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Outline

❖ Continuous valuations on Top, and a Fubini-Tonelli theorem

❖ Continuous valuations on Dcpo, and the problem

❖ Why should we care?

❖ Positive results: minimal valuations, point-continuous valuations

❖ Minimal ⊊ point-continuous ⊊ continuous



Continuous valuations: a quick introduction



Continuous valuations
❖ A topological alternative to measures, 

favored in semantics of programming languages since (Jones, Plotkin 1990).

❖ A valuation  on a topological space  is a map  satisfying:

❖ strictness: 

❖ monotonicity:  if 

❖ modularity: 

❖ A continuous valuation is not just monotonic, but Scott-continuous.

ν X ν : 𝒪X → ℝ+

ν(∅) = 0

ν(U) ≤ ν(V) U ⊆ V

ν(U ∪ V) + ν(U ∩ V) = ν(U) + ν(V)
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Continuous valuations and measures
❖ Theorem (Adamski 1977).  Given any Borel measure 

                 on a hereditarily Lindelöf space,              (in particular, a second-countable space) 
                 its restriction to open sets is a continuous valuation. 
                                                                                                          (i.e., every Borel measure on such a space is -smooth.)

❖ Theorem (de Brecht, GL, Jia, Lyu 2019).  Every continuous valuation 
                 on an LCS-complete space                 (a  subspace of a locally compact sober space) 
                 extends to a Borel measure.

❖ A sweet spot: de Brecht’s quasi-Polish spaces                   (=2nd countable LCS-complete) 
Those include all -continuous dcpos + all Polish spaces

τ

Gδ

ω
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Continuous valuation :
❖ strict: 
❖ Scott-continuous,
❖ modular: 

ν : 𝒪X → ℝ+
ν(∅) = 0

ν(U ∪ V ) + ν(U ∩ V ) = ν(U) + ν(V )

Just remember that 
continuous valuations~measures, 

in most cases



Integration
❖ For every lower semicontinuous map   (i.e., continuous to ) 

 and every continuous valuation  on , 

                 there is an integral                                    (or  for short)

❖ The easiest way to define it is by the Choquet formula: 

                               

                               where the term on the right is a Riemann integral (Tix 1995)

f : X → ℝ+ ℝ+σ
μ X

∫x
f(x)dμ ∫ f dμ

∫x
f(x)dμ = ∫

∞

0
μ( f −1(]t, ∞])dt



Properties of integration

❖
Linearity in :         ,      

❖
Scott-continuity in f:        (  a continuous valuation)

❖
Linearity in :        ,   

❖
Scott-continuity in :   

❖
                    , where  is Dirac valuation at  ( )

f ∫ af dμ = a∫ f dμ ∫ ( f + g)dμ = ∫ f dμ + ∫ g dμ

∫ sup↑
i fi dμ = sup↑

i ∫ fi dμ μ

μ ∫ f d(aμ) = a∫ f dμ ∫ f d(μ + ν) = ∫ f dμ + ∫ f dν

μ ∫ f d sup↑
i μi = sup↑

i ∫ f dμi

∫ χU dμ = μ(U) ∫ f dδx = f(x) δx x δx(U) = χU(x)



Fubini-Tonelli theorems



❖ Theorem (Jones 1989). 
Given two continuous dcpos  and , 
         a continuous valuation  on , 
         a continuous valuation  on , 
         there is a unique continuous valuation  on  
                   such that  for all 

❖ Moreover, the Fubini-Tonelli formula holds: 

        

       for every Scott-continuous map 

X Y
μ X
ν Y

μ ⊗ ν X × Y
(μ ⊗ ν)(U × V) = μ(U) . ν(V) U ∈ 𝒪X, V ∈ 𝒪Y

∫(x,y)
h(x, y)d(μ ⊗ ν) = ∫x (∫y

h(x, y)dν) dμ = ∫y (∫x
h(x, y)dμ) dν

h : X × Y → ℝ+

Fubini-Tonelli for continuous valuations
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❖ Theorem (folklore). 
Given two topological spaces  and , 
         a continuous valuation  on , 
         a continuous valuation  on , 
         there is a unique continuous valuation  on  
                   such that  for all 

❖ Moreover, the Fubini-Tonelli formula holds: 

        

       for every lower semicontinuous map 

X Y
μ X
ν Y

μ ⊗ ν X × Y
(μ ⊗ ν)(U × V) = μ(U) . ν(V) U ∈ 𝒪X, V ∈ 𝒪Y

∫(x,y)
h(x, y)d(μ ⊗ ν) = ∫x (∫y

h(x, y)dν) dμ = ∫y (∫x
h(x, y)dμ) dν

h : X × Y → ℝ+

❖ Theorem (folklore). 
Given two topological spaces  and , 
         a continuous valuation  on , 
         a continuous valuation  on , 
         there is a unique continuous valuation  on  
                   such that  for all 

