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Abstract

The usefulness of formal methods for the description and verification of complex systems is nowa-
days widely accepted. While some system properties can be studied in a non-timed and non-
probabilistic setting, others, such as quantitative security properties, system performance and
reliability properties, require a timed and probabilistic description of the system. This thesis fo-
cuses on methods for the formal modeling of probabilistic timed systems, and on algorithms for
the automated verification of their properties. The models considered describe the behavior of a
system in terms of time and probability, and the formal description languages used are based on
extensions of Timed Automata, Markov Decision Processes and combinations of them.

In multilevel systems it is important to avoid unwanted indirect information flow from higher
levels to lower levels, namely the so called covert channels. Initial studies of information flow
analysis were performed by abstracting away from time and probability. It is already known that
systems which are considered to be secure may turn out to be insecure when time or probability
are considered. Recently, work has been done in order to consider also aspects either of time
or of probability, but not both. In this thesis, a general framework is proposed, which is based
on Probabilistic Timed Automata, where both probabilistic and timing covert channels can be
studied. A concept of weak bisimulation for Probabilistic Timed Automata is given, together
with an algorithm to decide it. Such an equivalence relation is necessary to define information
flow security properties. Thus, a Non Interference security property and a Non Deducibility on
Composition security property are given. They allow expressing information flow in a timed and
probabilistic setting, and they can be compared with analogous properties defined in settings where
either time or probability or none of them are taken into account. This permits a classification of
the properties depending on their discriminating power.

Some new aspects are then explored involving the introduction of parameters in Markov Deci-
sion Processes and the use of Timed Automata in the study of cryptographic protocols. Finally,
some real-life applications are described through automata-based formalisms, and model checking
is used to study security issues affected by aspects of time and probability.
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Introduction

Complex systems may exhibit behaviour depending on time and probability. While some systems
properties can be studied in non-timed and non-probabilistic settings, others require that system
description methodologies and verification tools take these aspects into account. This is the case
when studying quantitative security properties or performance and reliability properties.

System design aims at ensuring that some properties hold for system processes. Some systems
can be designed in such a way that the wanted properties are guaranteed to hold, but this, in gen-
eral, cannot be achieved for complex systems, either because it would be impractically expensive
or because they include unreliable components. Hence, the need arises of languages for formal
specifications and techniques to verify that the specified properties hold. Verification techniques
based on testing and simulation can miss errors when the number of states of the system is very
large. Theorem provers and proof checkers do not have this shortcoming, but they are time con-
suming and often require manual intervention. An alternative verification technique, called model
checking, is based on search procedures which determine if the specification, expressed in a certain
logic, is true of the representation of the behaviour of the system.

This thesis focuses on methods for the formal modeling and analysis of timed and probabilistic
systems, and on algorithms for the automated verification of their properties. In particular, security
properties must be precisely defined in order to prove that the system design fulfills the wanted
requirements. In the more general usage, security means controlling the way information may flow
among different entities, and security properties one wants to hold are information flow properties.

The formal description languages we consider are based on extensions of Markov decision pro-
cesses [20, 68] and Timed Automata [9].

On the one hand, probabilistic models are nowadays widely used in the design and verification of
complex systems in order to quantify unreliable or unpredictable behaviour in security, performance
and reliability analysis [37, 14, 130, 5]. The analysis process consists in building a probabilistic
model of the systems, typically a Markov Decision Process [20, 68] or a Continuous Time Markov
Chain on which analytical, simulation based and numerical calculations can be performed to obtain
the desired quantitative measures.

On the other hand, the importance of real time considerations in the functioning of systems has
suggested to augment finite automata with timing constraints and to extend logics accordingly [9].
Within such a model, different properties have been investigated (e.g. expressiveness of the model)
both with discrete and dense time assumptions (see also [64]). To describe more general situations
and model concurrent systems, different extensions have been proposed (see [10, 45, 85]).

In 1963, Rabin introduced Probabilistic Automata [121], closely related to Markov Decision
Processes. There are several extensions of Probabilistic Automata with time variables and con-
straints, or extensions of Timed Automata with probabilistic choices. Some models of Probabilistic
Timed Automata can be found, e.g., in [8, 37, 80, 18, 90]. Temporal logics have been adapted in or-
der to deal with quantitative verification, namely with the problem of determining the probability
with which a system satisfies a specification.

In this thesis we introduce extensions of the model of Probabilistic Timed Automata in a
context of security analysis by defining a notion of weak bisimulation for Probabilistic Timed
Automata and developing an algorithm to decide it [88, 94]. Once given such a notion, it is
easy to extend security analysis techniques based on the Non-Interference theory [52] within the
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model of Probabilistic Timed Automata (see, i.e. [90, 92]). Other well known information flow
security properties may be formulated within our framework. We also investigate an extension
of the Timed Automata model dealing with data structures in order to represent computation of
cryptographic primitives and then analyze security protocols. Interesting applications may also
derive by considering probabilities as parameters.

In conclusion, we aim at offering a general uniform model for probabilistic timed automata
able to describe a large class of systems and to analyze properties of different kinds. In fact,
automata based models offer a rigorous and precise modeling technique, and, at the same time,
such descriptions can be immediately transformed as input for model checkers.

I.1 Concepts and Models of Security

Our society is becoming more and more dependent on computer networks. The enormous amount
of data that is processed, transmitted and stored needs some form of protection. Cryptography
has been envisaged as the main practical means to protect information transmitted on communi-
cation networks. A long tradition of studies on cryptographic algorithms validates the use of these
techniques. However, nowadays cryptography is mainly used as a building block of many complex
applications where the correctness of the cryptographic algorithm is not, per se, a guarantee of
the correctness of the applications. Indeed, cryptographic-based procedures are largely used for
authentication of messages, personal identification, digital signatures, electronic money transfer,
credit card transactions and many other critical applications. Recent technological developments,
with the introduction of mobile code, mobile agents and Java applets have raised a supplementary
increasing demand for security in computer networks. The main issues, in this sense, are related
to protection of the host resources from unwanted damage caused by imported, possibly malicious,
code. Browser-based applications are critically dependent on the security of the applets they are
using.

Surprisingly enough, such a pervasive phenomenon has not been accompanied by correspond-
ingly widespread development and use of formal tools to help analysts and designers to describe
faithfully, to analyze in detail, and to prove the correctness of such systems. This is mainly due
to a lack of theoretical understanding of the phenomena. On the one hand, even when formal
techniques are available, they are generally perceived as difficult to learn and apply: in other
words, they are not seen as cost-effective. On the other hand, the increasing number of reports
of security flaws in software show that ignoring the problem of rigorous correctness proofs is at
our own risk. Remarkable examples range from academic cryptographic protocols, such as the
Denning-Sacco key distribution protocol (with public key, 1981) [40], which was believed to be
correct for several years until shown to be flawed by Abadi (1994) [2], to industrial applications,
such as the programming language Java, whose type flaws were at the core of a number of security
holes. Many of these flaws could conceivably have been prevented by the use of a careful formal
design and analysis.

The detection and the prevention of flaws is indeed one of the main motivations for using
formal methods: formal system specification is an essential prerequisite for analysis, that may help
detect many design flaws. Furthermore, if the specification is given in an executable language,
then it may also be exploited to simulate the execution of the system, helping the verification of
properties (early prototyping). Typically, other motivations for the use of formal specifications
include the need for expressing unambiguous user requirements, for producing a reference guide
for the implementor of the real system during the various development phases. Eventually, systems
will be certified to be free of flaws.

I.1.1 Information Flow Security

Distributed systems have resources and data shared among users located everywhere in the world.
Security is a major issue. By security one means a number of requirements, such as confidentiality,
availability and integrity, to be satisfied by the system.
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The term security model is used in the literature (e.g. see [99]) to mean the definition of a
mechanism for enforcing a security property. A security model imposes restrictions on a system
interface (usually input/output relations) that are sufficient to ensure that any implementation
satisfying these restrictions will enforce the property.

In this thesis we are interested in confidentiality. Intuitively, confidentiality states the complete
absence of any unauthorized disclosure of information. A mechanism for confidentiality, called
access control, was first formulated by Lampson [83] and later refined by Graham and Denning [54].
The structure of the model is that of a state machine where each state is a triple (S,O,M) with
S a set of subjects (active agents, such as users), O a set of objects (data, such as files) and M is
an access matrix which as one row for each subject, one column for each object and is such that
the entry M [s, o] contains the access right subject s has for object o.

Harrison, Ruzzo and Ullman [61] use Lampson’s concept of an access control model to analyze
the complexity of determining the effects of a particular access control policy they propose. It
turns out that it is often hard to predict how access rights can propagate in a given access control
model. A user is often unaware that executing certain programs (Trojan Horses) he will pass to
another user some entirely unrelated set of rights he possesses. This has lead to the formulation
of two distinct access control policies.

In classic Discretionary Access Control security (DAC), every subject decides the access prop-
erties of his objects. The fact that users decides the access rights on their files gives flexibility, but
also facilitates security leakages.

In Mandatory Access Control security (MAC), some access rules are imposed by the system
and Trojan Horse programs may have a limited effect. An example of MAC is multilevel security
proposed by Bell and Lapadula [19]. In such a model, every subject is bound in a security level,
and so is every object. Information may flow from a certain object to a certain subject only if
the level of the subject is greater than the level of the object. A Trojan Horse action is, hence,
restricted to a level and has no way of downgrading information. With MAC, however, it could
still be possible to transmit information indirectly by means of system sides effect.

For example, consider a low level user and a high level user sharing a finite storage resource
(e.g., a buffer). It may be possible for the high level user to transmit information indirectly by
completely filling the shared buffer. If the high level user wants to transmit the bit 1 it simply fills
the buffer; in this case, since the buffer is full, a low write action returns an error message and the
low user deduces the transmission of bit 1. Otherwise, if the low write action is successful, the low
level user deduces that the high level user is transmitting the bit 0. Such indirect transmission,
which does not violate access rules, is called a covert channel [82].

The existence of covert channels has led to the more general approach of information flow
security, which aims at controlling the way information may flow among different entities. The idea
is to try to directly control the whole flow of information, rather than only the direct communication
among agents. In [52] the notion of Non Interference is introduced, stating, intuitively, that low
level agents should not be able to deduce anything about the activity of high level agents. By
imposing some information flow rules, it is possible to control direct and indirect leakages, as both
of them give rise to unwanted information flows.

Other properties have been introduced in the literature in order to capture different behaviour
of systems that has to be considered not secure. One of the most interesting and intuitive security
properties is the Non Deducibility on Composition (NDC ) [131, 49], which states that what a
low level user observes of the system in isolation is not altered when considering all the potential
interaction of the system with any high level agent of the external environment.

The problem of formalizing the notion of confidentiality boils down to that of formalizing the
equivalence of processes [49, 126]. The latter is a central and difficult question at the heart of
computer science to which there is no unique answer. Which notion of equivalence is appropri-
ate depends on the context and application. Consequently, we should not be surprised that the
information security community has failed to come up with a consensus on what constitutes confi-
dentiality. In [49] weak bisimulation equivalence has been shown to be one of the more reasonable
equivalence relation. Fine enough to capture any unsecure behavior that can give rise to informa-
tion flow, but not so strict to classify as unsecure behaviour which are instead correct. Hence, we
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also resort to weak bisimulation in order to define information flow security properties within our
framework.

