E which is globally consistent with I (where
order between these sets is defined as: E ′ ≤ E if and only if ∀i ∈ I, E′

i ⊆ Ei). The planning problem with
languages can be formally defined as follow.

Definition 9. A set of languages {Li ⊆ Σ∗
i |i ∈ I} indexed by I is a planning problem, where the

languages are the components. The solution to this planning problem is the maximal set {Ei ⊆ Li|i ∈ I}
which is globally consistent with respect to I.

The relation between global consistency and solutions to a planning problem is quite similar to the
idea of coordination points presented in the previous section. The projection of elements from Ei, part
of the set described in the Definition 9, over the shared elements of Σ∗

i gives all the landmarks – e.g.
sequences of coordination points – which can be extended into a plan for the global problem.

In the following we first give the solution proposed in [SW05] to solve the planning problem with
languages. Then, we focus on [Fab07] and explain why local consistency can also be useful.

Global consistency In [SW05] an algorithm is given to find the maximal set E = {Ei ⊆ Li|i ∈ I}
which achieves global consistency with respect to I. We could just compute Ei as PI,{i}(‖j∈ILj) for
all i ∈ I, but, if there is a huge number of components, compute directly ‖j∈ILj could be infeasible.
Algorithm 3 computes En, that is PI,{n}(‖j∈ILj). By ΣJ , for J ⊆ I, we denote

⋃

j∈J Σj .

Algorithm 3 En = PI,{n}(‖j∈ILj) for I = {1, . . . , n}

1: T0 ← Σ1, W0 ← Σ∗
1

2: for k = 1 to n− 1 do

3: Jk ← {1, . . . , k}
4: Tk ← ΣJk

∩ ΣI\Jk

5: Wk ← PTk−1∪Σk,Tk
(Wk−1‖Lk)

6: endfor

7: En ←Wn−1‖Ln

In fact, in the worst case, Algorithm 3 has the same complexity as for computing the whole syn-
chronous product of the Li. But, in practice, the complexity is frequently much lower than for the whole
synchronous product. Moreover, it is possible, instead of counting from k = 0 to k = n − 1 to rely on
heuristics for the enumeration of languages, in order to obtain smaller complexities. This is described
in [SW05].
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Local consistency One can notice that global consistency implies local consistency. Unfortunately
the reverse is not generally true. For example, if Σ1 = {α, β}, Σ2 = {α, γ}, and Σ3 = {β, γ}. One can
notice that for L1 = {αβ}, L2 = {γα}, and L3 = {βγ}, the following holds: P{1},{2}(L1) = P{2},{1}(L2),
P{1},{3}(L1) = P{3},{1}(L3), and P{2},{3}(L2) = P{3},{2}(L3), thus, local consistency is achieved; while
L1‖L2‖L3 = ∅, thus, global consistency is not achieved.

Thus one can ask why we are interested in local consistency. In fact, an important thing to notice is
that the maximal set globally consistent with respect to an index set I is smaller than the maximal set
locally consistent with respect to I: local consistency gives an over-approximation of global consistency.
Moreover local consistency is generally easier to achieve than global consistency. Another point is that,
as we explain below, local consistency is sometimes equivalent to global consistency.

We now define the concept of communication graph of a planning problem, which allows us to derive
an algorithm achieving local consistency. After that we give a sufficient condition over the communication
graph to ensure that the algorithm also achieves global consistency. This was described in [Fab07].

Definition 10. The connectivity graph corresponding to a planning problem {Li ⊆ Σi|i ∈ I} is a graph
where vertices are the elements of I and there is an (undirected) edge (i, j) between i ∈ I and j ∈ I if
and only if Σi ∩ Σj 6= ∅.

In a connectivity graph we call redundant edge an edge (i, j) such that there exist a path (i, k1, . . . , kL, j)
from i to j where Σi ∩ Σj ⊆ Σkl

and kl /∈ {i, j} for 1 ≤ l ≤ L.

Definition 11. The communication graph of a planning problem is deduced from the connectivity graph
of this problem by recursively removing redundant edges until minimality is reached (in fact there is
several communication graphs for a same connectivity graph).

Algorithm 4 is a specific utilization of a more general algorithm, called message passing algorithm.
It takes a planning problem and a corresponding communication graph and, when it terminates, returns
a collection {Ei ⊆ Li|i ∈ I} which achieves local consistency. Each component i of the system, i.e each
vertex of the communication graph, maintains a message Mi,j for each of its neighbors j. By N (i) we
denote the set of neighbors of i in the communication graph and by PΣ we denote the natural projection
over Σ.

Algorithm 4 Su’s message passing algorithm

1: Mi,j =
⋃

i∈I Σi for all (i, j) edge of the communication graph
2: until stability of messages do

3: select an edge (i, j)
4: Mi,j ← PΣi∩Σj

(Li‖(‖k∈N (i)\{j}Mk,i))
5: enduntil

6: Ei = Li‖(‖k∈N (i)Mk,i) for 1 ≤ i ≤ n

An important fact about Algorithm 4 is given in [Fab07]:

Theorem 1. If the planning problem studied lives on a tree – which means that all its communication
graphs are trees – then Algorithm 4 terminates and achieves global consistency.

An other thing to notice is that the choice of the edges to update the messages in Algorithm 4 is not
specified. Hence, this algorithm is asynchronous and, thus, can be fully distributed.

We presented the notions of global and local consistencies. We then described the planning problem as
a global consistency achievement. After that we gave an algorithm to compute global consistency, which,
in the worst case, is not better than just computing a huge synchronous product but can frequently be
really more efficient. Finally we discussed the links between local and global consistencies and remarked
that a specific structure of the communication graphs of a planning problem can lead to an equivalence
between these forms of consistencies.
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In this chapter we presented the planning problem and the factored planning problem. We also gave
some methods to solve these problems.

The two approaches we presented for the planning problem – one based on the A∗ algorithm and
the other on petri-nets unfolding – have strong differences. The A∗ algorithm is a well known method
which can be really efficient and give optimal plans. However it strongly depends on the heuristic used.
Moreover it only provides solutions as sequences of actions. The petri-nets based approach has the strong
advantage to provide solutions as partial orders of actions (the plan-space is smaller than for plans as
sequences of actions). The main drawback is that the mapping from planning problems to petri-nets can
be expensive.

The first approach we gave for factored planning problems is based on constraints satisfaction. Its
main drawback is that it can not deal with problems which have no solution: in this case the algorithm
does not converge. Moreover this approach does not return optimal plans. However this is a factored
planning approach: some planning problems which are untractable with classical approaches could be
tractable with this one. The second approach we presented is based on languages. Its main drawback is
the necessity for the studied problems to live on trees. However this approach can deal with problems
which have no solutions (while the problems live on trees it always converge). Moreover the outcome
this approach provide contains all the solutions of the problem studied, this is a first step to factored
optimal planning.

In the next chapters we introduce the factored optimal planning problem, which is close to the
factored planning problem but with a notion of optimization. We propose two solutions to this problem:
the first one is based on the same idea as in [SW05] or [Fab07] (e.g. the message passing algorithm), the
second solution is inspired from the A∗ algorithm (in fact we could see it as a distributed A∗ algorithm).
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Chapter 2

Factored Optimal Planning Using

Weighted Automata Calculus

In this chapter we present a new approach of factored planning, based on automata calculus [Moh09]
and an algorithm, called message passing algorithm (MPA), presented in a general framework in [Fab07]
but also in more specific papers like [Dec03] or [SW05].

Sometimes one can not just search for a plan but needs to have a (near to) optimal plan (e.g. a
plan which is the less expensive as possible in terms of resource consumption, or anything else). In
our study each action is associated with a cost and the cost of a plan is the sum of the costs of all its
actions. An optimal plan is a plan which has minimal cost. To our knowledge the approach of factored
planning we develop here is the first which can ensure to find optimal plans. Moreover, as we explain in
this chapter, our approach, due to the MPA functioning, can easily be distributed: more than factored
optimal planning we deal with distributed optimal planning.

Even if our approach can look a bit unpractical, because the MPA enforces problems to have a specific
structure, it seems that a lot of planning problems can be handled. In fact, we can a priori handle exactly
the same problems as the method we described in Section 1.2.3, but with a notion of optimization added.

We first describe the message passing algorithm (MPA) from [Fab07] and its application to factored
planning (which matches the results presented in Section 1.2.3). After that we explain how the MPA
can be implemented in terms of weighted automata calculus and prove that it allows to perform factored
optimal planning. Finally we give an example of a planning problem, and show how the MPA is concretely
applied to solve it.

2.1 Factored Planning Using Automata Calculus

The theory we present here was described, in the general case, in [Fab07], but also in more specific
papers such as [Dec03] or [SW05]. This theory is based on a notion of system and on two operations –
composition and projection – on these systems. It allows us to derive an efficient algorithm for factored
planning: the MPA. Some axioms on the operations ensure the validity of this theory.

In this section we first define the systems, operations on them, and give the required axioms. We
then describe the family of MPA. Finally we show how this algorithm can be used when the systems are
languages or automata.

2.1.1 Message passing algorithm

Let Vmax be a set of variables. We denote by S1, S2, . . . systems defined over subsets of these variables
(this is specified later). Moreover, with the notion of system, two operations are provided: composition
(∧) and projection (Π). The composition is associative and commutative and constructs from two systems
S1 defined over V1 ⊆ Vmax and S2 defined over V2 ⊆ Vmax the new system S = S1∧S2 (which, as we see
later, is defined over V1∪V2). The projection takes the form of a family of operators ΠVi

indexed by sets
of variables Vi ⊆ Vmax. Intuitively, ΠVi

(S) projects S on Vi, which results in a system over variables Vi.
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These operations are provided with four axioms. The first one defines the projection operation:

∀V1,V2 ⊆ Vmax, ΠV1
◦ΠV2

= ΠV1∩V2
. (2.1)

The second axiom expresses that system S operates on a subset of variables from Vmax:

∀S,∃V ⊆ Vmax, ΠV(S) = S. (2.2)

The third axiom, which allows us to derive the MPA, expresses that the interaction between two systems
S1 and S2 is fully captured by their shared variables V1 ∩ V2:

∀V3 ⊇ V1 ∩ V2, ΠV3
(S1 ∧ S2) = ΠV3

(S1) ∧ΠV3
(S2). (2.3)

The last axiom denotes the existence of an identity element I for composition:

∃I,∀S, S ∧ I = S. (2.4)

An important problem about such systems is the reduction problem, which consists in computing
S′

i = ΠVi
(S), e.g. what become the Si once inserted in S = S1 ∧ · · · ∧ Sn, without computing the full

compound system S. Indeed, a compound system can be very large, and sometimes intractable. In fact,
it was shown in [Fab03] that these S′

i represent exactly the local solutions that can be extended into global
ones. Moreover, under the strong assumption that composition is involutive (e.g. ∀S,∀V, S∧ΠV(S) = S),
the S′

i are the minimal systems such that S = S′
1 ∧ · · · ∧ S′

n (one could notice the analogy with the local
consistency of Section 1.2.3).

As an example, consider the case where the systems are constraints satisfaction problems over vari-
ables. The Vi are sets of variables over a domain D and a system Si is a set of assignments xi : Vi → D
(representing all the assignments allowed by the constraints of system Si). The composition of systems is
the conjunction of constraints: Si ∧ Sj = {x : Vi ∪ Vj → D | x|Vi

∈ Si,x|Vj
∈ Sj}. The projection is the

restriction of variables: ΠV′(S) = {x|V′ | x ∈ S}. In this case, for a compound system S = S1 ∧ · · · ∧Sn,
any xi ∈ ΠVi

(S) is the local view in Si of a solution to the global system S, and any solution x to the
system S has a projection xi = x|Vi

in each S′
i = ΠVi

(S).
Another illustration is a constrained optimization problem, where costs are now associated to the

tuples xi. So a system Si is now a function mapping all possible |Vi| tuples xi to elements from R+ ∪
{+∞}. By convention Si(xi) = +∞ means that xi is not allowed. One can notice that when 0 and
+∞ are the only allowed costs this case is similar to a constraint satisfaction problem. The composition
of systems consists in summing costs of tuples. For example, for a tuple x : Vi ∪ Vj → D, we have:
(Si ∧ Sj)(x) = Si(x|Vi

) + Sj(x|Vj
). The projection is responsible for optimization, by minimizing the

cost over discarded variables. For a tuple x = (xi,xi) over V = Vi ⊎ (V \ Vi) we have: (ΠVi
(S))(xi) =

minxi
S(xi,xi). For a system S = S1 ∧ · · · ∧ Sn it does not hold that S = ΠV1

(S) ∧ · · · ∧ ΠVn
(S), but

the minimal cost element(s) of ΠVi
(S) (if exists) can be extended into minimal cost element(s) of S.