❖ Moreover, the Fubini-Tonelli formula holds: 

        

       for every lower semicontinuous map 

X Y
μ X
ν Y

μ ⊗ ν X × Y
(μ ⊗ ν)(U × V) = μ(U) . ν(V) U ∈ 𝒪X, V ∈ 𝒪Y

∫(x,y)
h(x, y)d(μ ⊗ ν) = ∫x (∫y

h(x, y)dν) dμ = ∫y (∫x
h(x, y)dμ) dν

h : X × Y → ℝ+

Fubini-Tonelli for continuous valuations
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More generally



❖ Theorem (?). 
Given two continuous dcpos  and , 
         a continuous valuation  on , 
         a continuous valuation  on , 
         there is a unique continuous valuation  on  
                   such that  for all 

❖ Moreover, the Fubini-Tonelli formula holds: 

        

       for every Scott-continuous map 

X Y
μ X
ν Y

μ ⊗ ν X × Y
(μ ⊗ ν)(U × V) = μ(U) . ν(V) U ∈ 𝒪X, V ∈ 𝒪Y

∫(x,y)
h(x, y)d(μ ⊗ ν) = ∫x (∫y

h(x, y)dν) dμ = ∫y (∫x
h(x, y)dμ) dν

h : X × Y → ℝ+

Hence surely… right?
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which are certainly topological 
spaces, in their Scott topology

That much is a conjecture, 
and certainly does not follow 
from the previous theorem.

Do you see why?



❖ Theorem (?). 
Given two continuous dcpos  and , 
         a continuous valuation  on , 
         a continuous valuation  on , 
         there is a unique continuous valuation  on  
                   such that  for all 

❖ Moreover, the Fubini-Tonelli formula holds: 

        

       for every Scott-continuous map 

X Y
μ X
ν Y

μ ⊗ ν X × Y
(μ ⊗ ν)(U × V) = μ(U) . ν(V) U ∈ 𝒪X, V ∈ 𝒪Y

∫(x,y)
h(x, y)d(μ ⊗ ν) = ∫x (∫y

h(x, y)dν) dμ = ∫y (∫x
h(x, y)dμ) dν

h : X × Y → ℝ+

Hence surely… right?
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which are certainly topological 
spaces, in their Scott topology

Products in Top 
≠ products in Dcpo 

(although they coincide on continuous dcpos, 
in fact even on core-compact dcpos)



Products in Top, products in Dcpo
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❖ Given two dcpos  and ,  may mean two things:

❖ consider  and  as topological spaces  and  in their Scott topologies, 
     and build the topological product         … in the category Top

❖ build their poset product                                 … in the category Dcpo 
     then equip that with the Scott topology, obtaining 

❖ The two may differ (see next slide), although they coincide in many cases: 
— if  or  is core-compact      (Gierz et al. 2003, Theorem II-4.13) 
                    (… in particular if  or  is a continuous dcpo) 
— if  and  are first-countable  (de Brecht, 2019) 
                               (see https://projects.lsv.ens-cachan.fr/topology/?page_id=1852)

X Y X × Y

X Y Xσ Yσ
Xσ × Yσ

X × Y
(X × Y)σ

Xσ Yσ
X Y

Xσ Yσ

https://projects.lsv.ens-cachan.fr/topology/?page_id=1852


Products in Top ≠ products in Dcpo

14

❖ Are there dcpos ,  such that ?    We use: 
Theorem (Exercise 5.2.7, JGL 2013).  A topological space  is core-compact 
          iff , defined as , 
          is open in the product topology on 

❖ Take  where  is a dcpo such that  is not core-compact.

❖ Note that  is Scott-open.

❖ But  is not open in , by the theorem above. 
       So , where 

❖ Hence it suffices to find a non-core-compact dcpo.

X Y Xσ × Yσ ≠ (X × Y)σ
Z

( ∈ ) {(x, U) ∣ x ∈ U, U ∈ 𝒪Z}
Z × (𝒪Z)σ

Z = Xσ X Xσ

( ∈ )

( ∈ ) Xσ × (𝒪(Xσ))σ
Xσ × Yσ ≠ (X × Y)σ Y = 𝒪(Xσ)



The Johnstone dcpo J
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❖ Johnstone’s dcpo  (1981): a well-known non-sober dcpo 
— Points = pairs  in  
—  iff 
     —  and  
     — or  and 

❖ Fact (Exercise 5.2.15, JGL 2013). 
In ,  is way-below  if and only if  is empty. 
Hence  is not core-compact.