Definitions of information flow security properties have been formulated in various system
description formalisms (see, e.g., [52, 98, 55, 49, 50, 48, 17, 6]).

The problem of composability of multi-level security properties is discussed in [98]. It is shown
that some security properties do not compose and that it is possible to connect two systems, both
of which are judged to be secure, such that the composite system is not secure. In [49] Focardi
and Gorrieri promote the classification of a set of properties capturing the idea of information
flow. The authors use a slight extension of Milner’s CCS [105], called Security Process Algebra
(SPA), to specify and analyze security properties of concurrent systems. In SPA, the set of actions is
partitioned into high level actions and low level ones in order to specify multilevel systems. Security
properties are classified according to the equivalence relations used for modeling indistinguishable
observational behaviour.

Most of the properties considered are based on analysis of information flow that does not take
into consideration aspects of time or of probability, and therefore these properties are not useful to
check the existence of probabilistic or timing covert channels. To overcome this, in the recent years,
a significant work has been done in order to extend the study by considering either probability
(see, e.g., [55, 6, 117, 5]) or time (see, e.g., [50, 48, 17]).

In [55] Gray describes a general purpose, probabilistic state machine model which can be used
to model a large class of computer systems. Information flow probabilistic properties are developed.
In [6, 5] a probabilistic process algebra is used to capture security leakages which may arise by
observing the frequencies of performance of certain actions. A notion of probabilistic observational
equivalence is given when formalizing the probabilistic security properties. In [117] Di Pierro,
Hankin and Wiklicky present a model in which the notion of Non Interference is approximated in
the sense that it allows for some exactly quantified leakage of information.

In [50] a CCS-like timed process algebra is used to formalize time-dependent information flow
security properties. In [48] Evans and Schneider detail an approach to verifying time dependent
security properties. Time is introduced into the Communicating Sequential Processes (CSP) ver-
ification framework. In [17] Barbuti and Tesei propose the formalization of a Non Interference
property in a timed setting within the model of Timed Automata.

By the best of our knowledge, there are no studies of information flow security where time and
probability are considered together.

I.1.2 Security Protocols

Security protocols are a critical element of the infrastructures needed for secure communication
and processing information. Most security protocols are extremely simple if only their length
is considered. However, the properties they are supposed to ensure are extremely subtle, and
therefore it is hard to get protocols correct just by informal reasoning. The history of security
protocols (and also cryptography) has a lot of examples, where weaknesses of supposedly correct
protocols or algorithms were discovered even years later. Thus, security protocols are excellent
candidates for rigorous formal analysis. They are critical components of distributed security, are
very easy to express and very difficult to evaluate by hand.

Many security properties may be defined in order to analyze cryptographic protocols (among
them, secrecy, authentication, integrity, non-repudiation, anonymity, fairness, etc.).

Secrecy has a number of different possible meanings; the designer of an application must decide
which one is appropriate. The strongest interpretation would be that an intruder is not able to
learn anything about any communication between two participants of a system by observing or even
tampering the communication lines. That is, he cannot deduce the contents of messages, sender
and receivers, the message length, the time they were sent, and not even the fact that a message
was sent in the first place. In theory, this “perfect” secrecy can be approximated quite close by
exploiting todays cryptographic tools: encryption and digital signatures, dummy traffic to keep a
constant network load, anonymizing proxies to “shuffle” packets across the nodes to make routing
analysis infeasible, and a huge calculation overhead on the message recipients, since decryption
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and signature checking must be performed with each possible key (since there is no sender or
receiver name attached). Hence, for most practical applications this would neither be efficient nor
necessary. A very weak interpretation, which is used in todays encrypted email communication,
confines secrecy to the actual content of messages. This may be the most important part, but
especially for very small messages it must be taken into consideration that an attacker learns
something about the exact (if a stream cipher is used) or approximate (with a block cipher) length
of the message. Additionally, depending on the controlled network area attackers can log a partial
or complete traffic analysis. But this approach can be performed with no useless overhead. These
two extreme situations point out that the designer of a distributed system must analyze exactly
which attributes of communication have to be concealed and which can go unprotected to allow a
more efficient implementation.

A system provides strong authentication if the following property is satisfied: if a recipient R
receives a message claiming to be from a specific sender S then S has sent exactly this message to
R. For most applications this formulation must be weakened, since in most cases communication
channels are subject to both technical errors and tampering by attackers. A system provides weak
authentication if the following property is satisfied: if a recipient R receives a message claiming to be
from a specific sender S then either S has sent exactly this message to R or R unconditionally notices
this is not the case. Some authors make a distinction between the two aspects of authentication: a
validated sender name is referred to as “authentication of origin” and the fact that the message has
not been altered in any way is called integrity. But neither property alone increases the confidence
to a message, so both must always be present. An additional property authentication systems can
have is non-repudiation. This property states that a recipient is not only confident that the message
is authentic (sent by S and unmodified) but can also prove this fact. In analogy to handwriting
signatures these systems are called digital signature systems.

A system that is anonymous over a set of users has the following property: when a user sends
a message, then any observer will be unable to identify the user, although he might be able to
detect the fact that a message was sent. Examples are an open discussion board or the prevention
of traffic analysis on web servers. Sometimes it is not intended that the messages can be sent
completely independent from each other. In an electronic voting protocol, the property shall be
constrained: every user can send exactly one message anonymously, but the protocol must ensure
that double votes can not occur unnoticed. Either it is constructed if it is impossible to vote twice
or the offending users identity is revealed in such a case.

An application where fairness properties get important is electronic contract signing. A protocol
that achieves this must secure that the process of applying all contractor signatures is transactional.
This means that the third contractor must not be able to halt the protocol if the first two signatures
are valid. There are several protocols available which have to trade off the need of a trusted third
party against a lot of communications for incremental commitment.

The use of formal methods for modeling and analyzing cryptographic operations is now well-
established. Since the seminal paper by Dolev and Yao [44] introduced a simple and intuitive
description for cryptographic protocols, many alternative definitions have been proposed on the
basis of several approaches, ranging from modal logics to process algebras (see, e.g., [38, 103, 74,
55, 128, 113, 46, 127]).

Security protocols, like distributed programs in general, are sensitive to the passage of time;
however, the role of time in the analysis of cryptographic protocols has only recently received some
attention (see [53, 111, 31, 93]).

Also aspects of probability are taken into account when analyzing quantitative security proper-
ties (measuring, in this sense, the security level of the protocol) or when dealing with probabilistic
protocols (see [5, 6, 7, 21, 91, 112, 106]).

I.2 Modeling Formalisms

A formal approach must offer languages to describe systems. Many description formalisms have
been proposed. Process algebras [66, 104] are an algebraic framework with operators of choice
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and parallelism, in which process equality can be specified by algebraic laws. Petri nets [123]
are transition systems whose dynamics are described by the passage of tokens. UML [125], which
subsumes previous Statecharts [60] and Message sequence charts, is a syntactically rich graphical
language. All these formalisms, describing, in general, nondeterministic behaviour, have been
extended with aspects of probability, time and parameters.

Nondeterminism usually represents uncertainty about the step that will be taken from a state
among a set of possible ones (e.g. unknown scheduling mechanisms). Probability allows the mod-
eling of systems with unreliable or probabilistic behaviour, and becomes essential in the analysis
of reliability and performance properties. The correct functioning of systems which interact with
physical processes depends crucially upon real-time considerations. Parameters are used to de-
scribe a class of systems with the same structures but with different constants. They are useful to
describe an abstract system in which some values are not available at the moment or to study for
which values of parameters a system satisfies some properties.

Models based on the concept of states and transitions, also called automata, have turned out
to be particularly intuitive. States of an automaton represent snapshots of the described system,
while transitions represent state changes.

The notion of finite automaton was developed in the fifties with neuron nets and switching
circuits in mind. Later, finite automata have served as useful tool in the design of lexical analyzers
([67]). The subject of finite automata on infinite sequences and infinite trees was established in
the sixties by Büchi [24], Mc Naughton [100] and Rabin [122].

Markov Decision Processes were proposed by Bellman [20] and Howard [68] adding probability
distributions to transitions. In 1963, Rabin introduced Probabilistic Automata [121], closely related
to Markov Decision Processes.

Timed Automata were introduced in the nineties by Alur and Dill [9] as an extension of Büchi’s
ω-Automata to describe real-time systems. Timed Automata are equipped with variables measur-
ing time, called clocks. Transitions are guarded by clock constraints, which compare the value of
a clock with some constant, and by reset updates, which reset a clock to the initial value 0. In
general, timed automata models have an infinite state space, however, this infinite state space can
be mapped to an automaton with a finite number of equivalence classes (regions) as states.

Systems of communicating agents can be described by automata composed in parallel and
sharing synchronization channels. Transitions labeled with a complementing channel name can be
taken at the same moment and data transmission is typically modeled by a synchronization, where
global variables are updated ([31]).

There are several extensions of Probabilistic Automata with time variables and constraints, or
extensions of Timed Automata with probabilistic choices. Some models of Probabilistic Timed
Automata can be found, e.g., in [8, 37, 80, 81, 18, 90].

I.3 Specification Languages and Model Checking

System design aims at ensuring that some properties hold for system processes. Some systems
can be designed in such a way that the wanted properties are guaranteed to hold, but this, in
general, cannot be achieved for complex systems, either because it would be impractically expensive
or because they include unreliable components. Hence, the need arises of languages for formal
specification of properties and of techniques to verify that the specified properties hold.

Temporal logics have proved to be useful for specifying concurrent systems, because they can
describe the ordering of events in time without introducing time explicitly. They were originally
developed by philosophers for investigating the way time is used in natural language arguments [69].
Pnueli [118] was the first to use temporal logic for reasoning about concurrency. His approach
consisted in proving properties of the program under consideration from a set of axioms that
described the behavior of the individual statements in the program. Since proofs were constructed
by hand, the technique was often difficult to use in practice.

In general, in temporal logics, time is not mentioned explicitly; instead, a formula might specify
that eventually some designed state is reached, or that an error state is never entered. Properties
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like eventually or never are specified using special temporal operators. These operators can also be
combined with boolean connectives or nested arbitrarily. Temporal logics differ in the operators
that they provide and in the semantics of these operators.

Among the many temporal logics proposed in the literature we mention the Computation Tree
Logic CTL∗ (see [29]) with its two sublogics: a branching-time logic CTL and a linear-time logic
LTL (see [47]).

Verification techniques based on testing and simulation can miss errors when the number of
states of the system is very large. Theorem provers and proof checkers do not have this shortcom-
ing, but are time consuming and often require manual intervention. In the 1980s, an alternative
verification technique, called temporal logic model checking was developed independently by Clarke
and Emerson [29] and by Queille and Sifakis [120]. In this approach, specifications are expressed in
a propositional temporal logic, while circuit designs and protocols are modeled as state-transition
systems. The verification technique is based on search procedures which determine if the specifi-
cation is true of the transition system.

Model checking has several important advantages over mechanical theorem provers or proof
checkers. The most important is that the procedure is completely automatic. Typically, the user
provides a high level representation of the model and the specification to be checked. The model
checking algorithm will either terminate with the answer true, indicating that the model satisfies
the specification, or give a counterexample execution that shows why the formula is not satisfied.
Counterexamples are particularly important in finding subtle errors in complex transition systems,
and may therefore be used as a debugging instrument.

