
Circuit Verification:
The BDD Revolution

Jean Goubault-Larrecq

vendredi 29 juin 12



Bugs: The Intel FDIV Bug

vendredi 29 juin 12



Bugs: The Intel FDIV Bug

Intel has to recall all 
flawed chips.
Cost: $475 million

vendredi 29 juin 12



Bugs: Are they Hard to Find?

❖ Which chip below has the FDIV bug?

vendredi 29 juin 12



Bugs: Are they Hard to Find?

❖ Which chip below has the FDIV bug?

Pentium ProP5 P54CS
vendredi 29 juin 12



Let’s Look Inside

vendredi 29 juin 12



Let’s Look Inside

vendredi 29 juin 12



Let’s Look Inside

vendredi 29 juin 12



Let’s Look Inside

vendredi 29 juin 12



Circuits
❖ Made of simple gates

❖ connected by wires

A B A or B

0 0 0
1 0 1
0 1 1
1 1 1

A B A and 
B

0 0 0
1 0 0
0 1 0
1 1 1

vendredi 29 juin 12



Circuits
❖ Made of simple gates

❖ connected by wires

A B A or B

0 0 0
1 0 1
0 1 1
1 1 1

A B A and 
B

0 0 0
1 0 0
0 1 0
1 1 1

3,000,000

❖ In the Pentium

❖ ~ 1 million gates

❖ ~ 3 million wires, each having value 0 or 1

❖ 2                   possible distinct configurations to check

❖ This is 1 followed by 900,000 zeros!
  (number of atoms in the universe: only 1 followed by 82 zeros...)

vendredi 29 juin 12



Circuits
❖ Made of simple gates

❖ connected by wires

❖ In practice, we would be happy to check elementary units
(e.g., a divisor, a multiplier, an adder)

❖ with a few thousand wires

❖ Before 1986, this was out of reach of all known methods

A B A or B

0 0 0
1 0 1
0 1 1
1 1 1

A B A and 
B

0 0 0
1 0 0
0 1 0
1 1 1

vendredi 29 juin 12



IEEE TRANSACTIONS ON COMPUTERS, VOL. c-27, NO. 6, JUNE 1978

techniques would lead to different and often simpler
diagrams.
What are some useful ways in which these diagrams can

and should be generalized? One possibility is to allow for
' DON T CARE'S" or DON'T KNOW's by simply including 'X"
as a third terminal value.
How can the diagrams be used for various synthesis

procedures? We have seen (in Section III) that path tracing
can yield a many gate, two-level form while a direct substitu-
tion method, such as that in Section V, tends to result in few
gates but many levels.

REFERENCES
[1] C. Berge, The Theory of Graphs and Its Applications. London:

Methuen, 1962.
[2] F. Harary, R. Z. Norman, and D. Cartwright, Structural Models: An

Introduction to the Theory ofDirected Graphs. New York: Wiley, 1966.
[3] D. E. Knuth, Fundamental Algorithms, The Art ofComputer Program-

ming, Vol. I. Reading, MA: Addison-Wesley, 1969.
[4] H. T. Nagle, Jr., B. D. Carroll, and J. D. Irwin, An Introduction to

Computer Logic. Englewood Cliffs, NJ: Prentice-Hall, 1975.
[5] S. B. Akers, "Universal test sets for logic networks," IEEE Trans.

Comput., vol. C-22, pp. 835-839, Sept. 1973.
[6] S. M. Reddy, "Complete test sets for logic functions," IEEE Trans.

Comput., vol. C-22, pp. 1016-1020, Nov. 1973.
[7] D. B. Armstrong, "On finding a nearly minimal set of fault detection

tests for combinational logic nets," IEEE Trans. Comput., vol. EC-15,
pp. 66-73, Feb. 1966.

[8] C. Ghest and J. Springer, Advanced Micro Devices Data Book, Ad-
vanced Micro Devices, Inc., pp. 8-9-8-28, 1974.

Sheldon B. Akers (SM'62-F'75) was born in
Washington, DC. He received the B.S. degree in
-electrical engineering and the M.A. degree in
mathematics both from the University of Mary-
land, College Park, in 1948 and 1952, respectively.
From 1948 to 1956 he was employed in the

Washington, DC, area at the National Bureau of
Standards, the U.S. Coast Guard Headquarters,
and ACF Industries. In 1956 he joined the Elec-
tronics Laboratory, General Electric, Syracuse,
NY, where he is presently employed as a Staff

Computer Scientist. His primary areas of research include switching
theory, graph theory, combinatorial analysis, operations research, and
design automation. He is a coauthor of Design Automation of Digital
Computers (Englewood Cliffs, NJ: Prentice-Hall, 1972). He is also an
Adjunct Professor at Syracuse University, Syracuse, NY.

