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Our Goal

Verifying cryptographic protocols. E.g.,

1. A −→ S : A, B, Na

2. S −→ A : {Na, B, Kab, {Kab, A}Kbs}Kas

3. A −→ B : {Kab, A}Kbs

4. B −→ A : {Nb}Kab

5. A −→ B : {Nb + 1}Kab
A B S

read A, B, Na
new sym key Kab

write {Na, B, Kab, {Kab, A}    }

new Na
write A, B, Na

new Nb
read {Kab, A}

write {Nb}

read {<Nb+1>}

read {Nb}

read {<Na>, <B>, Kab, M}
write M

Kbs

Kas

Kas

Kbs

Kab

Kab

Kab
write {Nb+1}Kab
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How To Verify A Protocol

The Dolev-Yao model: all agents (A, B, S) run in a context (=
adversary) C.

◮ C can do plenty of things (encrypt, decrypt, forge, redirect,
drop messages);

◮ C aims at reaching a so-called Bad state (e.g., where the
secret Kab is known to C).
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How To Verify A Protocol

The Dolev-Yao model: all agents (A, B, S) run in a context (=
adversary) C.

◮ C can do plenty of things (encrypt, decrypt, forge, redirect,
drop messages);

◮ C aims at reaching a so-called Bad state (e.g., where the
secret Kab is known to C).

To verify:
◮ Draw a (big) graph.

◮ States q are (big) tuples describing the state of the world
(where each agent is currently at, what the values of local
variables are, what messages C has got hold of);

◮ Transitions q ℓ
−→q′ lists when the world can evolve from q to

q′ (doing action ℓ).
◮ Check whether Bad is reachable from one of the initial

states.
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Non-Deterministic Choice Only: Automata

Start

Flip Flip
21

Halt

Non−deterministic
choice

Bad
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Non-Deterministic Choice: Semantics

C plays as follows:
◮ Start at. . . Start;
◮ Pick some next state;
◮ Repeat. . .
◮ . . . So as to reach some set of goal states (fat circles here).
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Trying to Reach a Bad State

Start

Flip Flip
21

Halt

Non−deterministic
choice

Bad
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Trying to Reach a Bad State
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Flip Flip
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Halt

Non−deterministic
choice
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Trying to Reach a Bad State
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Trying to Reach a Bad State
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Trying to Reach a Bad State

Start

Flip Flip
21

Halt

Non−deterministic
choice

Bad
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Remarks

◮ Model is relatively simple (in particular, no probabilities);
◮ But infinite-state: there are infinitely many states in

general.
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Case In Point: Probabilistic Choice

Some protocols require honest agents to draw their next move
at random.
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Case In Point: Probabilistic Choice

Some protocols require honest agents to draw their next move
at random.
E.g., Hermann’s protocol for the dining philosophers.
CSMA/CD (Ethernet).
Various self-stabilization protocols.
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A (Finite) Markov Chain
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Flip a Coin
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Advance
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Stochastic turn-based 2-player games

In some cryptographic protocols,
◮ Honest agents (P) play at random (or deterministically);
◮ Adversaries (C) play in a demonic way (one form of

non-determinism);

Also present in Arthur-Merlin games (complexity theory) and
interactive proofs.
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A Stochastic Game
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C’s Turn: Malevolently Chooses Biased Side
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P’s Turn: Flipping a Coin
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P’s Turn: Advancing
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C’s Turn: Picking Most Biased Side
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P’s Turn
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Our Challenge

◮ How do you model this when state space is infinite?
(E.g., a topological space, R

n, a cpo.)
◮ How do you do model-checking? For what modal logic?
◮ How do you evaluate least average payoffs?
◮ How do you characterize contextual equivalence?

bisimulation?
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“Preprobabilities”

An idea by F. Laviolette and J. Desharnais: simulate
non-deterministic choice by some form of non-additive
probabilistic choice: “Preprobabilities”.

E.g., demonic choice: Start

Flip Flip
21

Preprobability that, from Start, we jump into some set U:
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“Preprobabilities”

An idea by F. Laviolette and J. Desharnais: simulate
non-deterministic choice by some form of non-additive
probabilistic choice: “Preprobabilities”.

E.g., demonic choice: Start

Flip Flip
21

Preprobability that, from Start, we jump into some set U:

U proba.

∅ 0
{Flip1}
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“Preprobabilities”

An idea by F. Laviolette and J. Desharnais: simulate
non-deterministic choice by some form of non-additive
probabilistic choice: “Preprobabilities”.

E.g., demonic choice: Start

Flip Flip
21

Preprobability that, from Start, we jump into some set U:

U proba.

∅ 0
{Flip1} 0 C can always pick Flip2
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“Preprobabilities”

An idea by F. Laviolette and J. Desharnais: simulate
non-deterministic choice by some form of non-additive
probabilistic choice: “Preprobabilities”.

E.g., demonic choice: Start

Flip Flip
21

Preprobability that, from Start, we jump into some set U:

U proba.

∅ 0
{Flip1} 0 C can always pick Flip2
{Flip2} 0 C can always pick Flip1
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“Preprobabilities”

An idea by F. Laviolette and J. Desharnais: simulate
non-deterministic choice by some form of non-additive
probabilistic choice: “Preprobabilities”.

E.g., demonic choice: Start

Flip Flip
21

Preprobability that, from Start, we jump into some set U:

U proba.

∅ 0
{Flip1} 0 C can always pick Flip2
{Flip2} 0 C can always pick Flip1

{Flip1, Flip2}
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“Preprobabilities”

An idea by F. Laviolette and J. Desharnais: simulate
non-deterministic choice by some form of non-additive
probabilistic choice: “Preprobabilities”.