For a detailed survey on model checking see [30].

Model Checking with Probability and Time

Model checking has rapidly become a well-established method to analyze and debug complex
systems. The first extension of model checking algorithms with probability was proposed in the
eighties [62, 134], originally focusing on qualitative probabilistic temporal properties (i.e. those sat-
isfied with probability 1 or 0), but later also introducing quantitative properties [32]. Probabilistic
model checking combines probabilistic analysis and conventional model checking in a single tool.
It provides an alternative to simulation (which is time consuming) and to analytical approaches
(which do not represent systems at the desired level of detail), while, at the same time, offering the
full benefits of temporal logic model checking. However, work on implementation and tools did not
begin until recent years [58, 63], when the field of model checking matured. In the last few years,
several probabilistic model checkers were developed. Among them we quote (PRISM [79, 119] and
FHP-Murϕ [115]).

PRISM [119] is a probabilistic model checker that allows modeling and analyzing systems which
exhibit a probabilistic behavior. Given a description of the system to be modeled, PRISM con-
structs a probabilistic model that can be either a Discrete-Time Markov Chain (DTMC), a Markov
Decision Process (MDP), or a Continuous-Time Markov Chain(CTMC) [78]. On the constructed
model PRISM can check properties specified by using probabilistic temporal-logics (PCTL for
DTMCs and MDPs, and CSL for CTMCs).

FHP-Murϕ (Finite Horizon Probabilistic Murϕ) [115, 116, 26] is a modified version of the Murϕ
verifier [43, 110]. FHP-Murϕ allows us to define Finite State/Discrete Time Markov Chains and
to automatically verify that the probability of reaching a given error state in at most k steps is
below a given threshold.

In general, timed automata models have an infinite state space. However, the region automaton
construction (see [9]) shows that this infinite state space can be mapped to an automaton with a
finite number of equivalence classes (regions) as states, and finite-state model checking techniques
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can be applied to the reduced, finite region automata. Among the model checkers for timed
automata we quote Kronos ([135]) and UPPAAL ([12]).

I.4 Summary

The thesis consists of three main parts.

Part I

In the first part we deal with information flow security properties in frameworks where aspects of
probability and time are taken into account.

In Chapter 1 we formally introduce the models of Labeled Transition Systems, Probabilistic
Automata and Timed Automata, while in Chapter 2 we describe the model of Probabilistic Timed
Automata. In these chapters we also define weak bisimulation relations for the different models.

In Chapter 3 we give an algorithm to decide weak bisimulation for Probabilistic Timed Au-
tomata. A preliminary version of this algorithm has been presented in [88].

In Chapter 4 we propose a general framework, based on Probabilistic Timed Automata, where
both probabilistic and timing covert channels can be studied. We define a Non Interference security
property and a Non Deducibility on Composition security property, which allow for expressing
information flow in a timed and probabilistic setting. We compare these properties with analogous
properties defined in settings where either time or probability or none of them are taken into
account. This permits a classification of the properties depending on their discriminating power.
As an application, we study a system with covert channels that we are able to discover by applying
our techniques. Preliminary results of the study presented in this chapter can be found in [90, 92].

Part II

In the second part we enrich the models of Markov Processes and of Timed Automata with pa-
rameters and data structures in order to deal with different classes of problems.

In Chapter 5 we develop a model of Parametric Probabilistic Transition Systems, where prob-
abilities associated with transitions may be parameters. We show techniques to find instances
of parameters that satisfy a given property and instances that either maximize or minimize the
probability of reaching a certain state. As an application, we model a probabilistic non repudiation
protocol with a Parametric Probabilistic Transition System. The theory we develop, allows us to
find instances that maximize the probability that the protocol ends in a fair state (no participant
has an advantage over the others). Results presented in this chapter appeared in [89].

Systems of Data Management Timed Automata (SDMTAs) are networks of communicating
timed automata with structures to store messages and functions to manipulate them. In Chap-
ter 6 we prove the decidability of reachability for this model and we show how it can be used
to specify cryptographic communication protocols. Properties of secrecy and authentication are
formulated within this framework. As an application, we model and analyze the Yahalom protocol.
A preliminary study about SDMTAs has been presented in [93].

Part III

In the third part we describe real-life applications with automata-based formalisms and we study
security properties by using probabilistic model checking.

In Chapter 7 we define a probabilistic model for the analysis of a Non-Repudiation protocol
that guarantees fairness, without resorting to a trusted third party, by means of a probabilistic
algorithm. We describe the protocol with Probabilistic Timed Automata. Then, by using the
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PRISM model checker, we estimate the probability for a malicious user to break the non-repudiation
property, depending on various parameters of the protocol. Work in this chapter appeared in [91].

The NRL Pump protocol defines a multilevel secure component whose goal is to minimize leaks
of information from high level systems to lower level systems, without degrading average time
performances. In Chapter 8 we define a probabilistic model for the NRL Pump and show how
the FHP-Murϕ probabilistic model checker can be used to estimate the capacity of a probabilistic
covert channel in the NRL Pump. We are able to compute the probability of a security violation
as a function of time for various configurations of the system parameters (e.g. buffer sizes, moving
average size, etc). Because of the model complexity, our results cannot be obtained by using an
analytical approach and, because of the low probabilities involved, it can be hard to obtain them
using a simulator. Preliminary results have been presented in [86, 87].
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Chapter 1

Basic Notions

The models used in this thesis are all based on Labeled Transition Systems (LTSs), also called
automata. These have turned out to be an intuitive and powerful framework for the analysis of
concurrent systems, and they have been extended with probabilities and time.

Different types of LTSs give rise to different notions of external behaviour. Informally, the ex-
ternal behavior of an LTS, also called visible behavior, is given by its sequences of external actions.
A special invisible action τ is considered. The external behavior of a timed LTS (Timed Automa-
ton) also considers the passage of time as an external action. In probabilistic LTSs (Probabilistic
Automata), the probability of performing each action is taken into account, so that a probabilistic
measure is associated to each sequence of actions.

We may show that the external behavior of an automaton is contained in the external behavior
of another one by proving behavior inclusion. However, this is a rather complex task. In this
cases, simulation and bisimulation relations can be extremely useful. These relations compare the
stepwise behavior of systems and when two systems are shown to be bisimilar, then there is also
behavior inclusion. Intuitively, the idea behind bisimilar states is that each step one of them can
take, can be mimicked by the other.

Operators of restriction, preventing the execution of certain actions, and hiding, masking certain
actions with the τ one, can be used for defining information flow security properties. Composi-
tionality is a fundamental issue when dealing with concurrent systems. Therefore, we provide a
concept of parallel composition for the various models we present in this chapter.

In Section 1.1 we briefly introduce nondeterministic systems. In Section 1.2 we set up the
probabilistic context by formalizing Probabilistic Automata. Finally, in Section 1.3 we introduce
the timed setting by considering the model of Timed Automata.

1.1 Possibilistic Model

We introduce the formalism for nondeterministic, also called possibilistic, systems, together with
a notion of weak bisimulation and operators of restriction, hiding and parallel composition.

1.1.1 The Formalism

In this section we recall some basic notions of Labeled Transition Systems. In the following of this
dissertation we use the notation Nondeterministic System (NS) to denote a LTS.

Definition 1.1 A Nondeterministic System (NS) is a tuple S = (Σ, Q, q0, δ), where Σ is a set
of labels, Q is a set of states with q0 ∈ Q the initial one. The set of transitions is given by
δ ⊆ Q× Σ ∪ {τ} ×Q, where τ represents an internal silent move.
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e1 = (q0, b, q1)
e2 = (q0, a, q2)
e3 = (q0, a, q3)

Figure 1.1: Example of NS.

Semantics

Given two states qi, qj ∈ Q of S = (Σ, Q, q0, δ), there is a step from qi to qj labeled with a

(denoted qi
a

−→ qj) if (qi, a, qj) ∈ δ. With ST we denote the set of terminal states of S, namely
ST = {q ∈ Q | ∀q′ 6= q and ∀a ∈ Σ, (q, a, q′) 6∈ δ}.

An execution fragment of S is a finite sequence of steps σ = q0
a1−→ q1

a2−→ . . .
ak−→ qk, where

q0, . . . , qk−1 ∈ Q and ai ∈ Σ ∪ {τ}. With ExecFragS we denote the set of execution fragments
of S, and with ExecFragS(q) we denote the set of execution fragments of S starting from q. We
define last(σ) = qk and |σ| = k. The execution fragment σ is called maximal iff last(σ) ∈ ST .

For any j < |σ|, with σj we define the sequence of steps q0
a1−→ q1

a2−→ . . .
aj
−→ qj .

An execution of S is either a maximal execution fragment or an infinite sequence q0
a1−→ q1

a2−→
. . ., where q0, q1 . . . ∈ Q \ F and a1, a2, . . . ∈ Σ. We denote with ExecS the set of executions of S
and with ExecS(q) the set of executions of S starting from q.

Example 1.1 In Figure 1.1 we show an example of NS. Intuitively, from the initial state q0, the
NS may perform transition e1 labeled with b reaching state q1 or it can nondeterministically perform
transitions e2 and e3, labeled with a and leading to states q2 and q3, respectively.

An example of execution of the NS in Figure 1.1 is σ = q0
a

−→ q2.

1.1.2 Behavioral Equivalence

As a relation of observational equivalence for NS, we now introduce the notion of weak bisimula-
tion [105].

The bisimulation of a system by another system is based on the idea of mutual step-by-step
simulation. Intuitively, two systems S and S′ are bisimilar, if whenever one of the two systems
executes a certain action and reaches a state q, the other system is able to simulate this single
step by executing the same action and reaching a state q′ which is again bisimilar to q. A weak
bisimulation is a bisimulation which does not take into account τ (internal) moves. Hence, whenever
a system simulates an action of the other system, it can also execute some internal τ actions before
and after the execution of that action.

In order to abstract away from τ moves, Milner [105] introduced the notion of observable step,
which consists of a single visible action a preceded and followed by an arbitrary number (including
zero) of internal moves. Such moves are described by a weak transition relation =⇒, defined

as
a

=⇒= (
τ

−→)∗
a

−→ (
τ

−→)∗, where −→ is the classical strong relation, and
τ

=⇒= (
τ

−→)∗. It is

worth noting that, with such a definition, a weak internal transition
τ

=⇒ is possible even without
performing any internal action.

Definition 1.2 Let S = (Σ, Q, q0, δ) be a NS. A weak bisimulation on S is an equivalence relation
R ⊆ Q×Q such that for all (p, q) ∈ R it holds that ∀a ∈ Σ:
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• if p
a

−→ p′, then there exists q′ such that q
a

=⇒ q′ and (p′, q′) ∈ R;

• conversely, if q
a

−→ q′, then there exists p′ such that p
a

=⇒ p′ and (p′, q′) ∈ R.

Two states p, q are called weakly bisimilar on S (denoted p ≈S q) iff (p, q) ∈ R for some weak
bisimulation R.

Two NSs S = (Σ, Q, q0, δ) and S′ = (Σ′, Q′, q′0, δ
′), such that Q ∩ Q′ = ∅, are called weakly

bisimilar (denoted by S ≈ S′) if, given the NS Ŝ = (Σ ∪ Σ′, Q ∪Q′, q0, δ ∪ δ
′), it holds q0 ≈Ŝ q

′
0.