❖ Corollary.  Let , .  We have .

J
(m, n) ℕ × (ℕ ∪ {ω})

(m, n) ≤ (m′ , n′ )
m = m′ n ≤ n′ 

n ≤ m′ n′ = ω

𝒪(Jσ) U V U
Jσ

X = J Y = 𝒪(Jσ) Xσ × Yσ ≠ (X × Y)σ



❖ In general, there are more open subsets in  than in 

❖ Hence there are more Scott-continuous maps  
                   than lower semi-continuous maps 
                            (i.e., jointly continuous maps )

❖ We still have: 

                            

    for every lower semicontinuous map  
    but does this holds for Scott-continuous maps ?

(X × Y)σ Xσ × Yσ

h : X × Y → ℝ+

h : Xσ × Yσ → ℝ+σ

∫x (∫y
h(x, y)dν) dμ = ∫y (∫x

h(x, y)dμ) dν

h : Xσ × Yσ → ℝ+σ
h : X × Y → ℝ+

So what is the problem with Fubini-Tonelli on Dcpo?
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Why should we care? 
A computer scientist’s perspective



Higher-order probabilistic programs
❖ Consider a (toy) language like this, called probabilistic PCF: 

Terms   M, N, … ::= x              variables 

                           | MN              application 
                           | λ xσ . M       anonymous function 
                           | rec M          recursive definition 
                           | n                  natural number (constant) 
                           | succ M        add one 
                           | pred M       subtract one 
                           | ifz M N P   conditional 
                           | M ⊕ N 
                           | ret M 
                           | do x←M; N(x)

« choose between M and N
with probability 1/2 »

« draw M with probability 1 »

« sample M, put the result in x, 
then compute N(x) »



Denotational semantics
❖ (Leaving out a few details), 

one defines the semantics ⟦M⟧ of terms by: […]

❖ ⟦rec M⟧ = least fixed point supn ∈ ℕ ⟦M⟧n(⊥)

❖ ⟦M ⊕ N⟧ = ½ ⟦M⟧ + ½ ⟦N⟧              (⟦M⟧ and ⟦N⟧ continuous valuations) 

❖ ⟦ret M⟧ = δ⟦M⟧                                    (⟦M⟧ an ordinary value, ⟦ret M⟧ cont. val.) 

❖
⟦do x←M; N(x)⟧ = ⟦N(x)⟧( ) d⟦M⟧      (a continuous valuation)(U open ↦ ∫x

U )

« draw M with probability 1 »

« sample M, put the result in x, then compute N »

We work in a category of 
(pointed) dcpos

« choose between M and N
with probability 1/2 »



The practitioner’s view

❖ The denotational semantics is a theoretical computer scientist’s view 
                                     of what the program M computes

❖ The practitioner’s view is an implementation: 
        a machine that effects the computation, namely 
                                          how the program M computes

❖ I will give an idea of what that machine is next



Implementation (abstract machines)
❖ A probabilistic PCF machine 

works as a transition system 
working on configurations

❖ Let us see how the following program runs: 
                           rand3 = rec (λp . (ret 0 ⊕ ret 1) ⊕ (ret 2 ⊕ p))

Example 1. The term rand_int
def
= recint!Dint(�r.�mint.r(sm) � retintm)0

is of type Dint. As we will see, this draws a natural number n at random, with
probability 1/2n+1.

Example 2. Rejection sampling is a process by which one draws an element of a
subset A of a space X, as follows: we draw an element of X at random, and we
return it if it lies in A, otherwise we start all over again. Here is a simple example
of rejection sampling, meant to draw a number uniformly among {0, 1, 2}. The
idea is to draw two independent bits at random, representing a number in X

def
=

{0, 1, 2, 3}, and to use rejection sampling on A
def
= {0, 1, 2}. Formally, we define

the PCFP term rand3
def
= recDint(�pDint.((retint 0 � retint 1) � (retint 2 �

pDint))). Note that this uses recursion to define a distribution, not a function.

4 Operational semantics

The elementary contexts E, with their types � ` ⌧ , are defined as:

– [_N ] of type (� ! ⌧) ` ⌧ , for every N : �, and for every type ⌧ ;
– [s_] and [p_], of type int ` int;
– [if_ = 0 then N else P ], of type int ` ⌧ , for all N,P : ⌧ ;
– [bind�,⌧ _N ], of type D� ` D⌧ , for every N : � ! D⌧ .

The initial contexts are [_] (of type � ` � for any �) and [retint _] (of type
int ` Dint). The (evaluation) contexts C are the finite sequences E0E1 · · ·En,
n 2 N, where E0 is an initial context of type �1 ` �0, each Ei (1  i  n) is an
elementary context of type �i+1 ` �i. Then we say that C has type �n+1 ` �0.

