
Overview

● Research activities at Birmingham

● Probabilistic π-calculus model checking

– (ongoing joint work with Catuscia, Peng)

● Game-based abstraction for MDPs
– (to be presented at QEST'06)

Research activities at
Birmingham

Birmingham – People

● Research focus: probabilistic verification
– in particular, probabilistic model checking

● Group leader: Marta Kwiatkowska

● Post-docs: Gethin Norman, Dave Parker, Maria Vigliotti

● PhDs: Fuzhi Wang, Oksana Tymchyshyn, Matthias Fruth

● Current visitors: Husain Aljazzar

Some ongoing projects

● Automated Verification of Probabilistic Protocols with PRISM

– EPSRC, 2003-2006, with: Segala (Verona)

● Probabilistic Model Checking of Mobile Ad-Hoc Network Protocols

– EPSRC, 2003-2006, with: Marshall (BTexact), UCL

● UbiVal: Fundamental Approaches to Validation of Ubiquitous
Computing Applications and Infrastructures

– EPSRC, 2006-2010, with: UCL, Imperial College

● Predictive modelling of signalling pathways via probabilistic
model checking with PRISM

– MSR Cambridge, 2006-2007, with: Biosciences (Birmingham),
Andrew Finney (Physiomics PLC)

The PRISM tool

● PRISM probabilistic model checker
– Markov decision processes (MDPs)

● also discrete/continuous time Markov chains (D/CTMCs)

– model checking of PCTL (and CSL) + extensions

– efficient symbolic (MTBDD) implementation

● Recent/ongoing functionality improvements
– discrete-event simulation engine

● approximate results (sampling) and debugging tool

– cost/reward-based property analysis

– improved tool links: e.g. CADP (bisimulation tools)

– counterexample generation

Research areas

● Efficiency improvements
– symbolic (BDD, MTBDD) implementations

– parallelisation, grid computing

● Model checking algorithms
– symmetry reduction

– abstraction techniques for MDPs

– partial order reduction (with Baier et al.)

– compositionality

● Additional models, formalisms, ..
– real-time probabilistic model checking (PTAs)

– probabilistic calculi for mobility (π-calculus, ambients)

Research areas...

● Applications of probabilistic model checking
– ubiquitous computing systems: network protocols,

embedded systems, mobile ad-hoc network protocols, ...
● Bluetooth, Zeroconf, 802.11 WLANs, Zigbee

– security protocols
● probabilistic contract signing (with Shmatikov), anonymity

– systems biology: Computational modelling and analysis
● continuous-time Markov chains (CTMCs)

● signalling pathways: cyclin, FGF, ecoli (σ32)

Symmetry reduction in PRISM

● Full (component) symmetry in MDPs (and D/CTMCs)
– system of interchangeable but non-trivial components

● e.g. randomised distributed algorithms

– induced quotient model up to factorially smaller

– strong probabilistic bisimulation => preserves PCTL

● Symbolic (MTBDD-based) algorithm
– construct full model first (actually smaller: more regularity)

– construct quotient model via bubblesort

● Implementation: prototype extension of PRISM
– promising results on a range of cases studies (randomised

protocols: CSMA/CD, consensus, Byzantine agreement)

[CAV'06]

Probabilistic π-calculus
model checking

Probabilistic π-calculus
model checking

● π-calculus

– modelling concurrency and mobility

– applications: e.g. cryptographic protocols, mobile
communication protocols

● Probabilistic π-calculus

– adds discrete probabilistic choice

– applications: randomised algorithms, failures, ...

– e.g. probabilistic security protocols, mobile ad-hoc network
protocols

● Currently, no tool support

(Simple) probabilistic π-calculus

● Syntax: P :: =

– 0 | α.P | P + P | Σ
i
 p

i
 τ.P

i
 |

(null) (prefix) (nondet. choice) (internal probabilistic choice)

 P | P | νx P | [x=y] P | A(y
1
,...,y

n
)

(parallel) (restriction) (match) (identifier)

– α ::= in(x,y) | out(x,y) | τ

● Semantics: probabilistic automata (Segala/Lynch)

● Restrictions
– finite control (no recursion within parallel composition)

– input closed (no inputs from environment)

Example: DCP

● Dining cryptographers protocol (DCP)

– Master = out(m
0
,pay).out(m

1
,not_pay).out(m

2
,not_pay).0

 + out(m
0
,not_pay).out(m

1
,pay).out(m

2
,not_pay).0 + ...