Mr. Akers is a member of Pi Delta Epsilon, Omicron Delta Kappa,
Sigma Xi, and the Mathematical Association of America. He belongs to
the IEEE Computer Society Technical Committee on Design Automation
and is Secretary and Publicty Chairman of the Technical Committee on
Mathematical Foundations of Computing. He has served in the Com-
puter Society's Distinguished Visitor Program.

Efficiency of Random Compact Testing
JACQUES LOSQ, MEMBER, IEEE

Abstract-Random compact testing uses random inputs to test
digital circuits. Fault detection can be achieved by comparing some
statistic of the circuit under test, e.g., the frequency of logic ones at an
output, with the value of that statistic previously determined for the
fault-free circuit. In this paper, we show that random compact testing
can efficiently detect failures in both combinational and sequential
circuits. Although this testing method cannot guarantee detection of
all faults, it provides a simple way to detect the vast majority of
failures in most circuits. The effects of failures inside combinational
circuits are modeled in relation to the statistical property measured
by the test and a general evaluation of the testing efficiency is
obtained. The probability of detection is shown to increase with the
test length and to be dependent upon test parameters such as the
statistics of the input sequence. For sequential circuits, the uncer-
tainty of the initial state necessitates an initialization step, which is a
long sequence of random inputs. The length of such an initialization

Manuscript received August 11, 1977; revised February 23, 1978. This
work was supported by the National Science Foundation under Grant
MCS 76-05327, the Joint Services Electronics Program (JSEP) under
Contract N00014-75-0601, and the Air Force Office of Scientific Research
under Grant 77-3325.
The author was with the Digital Systems Laboratory, Departments of

Electrical Engineering and Computer Science, Stanford University, Stan-
ford, CA 94305. He is now with the IBM T. J. Watson Research Center,
Yorktown Heights, NY10598.

sequence is circuit dependent, but for most circuits, proper initializa-
tion can be achieved in a few seconds. Most failures inside the
memory elements are easily detected, even with short tests. Random
compact testing can also detect most of the failures inside the
excitation logic and the output circuitry. There, as for combinational
circuits, its efficiency is largely dependent upon the test length. Some
of the requirements and tradeoffs to achieve efficient detection are
presented.

Index Terms-Combinational digital circuits, compact testing of
digital circuits, random testing of digital circuits, sequential
digital circuits.

I. INTRODUCTION
THE INCREASING complexity of digital circuits has
Tmade the testing problem extremely difficult. Deter-
ministic methods for test generation (D-Algorithm [1], [2],
Boolean difference [3], Poage's method [4]) become prohibi-
tively expensive for large circuits. The number of multiple
stuck-at faults increases exponentially with the number of
gates. For large LSI chips, like microprocessors, the amount
of computation required to generate a vector test set that

0018-9340/78/0600-0516$00.75 (D 1978 IEEE

516

Authorized licensed use limited to: Intel Corporation via the Intel Library. Downloaded on June 25, 2009 at 22:14 from IEEE Xplore.  Restrictions apply.

Circuits
❖ Made of simple gates

❖ connected by wires

❖ Then R.L. Bryant (1986) found a way:
BDDs (Binary Decision Diagrams)
[improving on Sh. B. Akers (1978)]

❖ «One of the only really fundamental
data structures that came out
in the last twenty-five years»
— Donald E. Knuth

A B A or B

0 0 0
0 0 1
0 1 1
0 1 1

A B A and 
B

0 0 0
0 0 0
0 1 0
0 1 1

vendredi 29 juin 12



Circuits...