The notation C[M ] makes sense for every context C
def
= E0E1 · · ·En of type

� ` ⌧ and every M : �, and is defined as E0[E1[· · · [En[M ]]]], where E[M ] is
defined by removing the square brackets in E and replacing the hole _ by M .
E.g., if C = [retint _][p_], then C[M ] = retint(pM).

Exploration rules
C · E[M ]

1! CE ·M (E elem. context) [_] · retint M 1! [retint _] ·M
Computation rules

C[_N ] · �x�.M
1! C ·M [x� := N ] C · rec⌧ M 1! C ·M(rec⌧ M)

C ·M �N
1/2! C ·M C ·M �N

1/2! C ·N
C[bind�,⌧ _N ] · ret� M

1! C ·NM C[p_] · n 1! C · n� 1 C[s_] · n 1! C · n+ 1

C[if_ = 0 then N else P ] · 0 1! C ·N C[if_ = 0 then N else P ] · n 1! C · P (n 6= 0)

Fig. 2. Operational semantics

A configuration (of type ⌧) is a pair C ·M , where C is a context of type � ` ⌧
and M : �.

4
½

½

½

½

[ret _] · 0

[ret _] · 1

[ret _] · 2

_ · rand3

✓ (prob. 1/4)

✓ (prob. 1/4)

✓ (prob. 1/4)

1
½

½

_ · rand3

Recursion: start all over again



Implementation (abstract machines)
❖  rand3 = rec (λp . (ret 0 ⊕ ret 1) ⊕ (ret 2 ⊕ p))

½

½

½

½

[ret _] · 0

[ret _] · 1

[ret _] · 2

_ · rand3

✓ (prob. 1/4)

✓ (prob. 1/4)

✓ (prob. 1/4)

1
½

½

_ · rand3

½

½

½

½

[ret _] · 0

[ret _] · 1

[ret _] · 2

_ · rand3

✓ (prob. 1/64)

✓ (prob. 1/64)

✓ (prob. 1/64)

1
½

½

½

½

½

½

[ret _] · 0

[ret _] · 1

[ret _] · 2

_ · rand3

✓ (prob. 1/16)

✓ (prob. 1/16)

✓ (prob. 1/16)

1
½

½

½

½

½

½

[ret _] · 0

[ret _] · 1

[ret _] · 2

_ · rand3

✓ (prob. 1/256)

✓ (prob. 1/256)

✓ (prob. 1/256)

1
½

½
½

½

½

½

[ret _] · 0

[ret _] · 1

[ret _] · 2

_ · rand3

1
½

½

❖  rand3 terminates with probability 1 
             returns 0 with probability 1/4+1/16+1/64+… = 1/3 
             returns 1 with probability 1/4+1/16+1/64+… = 1/3 
             returns 2 with probability 1/4+1/16+1/64+… = 1/3



Back to denotational semantics
❖ rand3 = rec (λp . (ret 0 ⊕ ret 1) ⊕ (ret 2 ⊕ p))

❖ rand3 terminates with probability 1 
             returns 0 with probability 1/4+1/16+1/64+… = 1/3 
             returns 1 with probability 1/4+1/16+1/64+… = 1/3 
             returns 2 with probability 1/4+1/16+1/64+… = 1/3

❖ Compare this with the denotational semantics: 

          ⟦rand3⟧ = least fixed point of 

❖ There is just one fixed point:      (no need to sum a series!)

ν ↦
1
4

δ0 +
1
4

δ1 +
1
4

δ2 +
1
4

ν

1
3

δ0 +
1
3

δ1 +
1
3

δ2



Bugs, and verification

❖ A central problem in computer science is bugs

❖ How do you make sure that a program M: 
— computes what you want? 
— computes something that satisfies a given property P? 
— computes the same thing as another program N?

❖ E.g., do the following two programs compute the same thing? 
      do x←rand3; (do y←ret 0 ⊕ ret 1; ret (x–y)) 
      do y←ret 0 ⊕ ret 1; (do x←rand3; ret (x–y))



Equivalence of programs
❖ Theorem.  If ⟦M⟧=⟦N⟧ then M and N compute the same thing 

     — formally, if ⟦M⟧=⟦N⟧ then M and N are observationally equivalent 
             i.e., for every context C (of basic type), Pr[C.M terminates]=Pr[C.N terminates]

❖ Let     M ≝ do x←rand3; (do y←ret 0 ⊕ ret 1; ret (x–y)) 
           N ≝ do y←ret 0 ⊕ ret 1; (do x←rand3; ret (x–y))

❖ Are M and N observationally equivalent?

