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Intel has to recall all 
flawed chips.
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Bugs: Are they Hard to Find?

❖ Which chip below has the FDIV bug?
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Circuits
❖ Made of simple gates

❖ connected by wires
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3,000,000

❖ In the Pentium

❖ ~ 1 million gates

❖ ~ 3 million wires, each having value 0 or 1

❖ 2                   possible distinct configurations to check

❖ This is 1 followed by 900,000 zeros!
  (number of atoms in the universe: only 1 followed by 82 zeros...)
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Circuits
❖ Made of simple gates

❖ connected by wires

❖ In practice, we would be happy to check elementary units
(e.g., a divisor, a multiplier, an adder)

❖ with a few thousand wires

❖ Before 1986, this was out of reach of all known methods
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techniques would lead to different and often simpler
diagrams.
What are some useful ways in which these diagrams can

and should be generalized? One possibility is to allow for
' DON T CARE'S" or DON'T KNOW's by simply including 'X"
as a third terminal value.
How can the diagrams be used for various synthesis

procedures? We have seen (in Section III) that path tracing
can yield a many gate, two-level form while a direct substitu-
tion method, such as that in Section V, tends to result in few
gates but many levels.
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Efficiency of Random Compact Testing
JACQUES LOSQ, MEMBER, IEEE

Abstract-Random compact testing uses random inputs to test
digital circuits. Fault detection can be achieved by comparing some
statistic of the circuit under test, e.g., the frequency of logic ones at an
output, with the value of that statistic previously determined for the
fault-free circuit. In this paper, we show that random compact testing
can efficiently detect failures in both combinational and sequential
circuits. Although this testing method cannot guarantee detection of
all faults, it provides a simple way to detect the vast majority of
failures in most circuits. The effects of failures inside combinational
circuits are modeled in relation to the statistical property measured
by the test and a general evaluation of the testing efficiency is
obtained. The probability of detection is shown to increase with the
test length and to be dependent upon test parameters such as the
statistics of the input sequence. For sequential circuits, the uncer-
tainty of the initial state necessitates an initialization step, which is a
long sequence of random inputs. The length of such an initialization
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sequence is circuit dependent, but for most circuits, proper initializa-
tion can be achieved in a few seconds. Most failures inside the
memory elements are easily detected, even with short tests. Random
compact testing can also detect most of the failures inside the
excitation logic and the output circuitry. There, as for combinational
circuits, its efficiency is largely dependent upon the test length. Some
of the requirements and tradeoffs to achieve efficient detection are
presented.

Index Terms-Combinational digital circuits, compact testing of
digital circuits, random testing of digital circuits, sequential
digital circuits.

I. INTRODUCTION
THE INCREASING complexity of digital circuits has
Tmade the testing problem extremely difficult. Deter-
ministic methods for test generation (D-Algorithm [1], [2],
Boolean difference [3], Poage's method [4]) become prohibi-
tively expensive for large circuits. The number of multiple
stuck-at faults increases exponentially with the number of
gates. For large LSI chips, like microprocessors, the amount
of computation required to generate a vector test set that
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Circuits
❖ Made of simple gates

❖ connected by wires

❖ Then R.L. Bryant (1986) found a way:
BDDs (Binary Decision Diagrams)
[improving on Sh. B. Akers (1978)]

❖ «One of the only really fundamental
data structures that came out
in the last twenty-five years»
— Donald E. Knuth
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Circuits...
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... and Truth Tables
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Decision Trees
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BDDs: Sharing
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BDDs: Reduction
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BDDs are Compact
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❖ Space used: 2n+3 nodes

❖ #configurations (paths): 2n+1
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❖ Space used: 2n+3 nodes

❖ #configurations (paths): 2n+1

n space used # configs
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200 403 2 10
250 503 2 10
300 603 2 10
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450 903 2 10

* Each node typically takes 16 bytes
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BDDs Today

❖ Circuit verification

❖ Model-checking: verification, beyond circuits

❖ Circuit design

❖ Fault diagnosis

❖ Production configuration

❖ Etc.
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Want to Know More?

Volume 4A – Combinatorial Algorithms, Part 1
■ Chapter 7 – Combinatorial Searching

■ 7.1. Zeros and Ones
■ 7.1.1. Boolean Basics
■ 7.1.2. Boolean Evaluation
■ 7.1.3. Bitwise Tricks and Techniques
■ 7.1.4. Binary Decision Diagrams

■ 7.2. Generating All Possibilities
■ 7.2.1. Generating Basic Combinatorial Patterns

■ 7.2.1.1. Generating all n-tuples
■ 7.2.1.2. Generating all permutations
■ 7.2.1.3. Generating all combinations
■ 7.2.1.4. Generating all partitions
■ 7.2.1.5. Generating all set partitions
■ 7.2.1.6. Generating all trees
■ 7.2.1.7. History and further references

Quick reference: http://en.wikipedia.org/wiki/Binary_decision_diagram
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techniques would lead to different and often simpler
diagrams.
What are some useful ways in which these diagrams can

and should be generalized? One possibility is to allow for
' DON T CARE'S" or DON'T KNOW's by simply including 'X"
as a third terminal value.
How can the diagrams be used for various synthesis

procedures? We have seen (in Section III) that path tracing
can yield a many gate, two-level form while a direct substitu-
tion method, such as that in Section V, tends to result in few
gates but many levels.
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Abstract-Random compact testing uses random inputs to test
digital circuits. Fault detection can be achieved by comparing some
statistic of the circuit under test, e.g., the frequency of logic ones at an
output, with the value of that statistic previously determined for the
fault-free circuit. In this paper, we show that random compact testing
can efficiently detect failures in both combinational and sequential
circuits. Although this testing method cannot guarantee detection of
all faults, it provides a simple way to detect the vast majority of
failures in most circuits. The effects of failures inside combinational
circuits are modeled in relation to the statistical property measured
by the test and a general evaluation of the testing efficiency is
obtained. The probability of detection is shown to increase with the
test length and to be dependent upon test parameters such as the
statistics of the input sequence. For sequential circuits, the uncer-
tainty of the initial state necessitates an initialization step, which is a
long sequence of random inputs. The length of such an initialization

Manuscript received August 11, 1977; revised February 23, 1978. This
work was supported by the National Science Foundation under Grant
MCS 76-05327, the Joint Services Electronics Program (JSEP) under
Contract N00014-75-0601, and the Air Force Office of Scientific Research
under Grant 77-3325.
The author was with the Digital Systems Laboratory, Departments of

Electrical Engineering and Computer Science, Stanford University, Stan-
ford, CA 94305. He is now with the IBM T. J. Watson Research Center,
Yorktown Heights, NY10598.

sequence is circuit dependent, but for most circuits, proper initializa-
tion can be achieved in a few seconds. Most failures inside the
memory elements are easily detected, even with short tests. Random
compact testing can also detect most of the failures inside the
excitation logic and the output circuitry. There, as for combinational
circuits, its efficiency is largely dependent upon the test length. Some
of the requirements and tradeoffs to achieve efficient detection are
presented.

Index Terms-Combinational digital circuits, compact testing of
digital circuits, random testing of digital circuits, sequential
digital circuits.

I. INTRODUCTION
THE INCREASING complexity of digital circuits has
Tmade the testing problem extremely difficult. Deter-
ministic methods for test generation (D-Algorithm [1], [2],
Boolean difference [3], Poage's method [4]) become prohibi-
tively expensive for large circuits. The number of multiple
stuck-at faults increases exponentially with the number of
gates. For large LSI chips, like microprocessors, the amount
of computation required to generate a vector test set that
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