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Abstract
In this paper we introduce a concept, called power matrix, which allows us to
transform infinite-duration games into finite-duration ones. As a first step we ob-
serve that there exist infinite-duration games, even zero-sum ones, with infinitely
many strategies which are not outcome equivalent. This constatation, which is in-
dependent of the objectives of players, implies that it is impossible to preserve all
the information about outcomes while transforming an infinite-duration game into
a finite-duration one. Our concept of power matrix uses imperfect information and
non-determinism to allow a transformation which avoids as much as possible the
loss of information. After introducing the concept, which is the main part of our
study, we also give some applications showing that the power matrix is useful.
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Introduction
One crucial aspect in the analysis of reactive systems consists in capturing infinite
behaviour. A typical requirement for such a system is that it never breaks down.
However, physical computation devices can take into account only a finite amount
of data. An effective approach for coping with ongoing interaction in discrete re-
active systems is based on the theory of infinite games over finite graphs. The
question of whether a given system can reach a designated configuration is just a
problem of reachability in a graph if the system is closed, because such a system
can be represented as a state machine. But if the system is open, i.e., if the en-
vironment can interact with it, then the problem can be modeled as a two-player
game: one player is the system and the other the environment as explained in [4].
Another example of usefulness of game theory is the model checking problem,
that is, the problem to check whether a given formula holds in a given model.
Solving this problem corresponds to finding whether a player has a winning strat-
egy in a given game. Kaiser gives more information about this approach in his
thesis [3]. There are also some examples in [9]. As explained in [9], game the-
ory can also be useful for the synthesis problem, i.e., the problem to construct a
system with a given specification.

Originally, the games studied in computer science were only zero-sum games.
In these games each player has to make the others lose in order to win. These
games are now very well known but they are not sufficient to represent all realistic
situations. For example, in the problem for an open system to reach a given con-
figuration we can’t assume that the environment is an opponent: the environment
could be, for example, other systems which have the same goal. More generally
in all games that are not zero-sum, the players could cooperate: they can win to-
gether. As soon as we allow players to cooperate (or even to lose intentionally)
the theory becomes more complicated: we are not able to do predictions about
the way the players will play. The case of finite-duration games can be solved,
see [1], but the case of infinite-duration games is more complicated.

In this paper we focus on games of infinite duration. Our goal is to transform
these games into games of finite duration without losing too much information.
We observe in most games of infinite duration that the relevant knowledge, which
determines the payoffs of the players, is not really infinite: it can be just the
fact that a state is reached and, in more complicated cases, we just have to know
in which strongly connected component of the game graph the game ends (or
where the infinite part of the play will take place). To answer the challenge of
transforming finite-duration games, we introduce the concept of power matrix
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which is our main contribution.
In Section 1, we introduce basics about game theory. In Section 2, we illustrate

why the transformation of an infinite-duration game into a finite one is not a simple
problem. In Section 3, we introduce our main concept: the power matrix, which
is an answer to the problem raised in Section 2. Finally we give, in Section 4,
some examples of usages of the power matrix and, in Section 5, we justify these
examples by demonstrating some properties of the power matrix.

1 About game theory
In this section we give some basic definitions from game theory. For a more
detailed introduction on 2-player games, we refer the reader to [7]. Background
on extensive games can be found in [5].

1.1 Basic definitions
We first define the notion of an n-player (graph) game and then we give some
basics about game theory, like the notions of play, strategy, or consistence.

Definition 1.1. An n-player (graph) game is a tupleG = (V, (Vi)i<n, v0, E, (ϕi)i<n)

where V =
⋃̇

i<nVi is a set of vertices and Vi is a set of positions for player i. The
position v0 ∈ V is the starting position. The set of edges E ⊆ V × V is the set of
transitions. Finally, ϕi is a condition, typically over reached vertices, that player
i wants to ensure.