Indeed, if x is an optimal tuple in S, then x|Vi
is also an optimal tuple in ΠVi

(S), with the same cost:
S(x) = (ΠVi

(S))(x|Vi
). And an optimal tuple xi in ΠVi

(S) is always such that xi = x|Vi
with x an

optimal tuple in S and we still have that: (ΠVi
(S))(xi) = S(x).

We now define the notion of communication graph which is a generalization of the notion presented in
Section 1.2.3 and is necessary to introduce the MPA (which solves the reduction problem, under some
conditions over the communication graph).

Definition 12. The connectivity graph of a compound system S = S1 ∧ · · · ∧ Sn is a graph where the n
vertices are {1, . . . , n} and there is an edge (i, j) from i to j if and only if Vi ∩ Vj 6= ∅.

In a connectivity graph an edge (i, j) is said to be redundant if there is a path (i, k1, . . . , kL, j) from
i to j such that Vi ∩ Vj ⊆ Vkℓ

and kℓ /∈ {i, j} for 1 ≤ ℓ ≤ L.

Definition 13. A communication graph of a compound system is deduced from the connectivity graph
of this system by recursively removing redundant edges until minimality is reached.

15



Given n systems S1, . . . , Sn (called components) over n sets of variables V1, . . . ,Vn, such that S =
S1 ∧ · · · ∧ Sn lives on a tree (e.g. its communication graphs are trees), the MPA (Algorithm 5) allows
one to compute the projections S′

i = ΠVi
(S) of the compound system S without computing S itself.

Algorithm 5 takes as input the Si and a communication graph GS of the compound system S and
returns, when terminates, a collection of systems S′

i, one for each Si. We denote by N (i) the neighbors
of vertex i in the communication graph GS . Each vertex i maintains for each of its neighbors j a message
Mi,j , these messages have the same nature as the components and are initialized to I (the identity
element for composition). Intuitively the message Mi,j gives to j the knowledge that i has about its
side of GS (composition), restricted to what is useful for j (projection).

Algorithm 5 The message passing algorithm

Mi,j ← I, ∀(i, j) ∈ GS

until stability of messages do

select an edge (i, j)
Mi,j ← ΠVi∩Vj

(

Si ∧
(

∧k∈N (i)\jMk,i

))

done

S′
i ← Si ∧

(

∧k∈N (i)Mk,i

)

, ∀i ∈ {1, . . . , n}

The convergence of this algorithm is only ensured when GS is a tree (in other words, S lives on a tree).
In fact it is always possible to build a tree (called junction tree [Dec03]) by aggregating some components
of a compound system. For example, in Figure 2.1, the communication graph of S = S1 ∧ · · · ∧ S4

is not a tree but, by aggregating S2 and S3 into one component S2,3 = S2 ∧ S3, we obtain a new
communication graph which is a tree. The drawback of this method is that merging components increases
their complexity (and consequently the complexity of compositions and projections performed on them),
generally exponentially in the number of aggregated components.

S1

S2 S3

S4

S2 ∧ S3

S1

S4

Figure 2.1: Communication graphs of S1 ∧ · · · ∧ S4 (left) and S1 ∧ S2,3 ∧ S4 (right)

Notice that in Algorithm 5 the ordering of messages updates is not specified. Hence the MPA is
asynchronous and can easily be distributed. Another important thing about the messages is that, when
GS is a tree (e.g. when the convergence is ensured), it is possible to define a scheduling of messages
updates in order to ensure reaching of stability with at most one update per message. A way to do that
is to update the messages in the following manner: update message Mi,j when all the Mk,i for k 6= j
have been updated. In Figure 2.2 is shown an example of such a scheduling of messages updates. In this
figure each message is represented by a dot, near the state it comes from (i.e. Mi,j is on the edge (i, j),
close to i). To ensure stability after one update per message the messages can be updated in the following
order (as suggested in the figure): M4,2,M5,2,M2,1,M1,3,M3,6,M6,3,M3,1,M1,2,M2,4,M2,5.

2.1.2 Handling languages

We show here that the theory described above works well when systems are languages, in the sense of
Section 1.2.3, associated to their alphabets, S = (L,Σ), and variables are elements of the alphabets,
V = Σ. The composition operation is the synchronous product of languages, and the projection is
the natural projection. One can notice that, in this case, the MPA is exactly Algorithm 4. Hence,
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S1

S2 S3

S4 S5 S6

1 2

3
4

5

6

7
8

9 10

Figure 2.2: A communication graph which is a tree, the dots represent messages and the numbers a
scheduling of updates which ensures stability in one update per message.

by proving that synchronous product and natural projection ensure the axioms of composition and
projection described above, we prove that Algorithm 4 is correct.

Notice that a system is a language associated to a given alphabet, indeed, {ǫ} for example, has not
the same properties for composition if it is a language over the empty alphabet or over another alphabet.
We just give here the ideas of the proofs. Full proofs can be found in Appendix A.

Lemma 1 (axiom 2.1). ∀Σ1,Σ2, PΣ1
◦ PΣ2

= PΣ1∩Σ2
.

Idea of the proof. Consider three alphabets Σ, Σ1, Σ2, and a word w ∈ Σ∗. Prove that PΣ1
◦ PΣ2

(w) =
PΣ1∩Σ2

(w), by considering the three possible cases for w (w = ǫ, w = σ ∈ Σ, and w = w′σ where w′ ∈ Σ∗

and σ ∈ Σ) and applying the definition of the natural projection to them.

Lemma 2 (axiom 2.2). ∀L, ∃Σ, PΣ(L) = L.

Idea of the proof. Consider a language L over an alphabet Σ, and a word w from L. Show that PΣ(w) = w
and thus PΣ(L) = L, by considering the three possible cases for w and applying the definition of the
natural projection to them.

Lemma 3 (axiom 2.3). ∀Σ ⊇ Σ1 ∩ Σ2, ∀L1 ⊆ Σ∗
1, ∀L2 ⊆ Σ∗

2, PΣ(L1‖L2) = PΣ(L1)‖PΣ(L2).

Idea of the proof. Consider two alphabets Σ1 and Σ2, and two languages over these alphabets L1 and
L2. Consider another alphabet Σ ⊇ Σ1 ∩ Σ2 and notice that:

PΣ(L1‖L2) = {w | ∃u ∈ (Σ1 ∪ Σ2)
∗, w = PΣ(u) and PΣ1

(u) ∈ L1 and PΣ2
(u) ∈ L2};

and:

PΣ(L1)‖PΣ(L2) = {w ∈ (Σ ∩ (Σ1 ∪ Σ2))
∗ | PΣ∩Σ1

(w) ∈ PΣ(L1) and PΣ∩Σ2
(w) ∈ PΣ(L2)}.

Finally prove that PΣ(L1‖L2) ⊆ PΣ(L1)‖PΣ(L2) and PΣ(L1‖L2) ⊇ PΣ(L1)‖PΣ(L2).

Lemma 4 (axiom 2.4). ∃I, ∀L, L‖I = L.

Idea of the proof. Take as I the language {ǫ} over the empty alphabet.

2.1.3 Message passing algorithm in terms of automata

In fact, languages can contain an infinite number of words. If we want our approach to be practical, we
can not just work on (eventually infinite) sets of words. A good, and well known, finite representation of
regular languages is given by (finite) automata. In this section we present a way to express composition
and projection operations in terms of automata calculus, and prove that our operations are valid with
respect to the theory.

We use the definitions of automata and synchronous product of automata given in Section 1.2.1.
We also consider a special kind of transitions, called ǫ-transition, which can be fired without reading
any symbol. An automaton is deterministic if it contains no ǫ-transition and no state such that two
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transitions with the same label start at this state. Two automata are said to be equivalent if they
recognize the same language.

Given an automaton A and a set Λ of labels, we provide the following operations: DET(A) which
returns the deterministic automaton equivalent to A, MIN(A) which returns the smallest (in term
of vertices) automaton equivalent to A (this operation only works on deterministic automata), and
EPS(A,Λ) which first replace in A all transitions with label α ∈ Λ by ǫ-transitions and then returns an
equivalent automaton but without ǫ-transitions. There exists well know algorithms which realize these
operations, see for example [CL99] or [Sak03].

Given A1 = (S1, T1, f1, s
0
1, λ1,Λ1, F1) and A2 = (S2, T2, f2, s

0
2, λ2,Λ2, F2) two automata and a set Λ

of labels, we suggest the following operations for composition and projection:

A1 ∧ A2 = MIN(A1‖aA2);

ΠΛ(A1) = MIN(DET(EPS(A1,Λ1 \ Λ))).

We now can prove that these operations satisfy the required axioms described above and, thus, that
the MPA is usable when systems are automata. As for languages, we just give ideas of the proofs,
the detailed ones are given in Appendix A. In the following the equality A1 = A2 means that A1 is
isomorphic to A2, not only that they recognize the same language. The proofs are based on the following
lemma:

Lemma 5. The minimal deterministic automaton which recognizes a given language is unique (up to an
isomorphism).

The proof of this lemma can be found, for example, in [Sak03].

Lemma 6 (axiom 2.1). ∀Λ1,∀Λ2,ΠΛ1
◦ΠΛ2

= ΠΛ1∩Λ2
.

Idea of the proof. Given an automaton A, prove that L(ΠΛ1
◦ ΠΛ2

(A)) = L(ΠΛ1∩Λ2
(A)) and conclude

by Lemma 5.

Lemma 7 (axiom 2.2). ∀A minimal deterministic,∃Λ′,ΠΛ′(A) = A.

Idea of the proof. Consider a minimal deterministic automaton A = (S, T, f, s0, λ,Λ, F ). Take Λ′ = Λ
and prove that L(ΠΛ′(A)) = L(A). Conclude by Lemma 5.

Lemma 8 (axiom 2.3). ∀Λ3 ⊇ Λ1 ∩ Λ2,∀A1,∀A2,ΠΛ3
(A1 ∧ A2) = ΠΛ3

(A1) ∧ΠΛ3
(A2).

Idea of the proof. Consider two automataA1 = (S1, T1, f1, s
0
1, λ1,Λ1, F1) andA2 = (S2, T2, f2, s

0
2, λ2,Λ2, F2).

Prove that L(ΠΛ3
(A1 ∧ A2)) = L(ΠΛ3

(A1) ∧ΠΛ3
(A2)), then conclude by Lemma 5.

Lemma 9. ∃I,∀A,A ∧ I = A.

Idea of the proof. Take ({s0}, ∅, f, s0, λ, ∅, {s0}) as I.

Notice that these proofs are done with a very strong notion of equality between automata (same
states and transitions, up to an isomorphism). In fact, we could change the notion of equality. The
equality of languages, for example, is sufficient, thus one could use non-minimal automata, or even
non-deterministic ones, and prove that when composition is the synchronous product of automata and
projection consists only in replacing symbols by epsilon and removing ǫ-transitions, then the axioms
are also preserved, thus MPA can be used and will work. We decided to use deterministic automata
because synchronous product of deterministic automata can be much more simple than synchronous
product of non-deterministic ones (even if determinising automata can potentially have exponential
cost). In practice it is risky to determinise automata. It would be a good idea to test both deterministic
automata and non-deterministic automata to see if, for our problems, it is generally more interesting
to determinise or not. Once we decided to use deterministic automata it was logic to use minimal
deterministic automata, to be able to handle the largest systems as possible.
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In this section we presented the principles of a method for factored planning, based on an algorithm:
the message passing algorithm. We shown that these principles were relevant to find plans in factored
planning problems represented as languages, as suggested in Section 1.2.3, and can be implemented in
terms of automata. In the following we explain how our method can be used to perform factored optimal
planning, where systems are weighted languages, implemented in terms of weighted automata.

2.2 Factored Optimal Planning

In this section we show that the MPA can be used in the case of weighted languages and, thus, that this
algorithm allows to perform factored optimal planning. In fact, as classical languages, weighted languages
are infinite sets, so, to make our approach practical we propose (and prove) an implementation in terms
of weighted automata calculus of the operations on weighted languages we give. This implementation is
based on the work from Mohri [Moh09].

2.2.1 From factored planning to factored optimal planning

We first define the notion of weighted automaton:

Definition 14. A weighted automaton (WA) is a tuple A = (S, T, f, s0, λ,Λ, F, c, ci, cF ) where (S, T, f, s0, λ,Λ, F )
is an automaton, c : T → R+ associates a cost to each transition, ci ∈ R+ is an initial cost, and
cF : F → R+ associates a cost to each final state.

Notice that we assume that our WA have only one initial state. This is because in our applications we
do not need to have several initial states (anyway, any WA with more than one initial state is equivalent
– with respect to weighted languages – to a WA with only one initial state). However, all what we
describe below works with WA which have several initial states.

A path π = s1, t1, s2, . . . , tk−1, sk is a sequence of states and transitions such that ∀i ∈ {1, . . . , k− 1}
we have (si, ti) ∈ f and (ti, si+1) ∈ f . We denote by λ(π) = λ(t1), . . . , λ(t2) the word corresponding to π.