Note that it is always possible to obtain Q ∩ Q′ = ∅ by state renaming. Since we are just
comparing two given states (i.e. q0 and q′0), the choice of the initial state of Ŝ does not affect the
computation of the weak bisimulation equivalence classes [88]. We have chosen q0, but we could
choose q′0 or any other state of Q ∪Q′ as well.

The following result holds.

Proposition 1.1 It is decidable whether two NSs are weakly bisimilar.

Example 1.2 Let S be the NS in Figure 1.1 and S′ be the NS in Figure 1.2. It holds that S ≈ S′.
Intuitively, from the initial states q0 and r0 the two NSs may either perform a step labeled with a
or b and then reach a state where no other visible steps may be performed.

1.1.3 Auxiliary Operators

We define operations of restriction, hiding and parallel composition on NSs.
We assume a NS S = (Σ, Q, q0, δ) and a set L ⊆ Σ of actions.

Definition 1.3 The restriction of a NS S with respect to the set of actions L is S\L = (Σ, Q, q0, δ
′),

where δ′ = {(q, a, q′) ∈ δ | a 6∈ L}.

Example 1.3 Let S be the NS in Figure 1.1 and L = {b}. In Figure 1.3 we show the NS S \ L,
where every transition with label b is prevented.

The hiding of a transition e = (q, a, q′) with respect to the set of actions L (written e/L) is
defined as:

e/L =

{

e if a 6∈ L
(q, τ, q′) if a ∈ L

Definition 1.4 The hiding of a NS S with respect to the set of actions L is given by S/L =
(Σ, Q, q0, δ

′), where δ′ = {e/L | e ∈ δ}.

Example 1.4 Let S be the NS in Figure 1.1 and L = {b}. In Figure 1.4 we show the NS S/L,
where label b is replaced with the label τ in every transition.
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Figure 1.4: Example of hiding for NSs.

S1 S2 S1||LS2

����
- r0

6
a

����
r1

-b ����
r2 ����

- u0

6
a

����
u1

-c ����
u2 ����

- q0

6
τ

����
q1

-c ����
q2

Figure 1.5: Example of parallel composition for NSs.

Proposition 1.2 Given a NS S, S \ L and S/L are NSs for all L ⊆ Σ.

We assume two NSs S1 = (Σ, Q1, r0, δ1) and S2 = (Σ, Q2, u0, δ2) with Q1 ∩Q2 = ∅.

Definition 1.5 The parallel composition of two NSs S1 and S2, with respect to the synchronization
set L, is defined as S1||LS2 = (Σ, Q, (r0, u0), δ), where Q = Q1 ×Q2 and, for any state (r, u) ∈ Q,
the set of transitions δ is defined as follows:

• if system S1 has a transition e1 = (r, a, r′) with a 6∈ L, then e = ((r, u), a, (r′, u)) ∈ δ;

• if system S2 has a transition e2 = (u, a, u′) with a 6∈ L, then e = ((r, u), a, (r, u′)) ∈ δ;

• if system S1 has a transition e1 = (r, a, r′) with a ∈ L and system S2 has a transition
e2 = (u, a, u′), then S1 and S2 can synchronize and transition e = ((r, u), τ, (r′, u′)) ∈ δ.

Note that, given such a definition of parallel composition, systems S1 and S2 are prevented
from performing transitions with label in L without synchronizing. Also note that whenever S1

and S2 synchronize they give rise to an internal action τ .

Example 1.5 In Figure 1.5 we show the NSs S1, S2 and S1||LS2 with L = {a, b}. States q0, q1
and q2 of S1||LS2 correspond to the pairs (r0, u0), (r1, u1) and (r0, u2), respectively.

Proposition 1.3 Given the NSs S1 and S2, S1||LS2 is a NS for all L ⊆ Σ.

1.2 Probabilistic Model

We introduce the formalism for probabilistic systems together with a notion of weak bisimula-
tion and operators of restriction, hiding and parallel composition. We also show how to remove
probabilities in order to get a nondeterministic system, and that weak bisimulation is preserved
when reducing to the possibilistic model. We shall use the same terminology for operators and
bisimulation in the different models when this does not give rise to ambiguity.
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1.2.1 The Formalism

We introduce probabilities in the transitions of a NS.

Definition 1.6 A Probabilistic Automaton (PA) is a tuple A = (Σ, Q, q0, δ,Π), where:

• Σ is a finite alphabet of actions.

• Q is a finite set of states and q0 ∈ Q is the initial state.

• δ ⊆ Q × Σ ∪ {τ} × Q is a finite set of transitions. The symbol τ represents the silent or
internal move. For a state q, we denote with start(q) the set of transitions with q as source
state, i.e. the set {(q1, a, q2) ∈ δ | q1 = q}.

• Π = {π1, . . . , πn} is a finite set of probability distributions as functions πi : δ → [0, 1], for any
i = 1, . . . , n, where πi(e) is the probability of performing transition e according to distribution
πi. We require that

∑

e∈start(q) πi(e) ∈ {0, 1} for any i and q. Moreover, we assume that for

all πi ∈ Π there exists some ej ∈ δ such that πi(ej) > 0 and, viceversa, for all ej there exist
some πi such that πi(ej) > 0.

Semantics

There is a transition step from a state qi to a state qj through action (a, π) ∈ (Σ∪{τ})×Π, written

qi
(a,π)
−→ qj , if there is a transition e = (qi, a, qj) ∈ δ such that π(e) > 0. With ST we denote the set

of terminal states of S, namely ST = {q ∈ Q | q 6
(a,π)
−→ q′ ∀q′ ∈ Q and ∀(a, π) ∈ (Σ ∪ {τ}) × Π}.

The probability of executing a transition step is chosen according to the values returned by the

function π. Given a step qi
(a,π)
−→ qj , and α = (a, π), the probability P (qi, α, qj) of reaching state qj

from state qi through a step labeled with α, is defined as P (qi, α, qj) = π((qi, a, qj)).
Given a PA A = (Σ, Q, q0, δ,Π), an execution fragment starting from q0 is a finite sequence

of transition steps σ = q0
α1−→ q1

α2−→ q2
α3−→ . . .

αk−→ qk, where q0, q1, . . . , qk ∈ Q and αi ∈
(Σ ∪ {τ})×Π. ExecFragA is the set of execution fragments of A and ExecFragA(q) is the set of
execution fragments starting from q. We define last(σ) = qk and |σ| = k. The execution fragment
σ is called maximal iff last(σ) ∈ ST .

For any j < k, σj is the sequence of steps q0
α1−→ q1

α2−→ . . .
αj
−→ qj .

If |σ| = 0 we put PA(σ) = 1, else, if |σ| = k ≥ 1, we define PA(σ) = PA(q0, α1, q1) · . . . ·
PA(qk−1, αk, qk).

An execution is either a maximal execution fragment or an infinite sequence q0
α1−→ q1

α2−→
q2

α3−→ . . ., where q0, q1 . . . ∈ Q and α1, α2, . . . ∈ (Σ ∪ {τ}) × Π. We denote with ExecA the set of
executions of A and with ExecA(q) the set of executions starting from q. Finally, let σ ↑ denote the
set of executions σ′ such that σ ≤prefix σ

′, where prefix is the usual prefix relation over sequences.

Executions and execution fragments of a PA arise by resolving both the nondeterministic and
the probabilistic choices [80]. We need a notion of scheduler to resolve the nondeterminism that
arises when choosing the distribution π within a set Π.

A scheduler for a Probabilistic Automaton A is a function F assigning to each finite sequence
σ in ExecFragA a distribution π ∈ Π. Namely, F : ExecFragA → Π. With FA we denote the set
of schedulers for A.

Given a scheduler F and an execution fragment σ, we assume that F is defined for σ if and

only if ∃q ∈ Q and a ∈ Σ ∪ {τ} such that last(σ)
(a,F (σ))
−→ q.

For a scheduler F we define ExecFragFA (resp. ExecFA) as the set of execution fragments (resp.

executions) σ = q0
α1−→ q1

α2−→ q2
α3−→ . . . of A such that F (σi−1) = πi, for any 0 < i < |σ| and

αi = (ai, πi).
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����?
q0� b, 1

6����
q1 -

a, 1
3 ����

q2��������*a, 1
2 ����

q3

e1 = (q0, b, q1) π(e1) = 1
6

e2 = (q0, a, q2) π(e2) = 1
3

e3 = (q0, a, q3) π(e3) = 1
2

∑

e∈δ(q0)
π(e) = 1

Figure 1.6: Example of PA.

Assuming the basic notions of probability theory (see e.g. [57]), we define the probability space
on the executions starting from a given state q ∈ Q, as follows. Given a scheduler F , let ExecFA(q)
be the set of executions in ExecFA starting from q, ExecFragFA(q) be the set of execution fragments

in ExecFragFA starting from q, and Σ FieldFA(q) be the smallest sigma field on ExecFA(q) that
contains the basic cylinders σ ↑, where σ ∈ ExecFragFA(q). The probability measure ProbFA is the

unique measure on Σ FieldFA(q) such that ProbFA(σ ↑) = PA(σ).
Given a scheduler F , a state q and a set of states Q′ ⊆ Q, with ExecFA(q,Q′) we denote the

set of executions starting from q that cross a state in the set Q′. Namely, ExecFA(q,Q′) = {σ ∈
ExecFA(q) | last(σi) ∈ Q′, for some i}.

We shall omit the index A when it is clear from the context which is the automaton we refer
to.

In the following, if α = (a, π), with α̂ we denote a, and C ⊆ Q. Given a scheduler F ,
ExecF (τ∗α̂, C) is the set of executions that lead to a state in C via a sequence belonging to the set
of sequences τ∗α̂. We define ExecF (q, τ∗α̂, C) = ExecF (τ∗α̂, C)∩ExecF (q). Finally, we define the
probability ProbF (q, τ∗α̂, C) = ProbF (ExecF (q, τ∗α̂, C)). The next proposition derives directly by
this definition.

Proposition 1.4 It holds that ProbF (q, τ∗α̂, C) =







1 if α̂ = τ ∧ q ∈ C
∑

r∈Q Prob
F (q, τ, r) · ProbF (r, τ∗, C) if α̂ = τ ∧ q /∈ C

∑

r∈Q Prob
F (q, τ, r) · ProbF (r, τ∗α, C) + ProbF (q, α, C) if α̂ 6= τ

If a PA does not allow nondeterministic choices it is said to be fully probabilistic.

Definition 1.7 Given a PA A = (Σ, Q, q0, δ,Π), we say that A is fully probabilistic if |Π| = 1.

Example 1.6 In Figure 1.6 we show an example of PA with Π = {π}. Intuitively, from the
initial state q0, the PA performs probabilistically transitions e1, e2 or e3 with probabilities 1

6 , 1
3

and 1
2 , respectively. Note that |Π| = 1, thus the PA is fully probabilistic. As a consequence,

nondeterministic choices are not performed since every scheduler can return the only distribution
π.

Examples of executions of the PA in Figure 1.6 are σ1 = q0
(a,π)
−→ q3 and σ2 = q0

(b,π)
−→ q1 with

P (σ1) = 1
2 and P (σ2) = 1

6 .

The next proposition derives from results in [27].