E.g., demonic choice: Start

Flip Flip
21

Preprobability that, from Start, we jump into some set U:

U proba.

∅ 0
{Flip1} 0 C can always pick Flip2
{Flip2} 0 C can always pick Flip1

{Flip1, Flip2} 1 C cannot escape it!
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Unanimity Games

Definition
The unanimity game uQ is the set function such that:

uQ(U) =

{

1 if Q ⊆ U
0 otherwise
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Unanimity Games

Definition
The unanimity game uQ is the set function such that:

uQ(U) =

{

1 if Q ⊆ U
0 otherwise

Non-deterministic (demonic) choice between Flip1 and Flip2:

u{Flip1,Flip2}

(This notion is a special case of a “cooperative game with transferable utility function” in economics.)
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Simple Belief Functions

Mix (demonic) non-deterministic and probabilistic choice:

0.7 0.3

Flip
1

a b c d

= 0.7u{a,b} + 0.3u{b,c,d}
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Simple Belief Functions

Mix (demonic) non-deterministic and probabilistic choice:

0.7 0.3

Flip
1

a b c d

= 0.7u{a,b} + 0.3u{b,c,d}

Definition
A simple belief function is any

∑n
i=1 aiuQi

, ai ∈ R
+, Qi compact

saturated.
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Simple Belief Functions

Mix (demonic) non-deterministic and probabilistic choice:

0.7 0.3

Flip
1

a b c d

= 0.7u{a,b} + 0.3u{b,c,d}

Definition
A simple belief function is any

∑n
i=1 aiuQi

, ai ∈ R
+, Qi compact

saturated.
(Looks like strictly alternating probabilistic automata
[SegalaLynch95], or as in [MisloveOuaknineWorrell03], except we flip
first then choose non-deterministically.)
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Axiomatization: Capacities, (Cooperative) Games

Let X be a topological space, Ω(X ) its lattice of opens.
Note: we measure opens.

Definition
A capacity ν is a function Ω(X ) → R

+, with ν(∅) = 0.
◮ A game is a monotonic capacity: U ⊆ V ⇒ ν(U) ≤ ν(V );
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Axiomatization: Capacities, (Cooperative) Games

Let X be a topological space, Ω(X ) its lattice of opens.
Note: we measure opens.

Definition
A capacity ν is a function Ω(X ) → R

+, with ν(∅) = 0.
◮ A game is a monotonic capacity: U ⊆ V ⇒ ν(U) ≤ ν(V );
◮ A game is convex iff ν(U ∪ V ) ≥ ν(U) + ν(V ) − ν(U ∩ V );

(= for valuations [∼ measures])
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Axiomatization: Capacities, (Cooperative) Games

Let X be a topological space, Ω(X ) its lattice of opens.
Note: we measure opens.

Definition
A capacity ν is a function Ω(X ) → R

+, with ν(∅) = 0.
◮ A game is a monotonic capacity: U ⊆ V ⇒ ν(U) ≤ ν(V );
◮ A game is totally convex (i.e., a belief function) iff:

ν

(

n
⋃

i=1

Ui

)

≥
∑

I⊆{1,...,n},I 6=∅

(−1)|I|+1ν

(

⋂

i∈I

Ui

)

(would be = for valuations: the inclusion-exclusion principle.)
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Axiomatization: Capacities, (Cooperative) Games

Definition
A capacity ν is a function Ω(X ) → R

+, with ν(∅) = 0.
◮ A game is a monotonic capacity: U ⊆ V ⇒ ν(U) ≤ ν(V );
◮ A game is totally convex (i.e., a belief function) iff:

ν

(

n
⋃

i=1

Ui

)

≥
∑

I⊆{1,...,n},I 6=∅

(−1)|I|+1ν

(

⋂

i∈I

Ui

)

◮ A game is continuous iff ν
(

⋃↑
i∈I Ui

)

= supi∈I ν(Ui).
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Axiomatization: Capacities, (Cooperative) Games

Definition
A capacity ν is a function Ω(X ) → R

+, with ν(∅) = 0.
◮ A game is a monotonic capacity: U ⊆ V ⇒ ν(U) ≤ ν(V );
◮ A game is totally convex (i.e., a belief function) iff:

ν

(

n
⋃

i=1

Ui

)

≥
∑

I⊆{1,...,n},I 6=∅

(−1)|I|+1ν

(

⋂

i∈I

Ui

)

◮ A game is continuous iff ν
(

⋃↑
i∈I Ui

)

= supi∈I ν(Ui).

Lemma ( 0.7 0.3

Flip
1

a b c d

)
Every simple belief function is a continuous belief function.
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Conversely (1/2)

Definition
The Smyth powerdomain Q(X ) of X is the set of all non-empty
compact saturated subsets Q of X , ordered by ⊇. Its Scott
topology is generated by �U = {Q ∈ Q(X )|Q ⊆ U}, U ∈ Ω(X ).

⇒ A standard axiomatization of demonic non-determinism.
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Conversely (1/2)

Definition
The Smyth powerdomain Q(X ) of X is the set of all non-empty
compact saturated subsets Q of X , ordered by ⊇. Its Scott
topology is generated by �U = {Q ∈ Q(X )|Q ⊆ U}, U ∈ Ω(X ).

Let X be a nice enough topological space (sober, locally
compact; e.g., any finite space, R

n, any continuous cpo, ).