The cost of this path is defined as c(π) =
∑k

i=1 c(ti). We also use the following notation: cF (π) = cF (sk)
(assuming that cF (s) = 0 for s /∈ F ). The path π is accepted by A, noted π |= A, if and only if s1 = s0

and sk ∈ F .
The weighted language of a WA A = (S, T, f, s0, λ,Λ, F, c, ci, cF ) is defined by:

L(A) = {(u,w) ∈ Λ∗ × R+ | ∃π |= A, u = λ(π), w = min
π|=A

u=λ(π)

ci + c(π) + cF (π)}

In other words, the sequence of actions u is in the language if there is an accepted path which produces
it and its weight is the minimal weight over all accepted paths that produce u.

As for classical automata, we define the synchronous product of weighted automata:

Definition 15. The synchronous product A1×aA2 of the weighted automata A1 = (S1, T1, f1, s
0
1, λ1,Λ1, F1, c1, c

i
1, c

F
1 )

and A2 = (S2, T2, f2, s
0
2, λ2,Λ2, F2, c2, c

i
2, c

F
2 ) is A = (S, T, f, s0, λ,Λ, F, c, ci, cF ) defined by:

• (S, T, f, s0, λ,Λ, F ) is the synchronous product of (S1, T1, f1, s
0
1, λ1,Λ1, F1) and (S2, T2, f2, s

0
2, λ2,Λ2, F2)

as defined in Section 1.2.1;

• ∀t = (t1, t2) ∈ T, c(t) = c1(t1) + c2(t2), with the convention that ci(⋆i) = 0;

• ci = ci
1 + ci

2;

• ∀s = (s1, s2) ∈ F, cF (s) = cF
1 (s1) + cF

2 (s2).

Instead of considering a network of automata, as described in Section 1.2.1, we now consider a network
of weighted automata A = A1 ×a . . . ×a An. As before each automata is a component of our problem.
The only difference is that actions have now costs (initial and final costs are taken to be null). The
factored optimal planning problem consists in finding an accepted path πi in each Ai such that these
paths are compatible (as defined for factored planning) and

∑n
i=1 c(πi) is minimal. Hence, it consists

in finding the word(s) of minimal weight in L(A), without computing the full compound system A nor
L(A).
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2.2.2 Handling weighted languages

We presented the factored optimal planning problem. We now show how this problem can be solved,
using the MPA with weighted languages (e.g. sets of couples (u,w) where u is a word and w is a weight)
as systems. In fact, as for (non-weighted) languages we just have to check that the axioms required
(axioms 2.1, 2.2, 2.3, and 2.4) are satisfied by such systems with the operations we propose. In this case,
in the conditions of utilization of the MPA (when the communication graphs are trees), the results of
the algorithm are all local plans (associated to costs) that are part of global plans, and only these plans.
Moreover, the costs associated to local plans are the costs of the best global plans they are involved
in [Fab03]. Thus, the MPA allows us to perform factored optimal planning.

As composition we take the synchronous product of weighted languages:

Definition 16. Let L1 and L2 be two weighted languages defined on Σ1 and Σ2 respectively. Their
synchronous product is given by:

L1 ×ℓ L2 = {(u,w) ∈ (Σ1 ∪ Σ2)
∗ × R+ | ∃(u|Σ1

, w1) ∈ L1, ∃(u|Σ2
, w2) ∈ L2, w = w1 + w2}.

Notice that this synchronous product is well defined: given u, there is at most one (u|Σi
, wi) in Li,

and so at most one cost w for u. Moreover, as required this product is commutative and associative. It
is also easy to show that the weighted language L(A) recognized by a product A = A1 ×a . . .×a An of
WA is the product of the languages recognized by the components: L(A) = L(A1)×ℓ . . .×ℓ L(An).

As projection we take the natural projection of weighted languages:

Definition 17. Let L ⊆ Σ∗ × R+ be a weighted language and Σ′ ⊆ Σ be an alphabet. The natural
projection of L over Σ′ is given by:

PΣ′(L) = {(u′, w′) ∈ Σ′∗ × R+ | ∃(u,w) ∈ L, u′ = u|Σ′ , w′ = min
(u,w)∈L

u|Σ′=u′

w}.

Notice that a minimization is performed on eliminated letters: this is where is the optimization in
the MPA, as in the example about optimization under constraints presented in Section 2.1.1.

We now show that the two operations described above preserve the axioms of Section 2.1.1. The
proof of axiom 2.3 is huge, so we just give here idea of it. The full proof can be found in Appendix A.

Lemma 10 (axiom 2.1). ∀Σ1,Σ2, PΣ1
◦ PΣ2

= PΣ1∩Σ2
.

Proof. Consider L a weighted language over the alphabet Σ. By Lemma 1 we know that for all (u,w) ∈
PΣ1
◦PΣ2

(L) there is w′ such that (u,w′) ∈ PΣ1∩Σ2
(L), conversely for all (u,w′) ∈ PΣ1∩Σ2

(L) there is w
such that (u,w) ∈ PΣ1

◦ PΣ2
(L). Then we just prove that for all u we have w = w′ by remarking that:

min
(u′,•)∈PΣ2

(L)

u′
|Σ1

=u






min

(u′′,w′′)∈L

u′′
|Σ2

=u′

w′′






= min

(u′,w′)∈L

u′
|Σ1∩Σ2

=u

w′.

Lemma 11 (axiom 2.2). ∀L, ∃Σ, PΣ(L) = L.

Proof. The proof is similar that the one for non-weighted languages (Lemma 2): when Σ is the alphabet
of L it holds that ∀(u,w) ∈ L, u|Σ = u and, thus, minimization is done over one element sets. Hence if
(u,w) ∈ L then (u,w) ∈ PΣ(L) and conversely.

Lemma 12 (axiom 2.3). ∀Σ ⊇ Σ1 ∩ Σ2, ∀L1 ⊆ Σ∗
1, ∀L2 ⊆ Σ∗

2, PΣ(L1 ×ℓ L2) = PΣ(L1)×ℓ PΣ(L2).

Idea of the proof. From Lemma 3 we know that ∀(u,w) ∈ PΣ(L1 ×ℓ L2) there is w′ such that (u,w′) ∈
PΣ(L1) ×ℓ PΣ(L2), and ∀(u,w′) ∈ PΣ(L1) ×ℓ PΣ(L2) there is w such that (u,w) ∈ PΣ(L1 ×ℓ L2). We
just have to prove that w = w′, which is done by remarking that the optimization made by projection
can be done independently on words from L1 and L2.

Lemma 13 (axiom 2.4). ∃I, ∀L, L‖I = L.
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Proof. It is sufficient to notice that 0 is the identity element for the addition. Then taking the weighted
language {(ǫ, 0)} over the empty alphabet as I leads to a proof similar than for non-weighted languages
(Lemma 4).

We proved that our operations on weighted languages satisfy the four axioms required for the MPA.
Hence, from [Fab03] we know that the weighted languages obtained by the MPA from a compound system
contain exactly the local plans that can be extended into global plan. Moreover any optimal local plan
can be extended into an optimal global plan. Using the MPA on weighted languages we perform factored
optimal planning.

2.2.3 Message passing algorithm in terms of weighted automata calculus

In fact, as classical languages, weighted languages are potentially infinite sets. To make our approach of
factored optimal planning practical we have to find a finite representation of these sets. The weighted
languages which are relevant for us are fully captured by weighted automata.

In this section we present how the operations on weighted languages we proposed above can be
represented in terms of weighted automata calculus. In particular, this section is based on the work from
Mohri on weighted automata algorithms [Moh09].

It would be possible to just implement synchronous product of weighted languages (e.g. composition)
as synchronous product of weighted automata and natural projection of weighted languages (e.g. pro-
jection) as ǫ-reduction of weighted automata (which is basically ǫ-reduction with weighted ǫ-transitions,
this operation is described below). In this case the weighted automata involved will potentially be non-
deterministic. But, deterministic weighted automata are very useful for us: their weighted languages
are much more easy to compute that the ones of non-deterministic automata. Indeed, each word is
recognized only once, thus, is associated to exactly one weight: the minimization in the definition of the
weighted language of an automaton is performed by the determinisation operation.

The operations presented below assume that we work with deterministic weighted automata. It
is easy to see that these operations implements exactly the operations wanted on weighted languages.
Hence, we focus more on the description on these operation than on the proofs of them.

Composition As we suggested the composition operation can be just a synchronous product. But, as-
suming that our automata are deterministic and knowing that the synchronous product of deterministic
automata gives a deterministic automaton, we would like to have the smallest automaton for the com-
position of two automata. That is why we take for composition of A1 and A2 the minimal deterministic
automaton which recognize the same language as A1 ×a A2.

The minimization of deterministic WA can be done in a canonical manner, as described in [Moh09]
and proved in [Moh94]. One first apply a weight pushing algorithm, described formally in Appendix B,
which pushes the weights of each path as much as possible toward the initial state. Then the classical
minimization algorithm [CL99] is applied to the resulting automaton, considering each pair (label, weight)
as a single label.

One can notice that the cost associated to initial state of weighted automata (ci) is necessary, due to
this minimization procedure. The complexity of minimization is O(|T | log |S|) for a weighted automaton
A = (S, T, f, s0, λ,Λ, F, c, ci, cF ). The identity element (necessary for the MPA computations) of this
composition is the automaton I = ({s0}, ∅, f, s0, λ, ∅, {s0}, c, ci, cF ) with ci = cF (s0) = 0. The relations
f , λ, and c do not need to be defined (in fact they are empty because defined on empty sets).

Projection As composition, the projection ΠΛ′(A) of A = (S, T, f, s0, λ,Λ, F, c, ci, cF ) over an alpha-
bet Λ′ can be implemented easily in terms of WA, as an operation called ǫ-reduction. First each transition
labeled by a symbol from Λ \Λ′ is replaced by a transition labeled by ǫ, with the same weight as the old
transition. After that an equivalent WA without ǫ-transitions is constructed. This can be done using
an ǫ-removal algorithm described in [Moh09]. Given a WA waa1 with ǫ-transitions, for s ∈ S1 we call
invisible reach the subset R(s) of the states that can be reached from s in A1 using only ǫ-transitions.
The automaton A2 = (S2, T2, f2, s

0
2, λ2,Λ2, F2, c2, c

i
2, c

F
2 ) resulting of ǫ-removal applied to A1 has the

same states as A1 (S2 = S1), the same initial state (s0
2 = s0

1), and its alphabet is Λ2 = Λ1. The initial
cost also remains the same: ci

2 = ci
1. The transitions T2, associated labels λ2 and costs c2, and the flow

relation f2, are defined in the following way: t2 ∈ T2 with label λ2(t2) = σ, cost c2(t2) = c+ c′, and such
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that (s, t2) and (t2, s
′) are in the flow relation f2 if and only if ∃s′′ ∈ R(s) and t1 ∈ T1 such that c′ is the

smallest weight among the silent paths (paths with only ǫ-transitions) from s to s′′, the flow relation f1

contains (s′′, t1) and (t1, s
′), the label corresponding to t1 is λ1(t1) = σ, and the corresponding cost is

c1(t1) = c. The set of final states F2 is the set of all s ∈ S1 such that R(s) ∩ F1 6= ∅. The cost of a final
state s ∈ F2 is the smallest weight among the silent paths starting at s and finishing in R(s) ∩ F1. In
Appendix B we give this epsilon-removal algorithm. It has a complexity of O(|S1|

2 + |S1||T1|).
It is easy to see that ǫ-reduction does not keep the automata deterministic. Hence, to work with

deterministic WA we have to determinise. The Projection operation thus becomes:

1. ǫ-reduction,

2. determinisation of the resulting automaton,

3. minimization of the result (as described above).

The determinisation of WA is responsible for the optimization part of our algorithm. Moreover, even if,
in the worst case, the determinisation of A can return an automaton of size exponential in |A| – as for
non-weighted automata – it is rarely the case. In fact the determinisation procedure we describe below
often produces deterministic WA smaller than the input WA [Moh97]. Unfortunately there is also some
drawbacks: not all WA can be determinised. In the following we describe a procedure to determinise
WA and explain in which cases WA can not be determinised. After that we give a solution to avoid the
problem of non-determinisable WA.