A play is a sequence of positions ρ = v0v1v2 . . . such that (vk, vk+1) ∈ E
for each k. Plays are formed interactively by the players, which we call 0..n (in
an n-player game). We can have either finite or infinite plays. A strategy for
player i starting from v0 is a function s : V + → V which, for each prefix v0 . . . vp

where vp ∈ Vi, gives a position r such that (vp, r) ∈ E. A play ρ = v0v1v2 . . . is
consistent with a strategy s (for player i) if, for each k, such that vk ∈ Vi, we have
s(vk) = vk+1. A strategy s for player i is positional (or memoryless) if s(v0 . . . vp)
depends only of vp. Such a strategy can be described by a function f : Vi → V . A
strategy s for player i such that every play consistent with s satisfies ϕi is called a
winning strategy for player i.
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1.2 Some fundamental games
Here is a description of some frequently used games, see [7] for other games. To
describe these games we describe the condition ϕi that player i wants to ensure.
We first introduce guarantee and reachability games, which are games of the same
kind in zero-sum and non-zero-sum version respectively.

Definition 1.2. Let G = (V,E) be a game graph. Let F be subset of V . A
guarantee game is a 2-player game over G such that player 0 wins a play ρ =
v0v1... if and only if there is k such that vk is in F . Player 1 wins if and only if
player 0 does not win.

One can prove that guarantee games are determined: for every starting posi-
tion player 0 or player 1 has a winning strategy. In these games it is possible to
compute the winning regions (the set of all the starting positions from which a
given player has a winning strategy) and the corresponding winning strategies in
polynomial time (see [7] for a proof).

Definition 1.3. Let G = (V,E) be a game graph. Let (Fi)i<n be subsets of V . A
reachability game is an n-player game over G where player i’s goal is to reach at
least one vertex from Fi.

Definition 1.4. Let G = (V,E) be a game graph. Let c : V → N be a priority
function. A parity game is a 2-player game over G such that player 0 wins if and
only if the smallest priority seen infinitely many times is even. Else player 1 wins.

One can prove that parity games are determined. It is also possible to compute
the winning regions and corresponding winning strategies.

1.3 Other definitions
A well-known kind of games are zero-sum game, they are most intuitive.

Definition 1.5. A 2-player zero-sum game is a game such that for each play a
payoff is associated to each player (by an utility function) and the sum of the
payoffs for the two players for a given play is zero. In other words: if one player
wins the other loses and each play is won by a player.

The main concept proposed in this paper is a normal-form game so we give a
definition for this way to represent a game.
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Definition 1.6. A normal-form game or game in normal form (for two players)
consists of a matrix and a function. The rows of the matrix are strategies for
player 0 and the columns are strategies for player 1. The entries of the matrix
are called consequences (or outcomes). The function is called payoff function or
utility function and associates a real-valued payoff to each consequence.

It is possible to define normal-form games for more than two players. For n play-
ers the matrix is n-dimensional, each dimension corresponding to a player. A
normal-form game is also called strategic game; a formal definition can be found
in [5].

We also have to use imperfect-information games. Intuitively, an imperfect-
information game is a game where some positions are indistinguishable for a given
player.

Definition 1.7. We call imperfect-information game a game where some positions
are indistinguishable for a player. That is, the players can not use the fact that
they are on this position to set up their strategy.

Imperfect-information games are in reality more complicated; you can find
more about it (in particular formal definitions) in [8] and [6] for example. In [2]
is an example of the usefulness of imperfect information.

In the following, in a game involving n players, we refer to a list of elements
x = (xi)i<n, one for each player, as a profile. For any such profile we write x−i

to denote the list (xj)j<n,j 6=i of elements in x for each player except i. Given an
element xi and a list x−i, we denote by (xi, x−i) the profile (xi)i<n. We also call
Si the set of strategies for player i.

2 Motivations for our study
In computer science, to deal with infinity is always a challenge. In game theory,
there are two main sources of infinity: the game graph could be infinite or it could
be finite but with potentially infinite plays. We focus on the second aspect which
is very frequent: in many games (like parity games) the condition to win is based
on infinite plays but also in more simple games it is possible to see infinite plays.
For example in guarantee games one of the players wants to reach a set, it seems
that the plays will be finite: as soon as the set is reached the game ends. But the
other player wants to ensure that is opponent will not reach a set: infinite plays
are good for him and, if he can force the game to stay in a cycle, he will do it.
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As we saw, infinite plays are frequent. Our goal is to transform games with
potentially infinite plays into games with only finite plays without too much loss
of information. The main observation, which lets us think that it is possible, is the
fact that one does not really need to know what happens in a strongly connected
component of the game graph, it is enough to know whether a play will stay or
not in the component.