Theorem
For every continuous belief function ν on X, there is a unique
continuous valuation ν∗ (∼ measure) on Q(X ) such that
ν(U) = ν∗(�U) for all opens U.

Jean Goubault-Larrecq Capacities, Previsions



Stochastic Games
Capacities, Games, Belief Functions

Previsions
Conclusion

Unanimity Games
Belief Functions
The Choquet Integral
Ludic Transition Systems

Conversely (2/2)

Let V(X ) be the space of all continuous valuations, Cd(X ) that
of all continuous belief functions.

Corollary
Cd(X ) ∼= V(Q(X )).
I.e., continuous belief functions ∼= probabilistic choice (possibly
non-discrete) then demonic (possibly infinitely branching)
non-deterministic choice.

0.7 0.3

Flip
1

a b c d
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The Choquet Integral [1953-54]

You can always integrate any (Scott-)continuous function
f : X → R

+ along any game ν:

C

∫

x∈X
f (x)dν =

∫ +∞

0
ν(f−1]t , +∞[)dt

(An ordinary Riemann integral)
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The Choquet Integral [1953-54]

You can always integrate any (Scott-)continuous function
f : X → R

+ along any game ν:

C

∫

x∈X
f (x)dν =

∫ +∞

0
ν(f−1]t , +∞[)dt

(An ordinary Riemann integral)

a0

a4

a1 a0+

a2 a1 a0++

a3 a2 a1 a0+++

a3 a2 a1 a0+++

U0
U1 U2 U3

+

When f =
n
∑

i=1

aiχUi

(a step function)

C

∫

x∈X
f (x)dν =

n
∑

i=1

aiν(Ui)
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Properties of the Choquet Integral

C
∫

x∈X
f(x)dν

C
∫

x∈X
f(x)d

n
∑

i=1

aiνi

=
n
∑

i=1

ai C
∫

x∈X
f(x)dνi

Linear in ν
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Properties of the Choquet Integral

C
∫

x∈X
f(x)dν

C
∫

x∈X
f(x)d sup

↑
i∈Iνi

= sup
↑
i∈I C

∫

x∈X
f(x)dνi

Linear in ν

Scott−continuous
in ν
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Properties of the Choquet Integral

C
∫

x∈X
f(x)dν

C
∫

x∈X
sup

↑
i∈Ifi(x)dν

= sup
↑
i∈I C

∫

x∈X
fi(x)dν

Linear in ν

Scott−continuous
in ν

Scott−continuous
in f

(Provided     is continuous)ν
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Properties of the Choquet Integral

C
∫

x∈X
f(x)dν

C
∫

x∈X

n
∑

i=1

aifi(x)dν

=
n
∑

i=1

ai C
∫

x∈X
fi(x)dν

Linear in ν

Scott−continuous
in ν

Scott−continuous
in f

Linear in f

(Unless     is
a valuation)

ν

(Provided     is continuous)ν
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Properties of the Choquet Integral

C
∫

x∈X
f(x)dν

C
∫

x∈X
a.f(x)dν

= a. C
∫

x∈X
f(x)dν (a ≥ 0)

Linear in ν

Scott−continuous
in ν

Scott−continuous
in f
(Provided     is continuous)ν

Positively homogeneous
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Properties of the Choquet Integral

C
∫

x∈X
f(x)dν

C
∫

x∈X
f(x) + g(x)dν (f ⌢

⌣ g)

= C
∫

x∈X
f(x)dν + C

∫

x∈X
g(x)dν

Linear in ν

Scott−continuous
in ν

Scott−continuous
in f
(Provided     is continuous)ν

Positively homogeneous
Additive on comonotonic f, g
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Properties of the Choquet Integral

(Provided     is continuous)ν

(Provided     is convex)ν

C
∫

x∈X
f(x)dν

C
∫

x∈X
f(x) + g(x)dν

≥ C
∫

x∈X
f(x)dν

+ C
∫

x∈X
g(x)dν

Linear in ν

Scott−continuous
in ν

Scott−continuous
in f

Positively homogeneous
Additive on comonotonic f, g
Superadditive
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Integrating Along a Belief Function

Lemma ( 0.7 0.3

Flip
1

a b c d

)
Let ν =

∑n
i=1 aiuQi

a simple belief function. Then:

C

∫

x∈X
f (x)dν =

n
∑

i=1

ai min
x∈Qi

f (x)

In other words:
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Integrating Along a Belief Function

Lemma ( 0.7 0.3

Flip
1

a b c d

)
Let ν =

∑n
i=1 aiuQi

a simple belief function. Then:

C

∫

x∈X
f (x)dν =

n
∑

i=1

ai min
x∈Qi

f (x)

In other words:
◮ P draws i at random, with probability ai ;
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Integrating Along a Belief Function

Lemma ( 0.7 0.3

Flip
1

a b c d

)
Let ν =

∑n
i=1 aiuQi

a simple belief function. Then:

C

∫

x∈X
f (x)dν =

n
∑

i=1

ai min
x∈Qi

f (x)

In other words:
◮ P draws i at random, with probability ai ;
◮ C then picks x from Qi so as to minimize payoff f (x).
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Integrating Along a Belief Function

Theorem ( 0.7 0.3

Flip
1

a b c d

)
Let X be sober, locally compact, ν ∈ Cd(X ).