Proposition 1.5 Let A1 and A2 be two PAs and Q1 and Q2 be two subsets of states of A1 and
A2, respectively. It is decidable in exponential time whether for any scheduler F of A1 there exists
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a scheduler F ′ of A2 such that ProbFA1
(ExecFA1

(q1, Q1)) = ProbF
′

A2
(ExecF

′

A2
(q2, Q2)), where q1 and

q2 are states of A1 and A2, respectively. If for any σ ∈ ExecFA1
(q1, Q1) ∪ Exec

F ′

A2
(q2, Q2) it holds

that σ1 ∈ Q1 ∪Q2, then the problem is decidable in polynomial time.

1.2.2 Behavioral Equivalence

For the definition of weak bisimulation in the fully probabilistic setting, Baier and Hermanns [15]

replace Milner’s weak internal transitions q
τ

=⇒ q′ by the probability Prob(q, τ∗, q′) of reaching
configuration q′ from q via internal moves. Similarly, for visible actions α, Baier and Hermanns
define

α
=⇒ by means of the probability Prob(q, τ∗α, q′). Given a scheduler F , the probabilistic

model we have chosen for PAs reduces to the one of fully probabilistic systems. In such a model,
as proved in [15], the two relations of weak bisimulation and branching bisimulation do coincide.
Relying on this result, we use branching bisimulation in order to decide weak bisimulation.

Definition 1.8 Let A = (Σ, Q, q0, δ,Π) be a PA. A weak bisimulation on A is an equivalence
relation R on Q such that, for all (q, q′) ∈ R, C ∈ Q/R and schedulers F , there exists a scheduler
F ′ such that

ProbF (q, τ∗α, C) = ProbF
′

(q′, τ∗α, C) ∀α ∈ Σ ∪ {τ}

and vice versa.
Two states q, q′ are called weakly bisimilar on A (denoted q ≈A q′) iff (q, q′) ∈ R for some weak
bisimulation R.

Definition 1.9 Two PAs A = (Σ, Q, q0, δ,Π) and A′ = (Σ′, Q′, q′0, δ
′,Π′) such that Q ∩ Q′ = ∅

are called weakly bisimilar (denoted by A ≈ A′) if, given the PA Â = (Σ∪Σ′, Q∪Q′, q0, δ ∪ δ
′, Π̂),

where, for each couple (π, π′) ∈ Π × Π′, π̂ ∈ Π̂ such that

π̂(e) =

{

π(e) if e ∈ δ
π′(e) if e ∈ δ′

it holds q0 ≈Â q
′
0.

Decidability results for probabilistic weak bisimulation have been proved by Baier and Her-
manns (see [14, 15]).

Proposition 1.6 It is decidable whether two PAs are weakly bisimilar.

1.2.3 Auxiliary Operators

We define operations of restriction, hiding and parallel composition on PAs.
We assume a PA A = (Σ, Q, q0, δ,Π) and a set L ⊆ Σ of actions.

Definition 1.10 The restriction of a PA A with respect to the set of actions L is A \ L =
(Σ, Q, q0, δ

′,Π′), where:

• δ′ = {(q, a, q′) ∈ δ | a 6∈ L}.

• π′ ∈ Π′ iff π ∈ Π where, for all e = (q, a, q′) ∈ δ′, π′(e) = π(e)
∑

e′∈δ′∩start(q)
π(e′)

.

The second condition is assumed in order to normalize the probability of each transition accord-
ing to the ones remaining after the restriction. Thanks to this rule the condition

∑

e∈start(q) π
′(e) ∈

{0, 1} continues to be true for each state q of A \ L.

Example 1.7 Let A be the PA in Figure 1.6 and L = {b}. In Figure 1.7 we show the PA A \ L,
where every transition with label b is prevented and probabilities are redistributed.
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����?
q0� a, 3

5����
q3 -

a, 2
5 ����

q2

Figure 1.7: Example of restriction for PAs.

Again, we assume a PA A = (Σ, Q, q0, δ,Π) and a set L ⊆ Σ of actions.
The hiding of a transition e = (q, a, q′) with respect to the set of actions L (written e/L) is

defined as:

e/L =

{

e if a 6∈ L
(q, τ, q′) if a ∈ L

Definition 1.11 The hiding of a PA A with respect to the set of actions L is given by A/L =
(Σ, Q, q0, δ

′,Π′), where δ′ = {e/L | e ∈ δ}, and Π′ = {π′|∃π ∈ Π.∀e′ ∈ δ′ π′(e′) =
∑

e∈δ:e/L=e′ π(e)}.

Proposition 1.7 Given a PA A, A \ L and A/L are PAs for all L ⊆ Σ.

Assume PAs A1 = (Σ, Q1, r0, δ1,Π1) and A2 = (Σ, Q2, u0, δ2,Π2) with disjoint sets of states
(Q1∩Q2 = ∅). We also assume a set L ⊆ Σ of synchronization actions. Finally, for i ∈ {1, 2}, given
a transition e = (q, a, q′) ∈ δi, and a probability distribution πi ∈ Πi with πia(e) we denote the
normalized probability of executing transition e with respect to all other transitions starting from

q and labeled with a, i.e. πia(e) = πi(e)
∑

e′∈starta
i
(q)

πi(e′)
, where startai (q) denotes the set of transitions

in δi with q as source state and a as labeling action, i.e. the set {(q1, a
′, q2) ∈ δi | q1 = q ∧ a′ = a}.

Definition 1.12 The parallel composition of two PAs A1 and A2, with respect to the synchroniza-
tion set L and the advancing speed parameter p ∈]0, 1[, is defined as A1||

p
LA2 = (Σ, Q, (r0, u0), δ,Π).

The set Q = Q1 ×Q2 of states of A1||
p
LA2 is given by the cartesian product of the states of the two

automata A1 and A2. Given a state (r, u) of A1||
p
LA2 there is a probability distribution π ∈ Π for

any two probability distributions π1 ∈ Π1 and π2 ∈ Π2. In particular, δ = S1 ∪S2 ∪
⋃

a∈L S
a
3 where

S1 = {((r, u), b, (r′, u)) | (r, b, r′) ∈ δ1, u ∈ Q2, b 6∈ L}, S2 = {((r, u), b, (r, u′)) | (u, b, u′) ∈ δ2, r ∈
Q1, b 6∈ L} and, for any a ∈ L, Sa3 = {((r, u), τ, (r′, u′)) | (r, a, r′) ∈ δ1, (u, a, u

′) ∈ δ2}. Moreover,
for any pair π1 ∈ Π1, π2 ∈ Π2, there exists π ∈ Π such that, for all e = (q, a, q′) ∈ δ, it holds that

π(e) = f(e)
∑

e′∈δ∩start(q)
f(e′)

where

f(e) =







π1(e) · p if e ∈ S1

π2(e) · (1 − p) if e ∈ S2

π1(e) · p · π2a
(e) + π2(e) · (1 − p) · π1a

(e) if e ∈
⋃

a∈L S
a
3

Note that, given such a definition of parallel composition, automata A1 and A2 are prevented
from performing transitions with label in L without synchronizing. Moreover, whenever A1 and A2

synchronize they give rise to an internal action τ . Also note that, chosen a transition e1 (e2) with
label a ∈ L of automaton A1 (A2) the transition e2 (e1) of A2 (A1) that synchronizes with e1 (e2)
is chosen according to the probability π2a

(e2) (π1a
(e1)) normalized with respect to all the other

transitions labeled with a. Besides, according to Definition 1.6, given the parallel composition
defined above, it holds that

∑

e∈start(q) π(e) ∈ {0, 1} for each state q of A1||
p
LA2. This is done

due to the last rule, that uses the auxiliary structure f(e) in order to compute the normalized
probabilities in π. In fact, transitions of the single automata A1 and A2 with label a ∈ L are not
allowed to be performed without synchronization, and therefore they are lost in the compound
system together with their probabilities (and therefore probabilities of the compound system must
be redistributed). In the following of this thesis, when we omit the parameter p from the parallel
composition operator of a probabilistic model, we assume it to be equal to 1

2 .



1.3. TIMED MODEL 11

A1 A2 A1||
1
2

LA2

����
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����
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����
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6
τ, 7
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����
q1

-c, 3
10 ����

q2

Figure 1.8: Example of parallel composition for PAs.

Example 1.8 In Figure 1.8 we show the PAs A1, A2 and A1||
1
2

LA2 with L = {a, b}. States q0, q1
and q2 of A1||LA2 correspond to the pairs (r0, u0), (r1, u1) and (r0, u2), respectively.

Proposition 1.8 Given the PAs A1 and A2, A1||
p
LA2 is a PA for all p ∈]0, 1[ and L ⊆ Σ.

1.2.4 From PAs to NSs

Given a PA A, we call unprob(A) the NS obtained from A by removing Π. This can be done since
we assumed that for each transition of A there is at least a probability distribution which assigns
to such a transition a probability greater than 0 (see Definition 1.6).

Definition 1.13 Given a PA A = (Σ, Q, q0, δ,Π), unprob(A) = (Σ, Q, q0, δ).

Example 1.9 Let A be the PA in Figure 1.6. If we remove probabilities from A the NS unprob(A)
can be found in Figure 1.1.

Relations among weak bisimulations

Lemma 1.1 Given PAs A and A′, A ≈ A′ ⇒ unprob(A) ≈ unprob(A′)

Proof. Let us assume A = (Σ, Q, q0, δ,Π), A′ = (Σ′, Q′, q′0, δ
′,Π′) and Â constructed as in Defi-

nition 1.6. Since A ≈ A′ for a weak bisimulation R, we have that for all (q, r) ∈ R, C ∈ Q ∪Q′/R
and schedulers F , there exists a scheduler F ′ such that ProbF

Â
(q, τ∗α, C) = ProbF

′

Â
(r, τ∗α, C) ∀α ∈

Σ∪{τ}. Now, if ProbF
Â
(q, α, q′) > 0 for some q′ ∈ C there exists a configuration r′ and a scheduler

F ′ such that ProbF
′

Â
(r, τ∗α, r′) = ProbF

Â
(q, α, q′) > 0. Therefore if q

α
−→ q′, then there exists

r′ such that r
α

=⇒ r′ and, since q′ and r′ are in the same equivalence class, there exists also a
bisimulation R′ on Q̂np such that (q′, r′) ∈ R′, where Q̂np is the set of states of the NS constructed
as in Definition 1.2 starting from unprob(A) and unprob(A′). The same holds if we exchange the
roles of q and r. 2

1.3 Timed Model

We introduce the formalism for timed systems together with a notion of weak bisimulation and
operators of restriction, hiding and parallel composition. We also show how to remove time in
order to get a nondeterministic system, and that weak bisimulation is preserved when reducing to
the possibilistic model.

1.3.1 The Formalism

We recall the definition of Timed Automata ([9]).
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Let us assume a set X of positive real variables called clocks. A valuation over X is a mapping
v : X → IR≥0 assigning real values to clocks. For a valuation v and a time value t ∈ IR≥0, let v+ t
denote the valuation such that (v + t)(x) = v(x) + t, for each clock x ∈ X.

The set of constraints over X, denoted Φ(X), is defined by the following grammar, where φ
ranges over Φ(X), x ∈ X, c ∈ Q, and ∼∈ {<,≤,=, 6=, >,≥}:

φ ::= true |x ∼ c |φ1 ∧ φ2 |φ1 ∨ φ2 | ¬φ

We write v |= φ when the valuation v satisfies the constraint φ. Formally, it holds that v |= true,
v |= x ∼ c iff v(x) ∼ c, v |= φ1 ∧ φ2 iff v |= φ1 and v |= φ2, v |= φ1 ∨ φ2 iff v |= φ1 or v |= φ2, and
v |= ¬φ iff v 6|= φ.