❖
⟦M⟧=⟦N⟧ is Fubini-Tonelli:  

                                          for every open set ; where ⟦rand3⟧, ⟦ret 0 ⊕ ret 1⟧

∫x (∫y
δx−y(U)dν) dμ = ∫y (∫x

δx−y(U)dμ) dν

U μ = ν =… on Dcpo

Whence our initial question: 
is there a Fubini-Tonelli theorem 

for continuous valuations 
on Dcpo?



A question by Jung and Tix
❖ Let VX be the dcpo of continuous valuations on X, ordered by  (pointwise)

❖ Is there a Cartesian-closed category                                        (in order to give meaning to MN, λ xσ . M) 
                 closed under V                                                                        (… and to M ⊕ N, ret M, do x←M; N(x)) 
                 of continuous dcpos                                              (then Fubini-Tonelli will holds, see Jones 1990) 

                           ?

❖ See Jung and Tix (1998) 
Bc-domains, Scott domains, algebraic domains: not closed under V. 
RB-domains, FS-domains: closed under V?  (unknown)

❖ New direction: do not insist on having continuous dcpos, 
      rather look for Fubini-Tonelli on larger Cartesian-closed categories of dcpos

≤



Positive results: 
minimal and point-continuous valuations



Simple valuations

❖
A simple valuation is a finite sum , with 

❖
Fubini-Tonelli on Dcpo holds if one of the valuations is simple, say : 

                                             

n

∑
i=1

aiδxi
ai < ∞

μ =
n

∑
i=1

aiδxi

∫x (∫y
f(x, y)dν) dμ =

n

∑
i=1

ai ∫x
f(xi, y)dν

= ∫y

n

∑
i=1

ai f(xi, y)dν

= ∫y (∫x
f(x, y)dμ) dν



Minimal valuations
❖ Let VfinX be the subset of VX consisting of simple valuations

❖ The smallest subdcpo MX of VX containing VfinX 
                   is the dcpo of minimal valuations

❖ Explicitly, a minimal valuation is 
a directed supremum of directed suprema of … of simple valuations 
                  (iterated transfinitely)

❖ Prop. Fubini-Tonelli holds on Dcpo if one of the valuations is minimal.

❖ Proof sketch: integration commutes with directed suprema.



Point-continuous valuations
❖ The pointwise topology on  is the coarsest that makes 

            continuous, for each                              Notation: 

❖ Let  be Sierpiński space {0 < 1}

❖ By equating  with  
      through , yields pointwise topology on  
                                     (coarser than Scott on )              Notation:  

❖ Definition (Heckmann 1996).  A valuation  is point-continuous 
                                                      iff it is continuous from  (not ) 
                                                                                            to 

[X → Y]
f ↦ f(x) x ∈ X [X → Y]p

𝕊

𝒪X [X → 𝕊]
U ≅ χU 𝒪X

(𝒪X)σ (𝒪X)p

ν
(𝒪X)p (𝒪X)σ
ℝ+σ



Properties of point-continuous valuations

❖ Prop.  Simple  Minimal  Point-continuous  Continuous.

❖
Prop.   continuous: 

— from  to  for every continuous valuation  
— from  to  for every point-continuous valuation 

❖ Many other properties: see Heckmann 1996.

⇒ ⇒ ⇒

g ⟼ ∫x
g(x)dμ

[X → ℝ+σ]σ ℝ+σ μ
[X → ℝ+σ]p ℝ+σ μ



The weak topology, and the Schröder-Simpson theorem

❖ The weak topology on VX is the coarsest that makes 

           continuous from VX to , 

                                   for every continuous map 

❖ Let  be VX with the weak topology               (coarser than Scott on VX) 
We will use:

❖ Theorem (Schröder and Simpson 2005; JGL 2015). 
Every linear continuous map  

                                 is equal to  for some unique  

                                                                                (explicitly, )

ν ↦ ∫x
f(x)dν ℝ+σ

f : X → ℝ+σ

VwX

F : VwX → ℝ+σ

μ ↦ ∫x
hF(x)dμ hF ∈ [X → ℝ+σ]

hF(x) = F(δx)



Fubini-Tonelli on Dcpo for point-continuous valuations

❖ Why do we care about point-continuous valuations? 
Prop (Jia, Lindenhovius, Mislove, Zamdzhiev 2021). Fubini-Tonelli holds 
                                     on Dcpo if one of the valuations is point-continuous.