– Crypt0 = in(m0,x).out(s0,-),out(s1,-).in(c00,y).in(c01,z).
 if x=pay then out(pay,-).
 if y=z out(o

0
,agree).0 else out(o

0
,disagree).0

 else
 if y=z out(o

0
,disagree).0 else out(o

0
,agree).0

– Coin0 = in(s
0
,-).in(s

1
,-) 0.5 : tau.out(c

00
,head).out(c

01
,head).0

 +0.5 : tau.out(c
00

,tail).out(c
01

,tail).0

– DCP = ν m
0
,m

1
,m

2
 (Master | ν c

00
,c

01
,...,s

00
,s

01
,...

 (Crypt0 | Crypt1 | Crypt2 | Coin0 | Coin1 | Coin2))

Combine existing tools

● MMC: Mobility Model Checker (Stony Brook)

– finite-control π-calculus, model checking for μ-calculus

– logic programming: built on XSB Prolog

● PRISM: Probabilistic Symbolic Model Checker
– Markov decision processes (also discrete/cont. Markov chains)

– simple state-based modelling language:
● modules, finite-valued variables, guarded commands, synchronisation, ...

MMC to PRISM

● Modifications/extensions of MMC
– generation of symbolic transition graph

– add probabilistic version of choice operator to MMC

● Possible routes for MMC to PRISM
– direct construction of underlying data structures (MTBDDs)

– generation/import of full MDP (matrix)

– language-level translation (monolithic – one module)

– language-level translation (compositional)
● avoids product state-space blow-up
● preserve regularity to decrease BDD size

Compositional translation

● Translate MMC π-calc. processes to PRISM modules

– require description in form P
1
 | P

2
 | ... | P

n

– P
i
 can contain local nondeterminism (choice, parallel)

– translate each P
i
 in MMC

– symbolic transition graph for each process

● DCP example

– ν m
0
,m

1
,m

2
 (Master | ν c

00
,c

01
,...,s

00
,s

01
,...

(Crypt0 | Crypt1 | Crypt2 | Coin0 | Coin1 | Coin2))

– ν m
0
,m

1
,m

2
,c

00
,c

01
,...,s

00
,s

01
,... (Master |Crypt0 | Crypt1 |

Crypt2 | Coin0 | Coin1 | Coin2)

Symbolic transition graph: coin0

Free names: s00, s20, c00, c20, head, tail

Bound names: _h481, _h487

States:

#1: proc(coin(s00,s20,c00,c20,head,tail))

#2: pref(in(s20,_h487),prob_choice([pref(tau(0.5),proc(face
(c00,c20,head))),pref(tau(0.5),proc(face(c00,c20,tail)))]))

...

Transitions:

*1: 1 -- 1:in(s00,_h481) --> 2

*2: 2 -- 1:in(s20,_h487) --> 3

*3: 3 -- 0.5:tau --> 4, 0.5:tau --> 5

...

Modelling channel communication

● One possibility
– introduce PRISM variables for buffers

– break communication into steps: read/write/ack

– blow-up due to additional interleavings

● Map channels in π-calc. to synchronisation in PRISM

– π-calc: binary synchronisation (CCS), name passing

– PRISM: multi-way synchr. (CSP), no value/name passing

– translation scheme: encode all info in action name

Modelling channel communication...

PRISM code:
const int a;

module P

P_state : [1..P_n];

[x_P_Q_a] P_state=1 -> (P_state'=2);

endmodule

module Q

Q_state : [1..Q_n];

Q_y : [1..y_n];

[x_P_Q_a] Q_state=1 -> (Q_state'=2) & (Q_y'=a);

endmodule

P = out(x,a).P'
Q = in(x,y).Q'

(where a is a free name)

Modelling channel communication...

PRISM code:
const int a;

const int b;

module P

P_state : [1..P_n];

[x_P_Q_a] P_state=1 -> (P_state'=2);

[x_P_Q_b] P_state=1 -> (P_state'=3);

endmodule

module Q

Q_state : [1..Q_n];

Q_y : [1..y_n];

[x_P_Q_a] Q_state=1 -> (Q_state'=2) & (Q_y'=a);

[x_P_Q_b] Q_state=1 -> (Q_state'=2) & (Q_y'=b);

endmodule

P = out(x,a).P' + out(x,b).P''
Q = in(x,y).Q'

(where a,b are free names)

Modelling channel communication...