Let B ⊆ X; with v[B] we denote the valuation resulting after resetting all clocks in B. More
precisely, v[B](x) = 0 if x ∈ B, v[B](x) = v(x), otherwise. Finally, with 0 we denote the valuation
with all clocks reset to 0, namely 0(x) = 0 for all x ∈ X.

Definition 1.14 A Timed Automaton (TA) is a tuple A = (Σ,X,Q, q0, δ, Inv), where Σ, X, Q,
q0, δ and Inv where:

• Σ is a finite alphabet of actions.

• X is a finite set of positive real variables called clocks.

• Q is a finite set of states and q0 ∈ Q is the initial state.

• δ ⊆ Q×Σ∪ {τ} ×Φ(X)× 2X ×Q is a finite set of transitions. The symbol τ represents the
silent or internal move. For a state q, we denote with start(q) the set of transitions with q
as source state, i.e. the set {(q1, a, φ,B, q2) ∈ δ | q1 = q}.

• Inv : Q → Φ(X) is a function assigning a constraint φ ∈ Φ(X) (called state invariant) to
each state in Q.

Semantics

A configuration of a TA A is a pair (q, v), where q ∈ Q is a state of A, and v is a valuation over X.
The initial configuration of A is represented by s0 = (q0,0) and the set of all the configurations of
A is denoted with SA.

There is a discrete transition step from a configuration si = (qi, vi) to a configuration sj =

(qj , vj) through action a ∈ Σ∪{τ}, written si
a

−→ sj , if there is a transition e = (qi, a, φ,B, qj) ∈ δ
such that vi |= φ ∧ Inv(qi), vj = vi[B] and vj |= Inv(qj).

There is a continuous time step from a configuration si = (qi, vi) to a configuration sj = (qj , vj)

through time t ∈ IR>0, written si
t

−→ sj , if qj = qi, vj = (vi + t) and ∀t′ ∈ [0, t] vi + t′ |= Inv(qi).

An execution fragment of A is a finite sequence of steps σ = s0
a1−→ s1

a2−→ . . .
ak−→ sk,

where s0, . . . , sk−1 ∈ SA, and ai ∈ Σ ∪ {τ}. With ExecFragA we denote the set of execution
fragments of A, and with ExecFragA(s) we denote the set of execution fragments of A starting
from configuration s. We define last(σ) = sk and |σ| = k.

For any j < |σ|, with σj we define the sequence of steps s0
a1−→ s1

a2−→ . . .
aj
−→ sj .

An execution of A is an infinite sequence of steps s0
a1−→ s1

a2−→ . . ., where s0, s1 . . . ∈ SA and
a1, a2, . . . ∈ Σ∪ {τ}. We denote with ExecA the set of executions of A and with ExecA(s) the set
of executions of A starting from s.

Example 1.10 In Figure 1.9 we show an example of TA with Inv(qi) = true for all i ∈ [0, 3]. In
this example, and in the following ones, we omit the condition on a transition when the condition
is true.

Intuitively, from the initial state q0, the TA may always perform some time step and update the
value of clock x. Transition e1 labeled with b can be performed by the TA if the value of clock x is
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����?
q0� b

0≤x≤5����
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a
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e1 = (q0, b, 0 ≤ x ≤ 5, ∅, q1)
e2 = (q0, a, true, {x}, q2)
e3 = (q0, a, true, ∅, q3)

Figure 1.9: Example of TA.

less or equal to 5. Transitions e2 and e3, labeled with a and leading to states q2 and q3, respectively,
may be performed at any time (their guard condition is true). Note, however, that if transition e2
is performed, then the value of the clock x is reset to 0.

An example of execution fragment of the TA in Figure 1.9 is (q0, 0)
9.7
−→ (q0, 9.7)

a
−→ (q2, 0)

3.2
−→

(q2, 3.2), where (q, t) represents the configuration composed by the state q and the valuation v such
that v(x) = t.

1.3.2 Regions of Timed Automata

We recall the definitions of clock equivalence [9] and the theory of clock zones [23]. Clock equiva-
lence is an equivalence relation of finite index permitting to group sets of evaluations and to have
decidability results. Unfortunately, the number of equivalence classes is exponential w.r.t. the size
of the TA. To avoid this, efficient symbolic representation by means of clock zones is introduced
(see [65] and [23]).

Let A be a TA; with CA we denote the greatest constant that appears in A.
Let us consider the equivalence relation ∼ over clock valuations containing precisely the pairs

(v, v′) such that:

• for each clock x, either ⌊v(x)⌋ = ⌊v′(x)⌋, or both v(x) and v′(x) are greater than CA;

• for each pair of clocks x and y with v(x) ≤ CA and v(y) ≤ CA it holds that fract(v(x)) ≤
fract(v(y)) iff fract(v′(x)) ≤ fract(v′(y)) (where fract(·) is the fractional part);

• for each clock x with v(x) ≤ CA, fract(v(x)) = 0 iff fract(v′(x)) = 0.

As proved in [9], v ∼ v′ implies that, for any φ ∈ Φ(X) with constants less or equal than CA,
v |= φ iff v′ |= φ. With [v] we denote the equivalence class {v′ | v′ ∼ v}. The set V of equivalence
classes is finite, and with |V | we denote its cardinality.

We now briefly recall the definition of clock zone and its properties. For more details see [23]
and [65].

The set of clock zones on X (denoted with Ψ(X)) is the set of formulae ψ such that

ψ ::= true | false |x ∼ c |x− y ∼ c |ψ1 ∧ ψ2 |ψ1 ∨ ψ2 | ¬ψ

where ∼ {<,≤, >,≥,=}, c ∈ ZZ and x, y ∈ X.
With ΨC(X) we denote the set of clock zones in Ψ(X) that use integer constants in [−C,C].
Known properties of clock zones are expressed by the following propositions.

Proposition 1.9 Let ψ be a clock zone in Ψ(X) and x ∈ X. A clock zone ψ′ in Ψ(X \ x) such
that ψ′ ≡ ∃x.ψ is computable in polynomial time.
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The following proposition gives an upper bound to the number of clock zones.

Proposition 1.10 There exists Ψ′ ⊂ ΨC(X) with exponential cardinality w.r.t. C and |X| such
that each clock zone in ΨC(X) is equivalent to a clock zone in Ψ′.

Definition 1.15 Let A be a TA with states in Q and clocks in X; a region of A is a pair (q, ψ)
where q ∈ Q and ψ ∈ Ψ(X).

The following proposition states that the set of configurations reachable by performing either
a discrete or a continuous time step starting from a set of configurations expressed by a region,
is a region. In order to improve readability, without loss of generality, we omit state invariant
conditions.

Proposition 1.11 Given a region (q, ψ) and a transition e = (q′, φ, a,B, q), the set of configura-
tions {(q′, v) | v |= φ and v[B] |= ψ} from which it is possible to reach a configuration within the
region (q, ψ) by a discrete step triggered by e, is equal to the region (q′, φ ∧ ∃B.ψ ∧B = 0).

The set of configurations {(q, v) | v + t |= ψ and t ∈ IR>0} from which it is possible to reach
a configuration expressed by (q, ψ) by a continuous time step, is equal to the region (q,∃t.t >
0 ∧ ψ[X := X + t]). Moreover, if ψ ∈ ΨC(X), then ∃t.t > 0 ∧ ψ[X := X + t] ∈ ΨC(X).

Since the set of regions is not finite, we need an approximation. If ψ is a clock zone of A, we
denote with ApA(ψ) the set {[v] | [v]∩ψ 6= false}. The following proposition, proved in [23], states
that ApA returns a clock zone.

Proposition 1.12 (Approximation) ApA(ψ) ∈ ΨCA
(X).

The following theorem, proved in [23], states the correctness of the operator Ap.

Theorem 1.1 The sequence of steps (q0, v0)
α1−→ (q1, v1)

α2−→ . . . is an execution of A iff there
exists a sequence of regions (q0, ψ0), (q1, ψ1) . . . such that, for all i, vi |= ψi and, if αi ∈ Σ ∪ {τ},
then ψi = ApA(φ ∧ ∃B.ψi+1 ∧ B = 0) for some transition (qi, αi, φ,B, qi+1), and, otherwise,
ψi = ∃t.t > 0 ∧ ψi+1[X := X + t] and qi+1 = qi. Moreover, each ψi is computable in polynomial
time w.r.t. CA and |X|.

1.3.3 Behavioral Equivalence

The definition of weak bisimulation introduced for NSs (see Definition 1.2) can be naturally adapted
for TAs.

Definition 1.16 Let A = (Σ,X,Q, q0, δ, Inv) be a TA. A weak bisimulation on A is an equivalence
relation R ⊆ SA × SA such that for all (s, r) ∈ R it holds that ∀α ∈ Σ ∪ {τ} ∪ IR>0:

• if s
α

−→ s′, then there exists r′ such that r
α

=⇒ r′ and (s′, r′) ∈ R;

• conversely, if r
α

−→ r′, then there exists s′ such that s
α

=⇒ s′ and (s′, r′) ∈ R.

Two configurations s, r are called weakly bisimilar on A (denoted s ≈A r) iff (s, r) ∈ R for some
weak bisimulation R.
Two TAs A = (Σ,X,Q, q0, δ, Inv) and A′ = (Σ′,X ′, Q′, q′0, δ

′, Inv′) such that Q ∩ Q′ = ∅ and
X ∩ X ′ = ∅ are called weakly bisimilar (denoted by A ≈ A′) if, given the TA Â = (Σ ∪ Σ′,X ∪
X ′, Q ∪Q′, q0, δ ∪ δ

′, ˆInv), it holds (q0,0) ≈Â (q′0,0), where:

ˆInv(q) =

{

Inv(q) if q ∈ Q
Inv′(q) if q ∈ Q′

The following result is proved in [95] and [28].

Proposition 1.13 It is decidable whether two TAs are weakly bisimilar.
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a, x<3

����
r1

-b ����
r2 ����

- u0

6
a, x>2

����
u1

-c ����
u2 ����

- q0

6
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����
q1

-c ����
q2

Figure 1.10: Example of parallel composition for TAs.

1.3.4 Auxiliary Operators

We define operations of restriction, hiding and parallel composition on TAs.
We assume a TA A = (Σ,X,Q, q0, δ, Inv) and a set L ⊆ Σ of actions.

Definition 1.17 The restriction of a TA A with respect to the set of actions L is A \ L =
(Σ,X,Q, q0, δ

′, Inv), where δ′ = {(q, a, φ,B, q′) ∈ δ | a 6∈ L}.

Again, the hiding of a transition e = (q, a, φ,B, q′) with respect to the set of actions L (written
e/L) is defined as:

e/L =

{

e if a 6∈ L
(q, τ, φ,B, q′) if a ∈ L

Definition 1.18 The hiding of a TA A with respect to the set of actions L is given by A/L =
(Σ,X,Q, q0, δ

′, Inv), where δ′ = {e/L | e ∈ δ}.

Proposition 1.14 Given a TA A, A \ L and A/L are TAs for all L ⊆ Σ.