B
A

C

My
Circuit

vendredi 29 juin 12



... and Truth Tables

B
A

C

My
Circuit

A B C

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

vendredi 29 juin 12



Decision Trees

A

B

0 1

C C

0 1
B

C C

0 1

0 1

0 1
0 1

0 1
0 1

0 1
0 1

1 1

B
A

C

My
Circuit

A B C

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

vendredi 29 juin 12



BDDs: Sharing

A

B

0 1

C C

0 1
B

C C

0 1

0 1

0 1
0 1

0 1
0 1

0 1
0 1

1 1

vendredi 29 juin 12



BDDs: Sharing

A

B

0 1

C C

0 1
B

C C

0 1

0
1 0 1

0
0 1

1

0
1

vendredi 29 juin 12



BDDs: Reduction

A

B

0 1

C C

0 1
B

C

0 1

0
1 0 1

0
0 1

1

vendredi 29 juin 12



BDDs: Sharing

A

B

0 1

C

0 1
B

0 1

0 1

0 1

vendredi 29 juin 12



BDDs: Reduction

A
0 1

C

B
0 1

0 1

0 1

vendredi 29 juin 12



BDDs are Compact
A

B

0 1

0 1

0 1

B0 1
1 1

B
0 1 B0 1

2 2

B
0 1 B0 1

n n

❖ Space used: 2n+3 nodes

❖ #configurations (paths): 2n+1

vendredi 29 juin 12



BDDs are Compact
A

B

0 1

0 1

0 1

B0 1
1 1

B
0 1 B0 1

2 2

B
0 1 B0 1

n n

❖ Space used: 2n+3 nodes

❖ #configurations (paths): 2n+1

n space used # configs
50 103 2 10
100 203 2 10
150 303 2 10
200 403 2 10
250 503 2 10
300 603 2 10
350 703 2 10
400 803 2 10
450 903 2 10

* Each node typically takes 16 bytes

15

30

45

60

75

90

105

120

135

vendredi 29 juin 12



BDDs are Compact

0 1

1

B
0 1 B0 1

2 2

B
0 1 B0 1

n n

❖ Space used: 2n+3 nodes

❖ #configurations (paths): 2n+1

n space used # configs
50 103 2 10
100 203 2 10
150 303 2 10
200 403 2 10
250 503 2 10
300 603 2 10
350 703 2 10
400 803 2 10
450 903 2 10

* Each node typically takes 16 bytes

15

30

45

60

75

90

105

120

135

vendredi 29 juin 12



BDDs are Compact

0 1

1

B
0 1 B0 1

2 2

B
0 1 B0 1

n n

❖ Space used: 2n+3 nodes

❖ #configurations (paths): 2n+1

n space used # configs
50 103 2 10
100 203 2 10
150 303 2 10
200 403 2 10
250 503 2 10
300 603 2 10
350 703 2 10
400 803 2 10
450 903 2 10

* Each node typically takes 16 bytes

15

30

45

60

75

90

105

120

135

Smaller than your
typical
Word document

vendredi 29 juin 12



BDDs are Compact

0 1

1

B
0 1 B0 1

2 2

B
0 1 B0 1

n n

❖ Space used: 2n+3 nodes

❖ #configurations (paths): 2n+1

n space used # configs
50 103 2 10
100 203 2 10
150 303 2 10
200 403 2 10
250 503 2 10
300 603 2 10
350 703 2 10
400 803 2 10
450 903 2 10

* Each node typically takes 16 bytes

15

30

45

60

75

90

105

120

135

vendredi 29 juin 12



BDDs are Compact

0 1

1

B
0 1 B0 1

2 2

B
0 1 B0 1

n n

❖ Space used: 2n+3 nodes

❖ #configurations (paths): 2n+1

n space used # configs
50 103 2 10
100 203 2 10
150 303 2 10
200 403 2 10
250 503 2 10
300 603 2 10
350 703 2 10
400 803 2 10
450 903 2 10

* Each node typically takes 16 bytes

15

30

45

60

75

90

105

120

135

Larger than
your computer’s
memory

vendredi 29 juin 12



BDDs are Compact

0 1

B
0 1 B0 1

n n

❖ Space used: 2n+3 nodes

❖ #configurations (paths): 2n+1

n space used # configs
50 103 2 10
100 203 2 10
150 303 2 10
200 403 2 10
250 503 2 10
300 603 2 10
350 703 2 10
400 803 2 10
450 903 2 10

* Each node typically takes 16 bytes

15

30

45

60

75

90

105

120

135

Larger than
your computer’s
memory

vendredi 29 juin 12



BDDs are Compact

0 1

B
0 1 B0 1

n n

❖ Space used: 2n+3 nodes

❖ #configurations (paths): 2n+1

n space used # configs
50 103 2 10
100 203 2 10
150 303 2 10
200 403 2 10
250 503 2 10
300 603 2 10
350 703 2 10
400 803 2 10
450 903 2 10

* Each node typically takes 16 bytes

15

30

45

60

75

90

105

120

135

Larger than
your computer’s
memory

Larger than
the universe

vendredi 29 juin 12



BDDs Today

❖ Circuit verification

❖ Model-checking: verification, beyond circuits

❖ Circuit design

❖ Fault diagnosis

❖ Production configuration

❖ Etc.

vendredi 29 juin 12



Want to Know More?