C

∫

x∈X
f (x)dν = C

∫

Q∈Q(X)
min
x∈Q

f (x)dν∗

In other words:
◮ P draws Q ∈ Q(X ) at random, with probability ν∗;
◮ C then picks x from Q so as to minimize payoff f (x).
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Further Developments

◮ One can also deal with angelic non-determinism, where C
now helps (maximizes payoff);
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Further Developments

◮ One can also deal with angelic non-determinism, where C
now helps (maximizes payoff);

◮ ⇒ plausibilities: Pb(X ) ∼= V(Hu(X )), where Hu(X ) is the
Hoare (angelic) powerdomain;

Jean Goubault-Larrecq Capacities, Previsions



Stochastic Games
Capacities, Games, Belief Functions

Previsions
Conclusion

Unanimity Games
Belief Functions
The Choquet Integral
Ludic Transition Systems

Further Developments

◮ One can also deal with angelic non-determinism, where C
now helps (maximizes payoff);

◮ ⇒ plausibilities: Pb(X ) ∼= V(Hu(X )), where Hu(X ) is the
Hoare (angelic) powerdomain;

◮ Also with chaotic non-determinism: estimates and
(Heckmann’s version of) the Plotkin powerdomain.
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Ludic Transition Systems

Definition
A ludic transition system σ is a family of continuous maps
σℓ : X → J≤1 wk (X ), ℓ ∈ L.
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Ludic Transition Systems

Definition
A ludic transition system σ is a family of continuous maps
σℓ : X → J≤1 wk (X ), ℓ ∈ L.

◮ L is a set of actions that P has control over;

Jean Goubault-Larrecq Capacities, Previsions



Stochastic Games
Capacities, Games, Belief Functions

Previsions
Conclusion

Unanimity Games
Belief Functions
The Choquet Integral
Ludic Transition Systems

Ludic Transition Systems

Definition
A ludic transition system σ is a family of continuous maps
σℓ : X → J≤1 wk (X ), ℓ ∈ L.

◮ L is a set of actions that P has control over;
◮ σℓ(x)(U) is the preprobability that, from state x , by playing

ℓ ∈ L, P will move to y ∈ U;
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Ludic Transition Systems

Definition
A ludic transition system σ is a family of continuous maps
σℓ : X → J≤1 wk (X ), ℓ ∈ L.

◮ L is a set of actions that P has control over;
◮ σℓ(x)(U) is the preprobability that, from state x , by playing

ℓ ∈ L, P will move to y ∈ U;
◮ J≤1(X ) is the space of continuous games (not just belief

functions) over X , with ν(X ) ≤ 1 (∼ subprobabilities);
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Ludic Transition Systems

Definition
A ludic transition system σ is a family of continuous maps
σℓ : X → J≤1 wk (X ), ℓ ∈ L.

◮ L is a set of actions that P has control over;
◮ σℓ(x)(U) is the preprobability that, from state x , by playing

ℓ ∈ L, P will move to y ∈ U;
◮ J≤1(X ) is the space of continuous games (not just belief

functions) over X , with ν(X ) ≤ 1 (∼ subprobabilities);
◮ J≤1 wk (X ) is the same, except with the weak topology

(nicer theoretically, and more general).

Jean Goubault-Larrecq Capacities, Previsions



Stochastic Games
Capacities, Games, Belief Functions

Previsions
Conclusion

Unanimity Games
Belief Functions
The Choquet Integral
Ludic Transition Systems

Evaluating Average-Min Payoffs

As in Markov Decision Processes (11
2 -player games), let:
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Evaluating Average-Min Payoffs

As in Markov Decision Processes (11
2 -player games), let:

◮ P plays according to a finite-state program Π; internal

states q, transitions q ℓ
−→q′;
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Evaluating Average-Min Payoffs

As in Markov Decision Processes (11
2 -player games), let:

◮ P plays according to a finite-state program Π; internal

states q, transitions q ℓ
−→q′;

◮ Reward functions r
q

ℓ
−→q′

: X → R (bounded, continuous);
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Evaluating Average-Min Payoffs

As in Markov Decision Processes (11
2 -player games), let:

◮ P plays according to a finite-state program Π; internal

states q, transitions q ℓ
−→q′;

◮ Reward functions r
q

ℓ
−→q′

: X → R (bounded, continuous);

◮ Discounts γ
q

ℓ
−→q′

∈]0, 1];

Jean Goubault-Larrecq Capacities, Previsions



Stochastic Games
Capacities, Games, Belief Functions

Previsions
Conclusion

Unanimity Games
Belief Functions
The Choquet Integral
Ludic Transition Systems

Evaluating Average-Min Payoffs

As in Markov Decision Processes (11
2 -player games), let:

◮ P plays according to a finite-state program Π; internal

states q, transitions q ℓ
−→q′;

◮ Reward functions r
q

ℓ
−→q′

: X → R (bounded, continuous);

◮ Discounts γ
q

ℓ
−→q′

∈]0, 1];

The average payoff at state x when in internal state q:

Vq(x) = sup
ℓ,q′/q

ℓ
−→q′

[

r
q ℓ
−→q′

(x) + γ
q ℓ
−→q′

C

∫

y∈X
Vq′(y)dσℓ(x)

]
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Evaluating Average Payoffs—21
2-Player Games

Vq(x) = sup
ℓ,q′/q

ℓ
−→q′

[

r
q

ℓ
−→q′

(x) + γ
q

ℓ
−→q′

C

∫

y∈X
Vq′(y)dσℓ(x)

]

E.g., when σℓ(x) is a simple belief function
∑nℓ

i=1 aiℓxuQiℓx
, then:
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Evaluating Average Payoffs—21
2-Player Games

Vq(x) = sup
ℓ,q′/q

ℓ
−→q′

[

r
q

ℓ
−→q′

(x) + γ
q

ℓ
−→q′

C

∫

y∈X
Vq′(y)dσℓ(x)