Determinisation of weighted automata For a WA A we say that we determinise A when we provide
a new WA which is finite, deterministic, and recognizes exactly the same weighted language as A. One
can remark that not all WA are determinisable. See for example Figure 2.3. The accepted words in the
automaton of this figure are c{a, b}∗. One either pay for the a or the b, depending on the path selected
for the first c. The weight of an accepted word w is thus min(|w|{a}|, |w|{b}|). Intuitively, constructing
a deterministic automaton which recognize exactly this weighted language corresponds to construct an
automaton which counts the a and the b. This automaton can not be finite, hence the automaton of
Figure 2.3 can not be determinised.

a,1

c,0

c,0

b,1
a,0

b,0

Figure 2.3: A WA that can not be determinised
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Figure 2.4: Construction of a transition in the
determinisation procedure

A sufficient condition for determinisability of WA is the twin property. This condition stipulates that
when states s and s′ can be reached by the same label sequence, and moreover it is possible to loop
around s and around s′ with the same label sequence u, then these loops must have identical weights:

Definition 18. In a WA A = (S, T, f, s0, λ,Λ, F, c, ci, cF ), two states s, s′ ∈ S are said to be twins if
and only if, either ∄v ∈ Λ∗ such that there is a path from s0 to s and a path from s0 to s′, both labeled
by v; or ∀u ∈ Λ∗ such that both s and s′ are reachable from s0 by a path labeled by u, one has:

min
π, λ(π)=u

π loops on s

c(π) = min
π′, λ(π′)=u

π′ loops on s′

c(π′).

The WA A is said to be twin if and only if all its states are twins.
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This twin property can be checked in polynomial time [Moh09]. There is an algorithm which deter-
minise all the WA which have the twin property [Moh09]. We just give here an idea of this algorithm,
which is fully described in Appendix B.

This algorithm, which determinise any twin WA A = (S, T, f, s0, λ,Λ, F, c, ci, cF ), is based on the
classical idea of subset construction [CL99]. In fact, the states of the WA constructed by the algorithm
are pairs (E, g) where E ⊆ S and g : E → R+. In the unique state X = (E, g) reached by the word
u the element E denotes the set of all states reachable from s0 by paths π such that λ(π) = u. For
s ∈ E, g(s) is the difference between two costs: 1)the minimal cost over all π starting at s0, reaching an
element of E, and such that λ(π) = u and 2)the minimal cost to reach s from s0 by a path labeled by u.
Hence, there is always s ∈ E such that g(s) = 0. The successors of X can be built recursively. Consider
a transition t from X to X ′ = (E′, g′) with label σ ∈ Λ and cost cσ. The set E′ contains all the states
from S that can be reached from E by a transition labeled by σ. The weight cσ is the difference of the
minimal weight for word uσ and the minimal weight for word u. In fact one has:

cσ = min
s∈E, t∈T s.t. λ(t)=σ, (s,t)∈f

g(s) + c(t),

and, for s′ ∈ E′:
g′(s′) = min

s∈E, t∈T s.t. λ(t)=σ, (s,t)∈f, (t,s′)∈f
g(s) + c(t)− cσ.

The construction of such a transition is represented in Figure 2.4. In fact this procedure to determinise
WA is only ensured to converge when A has the twin property. However, this property is not necessary
for determinisability of general WA (in Appendix B we discuss other conditions for determinisability
of WA), and some determinisable WA are not determinised by the procedure described above. See
for example Figure 2.5. On the left is a WA A (its initial state is 1), on the center is an equivalent
deterministic finite automaton, and on the right is the infinite result obtained by applying the procedure
we described to A. For matter of place a state X = ({e, e′}, f) is denoted by ef(e), e

′
f(e′).
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Figure 2.5: A determinisable WA (left) with which Mohri’s algorithm does not terminate

As we explained above, to ensure the convergence of the determinisation procedure for WA described
above we need them to have the twin property. Unfortunately, even if we assume that, for a system
A = A1×a . . .×aAn, all the subsystems Ai have the twin property, we need this property to be preserved
by the operations we do. And if the twin property is clearly preserved by synchronous product, this is
not the case with ǫ-reduction. See the example of Figure 2.3 where one of the (c, 0) would be a (d, 0).
This automaton has the twin property. After ǫ-reduction on {a, b} it is clear that the automaton has no
longer the twin property.

To avoid these problems in determinisation one could perform partial determinisation. Indeed, for
a WA A = (S, T, f, s0, λ

′,Λ, F ′, c′, ci, cF ), any representant of the weighted language L(A) can be used
in the computations of the MPA. Therefore, it is not necessary to complete the determinisation of A:
one can stop at any point, while it is terminated in such a way that the language L(A) is preserved.
Let A′ = (S′, T ′, f ′, s′0, λ

′,Λ, F ′, c′, c′i, c
′
F ) be a part of the determinisation of A, e.g. the automaton

produced by the determinisation procedure when we stop it before it terminates. We build A′′ =
(S′′, T ′′, f ′′, s′′0 , λ′′,Λ, F ′′, c′′, c′′i , c′′F ) by connecting A (where all initial states become normal states) to
A′ in the following manner: for X = (E, g) ∈ S′, s ∈ S, and σ ∈ Λ there is a transition t′′ ∈ T ′′ such
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that (X, t′′) ∈ f ′′, (t′′, s) ∈ f ′′, and λ′′(t′′) = σ if and only if there is a path labeled by σ from an element
of E to s in A. The cost associated to this transition is:

c′′(t′′) = min
s′∈E, t∈T s.t. λ(t)=σ, (s′,t)∈f, (t,s)∈f

g(s′) + c(t).

The finite WA obtained satisfies L(A′′) = L(A), so it can replace A in computations. The advantage is
that words of A′′ start in the determinised part A′. Hence, for short words, operations like product are
easy to do (linear complexity).

This partial determinisation becomes really interesting if the determinisation procedure is driven in
order to ensure that any word from L(A) with weight lower than some bound W is in L(A′). In this case,
if one can ensure that the optimal words we are looking for have weight smaller than W it is possible to
use only A′ (the deterministic part of A′′) in the computations. Moreover it is clear that there exists,
in any compound system A = A1 ×a . . . ×a An, a bound on the weight of optimal global plans (notice
for example that a global plan is a path in A and that an optimal path in A can not contain cycles,
moreover, the maximal size of a path without cycle in A can be estimated in function of the number of
shared symbols).

In this section we explained how the MPA presented above can be used to solve the factored optimal
planning problem. The method we proposed is to consider each local subproblem of a large global
problem as a WA. We gave operations on WA which verify the axioms necessary for the MPA and made
some remarks on how it is possible to pass besides the drawbacks of these operations (in particular
determinisation).

2.3 Example

This section gives an example of application of the MPA for factored optimal planning. This example is
close to a real planning problem. It demonstrates how our algorithm could be used in real cases by first
giving the modelisation of a concrete problem as a network of weighted automata and then showing how
this problem can be solved using the MPA.

We consider a problem where a truck has to transport products between different sites: production sites
and warehouses. The truck, each warehouse and each production site have maximum storage capacity.
The truck has the possibility to move from site i to site j (Mij), where the precise moves and their
costs depend on the road network, the truck’s load, or any other condition. The truck can also load a
unit of product from production site i (Li) and unload a unit to warehouse i (Ui), while the maximum
storage capacities are respected. Production site i can also produce one unit of product (Pi), under
the constraints of storage capacity. Production cost depends on the current number of units of product
stored at the production site. The staff at a production site can also influence the cost of production
and load by being ready for one task or another.
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Figure 2.6: Warehouse (left), truck (middle), and two production sites (right).

Figure 2.6 shows the weighted automata corresponding to such a problem involving a truck (T ), two
production sites (P1 and P2) and a warehouse (W ). The shared labels and the corresponding transitions
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are colored. Each production site has a storage capacity of 2, as the truck, and the warehouse has a
storage capacity of 3. Initially the truck is at production site 2, which has one unit of product stored and
ready to be loaded. The other sites are empty. The goal is to fill the warehouse. At the end production
sites have to be empty and the truck has to be empty and at the warehouse. Notice that when the truck
is full it can not go from production site 1 to warehouse directly.

The communication graph of our problem has a star shape, with the truck in the center and the
production sites and the warehouse connected to it, Figure 2.7. So the MPA requires six message
computations.

P1

P2

T W

Figure 2.7: Communication graph

First, consider the computation ofM1,T , the message from P1 to T . M1,T is the projection of P1 on
the load actions, as these are shared with the truck. The steps of this projection appear in Figure 2.8.

ǫ.5

L1 .1

ǫ.6L1 .3 ǫ.4 L1 .3 L1 .12L1 .1

L1 .9

L1 .7

L1 .7L1 .6

Figure 2.8: P1 with private labels replaced by ǫ (left), after epsilon-removal (center), and finally after
determinisation and minimisation (right).

One can obtain in a similar manner the two other messages to the truck,M2,T andMW,T , from the
second production site and from the warehouse, respectively (Figure 2.9). Notice that final states have
termination costs (here 1 or 3).

L2 .0

L2 .13
L2 .11

U3 .0 U3 .0 U3 .0
1

3

1

Figure 2.9: Messages from P2 to T (left) and W to T (right).

Then the truck updates its own messages MT,1, MT,2, and MT,W (Figure 2.10). Notice that these
updates propagate the constraints imposed by P1, P2, and W . For example, only three U3 are allowed
byMW,T , hence the messages MT,1 andMT,2 allow at most three load actions.

L1 .0

40

L1 .0

33

24

L2 .0

L2 .0

L2 .047

36

2615

5

5

U3 .0

U3 .14 U3 .15

Figure 2.10: Messages from T to P1 (left), P2 (center), and W (right).
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At this point messages are stable and the reduced components P ′
1, P ′

2, W ′ (Figure 2.11), and T ′ (not
represented) can be derived. The following optimal local plans can easily be found: P1P1L1L1 in P ′

1, L2

in P ′
2, and U3U3U3 in W ′. Automaton T ′ is too large to be represented here, so we just give one of its

optimal local plans: M21L1M12L2M23U3U3M31L1M12M23U3. It is easy to see that the four optimal local
plans given above can be synchronized into a globally optimal plan of cost 37. Note that these four local
plans can be synchronized in different ways: for example the optimal global plan could indifferently start
with P1P1M21, with P1M21P1, or with M21P1P1.

40

39 37

L2 .0

37

P1 .0 P1 .0

P1 .0 L1 .0

L1 .1

P2 .3
L2 .0

P2 .5

U3 .0

U3 .0

U3 .0
37

L1 .0

P2 .0

L2 .0

P2 .2

37

37

L2 .0L2 .0

L2 .0

P2 .4

Figure 2.11: MPA output: P ′
1 (left), P ′

2 (center), and W ′(right).

A possible corresponding optimal global plan is the following: producer 1 produces two units of
product. Then the truck moves to producer 1, loads once, returns at producer 2, loads once, goes to the
warehouse, unloads twice, returns to production site 1, loads once and then goes to the warehouse via
production site 2, and unloads.

Using our implementation of the MPA on top of the AT&T FSM Library [MPR], the largest au-
tomaton generated at any point of the MPA is T ′, with 51 states and 124 transitions. The full system
S =P1∧P2∧T∧W has 576 states and 2176 transitions. It can be minimized to 123 states and 374
transitions, which remains more than twice as large as T ′.

In this chapter we described the message passing algorithm from [Fab07] and explained how it can be
used to perform factored optimal planning (and even distributed optimal planning, due to the principle of
the algorithm). For that we introduced weighted automata calculus [Moh09] to implement the operations
necessary for the MPA.

In the next chapter we present another way to perform factored optimal planning, based on the A∗

algorithm.
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Chapter 3

A Distributed A
∗ Algorithm

In this chapter we introduce a new algorithm to solve factored optimal planning problem. The idea is
to represent a factored planning problem as a network of automata. On each automaton an agent has
to find a path to the goal, in order to ensure that the paths finded by all the agents are compatible and
that their combination is optimal. In fact, the algorithm we present here can be seen as a distributed A∗

algorithm. Indeed, each agent uses an algorithm close to A∗ to find its local path: as in A∗ algorithm
there is a notion of heuristic but here it is provided to an agent by its neighbors and can change along
the time.

We first describe our algorithm in the simple case where the considered factored optimal planning
problem involves only two automata (and thus two agents). After that we explain how it could be
generalized to any factored optimal planning problem, while the communication graphs are trees.

3.1 A Simple Case Involving Two Automata

In this section we present our algorithm on a factored optimal planning problem involving two automata
A1 = (S1, T1, f1, s

0
1, λ1,Λ1, F1, c1, c

i
1, c

F
1 ) and A2 = (S2, T2, f2, s

0
2, λ2,Λ2, F2, c2, c

i
2, c

F
2 ), and thus two

agents ϕ1 and ϕ2. The communication graphs of such a problem are clearly trees, as represented in
Figure 3.1.