We assume two TAs A1 = (Σ,X1, Q1, r0, δ1, Inv1) and A2 = (Σ,X2, Q2, u0, δ2, Inv2) with
Q1 ∩Q2 = ∅ and X1 ∩X2 = ∅.

Definition 1.19 The parallel composition of two TAs A1 and A2, with respect to the synchroniza-
tion set L, is defined as A1||LA2 = (Σ,X,Q, (r0, u0), δ, Inv), where Q = Q1×Q2 and X = X1∪X2.
State invariants are defined as Inv : Q1×Q2 → Φ(X1∪X2), where, for any r ∈ Q1 and u ∈ Q2 such
that Inv1(r) = φ1 and Inv2(u) = φ2 we have that Inv(r, u) = φ1 ∧ φ2. For any state (r, u) ∈ Q,
the set of transitions δ is defined as follows:

• if from state r the automaton A1 has a transition e1 = (r, a, φ,B, r′) with a 6∈ L, then
e = ((r, u), a, φ,B, (r′, u)) ∈ δ;

• if from state u the automaton A2 has a transition e2 = (u, a, φ,B, u′) with a 6∈ L, then
e = ((r, u), a, φ,B, (r, u′)) ∈ δ;

• if from state r the automaton A1 has a transition e1 = (r, a, φ1, B1, r
′) with a ∈ L and

from state u the automaton A2 has a transition e2 = (u, a, φ2, B2, u
′), then A1 and A2 can

synchronize and transition e = ((r, u), τ, φ1 ∧ φ2, B1 ∪B2, (r
′, u′)) ∈ δ.

Note that, given such a definition of parallel composition, automata A1 and A2 are prevented
of performing transitions with label in L without synchronizing. Also note that whenever S1 and
S2 synchronize they give rise to an internal action τ .

Example 1.11 In Figure 1.10 we show the TAs A1, A2 and A1||LA2 with L = {a, b}. We assume
invariants to be true for all states. States q0, q1 and q2 of A1||LA2 correspond to the pairs (r0, u0),
(r1, u1) and (r0, u2), respectively.

Proposition 1.15 Given the TAs A1 and A2, A1||LA2 is a TA for all L ⊆ Σ.
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A untime(A)

����
- q0

6
b, x>1

����
q1

-a, x<1 ����
q2 ����
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u1

6
τ

����
u2

Figure 1.11: Example of untime(A).

1.3.5 From TAs to NSs

Given a TA A, we call untime(A) the NS obtained as the region automaton of A. Intuitively, the
region automaton (see [9]) is obtained by considering timed regions as states. Note that in the
region automaton there is a step between regions R and R′ with symbol a if and only if there is

an admissible run s
t

−→ s′′
a

−→ s′ of the TA such that t ∈ IR>0 and where s ∈ R and s′ ∈ R′. We
consider the special symbol λ to label all the transitions of the NS untime(A) arising from time
steps of the TA A. Intuitively, since time steps are no more visible in the untimed setting, the
invisible action τ is then used to hide all the λ steps.

Definition 1.20 Given a TA A = (Σ,X,Q, q0, δ, Inv), untime(A) = (Σ∪{λ}, Q×[V ], (q0, [v0]), δ
′)/{λ}

is the NS where:

• ((q, [v]), λ, (q, [v′])) ∈ δ′ iff v′ = v + t for some time t ∈ IR>0 and v + t′ |= Inv(q) ∀t′ ∈ [0, t];

• ((q, [v]), a, (q′, [v′])) ∈ δ′ iff (q, a, φ,B, q′) ∈ δ, v |= φ ∧ Inv(q), v′ = v[B] and v′ |= Inv(q′).

Example 1.12 In Figure 1.11 we show the TA A, and its untimed version, the NS untime(A).
We assume Inv(q0) = x < 1 and Inv(q1) = Inv(q2) = true. States u0, u1 and u2 correspond,
respectively, to the pairs (q0, [v0]), (q2, [v0]) and (q2, [v1]), where [v0] = {v | v(x) < 1} and [v1] =
{v | v(x) ≥ 1}. In the figure we omitted self-loop transitions (ui, τ, ui) for any i ∈ [0, 2]. Note that,
since Inv(q0) = x < 1, transition labeled with b form q0 to q2 cannot be executed (it has constraint
x > 1). Such a transition is lost in the NS untime(A).

Given an execution σ = (q0, v0) → . . . → (qn, vn) of A, with [σ] we denote the execution
(q0, [v0]) → . . .→ (qn, [vn]) of untime(A).

As a consequence of Lemma 4.13 in [9] we have the following result.

Lemma 1.2 Given a TA A, if σ is an execution fragment of A, then [σ] is an execution fragment
of untime(A). Viceversa, if [σ] is an execution fragment of untime(A), then there exists σ′ ∈ [σ]
such that σ′ is an execution fragment of A.

Relations among weak bisimulations

Lemma 1.3 Given TAs A and A′, A ≈ A′ ⇒ untime(A) ≈ untime(A′).

Proof. The implication holds by the construction of the region automaton and by Lemma 1.2.
Actually, for each sequence of steps of a TA, there exists an analogous sequence for the NS obtained
with untime(A). Weak bisimulation is, therefore, preserved. 2



Chapter 2

Probabilistic Timed Automata

The framework of Probabilistic Timed Automata (PTAs) allows the description of timed systems
showing a probabilistic behavior, in an intuitive and succinct way. Therefore, within the framework
of PTAs, where time and probabilities are taken into consideration, the modeler can describe, on
a single model, different aspects of a system, and analyze real-time properties, performance and
reliability properties (by using classical model checking techniques), and information flow security
properties useful to detect both probabilistic and timing covert channels.

In Section 2.1 we introduce the model of PTAs. In Section 2.2 we define a notion of weak bisim-
ulation for PTAs. In Section 2.3 we define operators of restriction, hiding and parallel composition
for PTAs. In Section 2.4 we show how to remove probability and time from a PTA in order to
obtain a PA or a TA.

2.1 The Formalism

We give a definition of Probabilistic Timed Automata inspired by definitions in [18, 80, 8, 88].
As for the model of TAs (see Section 1.3.1), let us assume again a set X of clocks. We denote

with v, v′, . . . valuations over X and with Φ(X) the set of constraints over X.

Definition 2.1 A Probabilistic Timed Automaton (PTA) is a tuple A = (Σ,X,Q, q0, δ, Inv,Π),
where:

• Σ is a finite alphabet of actions.

• X is a finite set of positive real variables called clocks.

• Q is a finite set of states and q0 ∈ Q is the initial state.

• δ ⊆ Q×Σ∪ {τ} ×Φ(X)× 2X ×Q is a finite set of transitions. The symbol τ represents the
silent or internal move. For a state q, we denote with start(q) the set of transitions with q
as source state, i.e. the set {(q1, a, φ,B, q2) ∈ δ | q1 = q}.

• Inv : Q → Φ(X) is a function assigning a constraint φ ∈ Φ(X) (called state invariant) to
each state in Q.

• Π = {π1, . . . , πn} is a finite set of probability distributions as functions πi : δ → [0, 1], for any
i = 1, . . . , n, where πi(e) is the probability of performing transition e according to distribution
πi. We require that

∑

e∈start(q) πi(e) ∈ {0, 1} for any i and q. Moreover, we assume that for

all πi ∈ Π there exists some ej ∈ δ such that πi(ej) > 0 and, viceversa, for all ej there exist
some πi such that πi(ej) > 0.



18 CHAPTER 2. PROBABILISTIC TIMED AUTOMATA

2.1.1 Semantics of PTAs

A configuration of A is a pair (q, v), where q ∈ Q is a state of A, and v is a valuation over X.
The initial configuration of A is represented by (q0,0) and the set of all the configurations of A is
denoted with SA.

There is a discrete transition step from a configuration si = (qi, vi) to a configuration sj =

(qj , vj) through action (a, π) ∈ (Σ ∪ {τ}) × Π, written si
(a,π)
−→ sj , if there is a transition e =

(qi, a, φ,B, qj) ∈ δ such that π(e) > 0, vi |= φ ∧ Inv(qi), vj = vi[B] and vj |= Inv(qj).
There is a continuous time step from a configuration si = (qi, vi) to a configuration sj = (qj , vj)

through time t ∈ IR>0, written si
t

−→ sj , if qj = qi, vj = (vi + t) and ∀t′ ∈ [0, t] vi + t′ |= Inv(qi).
Given a configuration s = (qi, vi), Adm(s) = {(qi, a, φ,B, q) ∈ δ | vi |= φ ∧ Inv(qi) ∧ vi[B] |=

Inv(q)} is the set of transitions executable by an automaton from configuration s; a transition
in Adm(s) is said to be enabled in s. Given two configurations si = (qi, vi), sj = (qj , vj) and
(a, π) ∈ (Σ ∪ {τ}) × Π, Adm(si, (a, π), sj) = {e = (qi, a, φ,B, qj) ∈ δ | π(e) > 0, vi |= φ ∧
Inv(qi), vj = vi[B], vj |= Inv(qj)} is the set of transitions leading from configuration si to
configuration sj through a transition step labeled with (a, π). A configuration s = (qi, vi) is

terminal iff Adm(s′) = ∅ for all s′ = (qi, vi + t) where t ∈ IR≥0; ST denotes the set of terminal
configurations.

For configurations si, sj , and α ∈ ((Σ ∪ {τ}) × Π)∪IR>0, the probability P (si, α, sj) of reaching
configuration sj from configuration si through a step labeled with α, is defined as

P (si, α, sj) =















∑

e∈Adm(si,α,sj)
π(e)

∑

e∈Adm(si)
π(e)

if si
α

−→ sj , α = (a, π) ∈ (Σ ∪ {τ}) × Π

1 if si
α

−→ sj , α ∈ IR>0

0 if si 6
α

−→ sj

The probability of executing a transition step from a configuration s is chosen according to
the values returned by the function π among all the transitions enabled in s, while the probability
of executing a time step labeled with t ∈ IR>0 is set to the value 1. Intuitively, an automaton
chooses nondeterministically a distribution π for executing a transition step (which is then selected
probabilistically, according to π, among all the transitions enabled in s), or to let time pass
performing a time step.

An execution fragment starting from s0 is a finite sequence of timed and transition steps σ =
s0

α1−→ s1
α2−→ s2

α3−→ . . .
αk−→ sk, where s0, s1, . . . , sk ∈ SA and αi ∈ ((Σ ∪ {τ}) × Π) ∪ IR>0.

ExecFrag is the set of execution fragments and ExecFrag(s) is the set of execution fragments
starting from s. We define last(σ) = sk and |σ| = k. The execution fragment σ is called maximal
iff last(σ) ∈ ST .

For any j < k, σj is the sequence of steps s0
α1−→ s1

α2−→ . . .
αj
−→ sj .

If |σ| = 0 we put P (σ) = 1, else, if |σ| = k ≥ 1, we define P (σ) = P (s0, α1, s1) · . . . ·
P (sk−1, αk, sk).

An execution is either a maximal execution fragment or an infinite sequence s0
α1−→ s1

α2−→
s2

α3−→ . . ., where s0, s1 . . . ∈ SA and α1, α2, . . . ∈ ((Σ ∪ {τ}) × Π) ∪ IR>0. We denote with Exec
the set of executions and with Exec(s) the set of executions starting from s. Finally, let σ ↑
denote the set of executions σ′ such that σ ≤prefix σ

′, where prefix is the usual prefix relation over
sequences.