Volume 4A – Combinatorial Algorithms, Part 1
■ Chapter 7 – Combinatorial Searching

■ 7.1. Zeros and Ones
■ 7.1.1. Boolean Basics
■ 7.1.2. Boolean Evaluation
■ 7.1.3. Bitwise Tricks and Techniques
■ 7.1.4. Binary Decision Diagrams

■ 7.2. Generating All Possibilities
■ 7.2.1. Generating Basic Combinatorial Patterns

■ 7.2.1.1. Generating all n-tuples
■ 7.2.1.2. Generating all permutations
■ 7.2.1.3. Generating all combinations
■ 7.2.1.4. Generating all partitions
■ 7.2.1.5. Generating all set partitions
■ 7.2.1.6. Generating all trees
■ 7.2.1.7. History and further references

Quick reference: http://en.wikipedia.org/wiki/Binary_decision_diagram

vendredi 29 juin 12

http://en.wikipedia.org/wiki/Binary_numeral_system
http://en.wikipedia.org/wiki/Binary_numeral_system
http://en.wikipedia.org/wiki/Two-element_Boolean_algebra
http://en.wikipedia.org/wiki/Two-element_Boolean_algebra
http://en.wikipedia.org/wiki/Bitwise_operation
http://en.wikipedia.org/wiki/Bitwise_operation
http://en.wikipedia.org/wiki/Binary_decision_diagram
http://en.wikipedia.org/wiki/Binary_decision_diagram
http://en.wikipedia.org/wiki/Tuple
http://en.wikipedia.org/wiki/Tuple
http://en.wikipedia.org/wiki/Combination
http://en.wikipedia.org/wiki/Combination
http://en.wikipedia.org/wiki/Partition_(number_theory)
http://en.wikipedia.org/wiki/Partition_(number_theory)
http://en.wikipedia.org/wiki/Partition_of_a_set
http://en.wikipedia.org/wiki/Partition_of_a_set
http://en.wikipedia.org/wiki/Binary_decision_diagram
http://en.wikipedia.org/wiki/Binary_decision_diagram


References
❖Sh. B. Akers, “Binary decision diagrams,” IEEE Transactions 

on Computers, Vol. C-27, No. 6 (June, 1978), pp. 509-516
❖R.E. Bryant,“Graph-based algorithms for Boolean function 

manipulation,” IEEE Transactions on Computers, Vol. C-35, 
No. 8 (August, 1986), pp. 677–691

❖ J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, L.J. Hwang, 
“Symbolic model-checking: 10     states and beyond,” 
Information and Computation, 98 (1992), pp. 142-170

20

IEEE TRANSACTIONS ON COMPUTERS, VOL. c-27, NO. 6, JUNE 1978

techniques would lead to different and often simpler
diagrams.
What are some useful ways in which these diagrams can

and should be generalized? One possibility is to allow for
' DON T CARE'S" or DON'T KNOW's by simply including 'X"
as a third terminal value.
How can the diagrams be used for various synthesis

procedures? We have seen (in Section III) that path tracing
can yield a many gate, two-level form while a direct substitu-
tion method, such as that in Section V, tends to result in few
gates but many levels.

REFERENCES
[1] C. Berge, The Theory of Graphs and Its Applications. London:

Methuen, 1962.
[2] F. Harary, R. Z. Norman, and D. Cartwright, Structural Models: An

Introduction to the Theory ofDirected Graphs. New York: Wiley, 1966.
[3] D. E. Knuth, Fundamental Algorithms, The Art ofComputer Program-

ming, Vol. I. Reading, MA: Addison-Wesley, 1969.
[4] H. T. Nagle, Jr., B. D. Carroll, and J. D. Irwin, An Introduction to

Computer Logic. Englewood Cliffs, NJ: Prentice-Hall, 1975.
[5] S. B. Akers, "Universal test sets for logic networks," IEEE Trans.

Comput., vol. C-22, pp. 835-839, Sept. 1973.
[6] S. M. Reddy, "Complete test sets for logic functions," IEEE Trans.