PRISM code:
module P

P_state : [1..P_n];

P_z : [1..z_n];

[x_P_Q_z] P_state=1 -> (P_state'=2);

endmodule

module Q

Q_state : [1..Q_n];

Q_y : [1..y_n];

[x_P_Q_z] Q_state=1 -> (Q_state'=2) & (Q_y'=P_z);

endmodule

P = νz out(x,z).P'
Q = in(x,y).Q'

(where z is a bound name)

Implementation

● Fully automatic translation/construction of model
– MMC (+extensions) & Java code & PRISM

– currently static configurations only
● all channels (and their contents) are constants (free names)

● Algorithm:
– identify all possible senders/receivers on each channel

– identify all names sent along each channel

– identify which names can be assigned to each bound name

● Fully automatic translation of DCP example
– compute min/max probability of each observable in PRISM

Current/future work

● Extend/improve translation process

– polyadic π-calculus, e.g. out(x,(a,b))

– scope extrusion: sending private channel names

– translate properties too
● action vs. state based properties

● Another simple example: Partial Secret Exchange

● More complex case studies (with mobility)

● Stochastic π-calculus, CTMCs, biological case studies

Game-based abstraction of
Markov decision processes

Model checking for MDPs

● Probabilistic model checking for MDPs
– temporal logic PCTL: probabilistic reachability

– probability only defined for a single adversary/scheduler

– minimum/maximum probabilities (best/worst case)

– also: expected cost/reward to reach...

● Typically focus on quantitative properties
– e.g. “what is the minimum probability of reaching...”?

● Tool support for automatic verification, e.g. PRISM
– iterative methods (dynamic programming)

– efficient symbolic (MTBDD) implementations, but...

– state space explosion still a major issue

Abstraction

● Very successful in (non-probabilistic) model checking

● Construct abstract model M' from concrete model M
– details not relevant to property of interest removed

– merge states according to a given partition of state space

– e.g. from set of predicates

● Conservative abstraction
– satisfaction of property in M' implies satisfaction in M

– converse does not hold, but...

– information from model checking process
(e.g. counterexample) can be used to refine the abstraction

Abstraction of MDPs

● Abstraction increases degree of nondeterminism
– min probability may be smaller, max may be larger

● Key idea: separate two forms of nondeterminism
– (a) from abstraction and (b) from original MDP

● Generate separate lower/upper bounds for min/max
– especially useful if min/max probs not close

– worst-case: pmin=0, pmax=1

● If lower/upper bounds not close enough,
– refine abstraction and repeat

Simple stochastic games (SSGs)

● Simple stochastic two-player games [Condon'92]

● Game G = ((V,E),vinit,(V1,V2,VP),δ)

– (V,E) is a finite directed graph

– vinit is the initial vertex

– (V1,V2,VP) is a partition of V into 'player 1', 'player 2' and
'probabilistic' vertices

– δ : VP → Dist(V) is a probabilistic transition function

● Execution of G: successor in each vertex chosen...

– by player 1/2 for V1/V2 vertices, at random (δ) for VP
vertices

Abstract MDP = SSG

● Player 1 controls nondeterminism from abstraction

● Player 2 controls nondeterminism from original MDP

● Strict alternation between V1, V2, VP vertices

● Based on a partition P of MDP state space S

– V1 states are elements of P (subsets of S)

– V2 states are sets of probability distributions

– VP states are single probability distributions from MDP

Simple example

Original MDP Abstract MDP
(simple stochastic game)

Analysis

● Analysis of SSGs: reachability of vertex goal set F

– pa1,a2(F) : probability reach F under player strategies a1,a2

– optimal probabilities for player 1 and player 2:

– supa1 infa2 pa1,a2(F) and supa2 infa1 pa1,a2(F)

– computable via iterative method, similar to MDPs

● Compute bounds for pmin(F) and pmax(F) in MDP

– infa1,a2 pa1,a2(F) ≤ pmin(F) ≤ supa1 infa2 pa1,a2(F)

– supa2 infa1 pa1,a2(F) ≤ pmax(F) ≤ supa1,a2 pa1,a2(F)

Case study: Zeroconf protocol

● Decentralised self configuration of local IP addresses
– new node joining network of N existing nodes, M addresses

– probabilistic: based on random selection of IP address

– nondeterministic: concurrency from scheduling, unknown
message propagation delays (different range for each node)

● Abstraction
– abstract M address to 2 values: fresh/in-use

– channels: just store type of message, not sender
● lose information about message timings

Results

● Substantial reduction in model size, e.g. (for N=8,M=32)

– MDP: 432,185 states, 1,244,480 transitions

– Abstract MDP (SSG): 881 states, 1,850 transitions

● Min/max probability not configured by time T:

Future work

● Perform abstraction at PRISM language level
– bypass construction of full MDP

– infinite-state MDPs?

● Efficient symbolic implementation of SSG algorithms
– very similar to existing PRISM algorithms for MDPs

● Automatic/semi-automatic generation of partitions