❖
Proof.  With  ,  fixed,   is the composition of: 

                  and     

f ν G : μ ↦ ∫y (∫x
f(x, y)dμ) dν

VwX ⟶ [Y → ℝ+]p

μ ⟼ (y ↦ ∫x
f(x, y)dμ)

[Y → ℝ+]p ⟶ ℝ+

g ⟼ ∫y
g(y)dν

continuous if  point-continuousνcontinuous by definition
of the topologies involved



Fubini-Tonelli on Dcpo for point-continuous valuations

❖ Why do we care about point-continuous valuations? 
Prop (Jia, Lindenhovius, Mislove, Zamdzhiev 2021). Fubini-Tonelli holds 
                                     on Dcpo if one of the valuations is point-continuous.

❖ Proof.  Fix  and a point-continuous valuation , and let 

                       

❖  and  are linear and continuous from  to  
                                                 (We have just proved continuity for ;  is continuous by definition of the weak topology)

❖ Hence…

f ν

F(μ) = ∫x (∫y
f(x, y)dν) dμ G(μ) = ∫y (∫x

f(x, y)dμ) dν

F G VwX ℝ+σ
G F



Fubini-Tonelli on Dcpo for point-continuous valuations

❖ Why do we care about point-continuous valuations? 
Prop (Jia, Lindenhovius, Mislove, Zamdzhiev 2021). Fubini-Tonelli holds 
                                     on Dcpo if one of the valuations is point-continuous.

❖ Proof.  Fix  and a point-continuous valuation  
            and  are linear and continuous from  to 

❖ We use the Schröder-Simpson theorem: 

 

                      for every 

❖ so .  ☐

f ν
F G VwY ℝ+σ

hF(x) = ∫y
f(x, y)dν = hG(x)

x ∈ X

F = G

F(μ) = ∫x (∫y
f(x, y)dν) dμ

G(μ) = ∫y (∫x
f(x, y)dμ) dν

Theorem (Schröder and Simpson 2005; JGL 2015). 
Every linear continuous map  

                                 is equal to  for some unique  

                                                                                (explicitly, )

F : VwX → ℝ+

μ ↦ ∫x
hF(x)dμ hF ∈ [X → ℝ+σ]

hF(x) = F(δx)



So where are we now?
❖ Prop.  Simple  Minimal  Point-continuous  Continuous.

❖ Prop. Fubini-Tonelli holds on Dcpo 
           if one of the valuations is point-continuous.

❖ Conjecture.   Every continuous valuation on a dcpo is point-continuous.

❖ That would imply Fubini-Tonelli for all continuous valuations on Dcpo.

❖ We will see (briefly) that this conjecture is wrong. 
(JGL, X. Jia.  Separating minimal valuations, points-continuous valuations, and continuous valuations. 
 Math. Struct. Computer Science 31(6), 2021, pages 614–632 https://doi.org/10.1017/S0960129521000384)

❖ In fact, all the implications above are strict.

⇒ ⇒ ⇒

https://doi.org/10.1017/S0960129521000384


Separating minimal 
from point-continuous valuations



A funny valuation on J
❖ On Johnstone’s dcpo , there is a continuous valuation  

defined by: 
                     for every non-empty Scott-open set  
                    

❖ Modularity  
comes from the fact that  is hyperconnected: 
            any two non-empty open sets intersect. 
                   (Check it!  Observe that every non-empty open set contains all points  for  large enough.)

❖ We will show that  is not minimal. 

J μ

μ(U) = 1 U
μ(∅) = 0

μ(U ∪ V) + μ(U ∩ V) = μ(U) + μ(V)
Jσ

(m, ω) m

μ



Discrete and good valuations
❖ A bounded valuation  on  is good iff it extends to a Borel measure

❖
Every bounded discrete valuation                 (infinite sum, in general) 

            is good                          (Alvarez-Manilla, Edalat, Saheb-Djahromi 2000)

❖ Every subset of  is Borel.

❖ One can show that every bounded continuous valuation  on  
               is of the form , where 
—  is discrete (hence good) 
— 

ν X

∑
x

axδx

Jσ

ν Jσ
θ + r . μ

θ
r ≥ 0

Namely, 

         

θ = ∑
x∈J

ν({x}) . δx

r = ν(J) − ∑
x∈J

ν({x})



Good valuations on  are Scott-closedJ
❖ Lemma.  If  is bounded and a directed supremum 

                of good valuations  on , then .

❖ Proof.  We assume . 
Wlog., we also assume total mass 

❖ Let ={k leftmost columns} (in green)

❖  is closed (green+yellow); let  be its complement

❖ : green+blue

θ + r . μ
θi Jσ r = 0

r ≠ 0
(θ + r . μ)(J) = 1

Dk

↓ Dk Uk

↑ Dk

Dk

Uk



Good valuations on  are Scott-closedJ
❖ Lemma.  If  is bounded and a directed supremum 

                of good valuations  on , then .