]

E.g., when σℓ(x) is a simple belief function
∑nℓ

i=1 aiℓxuQiℓx
, then:

maximizes
its average payoff

P

average
take weighted

minimizes
payoff

C

Vq(x) = sup

ℓ,q′/q
ℓ

−→q′



r
q

ℓ
−→q′

(x) + γ
q

ℓ
−→q′

nℓ
∑

i=1

aiℓx min
y∈Qiℓx

Vq′(y)




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Evaluating Average Payoffs—21
2-Player Games

Vq(x) = sup
ℓ,q′/q ℓ

−→q′

[

r
q

ℓ
−→q′

(x) + γ
q

ℓ
−→q′

C

∫

y∈X
Vq′(y)dσℓ(x)

]

Theorem
The equation above has a unique solution when:

◮ [Finite Horizon] Π terminates, or;
◮ [Discounted Case] γ

q
ℓ

−→q′
≤ γ for some γ < 1 + mild

assumptions (e.g., σℓ(x)(X ) = 1)
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Modal Logic

Logic L
⊤∧∨
open:

F ::= ⊤ true J⊤K
σ

= X
| F ∧ F conjunction JF1 ∧ F2Kσ

= JF1Kσ
∩ JF2Kσ

| F ∨ F disjunction JF1 ∨ F2Kσ
= JF1Kσ

∪ JF2Kσ

| [ℓ]>r F modality J[ℓ]>r F K
σ

= {x ∈ X |δℓ(x)(JF K
σ
) > r}

Theorem (à la Desharnais-Edalat-Panangaden)
L⊤∧∨

open characterizes simulation.
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Modal Logic

Logic L
⊤∧∨
open:

F ::= ⊤ true J⊤K
σ

= X
| F ∧ F conjunction JF1 ∧ F2Kσ

= JF1Kσ
∩ JF2Kσ

| F ∨ F disjunction JF1 ∨ F2Kσ
= JF1Kσ

∪ JF2Kσ

| [ℓ]>r F modality J[ℓ]>r F K
σ

= {x ∈ X |δℓ(x)(JF K
σ
) > r}

Theorem (à la Desharnais-Edalat-Panangaden)
L⊤∧∨

open characterizes simulation.

Or rather. . . simulation topologies: O ⊆ Ω(X ) such that δℓ is
continuous from X : O to J≤1 wk(X : O).
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Modal Logic

Logic L
⊤∧∨
open:

F ::= ⊤ true J⊤K
σ

= X
| F ∧ F conjunction JF1 ∧ F2Kσ

= JF1Kσ
∩ JF2Kσ

| F ∨ F disjunction JF1 ∨ F2Kσ
= JF1Kσ

∪ JF2Kσ

| [ℓ]>r F modality J[ℓ]>r F K
σ

= {x ∈ X |δℓ(x)(JF K
σ
) > r}

Theorem (à la Desharnais-Edalat-Panangaden)
L⊤∧∨

open characterizes simulation.

Or rather. . . simulation topologies: O ⊆ Ω(X ) such that δℓ is
continuous from X : O to J≤1 wk(X : O).
Let �O (simulation) the specialization quasi-ordering of O, ≡O its
associated equivalence. One can then lump together equivalent
states.
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Outline
Stochastic Games

Non-Deterministic Choice
Probabilistic Choice: Markov Chains
Mixing Non-Determinism and Probabilities

Capacities, Games, Belief Functions
Unanimity Games
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Representation Theorems
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Our Goal

Find a semantics for higher-order functional languages with
both:

◮ probabilistic choice;
◮ non-deterministic choice.
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Our Goal

Find a semantics for higher-order functional languages with
both:

◮ probabilistic choice;
◮ non-deterministic choice.

Several proposals already exist: [Varacca02], [Mislove00],
[TixKeimelPlotkin05].
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Our Goal

Find a semantics for higher-order functional languages with
both:

◮ probabilistic choice;
◮ non-deterministic choice.

Several proposals already exist: [Varacca02], [Mislove00],
[TixKeimelPlotkin05].
We present a simple one based on continuous previsions
[Walley91].
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Representation Theorems

Well-known in measure theory:

Theorem (Riesz)
Let X be compact Hausdorff. Then:

ν measure 7→ λf : X → R ·

∫

x∈X
f (x)dν

is a bijection from the space of (bounded) measures on X to
the space of bounded, linear and positive functionals from
〈X → R〉 to R.
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A Representation Theorem for Valuations

Theorem (Tix)
Let X be a topological space. Let 〈X → R

+〉 be the space of all
bounded, (Scott-)continuous functions from X to R

+. Then:

ν ∈ V(X ) 7→ λf ∈ 〈X → R
+〉 · C

∫

x∈X
f (x)dν

is an isomorphism between V(X ) (continuous valuations) and
the space of functionals F from 〈X → R〉 to R such that:

◮ F is positively homogeneous: F (af ) = aF (f ) (a ≥ 0);
◮ F is monotonic: if f ≤ g then F (f ) ≤ F (g);

◮ F is (Scott-)continuous: F (sup ↑
i∈I fi) = sup ↑

i∈IF (fi);
◮ F is additive: F (f + g) = F (f ) + F (g).
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Properties of the Choquet Integral (Remember?)