A1 A2

Λ1 ∩ Λ2

Figure 3.1: A communication graph

The principle of our algorithm is very close to A∗: each agent ϕi maintains a function gi : Si× (Λ1 ∩
Λ2)

∗ → R+∪{+∞}. This function is such that gi(v, w) gives the best cost known to go from s0
i to v ∈ Si

by paths π such that λi(π)|Λ1∩Λ2
= w. For any (v, w), the value g(v, w) is initialized to +∞. As for the

classical A∗ algorithm, this function is updated along the algorithm. Agent ϕi also knows an heuristic
function hi : Si → R+∪{+∞} which is such that hi(v) is a lower bound on the cost of a path in Ai from
v ∈ Si to Fi. Moreover we assume that ϕi has access to two functions, caracterising the other agent ϕj :
a function Hj : (Λ1 ∩ Λ2)

∗ → R+ ∪ {+∞} and a function Cj : (Λ1 ∩ Λ2)
∗ → R+ ∪ {+∞}:

• Hj is such that Hj(w) is a lower bound on the cost of accepted paths πj in Aj such that
λj(πj)|Λ1∩Λ2

= w′ with w a prefix of w′ (e.g. a lower bound on the cost of accepted paths in
Aj that could synchronize with an accepted word in Ai which has w as a prefix);

• Cj is such that there exists a time t such that after t the value Cj(w) is stable and is the optimal
cost of an accepted path πj in Aj such that λj(πj)|Λ1∩Λ2

= w, we assume that ϕi knows when
Cj(w) is stable.

Each agent ϕi also have access to a queue Qi which contains couples (v, w) where v ∈ Si and
w ∈ (Λ1∩Λ2)

∗ and two sorts of special elements: o(w) with w ∈ (Λ1∩Λ2)
∗ and õ(w) with w ∈ (Λ1∩Λ2)

∗.
This queue has the following properties:
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• o(w) is in Qi if and only if Ci(w) and Cj(w) are both stable, the ranking-cost associated to o(w)
is Ci(w) + Cj(w);

• õ(w) is in Qi if and only if an accepted word πi such that λi(πi)|Λ1∩Λ2
has been found in Ai (which

means that gi(v, w) 6= +∞ for some v ∈ Fi) and o(w) is not in Qi, the ranking-cost associated to
õ(w) is minv∈Fi

(gi(v, w)) + Hj(w) if Cj(w) is not stable and minv∈Fi
(gi(v, w)) + Cj(w) if Cj(w) is

stable;

• the ranking-cost of any (v, w) present in Qi is gi(v, w) + hi(v) + Hj(w);

• the elements of Qi are ordered by increasing ranking-cost (Figure 3.2).

(v1, w1) o(w2) õ(w3) (v4, w4). . . . . .HEAD TAIL

Figure 3.2: Ordering of Qi, where the ranking costs are such that: gi(v1, w1) + hi(w1) + Hj(w1) ≤
Ci(w2) + Cj(w2) ≤ minv∈Fi

(gi(v, w3)) + Hj(w3) ≤ gi(v4, w4) + hi(w4) + Hj(w4)

The queue Qi is provided with two operations: POP(Qi) which returns the head element of Qi (and
remove it from Qi), and ADD(Qi, e) which adds the element e in Qi at the place corresponding to its
ranking-cost. Algorithm 6 is the one that ϕi has to execute on automaton Ai. Notice that this algorithm
only adds elements of the type (v, w) to Qi, in fact we assume that elements of the type o(w) and õ(w)
are in Qi when necessary (this could be done by other procedures executed by ϕi but here we made the
choice to only describe it by properties of Qi).

Algorithm 6 Algorithm executed by ϕi on Ai

Qi ← ∅
gi(s

0
i , ǫ)← ci

i

ADD(Qi, (s
0
i , ǫ))

repeat

e← POP(Qi)
if e = o(w) then return w endif

if e = õ(w) then

ADD(Qi, e)
else

/* from now we have e = (v, w) */
foreach v′ ∈ Si, t ∈ Ti such that (v, t) ∈ fi and (t, v′) ∈ fi do

if σ = λi(t) ∈ Λ1 ∩ Λ2 then

if gi(v
′, wσ) > gi(v, w) + ci(t) then

gi(v
′, wσ)← g(v, w) + ci(t)

ADD(Qi, (v
′, wσ))

endif

else

if gi(v
′, w) > gi(v, w) + ci(t) then

gi(v
′, w)← g(v, w) + ci(t)

ADD(Qi, (v
′, w))

endif

endif

done

endif

endrepeat

We now prove that, when there is a solution to the factored optimal planning problem we consider,
if ϕi executes Algorithm 6 on Ai, it finds a word w such that there is an optimal global plan u in
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A = A1 ×a A2 such that u|Λ1∩Λ2
= w. Which is sufficient to prove the algorithm we propose. This is

done by proving that, when there is a solution, Algorithm 6 terminates (termination), and that when
Algorithm 6 terminates it returns a local plan which is part of an optimal global plan (validity).

Termination: We first notice that there exists a time t after which o(w) will be in Qi, for some
w ∈ Λ1 ∩ Λ2. This is just due to the fact that there is a time where Ci(w) and Cj(w) will stabilize.
Moreover there exists such a w such that Ci(w) + Cj(w) 6= +∞, because there exists a solution.

Then we assume that ∀w ∈ Λ1 ∩ Λ2, Hj(w) = 0 and ∀v ∈ Si, hi(v) = 0 (which is the case where
the costs are underestimated the most). In this case, the elements (v, w) of Qi are ordered by increasing
gi(v, w). There is three possible cases for the head of the queue:

1. an element of type (v, w), this element is replaced by several elements (v′, w′) such that g(v′, w′) >
g(v, w) (assuming there is no transitions with cost 0 – in fact the proof can be done if we only
assume no cycles with cost 0);

2. an element of type õ(w), if Cj(w) is not stable it will be stable later (by definition), the case where
Cj(w) is stable is impossible: in this case o(w) is in Qi;

3. an element of type o(w), the algorithm terminates.

From case 1 (and the first part of this demonstration, showing the existence of an element of type o(w)
in Qi after time t) we deduce that there is a time t′ > t where an element of type o(w) or õ(w) will be
the head of Qi. From case 2 we deduce that, later, an element of type o(w) will be the head of Qi, and
thus, that Algorithm 6 terminates.

The proof of validity is based on a lemma involved in the proof of A∗ by Hart et al. [HNR68].

Lemma 14. In Ai, when Algorithm 6 is applied, at any moment the following holds: for all π, path
from s0 to F such that λi(π)|Λ1∩Λ2

= w and π optimal according to w, either o(w) is in Oi or there
exists (v′, w′) with v′ element of π and λi(π

′)|Λ1∩Λ2
= w′ (where π′ is a prefix of π ending by v′) such

that: 1) (v′, w′) is in Qi and 2) gi(v
′, w′) + hi(v

′) ≤ ci(π).

The proof of lemma 14 is exactly the proof of the corollary of lemma 1 in [HNR68] (considering that
we apply A∗ on the infinite graph G = (V,E) where V contains all couples (v, w) such that v ∈ Si and
w ∈ (Λ1 ∩Λ2)

∗, and there is an edge in E from (v, w) to (v′, wσ) if and only if there is a transition from
v to v′ labeled by σ in Ai). The first step is to prove that (v′, w′) is such that gi(v

′, w′) is the optimal
cost to reach v′ from s0 according to w′ (which is clear from the manner used to explore G). Then it is
sufficient to notice that hi(v

′) is a lower bound on the cost of an optimal path from v′ to Fi.

Validity: The algorithm terminates when an element of type o(w) is at the head of Qi. The ranking-
cost of o(w) is Ci(w)+Cj(w), which are both stable, which means that it is impossible to find a better cost
with w as synchronization word. Suppose that there exists w′ ∈ Λ1∩Λ2 which is a better synchronization
word than w. Given an optimal path π in Ai such that λi(π)|Λ1∩Λ2

= w′. We know from Lemma 14
that there is (v′′, w′′) in Qi such that v′′ is an element of π and λi(π

′)|Λ1∩Λ2
= w′′ (where π′ is a prefix

of π ending by v′′) and such that gi(v
′′, w′′) + hi(v

′′) ≤ ci(π). Hence gi(v
′′, w′′) + hi(v

′′) + Hj(w
′′) ≤

ci(π)+Hj(w
′′), and, by the properties required for Hj(w

′′), we have that Hj(w
′′) ≤ cj(π

′′) with π′′ such
that λj(π

′′)|Λ1∩Λ2
= w′, and thus, gi(v

′′, w′′)+hi(v
′′)+Hj(w

′′) ≤ ci(π)+cj(π
′′). Moreover ci(π)+cj(π

′′)
is the cost of an optimal global plan with synchronization word w′. However (v′′, w′′) is after o(w) in
Qi, thus, w′ can not be a better synchronization word than w. Finally the result w is an optimal
synchronization word. Our algorithm is valid.

We proved termination and validity of Algorithm 6. Hence, our algorithm is correct. We now propose
a way to maintain the functions Hj and Cj in order to ensure the properties we require.

Intuitively, for Cj(w) we take an estimate of the cost of an optimal path π from v0
j to Fj , such that

λj(π)|Λ1∩Λ2
= w. This Cj(w) is computed by ϕj while Algorithm 6 is executed on Aj . Formally it is

defined in the following way:

• Cj(w) is said to be optimal when:
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– ϕj has taken (v, w) in Qj , with v ∈ Fj ,

– and ∄(v′, w′) in Qj such that gj(v
′, w′) + h(v′) ≤ min

v∈Fj

(gj(v, w)) and w′ is a prefix of w,

in this case we have Cj(w) = min
v∈Fj

(gj(v, w));

• if Cj(w) is not optimal we have:

– if ∃v such that (v, w) is in Qi, then Cj(w) = min
(v,w) in Qj or v∈Fj

(gj(v, w) + hj(v)),

– else if ∃v ∈ Fj such that gj(v, w) 6= +∞, then Cj(w) = min
v∈Fj

(gj(v, w)),

– else Cj(w) = +∞.

From this Cj one can construct Hj in the following way:

Hj(w) = min
w̃ prefix of w or w prefix of w̃

Cj(w̃)

By construction of Cj it is clear that this function satisfies the properties required (e.g. that there
exists a time where Cj(w) will be optimal for any w). Checking that Hj(w) is correct is a bit harder
but can be done using Lemma 14. In fact the intuition behind the construction of Cj and Hj is the
following: we take Cj(w) as the best estimation one can obtain of the minimal cost of an accepted path
π in Aj such that λj(π)|Λi∩Λj

= w. From that we compute Hj(w) as the minimal cost possible for a
path π̃ in Aj which could synchronize with a path π in Aj such that λj(π)|Λi∩Λj

= w. This means that
λj(π̃)|Λi∩Λj

= w̃ with w̃ prefix of w – extending π̃ could allow it to synchronize with π – or with w prefix
of w̃ – extending π could allow it to be synchronized with π̃.

In this section we described an algorithm close to A∗ algorithm and proved that if ϕi executes this
algorithm on Ai while ϕj executes it on Aj then the result obtained by ϕi is a word w ∈ Λ1 ∩ Λ2 such
that there is an optimal plan P in A = A1 ×a A2 with P|Λ1∩Λ2

= w. Hence, this algorithm allows us to
perform factored optimal planning. In the next section we explain how we could generalize our algorithm
to the case where any number of automata are involved (with the assumption that communication graphs
are trees).

3.2 General Case

We now consider a compound system A = A1 ×a . . . ×a An, constituted of n weighted automata. We
assume that the communication graphs of A are trees and we consider one of them: G. By N (i) we
denote the indices of the neighbors of Ai in G. As for the previous case we would like to have an agent
ϕi for each Ai, which executes Algorithm 6 on Ai. In this section we explain how Qi could be ordered
to ensure the correctness of Algorithm 6. In fact the concepts involved are very close to the ones of
previous section, excepted that each agent ϕi has several neighbors in G and must give to each of these
neighbors ϕj some knowledge about Ai but also knowledge about the Ak for k 6= j that ϕi knows (as in
the MPA).

Exactly as in the previous case, each agent ϕi has its own functions gi : Si × (
⋃

j∈N (i) Λj ∩ Λi)
∗ →

R+∪{+∞} and hi : Si → R+∪{+∞}. These functions have exactly the same meaning as in the previous
case.

Each agent ϕi can now access to a collection of functions Hi
j : (Λj ∩ Λi)

∗ → R+ ∪ {+∞} (one for

each of its neighbors ϕj in G), a collection of functions Ci
j : (Λj ∩Λi)

∗ → R+ ∪ {+∞} (also one for each
neighbor of ϕi in G) and a function Ci : (

⋃

j∈N (i) Λj ∩ Λi)
∗ → R+ ∪ {+∞}. These functions have the

following properties:

• Hi
j(w) is a lower bound on the cost of accepted paths πj in Aj ×a A

′ (where A′ is the part of the
communication graph G which is separated from Ai by Aj , see Figure 3.3) which are such that
λ′(πj)|Λj∩Λi

= w′ (where λ′ associates a symbol to each transition of Aj ×a A
′) with w a prefix of

w′;
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• Ci
j(w) is such that there exists a time t after which the value Cj(w) is stable and is the optimal

cost of an accepted path πj in Aj ×a A′ such that λ′(πj)|Λj∩Λi
= w. Moreover we assume that ϕi

knows when Ci
j(w) is stable;

• Ci(w) is such that there exists a time t after which the value Ci(w) is stable and is the optimal
cost of an accepted path πi in Ai such that λi(πi)|

⋃

j∈N(i) Λj∩Λi
= w. We assume that ϕi knows

when Ci(w) is stable.