Comput., vol. C-22, pp. 1016-1020, Nov. 1973.
[7] D. B. Armstrong, "On finding a nearly minimal set of fault detection

tests for combinational logic nets," IEEE Trans. Comput., vol. EC-15,
pp. 66-73, Feb. 1966.

[8] C. Ghest and J. Springer, Advanced Micro Devices Data Book, Ad-
vanced Micro Devices, Inc., pp. 8-9-8-28, 1974.

Sheldon B. Akers (SM'62-F'75) was born in
Washington, DC. He received the B.S. degree in
-electrical engineering and the M.A. degree in
mathematics both from the University of Mary-
land, College Park, in 1948 and 1952, respectively.
From 1948 to 1956 he was employed in the

Washington, DC, area at the National Bureau of
Standards, the U.S. Coast Guard Headquarters,
and ACF Industries. In 1956 he joined the Elec-
tronics Laboratory, General Electric, Syracuse,
NY, where he is presently employed as a Staff

Computer Scientist. His primary areas of research include switching
theory, graph theory, combinatorial analysis, operations research, and
design automation. He is a coauthor of Design Automation of Digital
Computers (Englewood Cliffs, NJ: Prentice-Hall, 1972). He is also an
Adjunct Professor at Syracuse University, Syracuse, NY.

Mr. Akers is a member of Pi Delta Epsilon, Omicron Delta Kappa,
Sigma Xi, and the Mathematical Association of America. He belongs to
the IEEE Computer Society Technical Committee on Design Automation
and is Secretary and Publicty Chairman of the Technical Committee on
Mathematical Foundations of Computing. He has served in the Com-
puter Society's Distinguished Visitor Program.

Efficiency of Random Compact Testing
JACQUES LOSQ, MEMBER, IEEE

Abstract-Random compact testing uses random inputs to test
digital circuits. Fault detection can be achieved by comparing some
statistic of the circuit under test, e.g., the frequency of logic ones at an
output, with the value of that statistic previously determined for the
fault-free circuit. In this paper, we show that random compact testing
can efficiently detect failures in both combinational and sequential
circuits. Although this testing method cannot guarantee detection of
all faults, it provides a simple way to detect the vast majority of
failures in most circuits. The effects of failures inside combinational
circuits are modeled in relation to the statistical property measured
by the test and a general evaluation of the testing efficiency is
obtained. The probability of detection is shown to increase with the
test length and to be dependent upon test parameters such as the
statistics of the input sequence. For sequential circuits, the uncer-
tainty of the initial state necessitates an initialization step, which is a
long sequence of random inputs. The length of such an initialization

Manuscript received August 11, 1977; revised February 23, 1978. This
work was supported by the National Science Foundation under Grant
MCS 76-05327, the Joint Services Electronics Program (JSEP) under
Contract N00014-75-0601, and the Air Force Office of Scientific Research
under Grant 77-3325.
The author was with the Digital Systems Laboratory, Departments of

Electrical Engineering and Computer Science, Stanford University, Stan-
ford, CA 94305. He is now with the IBM T. J. Watson Research Center,
Yorktown Heights, NY10598.

sequence is circuit dependent, but for most circuits, proper initializa-
tion can be achieved in a few seconds. Most failures inside the
memory elements are easily detected, even with short tests. Random
compact testing can also detect most of the failures inside the
excitation logic and the output circuitry. There, as for combinational
circuits, its efficiency is largely dependent upon the test length. Some
of the requirements and tradeoffs to achieve efficient detection are
presented.

Index Terms-Combinational digital circuits, compact testing of
digital circuits, random testing of digital circuits, sequential
digital circuits.

I. INTRODUCTION
THE INCREASING complexity of digital circuits has
Tmade the testing problem extremely difficult. Deter-
ministic methods for test generation (D-Algorithm [1], [2],
Boolean difference [3], Poage's method [4]) become prohibi-
tively expensive for large circuits. The number of multiple
stuck-at faults increases exponentially with the number of
gates. For large LSI chips, like microprocessors, the amount
of computation required to generate a vector test set that

0018-9340/78/0600-0516$00.75 (D 1978 IEEE

516

Authorized licensed use limited to: Intel Corporation via the Intel Library. Downloaded on June 25, 2009 at 22:14 from IEEE Xplore.  Restrictions apply.

vendredi 29 juin 12