❖ We have  
so  for  large enough;

❖ , union of a countable chain of Borel sets 

Since  is (extends to) a measure, for k large enough, 
                                   

❖ We have  
For  large enough,                         (and , so )

❖ Total mass of , so 

θ + r . μ
θi Jσ r = 0

(θ + r . μ)(J) = 1 = supi θi(J) > 1 − r/4
θi(J) > 1 − r/4 i

J = ⋃
↑

k∈ℕ
↑ Dk

θi
θi( ↑ Dk) > 1 − r/4

(θ + r . μ)(Uk) ≥ r > 3r/4
j θj(Uk) > 3r/4 θj ≥ θi θj( ↑ Dk) > 1 − r/4

θj ≤ 1 θj( ↑ Dk ∩ Uk) > (1 − r/4) + 3r/4 − 1 = r/2

Dk

Uk

> 1 − r/4

> 3r/4

> r/2



❖ Etc. 
Eventually, 

 
 

 : contradiction.  ☐

θjN(Mkl ⊎ ⋯ ⊎ MkNℓN
)

> Nr/2
> 1

Good valuations on  are Scott-closedJ
❖ Lemma.  If  is bounded and a directed supremum 

                of good valuations  on , then .

❖

❖ Let 

❖ Since  is a measure,  for some 

❖ Similarly, for some  such that , there are  
                  such that 

❖ Then, for some  such that , there are  
                  such that 

θ + r . μ
θi Jσ r = 0

θj( ↑ Dk ∩ Uk) > r/2

Mkℓ = {(k, ω), (k + 1,ω), ⋯, (ℓ − 1,ω)}

θj θj(Mkℓ) > r/2 ℓ > k

j2 θj2 ≥ θj ℓ2 > k2 ≥ ℓ
θj2(Mk2ℓ2

) > r/2

j3 θj3 ≥ θj2 ℓ3 > k3 ≥ ℓ2
θj3(Mk3ℓ3

) > r/2

Uk

> r/2 > r/2
Mkℓ Mk2ℓ2

Mk3ℓ3



 is not minimalμ
❖ Lemma.  If  is bounded and a directed supremum 

                of good valuations  on , then .

❖ Hence directed suprema of good valuations  
of total mass  are good valuations 

❖ By transfinite induction, every minimal valuation on  
of total mass  is good.

❖
But  itself is not good: otherwise 

❖ Theorem.   is not minimal on .

θ + r . μ
θi Jσ r = 0

θi
≤ 1 θ

J
≤ 1

μ μ (⋂
↓

k∈ℕ
Uk) = inf↓

k∈ℕ μ(Uk)

μ Jσ

Uk

> r/2 > r/2
Mkℓ Mk2ℓ2

Mk3ℓ3

= μ(∅) = 0 = 1



 is not minimalμ
❖ Theorem.   is not minimal on .

❖ However, 
 is point-continuous: 

It suffices to show that it is continuous from  to 

❖ We assume ,    so  is non-empty, and .

❖ Pick .  Then  is open in  
and for every ,     (since  is non-empty).  ☐

❖ In fact:

❖ Theorem.  Every continuous valuation on  is point-continuous.

μ Jσ

μ
(𝒪X)p ℝ+σ

μ(U) > r U r < 1

x ∈ U [x ∈ ] = {V ∈ 𝒪Jσ ∣ x ∈ V} (𝒪X)p
V ∈ [x ∈ ] μ(V) > r V

Jσ

U x



Separating point-continuous 
from continuous valuations



Lebesgue is not point-continuous
❖ An easy to find an example of a 

non-point-continuous, continuous valuation

❖ Consider Lebesgue measure  on  
                                      (with its metric topology)

❖ Heckmann showed that a valuation  is point-continuous iff 
                     for every open set , if  then 
                     there are finitely many points  in  such that 
                     for every open neighborhood  of , 
                                                               

❖
This is wrong for :  arbitrarily small

λ ℝ

ν
V r < ν(V)

x1, …, xn V
U x1, …, xn

r < ν(U)

λ λ (
n

⋃
i=1

]xi −
ϵ

2n
, xi +

ϵ
2n

[) ≤ ϵ

❖ Theorem (Adamski 1977).  Given any Borel measure 
                                      on a hereditarily Lindelöf space, 
                     (in particular, on a second-countable space) 
its restriction to open sets is a continuous valuation.

Reminder

Can we find a similar
counter-example 

on a  dcpo?