Ai Aj

A′

Λj ∩ Λi

Figure 3.3: A communication graph, the part A′ of the graph, separated from Ai by Aj , is squared

As in previous case, each agent ϕi have access to a queue Qi which contains couples (v, w) where
v ∈ Si and w ∈ (

⋃

j∈N (i) Λj ∩ Λi)
∗ and two sorts of special elements: o(w) with w ∈ (

⋃

j∈N (i) Λj ∩ Λi)
∗

and õ(w) with w ∈ (
⋃

j∈N (i) Λj ∩ Λi)
∗. This queue has the following properties:

• o(w) is in Qi if and only if Ci(w) is stable and ∀j ∈ N (i), Ci
j(w|Λj∩Λi

) is stable, the ranking-cost
associated to o(w) is Ci(w) +

∑

j∈N (i) Cj(w);

• õ(w) is in Qi if and only if an accepted word πi such that λi(πi)|
⋃

j∈N(i) Λj∩Λi
has been found in

Ai (which means that gi(v, w) 6= +∞ for some v ∈ Fi) and o(w) is not in Qi, the ranking-cost
associated to õ(w) is minv∈Fi

(gi(v, w)) +
∑

j∈N (i) J (w|Λj∩Λi
), where J (w|Λj∩Λi

) is Ci
j(w|Λj∩Λi

) if

it is stable and Hi
j(w|Λj∩Λi

) else;

• the ranking-cost of any (v, w) present in Qi is gi(v, w) + hi(v) +
∑

j∈N (i) J (w|Λj∩Λi
), where J is

defined as above;

• the elements of Qi are ordered by increasing ranking-cost.

One can prove that, with this definition of Qi, if algorithm 6 is executed by all agents ϕi on their
own automata Ai, it will converge (assuming that there is a path from initial to final states in A =
A1 ×a . . . ×a An) and return a word w ∈ (

⋃

j∈N (i) Λj ∩ Λi) such that 1) there is a plan Pi in Ai which

verifies (Pi)|
⋃

j∈N(i) Λj∩Λi
= w and 2) this plan Pi is part of an optimal global plan in A. The proof of

this statement is quite similar than in the simple case presented in previous section, hence we do not
give it here.

In fact, as in the previous case, it is possible to construct, for ϕi, the functions Hi
j , Ci

j , and Ci. One
can notice that this is where the necessity of living on a tree appears. Indeed, nothing in Algorithm 6
enforce this restriction. But, when constructing the functions Hi

j , Ci
j , and Ci it becomes necessary to

propagates some information (in particular on optimality of Ci
j), and thus, if communication graphs

contain cycles some troubles appear. The functions Hi
j , Ci

j , and Ci can be constructed as follows:

• Ci is constructed exactly as in the previous case;

• Ci
j is constructed by ϕj from Cj and all the Cj

k for k ∈ N (j) \ {i} and, for w ∈ Λj ∩ Λi, has the

value Ci
j(w) = min

w′
|Λj∩Λi

=w
Cj(w

′) +
∑

k∈N (j)\{i} Cj
k(w′

|Λk∩Λj
);
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• Hi
j is constructed by ϕj fromCi

j and, for w ∈ Λj∩Λi, has the value Hi
j(w) = min

w̃ prefix of w or w prefix of w̃
Ci

j(w̃).

To decide if Ci
j(w) is optimal is probably the hardest part of our problem. Indeed, to compute Ci

j(w)
we make a reverse projection of w into w′. Generally this generates a huge number of w′, and even,
potentially, an infinite number of w′ (notice that this does not create problems to compute Ci

j(w)
as, at a given moment, only a finite number of these w′ can be such that Cj(w

′) 6= +∞ and, thus,
all the others are just avoided). To ensure that Ci

j(w) is optimal we need to check that, for w′′ =

argmin
w′

|Λj∩Λi
=w

Cj(w
′) +

∑

k∈N (j)\{i} Cj
k(w′

|Λk∩Λj
) we have:

1. Cj(w
′′) is optimal (which can be done exactly as in the previous simple case);

2. Cj
k(w′′

|Λk∩Λj
) is optimal for all k ∈ N (j) \ {i} (which is provided by ϕk), this clearly implies that

problems live on trees, as shown in Figure 3.4;

3. and there is no w′′′ such that Cj(w
′′′) +

∑

k∈N (j)\{i} Cj
k(w′′′

|Λk∩Λj
) could become smaller than

Cj(w
′′) +

∑

k∈N (j)\{i} Cj
k(w′′

|Λk∩Λj
) latter.

The third point is the difficult one. For the moment we do not have a clever way to ensure the optimality
of Ci

j(w). This problem is probably close to the one of finding a bound to stop the partial determinisation
suggested in the previous chapter.

A2

A1 A3

C
2

1
(w

|Λ
1
∩
Λ
2
)
→

C
32 (w

|Λ
2 ∩

Λ
3 )
→

C
1
3(w|Λ3∩Λ1)→

A2

A1 A3

C
2

1
(w

|Λ
1
∩
Λ
2
)
→

←
C
23 (w

|Λ
3 ∩

Λ
2 )

Figure 3.4: Left: communication graph contains a cycle, to decide optimality of C2
1 (w|Λ1∩Λ2

) agent
ϕ1 needs that ϕ3 decides optimality of C1

3 (w|Λ3∩Λ1
), which implies that ϕ2 has decided optimality of

C3
2 (w|Λ2∩Λ3

) and thus that ϕ1 has decided optimality of C2
1 (w|Λ1∩Λ2

) . . . who decides first? Right:
communication graph is a tree, ϕ1 and ϕ3 can decide optimality of C2

3 (w|Λ3∩Λ2
) and C2

1 (w|Λ1∩Λ2
) alone.

In this chapter we introduced a new algorithm to solve factored optimal planning problems. This
algorithm is based on the well know A∗ algorithm [HNR68].

We first proved that, in a simple case involving only two automata, our algorithm is correct: it solves
the problem. However, in the general case, involving any number of automata, even if we proved that the
algorithm is correct we are not, for the moment, able to ensure all the properties needed by the objects
manipulated.
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Conclusion

In this report we proposed what are, to our knowledge, the two first approaches to factored planning
which ensure to find optimal plans.

Our first approach is based on a message passing algorithm and weighted automata calculus. It
consists in manipulating all the local plans of each component (thanks to weighted automata) and
to combine these plans in order to compute all the valid optimal global plans (with message passing
algorithm). The only difficulty is in determinisation of weighted automata (which is not always feasible).
Two solutions are possible: avoid determinisation (which increases the difficulty of necessary operations
such as synchronous product) or perform partial determinisation (which seems to be the better solution).

Our second approach is an adaptation of the classical A∗ algorithm to a distributed context. The
principle is to execute an A∗ like algorithm on each component, taking into account the information
which comes from other components along the execution of the algorithm. This approach has been
proved correct in the simple case involving only two components. In general case there is still some work
to do on technical aspects, but the principle of the algorithm has also been proved correct.

Further Work

We are currently working on the technical stuff needed for our distributed A∗ algorithm and on the
concept of partial determinisation which seem to be closely related. Indeed, if we find an efficient
way to compute a bound W such that optimal words can not have a cost greater than W , then it is
possible to stop the determinisation of an automaton A when any word of cost smaller than W is in the
determinised automaton A′ – as described in Section 2.2.3 – but it is also possible to restrict the number
of synchronization words to check in our distributed A∗ algorithm to something finite. Conversely, if
we are able to ensure that a word w is such that Ci

j(w|Λi∩Λj
) is minimal then we can probably make

an adaptation of it to stop the determinisation procedure in way such that the determinised automaton
obtained is sufficient to perform our computations.

We also would like to improve our approach by weighted automata calculus in several ways. A
thing could be to avoid the restriction on communication graphs (that currently have to live on trees)
by using turbo-algorithms [Fab03]. These algorithms, inspired from turbo-codes, can deal with cyclic
communication graphs and yield approximations of the solutions. When the communication graph is
sufficiently sparse these approximate solutions can be close to optimal.

Another point would be to include in our framework the notion of read arcs. This means that actions
which only read some variables (e.g. have given values of these variables as precondition and does not
modify these variables) should not be in conflict. This idea implies existence of asymmetric conflict,
when one action reads variables and another action modifies them.

We also would like to have more partial ordering in our plans. Indeed, currently our global plans
are partially ordered (private actions from local plans can be ordered in several ways) but this is not
the case of our local plans. Hence, we would like to find local plans as partial order. This could be
done using (weighted) petri-nets for components instead of (weighted) automata. However, if product
(or composition) of petri-nets can be defined easily, this is not the case for projection.

Finally it could be a good thing to look into game theory. The idea is that each component of a
planning problem could be owned by an agent. In this case each agent would like to minimize its personal
cost (e.g. find a local plan as close to optimal as possible) but has to deal with the other agents, and,
thus, make some concession. In this case, we would like to know how the message passing algorithm
should be adapted in order to ensure each agent to obtain the best cost it can expect.
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Appendix A

Proofs

A.1 Languages

Proof of Lemma 1. Let w ∈ Σ∗ be a word. Let Σ1 and Σ2 be two alphabets. We prove that PΣ1
◦

PΣ2
(w) = PΣ1∩Σ2

(w).
Three cases are possible: w = ǫ, w = σ ∈ Σ, or w = w′σ where w′ ∈ Σ+ and σ ∈ Σ.
If w = ǫ, then:

PΣ1
◦ PΣ2

(w) = PΣ1
◦ PΣ2

(ǫ)

= ǫ

= PΣ1∩Σ2
(ǫ)

= PΣ1∩Σ2
(w).

If w = σ, then:

PΣ1
◦ PΣ2

(w) = PΣ1
◦ PΣ2

(σ)

=

{

PΣ1
(σ) if σ ∈ Σ2

PΣ1
(ǫ) ifσ /∈ Σ2

=







σ if σ ∈ Σ2 and σ ∈ Σ1

ǫ if σ ∈ Σ2 and σ /∈ Σ1

ǫ if σ /∈ Σ2

=

{

σ if σ ∈ Σ1 ∩ Σ2

ǫ if σ /∈ Σ1 ∩ Σ2

= PΣ1∩Σ2
(σ)

= PΣ1∩Σ2
(w).

If w = w′σ then:

PΣ1
◦ PΣ2

(w) = PΣ1
◦ PΣ2

(w′σ)

= PΣ1
(PΣ2

(w′)PΣ2
(σ))

= PΣ1
◦ PΣ2

(w′)PΣ1
◦ PΣ2

(σ)

= PΣ1
◦ PΣ2

(w′)PΣ1∩Σ2
(σ).

By induction over the length of w we conclude that, in this case, PΣ1
◦ PΣ2

(w) = PΣ1∩Σ2
(w).

We proved that in all possible cases the lemma is verified.
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Proof of Lemma 2. Let L be a language over an alphabet Σ. Let w be a word from L. We show that
PΣ(w) = w, and thus PΣ(w) = w, which prove the lemma.

Three cases are possible: w = ǫ, w = σ ∈ Σ, or w = w′σ where w′ ∈ Σ+ and σ ∈ Σ.
If w = ǫ, then:

PΣ(w) = PΣ(ǫ)

= ǫ

= w.

If w = σ, with σ ∈ Σ, then:

PΣ(w) = PΣ(σ)

=

{

σ if σ ∈ Σ
ǫ ifσ /∈ Σ

= σ

= w.

If w = w′σ, with σ ∈ Σ then:

PΣ(w) = PΣ(w′σ)

= PΣ(w′)PΣ(σ)

= PΣ(w′)σ.

By induction over the length of w we conclude that, in this case, PΣ(w) = w.
We proved that PΣ(w) = w, thus PΣ(L) = L. This ends the proof of the lemma.

Proof of Lemma 3. Let L1 be a language over Σ1. Let L2 be a language over Σ2. Let Σ be an alphabet
such that Σ ⊇ Σ1 ∩ Σ2.

One can notice that:

PΣ(L1‖L2) = PΣ(P−1
Σ1

(L1) ∩ P−1
Σ2

(L2))

= PΣ({w ∈ (Σ1 ∪ Σ2)
∗ | PΣ1

(w) ∈ L1 and PΣ2
(w) ∈ L2})

= {w | ∃u ∈ (Σ1 ∪ Σ2)
∗, w = PΣ(u) and PΣ1

(u) ∈ L1 and PΣ2
(u) ∈ L2}.

One can also notice that:

PΣ(L1)‖PΣ(L2) = P−1
Σ∩Σ1

(PΣ(L1)) ∩ P−1
Σ∩Σ2

(PΣ(L2))

= {w ∈ (Σ ∩ Σ1 ∪ Σ ∩ Σ2)
∗ | PΣ∩Σ1

(w) ∈ PΣ(L1) and PΣ∩Σ2
(w) ∈ PΣ(L2)}.