The best we could hope for is to transform our game G into a new one G′ and
to find a mapping f from the strategies over G to the strategies over G′ such that
given a strategy si over G for player i we have, for each s−i, the following equal-
ity: o(si, s−i) = o′(f(si), f(s−i)) (where o is the outcome corresponding to the
only play consistent with the strategy profile s). Unfortunately this is impossible,
as shown in the following lemma.

Definition 2.1. Two strategies si and ri for player i are outcome equivalent if and
only if for every s−i the outcome corresponding to the only play consistent with
the profile of strategies (si, s−i) has exactly the same outcome as the only play
consistent with the profile of strategies (ri, s−i).

Lemma 2.1. There exist games with infinitely many strategies that are not out-
come equivalent.

Proof. In Figure 1 is a game graph. Circles belong to player 0 and squares to
player 1. We assume that there are two different possible outcomes, o1 and o2,
in this game. If a play reaches the position o then the outcome is o1 and if it is
infinite, then the outcome is o2.

In this game we can construct an infinite set of strategies S0 = {s0
1, s

0
2, s

0
3...}

for player 0 such that each of these strategies is in a different equivalence class for
outcome equivalence. Let s0

k be the strategy defined in the following way:

• the first time position 1 is reached, go to position 2;

• if position 1 is reached again, go to position o if, and only if, position 2 has
been seen less than k + 1 times before; else go to position 2.

To prove that each of these strategies is in a different equivalence class, we con-
struct an infinite set of strategies S1 = {s1

1, s
1
2, s

1
3...} for player 1. Let s1

k be the
strategy defined in the following way:

• at the k − 1 first visits to position 2, go to position 3;

• at the k − 1 first visits to position 3, go to position 2;

6



i

2 3

1

o

Figure 1: A problematic configuration

• at the kth visit to position 2, go to position i.

If we play with strategies s0
` and s1

m two cases are possible: if ` ≤ m, then the
outcome is o1 and else, if l > m, it is o2. This proves that all the strategies from
S0 are in different equivalence classes. Hence, the lemma is proved.

One can notice that this proof only uses the configuration of the game graph,
there is no assumption about the outcomes (except that there are more than one)
and the players (except that there are at least two). Actually, this lemma holds
even in very simple games, like zero-sum games.

If we want to transform our games, we have to accept a loss of precision
about outcomes. We take inspiration in a very intuitive representation of zero-
sum games: they are determined so they can be represented as a game where a
player chose to play a winning strategy or not. In Figure 2 is a representation of a
generic zero sum game in this way. In this representation the player with circle is
the one who has a winning strategy, he first chooses whether to use it or not and
then the other player chooses his strategy, which finally leads to an outcome.

3 The concept of power matrix
Due to Lemma 2.1, we know that it is impossible to transform a game with po-
tentially infinite plays into one with only finite plays in a way that respects all
outcomes. Thus, we need to be more general, instead of looking to outcomes we
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Figure 2: A representation of a typical zero-sum game

choose to consider sets of possible outcomes. For this reason, we introduce the
concept of power matrix.

The power matrix is a normal-form game. Therefore, it is an imperfect-
information game: the players choose their strategies at the same time, without
any knowledge about the other players’ choice. We have to describe this game in
terms of Definition 1.6. We only define the matrix of this normal-form game, in
fact the payoff function can be chosen in different ways, depending of what we
want to do with the power matrix.

Let G = (V,E) be a game graph for n players. The power matrix is con-
structed from G with respect to a finite set W ⊆ V of targets and a starting
position v ∈ V . We assume that the game ends as soon as a target is reached and
that it ends only if a target is reached. Intuitively, choosing a strategy in the power
matrix corresponds to force the plays over G to reach a subset of W .

To describe the power matrix formally, we have to introduce some notions.

Definition 3.1. Let s be a complete strategy profile. We define the consequence
of this profile, cons(s) ∈ W ∪ {∞}, as the element of the set W ⊆ V of targets
reached by the unique play consistent with all the element of the profile s or∞ if
this play is infinite.