The Sorgenfrey line ℝℓ

❖ A famous counterexample in topology: 
           Sorgenfrey topology on  generated by basic open sets  
                               (topology of convergence from the right)

ℝ [a, b[

Nice Not so nice
paracompact, T4 product with itself not T4

zero-dimensional not locally compact
Choquet-complete, hence Baire not consonant

first-countable, with countable dense subset (ℚ)
hereditarily Lindelöf not second-countable

completely quasi-metrizable not metrizable

❖ Theorem (Adamski 1977).  Given any Borel measure 
                 on a hereditarily Lindelöf space, 
                 its restriction to open sets is a continuous valuation.

Reminder

Additionally,  and  have the same Borel -algebra
So there is a Lebesgue continuous valuation  on 

ℝ ℝℓ σ
λ ℝℓ

Still not a dcpo, 
so we will consider its 
Smyth powerdomain



The Smyth powerdomain of ℝℓ

❖ For every topological space , 
the Smyth powerdomain  = {compact saturated subsets of }, 
                                              ordered by 

❖  is a dcpo if  is well-filtered 
            … and  is well-filtered, since Hausdorff

❖  is a topological embedding of  into  
                if  is locally compact T1    … but  is not locally compact

❖            or if  is T1, well-filtered and first-countable (He, Li, Xi, Zhao 2019) 
                                        … and  is first-countable

X
𝒬X X

⊇

𝒬X X
ℝℓ

x ↦ {x} X 𝒬X
X ℝℓ

X
ℝℓ

𝒬X

X ≅ Max 𝒬X



The Smyth powerdomain of ℝℓ

❖ Proposition.   is a dcpo model of : 
               through ,  embeds as a topological subspace of .

❖ Explicitly, the open subsets of  
                   are the intersections  
                                where  is Scott-open in 

❖ The Lebesgue valuation  on  induces 
  a continuous valuation  on  by 
                           
                     (the image continuous valuation through the embedding )

𝒬ℝℓ ℝℓ
x ↦ {x} ℝℓ 𝒬ℝℓ

ℝℓ
𝒰 ∩ ℝℓ

𝒰 𝒬ℝℓ

λ ℝℓ
λ 𝒬ℝℓ

λ(𝒰) = λ(𝒰 ∩ ℝℓ)
ℝℓ → 𝒬ℝℓ

ℝℓ ≅ Max 𝒬ℝℓ

𝒬ℝℓ



The elements of 𝒬ℝℓ

❖ We will show that  is not point-continuous. 
To this end, we need:

❖ Proposition.  The compact (saturated) subsets of  are exactly 
                         the well-founded subdcpos of . 
                         They are all countable.

λ

ℝℓ
(ℝ, ≥ )

x0x1x2xω…xωxω+1xω.2 …xω.2+1xω.3 …… xω.4xω.5xω.ωxω.ω+1xω.ω+2xω.ω+ω…



 is not point-continuousλ

❖ Proposition.   , defined by , is not point-continuous.

❖ It suffices to show that given any finite set  of points of , 
                                         we can find Scott-open neighborhoods  of those points, 
                                                                                 such that  is arbitrarily small

❖ Enumerate the countably many points of  as 

❖
Let , and 

❖ Then .  ☐

λ λ(𝒰) = λ(𝒰 ∩ ℝℓ)

{Q1, ⋯, Qn} 𝒬ℝℓ
𝒰

λ(𝒰)

Q1 ∪ ⋯ ∪ Qn xk, k ∈ ℕ

U = ⋃
k∈ℕ

]xk −
ϵ
2k

, xk +
ϵ
2k

[ 𝒰 = {Q ∈ 𝒬ℝℓ ∣ Q ⊆ U}

λ(𝒰) = λ(U) ≤ 4ϵ
Heckmann showed that a valuation  is point-continuous iff 
                     for every open set , if  then 
                     there are finitely many points  in  such that 
                     for every open neighborhood  of , 
                                                               

ν
𝒱 r < ν(𝒱)

Q1, …, Qn 𝒱
𝒰 x1, …, xn

r < ν(𝒰)

Reminder



Conclusion



Conclusion, open problems, and a comment
❖ Fubini-Tonelli for continuous valuations: holds on Top 

             Open: Does Fubini-Tonelli for all continuous valuations on Dcpo?

❖ Holds for minimal and even point-continuous valuations on Dcpo

❖ Simple  Minimal  Point-continuous  Continuous, 
             all strict implications

❖ Fubini-Tonelli also holds (essentially by definition) 
for the even larger class of central valuations (Jia, Mislove, Zamdzhiev 2021) 
             Open: Are there any non-central continuous valuations on a dcpo?

❖ The greater picture: questions from computer science 
                                    (reasoning about computer programs).

⇒ ⇒ ⇒