(Provided     is continuous)ν

(Provided     is convex)ν

C
∫

x∈X
f(x)dν

C
∫

x∈X
f(x) + g(x)dν

≥ C
∫

x∈X
f(x)dν

+ C
∫

x∈X
g(x)dν

Scott−continuous
in f

Positively homogeneous
Additive on comonotonic f, g
Superadditive

Linear in ν

Scott−continuous
νin
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Previsions

Definition
A prevision F is a functional from 〈X → R

+〉 to R
+ such that:

◮ F is positively homogeneous: F (af ) = aF (f ) (a ≥ 0);
◮ F is monotonic: if f ≤ g then F (f ) ≤ F (g);

I.e., we drop additivity: F (f + g) = F (f ) + F (g).
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Previsions

Definition
A colinear prevision F is a functional from 〈X → R

+〉 to R
+

such that:
◮ F is positively homogeneous: F (af ) = aF (f ) (a ≥ 0);
◮ F is monotonic: if f ≤ g then F (f ) ≤ F (g);
◮ F is colinear: if f ⌢

⌣ g then F (f + g) = F (f ) + F (g);

I.e., we drop additivity: F (f + g) = F (f ) + F (g).
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Previsions

Definition
A continuous colinear prevision F is a functional from
〈X → R

+〉 to R
+ such that:

◮ F is positively homogeneous: F (af ) = aF (f ) (a ≥ 0);
◮ F is monotonic: if f ≤ g then F (f ) ≤ F (g);
◮ F is colinear: if f ⌢

⌣ g then F (f + g) = F (f ) + F (g);

◮ F is (Scott-)continuous: F (sup ↑
i∈I fi) = sup ↑

i∈IF (fi);

I.e., we relax additivity: F (f + g) = F (f ) + F (g).

Jean Goubault-Larrecq Capacities, Previsions



Stochastic Games
Capacities, Games, Belief Functions

Previsions
Conclusion

Representation Theorems
A Probabilistic Non-Deterministic Lambda-Calculus
Completeness

Previsions

Definition
A continuous linear prevision F is a functional from 〈X → R

+〉
to R

+ such that:
◮ F is positively homogeneous: F (af ) = aF (f ) (a ≥ 0);
◮ F is monotonic: if f ≤ g then F (f ) ≤ F (g);
◮ F is colinear: if f ⌢

⌣ g then F (f + g) = F (f ) + F (g);

◮ F is (Scott-)continuous: F (sup ↑
i∈I fi) = sup ↑

i∈IF (fi);
◮ F is linear: F (f + g) = F (f ) + F (g);

Jean Goubault-Larrecq Capacities, Previsions



Stochastic Games
Capacities, Games, Belief Functions

Previsions
Conclusion

Representation Theorems
A Probabilistic Non-Deterministic Lambda-Calculus
Completeness

Previsions

Definition
A continuous lower prevision F is a functional from 〈X → R

+〉
to R

+ such that:
◮ F is positively homogeneous: F (af ) = aF (f ) (a ≥ 0);
◮ F is monotonic: if f ≤ g then F (f ) ≤ F (g);
◮ F is colinear: if f ⌢

⌣ g then F (f + g) = F (f ) + F (g);

◮ F is (Scott-)continuous: F (sup ↑
i∈I fi) = sup ↑

i∈IF (fi);
◮ F is lower: F (f + g) ≥ F (f ) + F (g).
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A Dictionary of Representation Theorems

Continuous Continuous
Games Previsions

Valuations Linear previsions [Tix99]
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A Dictionary of Representation Theorems

Continuous Continuous
Games Previsions

Valuations Linear previsions [Tix99]
Games Colinear previsions
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A Dictionary of Representation Theorems

Continuous Continuous
Games Previsions

Valuations Linear previsions [Tix99]
Games Colinear previsions

Convex games Colinear lower previsions [∼ Schmeidler92]
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A Dictionary of Representation Theorems

Continuous Continuous
Games Previsions

Valuations Linear previsions [Tix99]
Games Colinear previsions

Convex games Colinear lower previsions [∼ Schmeidler92]
Concave games Colinear upper previsions
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A Dictionary of Representation Theorems

Continuous Continuous
Games Previsions

Valuations Linear previsions [Tix99]
Games Colinear previsions

Convex games Colinear lower previsions [∼ Schmeidler92]
Concave games Colinear upper previsions
Belief functions Colinear pessimistic previsions

Plausibilities Colinear optimistic previsions
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A Probabilistic Non-Deterministic Lambda-Calculus

In a nutshell:
◮ Take Moggi’s monadic λ-calculus [Mog91];
◮ Requires a strong monad (TTT , ηηη,µµµ, ttt);
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A Probabilistic Non-Deterministic Lambda-Calculus

In a nutshell:
◮ Take Moggi’s monadic λ-calculus [Mog91];
◮ Requires a strong monad (TTT , ηηη,µµµ, ttt);
◮ Take TTT X = V(X ) [Jones90]: models probabilistic choice,

no non-determinism;
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A Probabilistic Non-Deterministic Lambda-Calculus

In a nutshell:
◮ Take Moggi’s monadic λ-calculus [Mog91];
◮ Requires a strong monad (TTT , ηηη,µµµ, ttt);
◮ Take TTT X = Q(X ): models (demonic) non-determinism, no

probabilities;
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A Probabilistic Non-Deterministic Lambda-Calculus

In a nutshell:
◮ Take Moggi’s monadic λ-calculus [Mog91];
◮ Requires a strong monad (TTT , ηηη,µµµ, ttt);
◮ Take TTT X = Cd(X ): models both. . .
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A Probabilistic Non-Deterministic Lambda-Calculus

In a nutshell:
◮ Take Moggi’s monadic λ-calculus [Mog91];
◮ Requires a strong monad (TTT , ηηη,µµµ, ttt);
◮ Take TTT X = Cd(X ): models both. . .