Definition 3.2. Let si be a strategy for player i. We define the consequence of this
strategy, cons(si) ⊆ W ∪ {∞}, as the set of elements from W reachable by plays
consistent with si with the addition of∞ if at least one of these plays is infinite,
i.e.,

cons(si) = {w ∈ W ∪{∞} | there exists s−isuch that cons((si, s−i)) = w}.
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The notion of consequence of a strategy leads to an equivalence relation be-
tween strategies that we use to construct our power matrix. The non-empty equiv-
alence classes of this relation are the strategies over the power matrix.

Definition 3.3. Let si and ri be two strategies for player i. We say that si and ri

are power equivalent if and only if cons(si) = cons(ri). We denote this by si ∼ ri.

Definition 3.4. A power strategy is an equivalence class for the power equiva-
lence. Let C be a subset of W ⊆ V a set of targets. We denote by [C]i the power
strategy for player i such that, for si ∈ [C]i, we have cons(si) = C, i.e.,

[C]i = {si ∈ Si | for all (s−i), cons((si, s−i)) ∈ C
for all c ∈ C, exists s−i, cons((si, s−i)) = c }.

Lemma 3.1. In every game, there is a finite number of power strategies for each
player.

Proof. Each power strategy is defined by a subset of W ∪ {∞}. Because W is
a finite set, there is a finite number of subsets (at most 2|W |+1, where |W | is the
number of elements in W ).

As we said, the non-empty power strategies are the strategies in the power
matrix, according to Definition 1.6. Because the number of these strategies is
finite we obtain a useful corollary about the power matrix.

Corollary 3.1. The power matrix of every game is finite.

The strategies in the power matrix are now well defined. We just have to
describe the entries of this matrix. These entries are the consequences of a profile
of power strategies.

Definition 3.5. Let p be a profile of power strategies, which means that each pi is
a power strategy: pi = [C]i, and C is not necessarily the same for all the pi. We
call consequences of this profile the following set:

cons(p) =
⋃
{cons(s) | s ∈×

i<n

pi}.
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The set cons(p) is the set of consequences of all the complete profiles con-
structable using strategies from the power strategies of p. It is clear that each
entry of the power matrix is included in the intersection of the power strategies
corresponding to this entry. But these two sets are not always equal, as we show
in an example of the Section 4. Formally we have cons(p) ⊆

⋂
i<n p

i, where p is
a profile of power strategies.

In this section we described the concept, of a power matrix abstractly. This
matrix is constructed from a game. In the following we explain how it could be
used and why it is useful for our study.

4 Applications of the power matrix
In this part we give some examples of using of the power matrix described in
Section 3. This show the usefulness of this concept and, in Section 5, we give a
property which makes the interest of this concept even stronger.

4.1 Power of a player
The most simple application of the power matrix is to use it as a representation of
a whole game, in the following way.

It is clear that each game graph can be associated with a (potentially infinite)
tree where a path is a play over the game graph (see [5]). The leaves of this tree are
the outcomes associated with each play. Defining W as the set of all the leaves,
one can construct a power matrix associated with this tree: the power strategies
are the sets of outcomes that players can enforce.

In fact the power strategies of a player represent the influence of this player
over the game, that is what we call power of a player.

For example, as we saw in Section 2, in a zero-sum game one player has all
the power: he can chose to win the game or not.

4.2 Replacing components of a game
An important fact about the power matrix is that it is possible to replace some
components of a given game by their power matrix (more precisely the graph
representation of their power matrix). We now give the definition of a replaceable
components and of the graph representation of a power matrix and explain how to
switch between them.
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Definition 4.1. The component of the game graph G = (V,E) with input I ⊆ V
and output O ⊆ V the sub-graph of G which contains all the paths from I to O
and only these paths. A component is a game graph. A replaceable component is
a component G′ = (V ′, E ′) such that there is no edge between V ′ \ (I ∪ O) and
V \ V ′.

In Figure 3 is a game graph for a 2-player game (positions for player 0 are
circles and positions for player 1 are squares). The component with I = {i} and
O = {a, b} is a replaceable component.

i

a b

Figure 3: Game graph and replaceable component

It is also possible to represent a power matrix as a game with imperfect infor-
mation. The imperfect information reflects the fact that the players choose their
strategies at the same time.