We first prove that: PΣ(L1‖L2) ⊆ PΣ(L1)‖PΣ(L2). Let w be an element of PΣ(L1‖L2). We have:
∃u ∈ (Σ1 ∪ Σ2)

∗ such that w = PΣ(u), PΣ1
(u) ∈ L1, and PΣ2

(u) ∈ L2.
We know that w ∈ (Σ1∪Σ2)

∗ and w ∈ Σ∗, thus, w ∈ (Σ∩(Σ1∪Σ2))
∗ = (Σ∩Σ1∪Σ∩Σ2)

∗. Moreover,
for i ∈ {1, 2}, we have:

PΣ∩Σi
(w) = PΣi∩Σ(PΣ(u))

= PΣi∩Σ(u)

= PΣ∩Σi
(u)

= PΣ(PΣi
(u)).
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Now, PΣi
(u) ∈ Li, and thus PΣ(PΣi

(u)) ∈ PΣ(Li), hence, PΣ∩Σi
(w) ∈ PΣ(Li). This proves that

PΣ(L1‖L2) ⊆ PΣ(L1)‖PΣ(L2).
We now prove that: PΣ(L1‖L2) ⊇ PΣ(L1)‖PΣ(L2). Let w be an element of PΣ(L1)‖PΣ(L2). We

know that w ∈ (Σ ∩ (Σ1 ∪ Σ2))
∗.

As w′ = PΣ∩Σ1
(w) ∈ PΣ(L1), there exists u1 ∈ L1 such that w′ = PΣ(u1). As w′′ = PΣ∩Σ2

(w) ∈
PΣ(L2), there exists u2 ∈ L2 such that w′′ = PΣ(u2). Moreover PΣ(w) = w, thus, w′ = PΣ1

(w) and
w′′ = PΣ2

(w). Hence, all shared symbols are in the same order in u1 and u2. Thus one can easily
construct u from u1 and u2 such that PΣ(u) = w, PΣ1

(u) = u1, and PΣ2
(u) = u2. Figure A.1 shows

the relation between u, w, u1, and u2; and an example of construction of u = a1a2 . . . an (obtained by
following the line on the figure) from w,u1, and u2, which have the properties described above.

u1 u2w

u

PΣ

PΣ PΣ

PΣ1
PΣ2

a1

a2 a3

a4

a5

an

. . .

. . .

. . .a1

a1

a5

a5

u1:

u2:

w:

Figure A.1: Relation between w, u, u1, and u2 (left); Construction of u (right).

This is equivalent to PΣ(u) = w, PΣ1
(u) ∈ L1, and PΣ2

(u) ∈ L2. This proves that PΣ(L1‖L2) ⊇
PΣ(L1)‖PΣ(L2) and ends the proof of the lemma.

Proof of Lemma 4. We show that I = {ǫ}, language over the alphabet ΣI = ∅, is acceptable. Let L be a
language over the alphabet Σ.

L‖I = P−1
Σ (L) ∩ P−1

ΣI
(I)

= P−1
Σ (L) ∩ {s ∈ Σ∗ | P∅(s) = ǫ}

= P−1
Σ (L) ∩ Σ∗

= {s ∈ Σ∗ | PΣ(s) ∈ L}

= L

This proves the lemma.

A.2 Automata

Proof of Lemma 6. Let A = (S, T, f, s0, λ,Λ, F ) be an automaton. We first prove that:

L(ΠΛ1
◦ΠΛ2

(A)) = L(ΠΛ1∩Λ2
(A)). (A.1)

We know that:
L(ΠΛ1

◦ΠΛ2
(A)) = PΛ1

◦ PΛ2
(L(A)),

and that:

L(ΠΛ1∩Λ2
(A)) = PΛ1∩Λ2

(L(A)).

Moreover, for any language L, and alphabets Σ1 and Σ2, we have:

PΣ1
◦ PΣ2

(L) = PΣ1∩Σ2
(L).

Thus Formula A.1 is proved.
By Lemma 5, Formula A.1 is sufficient to prove the lemma.
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Proof of Lemma 7. Let A = (S, T, f, s0, λ,Λ, F ) be an automaton. Let Λ′ = Λ. We first prove that:

L(ΠΛ(A)) = L(A). (A.2)

We know that:
L(ΠΛ(A)) = PΛ(L(A)),

and that:
PΛ(L(A)) = L(A).

Thus Formula A.2 is proved.
By Lemma 5, Formula A.2 is sufficient to prove the lemma.

Proof of Lemma 8. We first prove that:

L(ΠΛ3
(A1 ∧ A2)) = L(ΠΛ3

(A1) ∧ΠΛ3
(A2)). (A.3)

We know that:

L(ΠΛ3
(A1 ∧ A2)) = PΛ3

(L(A1 ∧ A2))

= PΛ3
(L(A1)‖ℓL(A2)),

and that:

L(ΠΛ3
(A1) ∧ΠΛ3

(A2)) = L(ΠΛ3
(A1))‖ℓL(ΠΛ3

(A2))

= PΛ3
(L(A1))‖ℓPΛ3

(A2).

Moreover, for any languages L1 over Σ1 and L2 over Σ2, and any alphabet Σ3 ⊇ Σ1 ∩ Σ2 we have:

PΣ3
(L1‖ℓL2) = PΣ3

(L1)‖ℓPΣ3
(L2).

Thus Formula A.3 is proved.
By Lemma 5, Formula A.3 is sufficient to prove the lemma.

Proof of Lemma 9. Take ({s0}, ∅,→, s0, λ, ∅, {s0}) as I. We first prove that:

L(A ∧ I) = L(A). (A.4)

We know that:
L(A ∧ I) = L(A)‖ℓL(I).

Moreover, it is easy to see that:
L(I) = {ǫ}

Thus, we have:
L(A)‖ℓL(I) = L(A),

and Formula A.4 is proved.
By Lemma 5, Formula A.4 is sufficient to prove the lemma.

A.3 Weighted Languages

Proof of Lemma 12. From Lemma 3 we know that ∀(u,w) ∈ PΣ(L1×ℓL2) there is w′ such that (u,w′) ∈
PΣ(L1) ×ℓ PΣ(L2), and ∀(u,w′) ∈ PΣ(L1) ×ℓ PΣ(L2) there is w such that (u,w) ∈ PΣ(L1 ×ℓ L2). We
just have to prove that w = w′.

Let (u,w′) be an element of PΣ(L1)×ℓ PΣ(L2). Let (u,w) be the corresponding element in PΣ(L1×ℓ

L2).
We know that w ≤ w′, indeed w′ = w1 + w2 is obtained from (u1, w1) ∈ L1 and (u2, w2) ∈ L2 such

that u1|Σ can synchronize with u2|Σ. Because Σ ⊇ Σ1∩Σ2 we have that u1 and u2 are also synchronizable
(all the synchronization symbols are ever in u1|Σ and u2|Σ), the corresponding element in L1 ×ℓ L2 is
(u′, w1 +w2) = (u′, w′). It is clear that u′

|Σ = u. Hence, by definition of projection, we have that w ≤ w′.
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We also know that w′ ≤ w. Indeed, w = w1 +w2 is obtained from u1, w1 ∈ L1 and (u2, w2) ∈ L2 such
that u1 and u2 are synchronizable. Hence, because Σ ⊇ Σ1 ∩ Σ2, we have that u1|Σ and u2|Σ are also
synchronizable. The word u′ obtained from synchronization of u1|Σ and u2|Σ is such that (u′, w′′) is in
PΣ(L1)×ℓ PΣ(L2), and, by definition of projection, we have that w′′ ≤ w1 + w2 = w. Moreover, one can
notice that u′ = u. Thus, (u,w′′) is in PΣ(L1)×ℓ PΣ(L2). As we know that (u,w′) is in PΣ(L1)×ℓ PΣ(L2)
we have w′ = w′′, and thus, w′ ≤ w.

We proved that w ≤ w′ and w′ ≤ w. Thus, w = w′. This concludes the proof of the lemma.
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Appendix B

Weighted Automata algorithms

This part of our work is based on Mohri’s work about speech processing [Moh09].
For a WA A = (S, T, f, s0, λ,Λ, F, c, ci, cF ) we consider that ci and cF are functions defined on S:

ci(s0) is the initial cost and ci(s) = 0 for any s 6= s0; and cF (s) is the final cost of s if s ∈ F and has
value 0 if s /∈ F . Moreover, if (s, t) ∈ f we write s→ t.

For convenience we sometimes write δ(s, α) = S′, where S′ = {s′ | s → t → s′ ∧ λ(t) = α}. We
extend δ from (S × Λ)→ 2S to (2S × Λ∗)→ 2S .

For deterministic automata we denote by c(s, w) the cost of the path starting at s and labeled by
w ∈ Λ∗. For deterministic automata we denote by cF (w) the final cost of the path starting at s0 and
labeled by w ∈ Λ∗ (e.g. the cost of its last state).

We denote by P (I, w, F ) the set of paths from any element of I ⊆ S to any element of F ⊆ S, labeled
by w.

To each word w ∈ L(A) we associate a cost C(w) = minp∈P (s0,w,F ) c(p), where c(s0, t1, s1, t2, . . . , sn) =
Σn

i=1c(ti)+ci(s0)+cF (sn). For convenience we sometimes write C(q, w, q′) for minp∈P (q,w,q′)(c(p)−ci(q)−
cF (q′)).

B.1 Weight-pushing

Given A = (S, T, f, s0, λ,Λ, F, c, ci, cF ) a WA, we denote by d[q] the minimal weight of a path from q to
F , including final weight. The weight pushing algorithm consists in computing each d[q] and of rewriting
the transition weights, initial weight, and final weights in the following way:

∀q → t→ q′, q, q′ ∈ S, t ∈ T, d[q] 6= +∞, c(t)← c(t)− d[q] + d[q′] (B.1)

ci(s0)← ci(s0) + d[s0] (B.2)

∀q ∈ F, d[q] 6= +∞, cF (q)← cF (q)− d[q] (B.3)

B.2 ǫ-removal

Given a WA A = (S, T, f, s0, λ,Λ, F, c, ci, cF ), with ǫ-transitions, given s ∈ S, we denote by Cl(s) the
weighted ǫ-closure of s. We have:

Cl(s) = {(q, w) | P (s, ǫ, q) 6= ∅ and w = dǫ[s, q]},

where dǫ[s, q] is the minimal weight of a path from s to q, using only ǫ-transitions. Algorithm 7 is Mohri’s
ǫ-removal algorithm for weighted automata. Notice that λ and c are relations, so they can be considered
as sets: (t, σ) ∈ λ means λ(t) = σ and (t, ct) ∈ c means c(t) = ct.

B.3 Determinisation

B.3.1 Algorithm

If q′ = {(q0, c0), (q1, c1), . . . , (qm, cm)}, we denote by S(q′) the set {q0, q1, . . . , qm}.

42



Algorithm 7 Mohri’s weighted automata ǫ-removal algorithm

Input: A = (S, T, f, s0, λ,Λ, F, c, ci, cF )
Output: A′ = (S, T ′, f ′, s0, λ

′,Λ, F ′, c′, ci, c
′
F )

For each p ∈ S do

compute Cl(p)
Endfor

T ′ ← {t ∈ T | p→ t→ p′, λ(t) 6= ǫ}
f ′ ← {(x, y) | y ∈ T ′ or x ∈ T ′}
λ′ ← {(t, λ(t)) | t ∈ T ′}
c′ ← {(t, c(t) | t ∈ T ′}
F ′ ← F
c′F ← cF

For each p ∈ S do

For each (q, w) ∈ Cl(p) do

E ← {(tpr, σpr, cpr) | ∃t ∈ T,∃r ∈ S, such that (q, t) ∈ f, (t, r) ∈ f, λ(t) = σpr, and c(t) = cpr}
T ′ ← T ′ ∪ {tpr | (tpr, σpr, cpr) ∈ E}
f ′ ← f ′ ∪ {(p, tpr) | (tpr, σpr, cpr) ∈ E} ∪ {(tpr, r) | (tpr, σpr, cpr) ∈ E}
λ′ ← λ′ ∪ {(tpr, σpr) | (tpr, σpr, cpr) ∈ E}
c′ ← c′ ∪ {(tpr, cpr + w) | (tpr, σpr, cpr) ∈ E}
if q ∈ F then

if p /∈ F then

F ′ ← F ∪ {p}
c′F (p)← +∞

Endif

c′F (p)← min(c′F (p), w + cF (q))
Endif

Endfor

Endfor

Algorithm 8 Mohri’s weighted automata determinisation algorithm

Input: A = (S, T, f, s0, λ,Λ, F, c, ci, cF )
Output: A′ = (S′, T ′, f ′, s′0, λ

′,Λ, F ′, c′, c′i, c
′
F )

s′0 ← {(s0, 0)}
c′i(s

′
0)← ci(s0)

Q← {s′0}
While Q 6= ∅ do

p′ ← pop(Q)
Foreach σ such that δ(p′, σ) 6= ∅ do

w ← min{v + c(t) | (p, v) ∈ p′ ∧ p→ t ∧ λ(t) = σ}
q′ ← {(q,min{v + c(t)− w | (p, v) ∈ p′ ∧ p→ t→ q ∧ λ(t) = σ}) | q ∈ δ(p′, σ)}
T ′ ← T ′ ∪ {tp′q′}
f ′ ← f ′ ∪ {(p′, tp′q′), (tp′q′ , q′)}
λ′(tp′q′)← σ
c′(tp′q′)← w
If q′ /∈ S′ then

S′ ← S′ ∪ {q′}
If S(q′) ∩ F 6= ∅ then

F ′ ← F ′ ∪ {q′}
c′F (q′)← min{v + cF (q) | (q, v) ∈ q′ ∧ q ∈ F}

Endif

push(Q, q′)
Endif

Endfor

Endwhile
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For q′ = {(q0, c0), (q1, c1), . . . , (qm, cm)} and a label σ we write: δ(q′, σ) = {q′′ ∈ S|∃(q, c) ∈ q′,∃t ∈
T, q → t→ q′′, λ(t) = σ} = δ(S(q′), σ).