but not a monad (cannot define µµµ).
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A Probabilistic Non-Deterministic Lambda-Calculus

In a nutshell:
◮ Take Moggi’s monadic λ-calculus [Mog91];
◮ Requires a strong monad (TTT , ηηη,µµµ, ttt);
◮ Take TTT X = {continuous convex games}:

models both. . .
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A Probabilistic Non-Deterministic Lambda-Calculus

In a nutshell:
◮ Take Moggi’s monadic λ-calculus [Mog91];
◮ Requires a strong monad (TTT , ηηη,µµµ, ttt);
◮ Take TTT X = {continuous convex games}:

models both. . .
but not a monad (cannot define µµµ).
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A Probabilistic Non-Deterministic Lambda-Calculus

In a nutshell:
◮ Take Moggi’s monadic λ-calculus [Mog91];
◮ Requires a strong monad (TTT , ηηη,µµµ, ttt);
◮ Take TTT X = {continuous colinear lower previsions}:

models both. . .
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A Probabilistic Non-Deterministic Lambda-Calculus

In a nutshell:
◮ Take Moggi’s monadic λ-calculus [Mog91];
◮ Requires a strong monad (TTT , ηηη,µµµ, ttt);
◮ Take TTT X = {continuous colinear lower previsions}:

models both. . .
but not a monad (cannot define µµµ).
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A Probabilistic Non-Deterministic Lambda-Calculus

In a nutshell:
◮ Take Moggi’s monadic λ-calculus [Mog91];
◮ Requires a strong monad (TTT , ηηη,µµµ, ttt);
◮ Take TTT X = {continuous colinear lower previsions}:

models both. . .
and works!
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A Probabilistic Non-Deterministic Lambda-Calculus

M, N ::= x variable
| flip | amb | . . . constants
| MN application
| λx · M abstraction
| () empty tuple
| (M, N) pair
| fst M first proj.
| snd M second proj.
| valM trivial comp.
| letval x = M in N sequence

τ ::= bool | int base types
| u type of ()
| τ × τ product
| τ → τ function types
| T τ computation

types
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A Continuation Semantics

In an environment ρ, with continuation h : JτK → R
+,

JvalMK ρ(h) = h(JMK ρ)

Jletval x = M in NK ρ(h) = JMK ρ(λv · JNK (ρ[x := v ])(h))

JcaseK ρ(b, v0, v1) =

{

v0 if b = false
v1 if b = true
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A Continuation Semantics

In an environment ρ, with continuation h : JτK → R
+,

JvalMK ρ(h) = h(JMK ρ)

Jletval x = M in NK ρ(h) = JMK ρ(λv · JNK (ρ[x := v ])(h))

JcaseK ρ(b, v0, v1) =

{

v0 if b = false
v1 if b = true

Jflip : TboolK ρ(h) = 1/2(h(false) + h(true))

(take mean payoff)
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A Continuation Semantics

In an environment ρ, with continuation h : JτK → R
+,

JvalMK ρ(h) = h(JMK ρ)

Jletval x = M in NK ρ(h) = JMK ρ(λv · JNK (ρ[x := v ])(h))

JcaseK ρ(b, v0, v1) =

{

v0 if b = false
v1 if b = true

Jflip : TboolK ρ(h) = 1/2(h(false) + h(true))

(take mean payoff)

Jamb : TboolK ρ(h) = min(h(false), h(true))

(take min payoff)
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Angelic, Chaotic Non-Determinism

◮ Can also deal with angelic non-determinism (Hoare): take
TTTX = {continuous upper previsions};

Jamb : TboolK ρ(h) = max(h(false), h(true))

(take max payoff)
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Angelic, Chaotic Non-Determinism

◮ Can also deal with angelic non-determinism (Hoare): take
TTTX = {continuous upper previsions};

Jamb : TboolK ρ(h) = max(h(false), h(true))

(take max payoff)

◮ Can also deal with chaotic non-determinism (Plotkin): take
TTTX = {continuous forks}, where a fork is any pair
F = (F−, F+) with:

◮ F− a lower prevision;
◮ F+ an upper prevision;
◮ F−(h + h′) ≤ F−(h) + F+(h′) ≤ F+(h + h′).

JambK ρ = (λh · min(h(0), h(1)), λh · max(h(0), h(1)))

(take both min and max payoff)
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Completeness

◮ Prevision models are sound: any mixture of (demonic,
angelic, chaotic) non-determinism with probabilistic choice
is accounted for.
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Completeness

◮ Prevision models are sound: any mixture of (demonic,
angelic, chaotic) non-determinism with probabilistic choice
is accounted for.

◮ We show completeness: there is no junk—prevision
models are no more than mixtures of non-determinism with
probabilistic choice.
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Shapley’s [1965] and Rosenmuller’s [1971] Theorems

Fundamental theorems in economy (for finite X , colinear F ).

Definition
The core of a game ν is the set of measures p such that:

◮ ν(U) ≤ p(U) for any U;
◮ ν(X ) = p(X ).
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Shapley’s [1965] and Rosenmuller’s [1971] Theorems

Fundamental theorems in economy (for finite X , colinear F ).

Definition
The core of a game ν is the set of measures p such that:

◮ ν(U) ≤ p(U) for any U;
◮ ν(X ) = p(X ).

Theorem (Shapley)
Every convex game has a non-empty core.

Entails existence of economic equilibria.