Definition 4.2. A game graph of a power matrix or power graph is a tree. The
root belongs to the first player. There is exactly one level of the tree for each
player. From each position which belongs to him a player can choose between all
his power strategies. All the positions of a given player are indistinguishable for
him. Each leaf of this tree correspond to an entry of the power matrix, associated
to the power strategies chosen by the players to reach this leaf.

The power matrix associated with the replaceable component of Figure 3 is
represented in Table 1 (player 0 controls the rows and player 1 the columns).

A corresponding power graph (with root for player 0) is represented in Fig-
ure 4. In this game player 0 chooses first a power strategy, which leads to one of
the positions for player 1. Then player one chooses a power strategy, which leads
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{a, b} {∞, b} {∞, a, b}
{a,∞} {a} {∞} {∞}
{a,∞, b} {a, b} {∞} {∞}

{b} {b} {b} {b}
{a, b} {a, b} {b} {a}

Table 1: Power matrix

to one of the leaves. All the positions for player 1 are equivalent (represented
by dashed lines). For example, if player 0 chooses the power strategy {b}, then
whatever the player 1 chooses, the leaf reached will be {b}, which is represented
at the right of Figure 4.

{a} {b}{∞} {a, b}

Figure 4: Power graph

We introduced the notion of a replaceable component of a game graph and
game graphs of power matrices, called power graphs. We now show how to re-
place such a component by a corresponding power graph.

First, it is necessary to construct a power graph Ĝ of the power matrix corre-
sponding to the component. Then, one just needs to erase the edges and vertices
of the component, except the input and output vertices, add an edge from each
input to the root of Ĝ and join the leaves of Ĝ to the outputs. As we explained in
Definition 4.2 each of these leaves represents a subset of the outputs. Every leaf
will have an edge to each output from the subset it represents (if one output is∞
we just add a new position with none outgoing edge to represent this possibility).
A new and neutral player, that is a player with no goal, will control the leaves.
This is a form of non-determinism: none of the initial players can chose the final
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output.
In Figure 5 is represented the graph of Figure 3 where the component studied

before is replaced with a power graph corresponding to the power matrix of Fig-
ure 4. The positions which are neither circles nor squares belong to a third player
which has no objective in the game: it represents non-determinism.

i

{a} {b}{∞} {a, b}

a b∞

Figure 5: The new game graph

4.3 Application to guarantee games
The replacement of components by power graphs is a very powerful tool which
allows us to transform certain games with potentially infinite plays into games
with only finite plays. We call this transformation disconnection of a game. We
give an example with guarantee games (see Definition 1.2).

The idea is to replace each strongly connected component of the game graph
by a corresponding power graph.

For the following we fix a game graph G = (V,E) and a subset F of V . We
focus on a guarantee game over G with F used as the F of Definition 1.2.

Definition 4.3. A strongly connected component of G is a component G′ =
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(V ′, E ′) such that for each pair (u, v) of vertices from V ′ there is a path from
u to v in G′ and all the paths from u to v are in G′.

We also have to define the sets I and O for a given strongly connected com-
ponent. Let G′ = (V ′, E ′) be a strongly connected opponent of G. We define I as
the set of all the vertices i of V ′ for which there is a vertex v ∈ V \ V ′ such that
(v, i) is in E. Likewise, we define O as the set of all the vertices o of V ′ for which
there is a vertex v of V \ V ′ such that (o, v) is in E, plus the elements of V ′ ∩ F .

Once we have defined I and O for a given strongly connected component,
the transformation of a guarantee game with potentially infinite plays into a guar-
antee game with only finite plays is very simple: one has only to replace the
strongly connected components one by one. When no strongly connected compo-
nent remains, the new game graph is a directed acyclic graph. Hence, all the plays
over this graph are finite. Therefore this transformation keeps all the information
needed to solve the game: the vertices of F and the paths to reach them.

In the next part we show that the dominance relation between strategies is
preserved when we replace a component. In particular, if there is a strategy which
ensures player i to win over G, then there is a strategy which ensures him to win
over the new game. It validates the transformation.