Algorithm 8 is Mohri’s determinisation algorithm for weighted automata.

Theorem 2. When Algorithm 8 terminates, the result is a deterministic automaton A′ which is equiv-
alent to A.

Proof. It is obvious that, when Algorithm 8 terminates, the result is a deterministic automaton A′. We
now prove that this automaton is equivalent to A: we first show that A and A′ accept the same words,
and then we show that for a given word w, accepted by A and A′, the cost corresponding to w in A′ is
the minimal cost corresponding to w in A (e.g. C(w)).

One can notice that, by construction, the following holds in A′ for any w ∈ Λ∗:

δ′(s′0, w) =
⋃

q∈δ(s0,w)

{(q, cq,w)}

cq,w = C(so, w, q)− min
q′∈δ(s0,w)

(C(s0, w, q′)).

A word w is accepted in A if and only if δ(s0, w) ∩ F 6= ∅. From the above definition of δ′ one can
notice that w is accepted if and only if δ′(s′0, w) contains an element of the form (q, cq,w), with q ∈ F .
This is the definition of F ′. Thus A and A′ accept exactly the same sets of words.

Let w be a word accepted by A (and thus A′). From the algorithm one can notice that:

c′F (δ′(s′0, w)) = min
q∈δ(s0,w)∩F

(ci(s0) + C(s0, w, q) + cF (q))− min
q′∈δ(s0,w)

(C(s0, w, q′))− c′i(s
′
0).

And thus:
c′F (δ′(s′0, w)) = C(w)− min

q′∈δ(s0,w)
(C(s0, w, q′))− c′i(s

′
0).

Finally:
c′i(s

′
0) + min

q′∈δ(s0,w)
(C(s0, w, q′)) + c′F (δ′(s′0, w)) = C(w).

B.3.2 Remarks on determinisability

We introduce a notion of distance between words: ∀u, v ∈ Λ∗, d(u, v) = |u|+ |v|+ 2|pre(u, v)|, where
pre(u, v) is the longest common prefix of u and v.

Definition 19. We say that C has bounded variation if and only if there exists K such that for all
u, v ∈ L(A) we have:

|C(u)− C(v)|

d(u, v)
≤ K.

Lemma 15. If A = (S, T, f, s0, λ,Λ, F, c, ci, cF ) is determinisable, then C has bounded variation.

Proof. Let A = (S, T, f, s0, λ,Λ, F, c, ci, cF ) be a determinisable automaton. By definition there exists a
deterministic automaton A′ = (S′, T ′,→′, s′0, λ

′,Λ, F ′, c′, c′i, c
′
F ) such that C′ : L(A′) → R+ is equal to

C : L(A)→ R+.
We define L and R as follows:

L = max
t∈T ′

c′(t),

R = max
q,q′∈F ′

(c′F (q)− c′F (q′)).

Let u1 and u2 be two elements of L(A′), by definition of d (the distance between words) we have:

∃u ∈ Λ∗ such that u1 = uv1, u2 = uv2, and |v1|+ |v1| = d(u1, u2).
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Moreover, recalling that A′ is deterministic:

C′(u1) = c′i(s
′
0) + c′(s′0, u) + c′(δ(s′0, u), v1) + c′F (u1)

C′(u2) = c′i(s
′
0) + c′(s′0, u) + c′(δ(s′0, u), v2) + c′F (u2).

Thus:

|C′(u1)− C
′(u2)| = |(c′i(s

′
0) + c′(s′0, u) + c′(δ(s′0, u), v1) + c′F (u1))

−(c′i(s
′
0) + c′(s′0, u) + c′(δ(s′0, u), v2) + c′F (u2))|

= |c′(δ(s′0, u), v1)− c′(δ(s′0, u), v2) + c′F (u1)− c′F (u2)|

≤ L× (|v1|+ |v2|) + R

= L× d(u1, u2) + R.

Hence, for u1 6= u2 (in this case d(u1, u2) ≥ 1): |C′(u1)− C
′(u2)| ≤ (L + R)× d(u1, u2).

The fact that C′ = C ends the proof:

|C(u1)− C(u2)|

d(u1, u2)
≤ (L + R).

Definition 20. An automaton A = (S, T,→, s0, λ,Λ, F ) is said to be trim if and only if any element of
S is on a path from s0 to F .

Definition 21. An automaton A = (S, T,→, s0, λ,Λ, F ) is said to be unambiguous if and only if for
any word w ∈ Λ∗ there exists at most one path labeled by w from s0 to F .

Lemma 16. A trim, unambiguous, weighted automaton A such that C has bounded variation has the
twin property.

Proof. Let A = (S, T, f, s0, λ,Λ, F, c, ci, cF ) be a trim and unambiguous weighted automaton, such that
C has bounded variation.

Let q and q′ be two elements of S; and u and v be two words from Λ∗ such that:

{q, q′} ⊆ δ(s0, u), q ∈ δ(q, v), and q′ ∈ δ(q′, v).

One can notice that if q, q′, u, and v can not be found, then A is twin.
As A is trim, one can find two words w and w′ in Λ∗ such that:

δ(q, w) ∩ F 6= ∅ and δ(q′, w′) ∩ F 6= ∅.

Moreover, as C has bounded variation, we have:

∃K ≥ 0 such that ∀k ≥ 0, |C(uvkw)− C(uvkw′)| ≤ K,

because, for all k, d(uvkw, uvkw′) = d(w,w′).
As A is unambiguous, there is a unique path from s0 to F labeled by uvkw: the path reaching q (this

is also true for uvkw′ and q′). Thus:

C(uvkw) = C(uw) + kC(q, v, q)

C(uvkw′) = C(uw′) + kC(q′, v, q′).

This leads to the following:

∃K ≥ 0, such that ∀k ≥ 0, |(C(uw) + kC(q, v, q))− (C(uw′) + kC(q′, v, q′))| ≤ K.
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Hence:
k(C(q, v, q)− C(q′, v, q′)) = 0.

Finally:
C(q, v, q) = C(q′, v, q′)

The automaton A is twin.

Lemma 17 (Pumping lemma). Let A = (S, T, f, s0, λ,Λ, F, c, ci, cF ) be a WA. Let w be a word over Λ∗,
such that: there exists a path π from p ∈ S to q ∈ S, labeled by w and a path π′ from p′ ∈ S to q′ ∈ S,
also labeled by w. If |w| > |S|2− 1, then there exists u1, u2, u3 three words over Λ∗, and p1, p

′
1 two states

of S such that: |u2| > 0, u1u2u3 = w, and π and π′ are factorisable as follows:

π = p
u1
 p1

u2
 p1

u3
 q

π′ = p′
u1
 p′1

u2
 p′1

u3
 q′.

Proof. The proof is based on the products ofA by himself, defined as: A×A = (S×S, T ′, f ′, (s0, s0), λ
′,Λ, F×

F, c′, c′i, c
′
F ), where:

• t = (t1, t2) ∈ T ′ if and only if t1 ∈ T , t2 ∈ T , and λ(t1) = λ(t2);

• λ′(t) = λ(t1);

• (x1, x2)→ (t1, t2)→ (x′
1, x

′
2) if and only if xi → ti → x′

i;

• c′, c′i and c′F are not necessary for the proof.

Let π and π′ be two paths in A, with same length (in terms of transitions) strictly greater than
|S|2 − 1.

π = q0 → t0 → q1 → · · · → tm−1 → qm

π′ = q′0 → t′0 → q′1 → · · · → t′m−1 → q′m

If π and π′ are labeled by the same word w, the following path exists in A×A:

Π = (q0, q
′
0)→

′ (t0, t
′
0)→

′ (q1, q
′
1)→

′ · · · →′ (tm−1, t
′
m−1)→

′ (qm, q′m).

Moreover A×A has exactly |S|2 states. Hence, Π has at least one cycle. This proves the lemma.

Lemma 18. If A is twin then Algorithm 8 terminates when applied to A.

Proof. Let A = (S, T, f, s0, λ,Λ, F, c, ci, cF ) be a twin weighted automaton.
If Algorithm 8 does not terminate when applied to A it means that there exists at least a set

Q = {q0, . . . , qm} of elements from S such that the algorithm produces an infinite number of distinct
sets: {(q0, c0), . . . , (qm, cm)}. Moreover there is at least two elements in Q (because, by construction,
there always exists j such that cj = 0). We denote by A ⊆ Λ∗ the set of words w such that there is a
path in A′ from s′0 to q′, where the states of S present in q′ are exactly the states of Q. For any w ∈ A we
write q′ = {(q0, c0(w)), . . . , (qm, cm(w))}. As A is infinite (by definition of Q) and for any w ∈ A there
exists j such that cj(w) = 0: there exists j0 such that cj0(w) = 0 for an infinite number of elements w of
A. Without loss of generality, let j0 = 0. We denote by B ⊆ A the infinite set of words w ∈ A such that
c0(w) = 0. As B is infinite, there exists j such that cj(w) takes an infinite number of different values for
w ∈ B. Without loss of generality we assume that j = 1. We denote by C ⊆ B an infinite set of words
w such that the c1(w) are all different (and c0(w) = 0).

Let R(q0, q1) = {c(π1)− c(π0) | πi is a path from s0 to qi labeled by w ∧ |w| ≤ |S|2 − 1}. This set is
finite (because the number of words w ∈ Λ∗ of size smaller than |S|2 − 1 is finite).

The idea of the proof is to show that {c1(w) | w ∈ C} ⊆ R(q0, q1)}. Which is in contradiction with
the fact that C is infinite, and thus proves the termination of Algorithm 8.
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Let w be a word from C. We denote by π0 a minimum cost path from s0 to q0 labeled by w. We denote
by π1 a minimum cost path from s0 to q1 labeled by w. By definition of C we have: c1(w) = c(π1)−c(π0).

If |w| ≤ |S|2 − 1 then c1 ∈ R(q0, q1).
Else, |w| > |S|2 − 1. Thus Lemma 17 allows to factorize π0 and π1:

π0 = s0
u1
 p0

u2
 p0

u3
 q0

π1 = s0
u1
 p1

u2
 p1

u3
 q1.

As p0 and p1 are twins (because A is twin) we have: C(p0, u2, p0) = C(p1, u2, p1).
We denote by π′

0 and π′
1 the following paths:

π′
0 = s0

u1
 p0

u3
 q0

π′
1 = s0

u1
 p1

u3
 q1.

As π0 and p1 are minimal cost paths we have:

c(π0) = c(π′
0) + C(p0, u2, p0)

c(π1) = c(π′
1) + C(p1, u2, p1).

And thus:
c1(w) = c(π′

1)− c(π′
0).

Using induction one can find π̃0 and π̃1, corresponding to words of length smaller or equal to |S|2−1,
and such that:

c1(w) = c(π̃1)− c(π̃0),

which is in R(q0, q1), by definition of this set.
Thus c1(w) ∈ R(q0, q1), which is in contradiction with infinity of C. Hence Algorithm 8 terminates.

Theorem 3. A trim, unambiguous, weighted automaton is determinisable if and only if it is determin-
isable by Algorithm 8.

Proof. Let A be a trim, unambiguous, determinisable, weighted automaton. By Lemma 15, C has
bounded variation, and thus, by Lemma 16, A is twin. Hence, by Lemma 18 this ensure that Algorithm 8
terminates. This proves that A is determinisable by Algorithm 8.

The reverse is obvious (see Theorem 2).

If it is possible to find for any WA an equivalent trim WA, it is unfortunately not always possible
to find an equivalent unambiguous WA. In [KLMP04], [KM05], and [LM06] are given some more results
about this unambiguity hypothesis, how it can be relaxed, and necessary conditions for determinisability
of WA.
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