Jean Goubault-Larrecq Capacities, Previsions



Stochastic Games
Capacities, Games, Belief Functions

Previsions
Conclusion

Representation Theorems
A Probabilistic Non-Deterministic Lambda-Calculus
Completeness

Shapley’s [1965] and Rosenmuller’s [1971] Theorems

Fundamental theorems in economy (for finite X , colinear F ).

Definition
The core of a game ν is the set of measures p such that:

◮ ν(U) ≤ p(U) for any U;
◮ ν(X ) = p(X ).

Theorem (Rosenmuller)
A game is convex iff:

◮ it has a non-empty core;
◮ and for every f : X → R

+,

C

∫

x∈X
f (x)dν = min

p in the core of ν
C

∫

x∈X
f (x)dp
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The Heart of a Continuous Prevision

Use normalized previsions (∼ non-additive probabilities).

Definition (Heart)
The heart CCoeur1(F ) of F : 〈X → R

+〉 → R
+ is the set of

continuous linear normalized previsions G such that F ≤ G.
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The Heart of a Continuous Prevision

Use normalized previsions (∼ non-additive probabilities).

Definition (Heart)
The heart CCoeur1(F ) of F : 〈X → R

+〉 → R
+ is the set of

continuous linear normalized previsions G such that F ≤ G.

Theorem (à la Rosenmuller, topological; no colinearity
needed)
Let X be nice enough (stably locally compact), F a continuous
normalized prevision on X.
Then F is lower iff:

◮ CCoeur1(F ) 6= ∅;
◮ and for every f ∈ 〈X → R

+〉, F (f ) = infG∈CCoeur1(F ) G(f ).

The the inf is attained: F (f ) = minG∈CCoeur1(F ) G(f ).
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Completeness

Define the weak topology on the space P(X ) (
`

P(X ),
a

P(X ))
of all continuous (lower, upper) previsions on X , as the coarsest
that makes F 7→ F (f ) continuous, for each f ∈ 〈X → R

+〉.

Theorem
Let X be nice enough (stably compact), F a normalized
continuous lower prevision.
Then CCoeur1(F ) is a non-empty saturated compact convex
subset of P△

1 wk (X ).
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Completeness

Define the weak topology on the space P(X ) (
`

P(X ),
a

P(X ))
of all continuous (lower, upper) previsions on X , as the coarsest
that makes F 7→ F (f ) continuous, for each f ∈ 〈X → R

+〉.

Theorem
Let X be nice enough (stably compact), F a normalized
continuous lower prevision.
Then CCoeur1(F ) is a non-empty saturated compact convex
subset of P△

1 wk (X ).

Corollary
CCoeur1 ⊣

d
is a continuous Galois injection (“almost an

isomorphism”) of
`

P1(X ) into Q(P△
1 wk (X )).

I.e.,
`

P1(X ) contains no junk:
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Completeness

Theorem
Let X be nice enough (stably compact), F a normalized
continuous lower prevision.
Then CCoeur1(F ) is a non-empty saturated compact convex
subset of P△

1 wk (X ).

Corollary
CCoeur1 ⊣

d
is a continuous Galois injection (“almost an

isomorphism”) of
`

P1(X ) into Q(P△
1 wk (X )).

I.e.,
`

P1(X ) contains no junk:
Every normalized continuous lower prevision is essentially one
non-deterministic choice then one probabilistic choice (à la
[SegalaLynch95, Mislove00, MisloveOuaknineWorrell03,
TixKeimelPlotkin05]; the converse of belief functions).

Jean Goubault-Larrecq Capacities, Previsions



Stochastic Games
Capacities, Games, Belief Functions

Previsions
Conclusion

Representation Theorems
A Probabilistic Non-Deterministic Lambda-Calculus
Completeness

Completeness (cont’d)

◮ In the angelic case,
⊔

⊣ CPeau1 is a continuous Galois
surjection of H(P△

1 wk (X )) onto
`

P1(X ).
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Completeness (cont’d)

◮ In the angelic case,
⊔

⊣ CPeau1 is a continuous Galois
surjection of H(P△

1 wk (X )) onto
`

P1(X ).
◮ In the chaotic case, for any fork F = (F−, F+),

CCoeur1(F−) ∩ CPeau1(F+) is a lens, i.e., an element of
the Plotkin powerdomain of P△

1 wk (X ).
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Completeness (cont’d)

◮ In the angelic case,
⊔

⊣ CPeau1 is a continuous Galois
surjection of H(P△

1 wk (X )) onto
`

P1(X ).
◮ In the chaotic case, for any fork F = (F−, F+),

CCoeur1(F−) ∩ CPeau1(F+) is a lens, i.e., an element of
the Plotkin powerdomain of P△

1 wk (X ).
◮ Our prevision models are “almost isomorphic” to models of

compact convex subsets (resp. closed convex subsets,
convex lenses) of probability valuations [Mislove00,
TixKeimelPlotkin05].
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◮ I love realizing new problems have old solutions: here I use
and extend theories of capacities [Choquet53-54],
cooperative games [Shapley65], belief functions
[Dempster67], previsions [Walley91].
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◮ Ludic transition systems: a smart formulation of 21
2 -player

games that smells of 11
2 -player games (Markov decision

processes).
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Conclusion

◮ I love realizing new problems have old solutions: here I use
and extend theories of capacities [Choquet53-54],
cooperative games [Shapley65], belief functions
[Dempster67], previsions [Walley91].

◮ Ludic transition systems: a smart formulation of 21
2 -player

games that smells of 11
2 -player games (Markov decision

processes).
◮ Previsions: an elegant and simple semantics for

probabilistic and non-deterministic higher-order functional
languages.
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