5 An interesting property of the power matrix
In this section we explain the dominance relation between strategies and we show
that the power matrix preserves this relation.

5.1 Dominance between strategies
The notion of dominance between strategies is derived from an order over sets of
outcomes.

Definition 5.1. Given a gameG and an order< over the sets of possible outcomes
we say that a set X of outcomes dominates a set Y of outcomes if and only if
Y < X . In this case we also say that Y is dominated by X .

We can extend this notion of dominance between sets of outcomes to a notion
of dominance between strategies.
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Definition 5.2. In a game G, we say that a strategy si, for player i, dominates a
strategy ri if and only if the set X of outcomes associated with all the plays con-
sistent with si and the set of outcomes Y associated with all the plays consistent
with ri are such that X dominates Y .

This is a very intuitive notion: if a player can order the sets of possible out-
comes (which means that he has preferences between them) then he can also order
his strategies and determine which strategy or set of strategies he prefers to use.

5.2 The basic property
We first give a basic property about the transformation proposed in Section 4.1.

Lemma 5.1. The dominance relation between strategies is preserved by the trans-
formation of Section 4.1.

This means that:

1. if a strategy si for player i dominates a strategy ri in a game G, then the
power strategies Si associated with si and Ri associated with ri are such
that Si dominates Ri in the new game;

2. if a power strategy Si dominates a power strategy Ri in the new game then
all the strategies corresponding to Si dominate the strategies corresponding
to Ri in G.

Proof. The power strategies are exactly the sets of outcomes of Definition 5.2.

In particular the lemma implies that, if there is a winning strategy in a game
G, then there is a winning strategy in the corresponding power matrix (as defined
in Section 4.1).

5.3 Recursive aspect of the property
We prove in this section that, in guarantee games, the replacement of a component
by a corresponding power graph, as suggested in Sections 4.2 and 4.3 preserves
the dominance between strategies.

Lemma 5.2. The dominance relation between strategies is preserved by the dis-
connection of a game.
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LetG be a guarantee game. Let Ĝ be the new game constructed by replacing a
strongly connected component in the game graph ofG as described in Section 4.3.
Formally we want to prove that:

1. if a strategy si for player i dominates a strategy ri for player i in G then the
strategy ŝi corresponding to si dominates the strategy r̂i corresponding to
ri in Ĝ;

2. if in Ĝ a strategy ŝi for player i dominates a strategy r̂i for player i then in
G all the strategies si corresponding to ŝi dominate the strategies ri corre-
sponding to r̂i.

Proof. It is sufficient to notice that a given vertex is reachable using a given strat-
egy in G if, and only if, it is reachable using the corresponding power strategy in
Ĝ.

The new game, constructed from a guarantee game by replacing a strongly
connected component by a corresponding power graph, is also a guarantee game.
Hence if we replace all the strongly connected components we can ensure that
the dominance relation between strategies is preserved from the original game (by
applying Lemma 5.2 after each atomic transformation). This validates the use of
the power matrix, in the case of guarantee games.

Conclusion
In this paper we have shown that, without making assumptions about the way the
players play, there is in general an infinite number of equivalence classes of strate-
gies for outcome equivalence, even in zero-sum games (Lemma 2.1). According
to this, it is not possible in general to transform a game into a new one with a fi-
nite number of strategies for each player such that there is a mapping for strategies
from the first game to the second one which respects outcomes.

The main contribution of this paper is the concept of power matrix. It is a
response to the problem opened by Lemma 2.1. We introduced this concept to
transform a game with potentially infinite plays into a new one with only finite
plays, such that dominance between strategies is preserved from one game to an-
other. This power matrix is very general and, in particular, it does not require
assumptions about the way the players will play. Because this concept is rather
abstract, we also gave some applications. Associated with the preservation of
dominance between strategies these examples show the usefulness of our concept.
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Here, we only used the power matrix to transform guarantee game which are
zero-sum games. Hence, we did not really demonstrate the interest of power ma-
trix, which is the fact that it is independent of the players’ goals. One future
project is to use our power matrix to transform non-zero-sum games first reach-
ability games which are close to guarantee games and then other kind of games
like, for example, parity games. It could also be interesting to see if, in the trans-
formation of Section 4.2, it is possible to make the new game determinist.
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