Executions and execution fragments of a PTA arise by resolving both the nondeterministic
and the probabilistic choices [80]. To resolve the nondeterministic choices of a PTA, we introduce
schedulers of PTAs.

A scheduler of a PTA A = (Σ,X,Q, q0, δ, Inv,Π) is a function F from ExecFrag to Π ∪ IR>0.
With FA we denote the set of schedulers of A. Given a scheduler F ∈ FA and an execution

fragment σ, we assume that F is defined for σ iff ∃s ∈ SA and a ∈ Σ∪{τ} such that last(σ)
F (σ)
−→ s

if F (σ) ∈ IR>0 or last(σ)
(a,F (σ))
−→ s if F (σ) ∈ Π.
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For a scheduler F ∈ FA we define ExecFragF (resp. ExecF ) as the set of execution fragments

(resp. executions) σ = s0
α1−→ s1

α2−→ s2
α3−→ . . . of A such that, for any 0 < i < |σ|:

• if αi ∈ IR>0, then F (σi−1) = αi;

• if αi = (a, π), then F (σi−1) = π.

A scheduler should also respect the nonZeno condition of divergent times. Formally we have
that for any infinite sequence σ = s0

α1−→ s1
α2−→ . . . in ExecF the sum

∑

αi∈IR>0 αi diverges.
Assuming the basic notions of probability theory (see e.g. [57]) we define the probability space

on the executions starting in a given configuration s ∈ SA as follows. Given a scheduler F , let
ExecF (s) be the set of executions starting in s, ExecFragF (s) be the set of execution fragments
starting in s, and ΣFField(s) be the smallest sigma field on ExecF (s) that contains the basic cylinders
σ ↑, where σ ∈ ExecFragF (s). The probability measure ProbF is the unique measure on ΣFField(s)
such that ProbF (σ ↑) = P (σ).

Let A be a PTA, F ∈ FA, α̂ stand for a if α = (a, π) or α = a ∈ IR>0, s ∈ SA and C ⊆ SA. Given
the set ExecF (τ∗α̂, C) of executions that lead to a configuration in C via a sequence belonging to the
set of sequences τ∗α̂, we define ExecF (s, τ∗α̂, C) = ExecF (τ∗α̂, C) ∩ ExecF (s). Given a scheduler
F , we define the probability ProbF (s, τ∗α̂, C) = ProbF (ExecF (s, τ∗α̂, C)). The next proposition
derives directly by this definition.

Proposition 2.1 It holds that ProbFA(s, τ∗α̂, C) =







1 if α̂ = τ ∧ s ∈ C
∑

q∈SA
ProbF (s, τ, q) · ProbF (q, τ∗, C) if α̂ = τ ∧ s /∈ C

∑

q∈SA
ProbF (s, τ, q) · ProbF (q, τ∗α, C) + ProbF (s, α, C) if α̂ 6= τ

Example 2.1 In Figure 2.1 we show an example of PTA with Π = {π} and Inv(qi) = true for
all i ∈ [0, 3].

Intuitively, from the initial state q0, the PTA may nondeterministically choose whether to per-
form some time step and update the value of clock x or to perform, probabilistically, transitions e1,
e2 or e3 with probabilities 1

6 , 1
3 and 1

2 , respectively.
If some time steps are performed from state q0, such that values of clock x becomes greater than

5, then transition labeled with b cannot be performed any more and probabilities of performing the
other transitions should be redistributed.

Examples of executions of the PTA in Figure 2.1 are σ1 = (q0, 0)
9.7
−→ (q0, 9.7)

(a,π)
−→ (q2, 0)

3
−→

(q2, 3) and σ2 = (q0, 0)
3

−→ (q0, 3)
(b,π)
−→ (q1, 3)

1.2
−→ (q0, 4.2) with P (σ1) = 2

5 and P (σ2) = 1
6 , where

(q, t) represents the configuration composed by the state q and the valuation v such that v(x) = t.

2.1.2 Regions of PTAs

As we have seen, configurations reachable by a PTA depend on the constraints and updates over the
set of clocks. Actually, probability does only affect the frequencies with which those configurations
are reached, therefore we have exactly the same concepts and properties given for regions of TAs
in Section 1.3.2 also for regions of PTAs.

2.2 Weak bisimulation

We introduce a notion of weak bisimulation for PTAs.
As already mentioned, weak internal transitions s

τ
=⇒ s′ are replaced by the probability

Prob(s, τ∗, s′) of reaching configuration s′ from s via internal moves. Similarly, for visible ac-

tions α, transitions
α

=⇒ are replaced by the probability Prob(s, τ∗α, s′).
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x := 0 ����
q2��������*a, 1
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q3

e1 = (q0, b, 0 ≤ x ≤ 5, ∅, q1) π(e1) = 1
6

e2 = (q0, a, true, {x}, q2) π(e2) = 1
3

e3 = (q0, a, true, ∅, q3) π(e3) = 1
2

∑

e∈δ(q0)
π(e) = 1

Figure 2.1: Example of PTA.

Definition 2.2 Let A = (Σ,X,Q, q0, δ, Inv,Π) be a PTA. A weak bisimulation on A is an equiv-
alence relation R on SA such that, for all (s, s′) ∈ R, C ∈ SA/R and schedulers F , there exists a
scheduler F ′ such that

ProbF (s, τ∗α, C) = ProbF
′

(s′, τ∗α, C) ∀α ∈ Σ ∪ {τ} ∪ IR>0

and vice versa.
Two configurations s, s′ are called weakly bisimilar on A (denoted s ≈A s

′) iff (s, s′) ∈ R for some
weak bisimulation R.

Definition 2.3 Two PTAs A = (Σ,X,Q, q0, δ, Inv,Π) and A′ = (Σ′,X ′, Q′, q′0, δ
′, Inv,Π′) such

that Q∩Q′ = ∅ and X ∩X ′ = ∅ are called weakly bisimilar (denoted by A ≈ A′) if, given the PTA
Â = (Σ∪Σ′,X ∪X ′, Q∪Q′, q0, δ ∪ δ

′, ˆInv, Π̂), where, for each couple (π, π′) ∈ Π×Π′, π̂ ∈ Π̂ such
that

π̂(e) =

{

π(e) if e ∈ δ
π′(e) if e ∈ δ′

and

ˆInv(q) =

{

Inv(q) if q ∈ Q
Inv′(q) if q ∈ Q′

it holds (q0,0) ≈Â (q′0,0), where the valuation 0 is defined over all clocks of the set X ∪X ′.

Example 2.2 Consider the PTAs of Figure 2.2. Intuitively, they both can perform action a or ac-
tion b after 5 time units, with probability 1

2 . By applying the notion of weak bisimulation introduced

above, the two PTAs turn out to be equivalent. Given the automaton Â, built from the automata A1

and A2 by following the procedure described in Definition 2.3, with RÂ we denote the set of regions

of Â such that RÂ = {R1 = (q0, x < 5), R2 = (q0, x = 5), R3 = (q0, x > 5), R4 = (q1, x ≥ 0), R5 =
(q2, x ≥ 0), R6 = (r0, z < 5), R7 = (r0, z = 5), R8 = (r0, z > 5), R9 = (r1, z ≥ 0), R10 = (r2, z ≥
0)}. With R we denote the equivalence relation on SÂ such that SÂ/R = {C1, C2, C3}, where
C1 = {R1, R6}, C2 = {R2, R7} and C3 = {R3, R4, R5, R8, R9, R10}. In the following we assume
α ∈ {a, b, τ}∪ IR>0, where α is chosen according to a scheduler F in case α ∈ IR>0. For each con-
figuration s ∈ C1 and for each scheduler F we have ProbF (s, τ∗, C1) = 1, ProbF (s, τ∗α,C1) = 1
if α < 5 − x, ProbF (s, τ∗α,C2) = 1 if α = 5 − x, ProbF (s, τ∗α,C3) = 1 if α > 5 − x, and
ProbF (s, τ∗α,C3) = 1

2 if α = a or α = b. For each s ∈ C2 we have ProbF (s, τ∗, C2) = 1,
ProbF (s, τ∗α,C1) = 0, ProbF (s, τ∗α,C3) = 1

2 if α = a or α = b, ProbF (s, τ∗α,C3) = 1 if α ∈

IR>0. Finally, for each configuration s ∈ C3 we have ProbF (s, τ∗, C3) = 1, ProbF (s, τ∗α,C3) = 1
if α ∈ IR>0, ProbF (s, τ∗α,C2) = 0 and ProbF (s, τ∗α,C1) = 0. Hence, R is a weak bisimulation
on Â and, since (q0,0) and (r0,0) are in the same class, A1 and A2 are weak bisimilar.

In Chapter 3 we develop a detailed proof for the decidability of weak bisimulation for PTAs.
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Figure 2.2: A1 ≈ A2.
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Figure 2.3: Example of restriction for PTAs.

2.3 Operators for Probabilistic Timed Automata

We define operations of restriction, hiding and parallel composition on PTAs.

2.3.1 Restriction

We assume a PTA A = (Σ,X,Q, q0, δ, Inv,Π) and a set L ⊆ Σ of actions.

Definition 2.4 The restriction of a PTA A with respect to the set of actions L is A \ L =
(Σ,X,Q, q0, δ

′, Inv,Π′), where:

• δ′ = {(q, a, φ,B, q′) ∈ δ | a 6∈ L}.

• π′ ∈ Π′ iff π ∈ Π where, for all e = (q, a, φ,B, q′) ∈ δ′, π′(e) = π(e)
∑

e′∈δ′∩start(q)
π(e′)

.

The second condition is assumed in order to normalize the probability of each transition accord-
ing to the ones remaining after the restriction. Thanks to this rule the condition

∑

e∈start(q) π
′(e) ∈

{0, 1} continues to be true for each state q of A \ L.

Example 2.3 Let A be the PTA in Figure 2.1 and L = {b}. In Figure 2.3 we show the PTA
A \ L, where every transition with label b is prevented and probabilities are redistributed.

Proposition 2.2 Given a PTA A, A \ L is a PTA for all L ⊆ Σ.

2.3.2 Hiding

Again, we assume a PTA A = (Σ,X,Q, q0, δ, Inv,Π) and a set L ⊆ Σ of actions.
The hiding of a transition e = (q, a, φ,B, q′) with respect to the set of actions L (written e/L)

is defined as:

e/L =

{

e if a 6∈ L
(q, τ, φ,B, q′) if a ∈ L

Definition 2.5 The hiding of a PTA A with respect to the set of actions L is given by A/L =
(Σ,X,Q, q0, δ

′, Inv,Π′), where δ′ = {e/L | e ∈ δ}, and Π′ = {π′|∃π ∈ Π.∀e′ ∈ δ′ π′(e′) =
∑

e∈δ:e/L=e′ π(e)}.
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Figure 2.4: Example of hiding for PTAs.

Example 2.4 Let A be the PTA in Figure 2.1 and L = {b}. In Figure 2.3 we show the PTA A/L,
where every transition with label b is replaced with a transition labeled with τ .

Proposition 2.3 Given a PTA A, A/L is a PTA for all L ⊆ Σ.

2.3.3 Parallel Composition

Assume PTAs A1 = (Σ,X1, Q1, r0, δ1, Inv1,Π1) and A2 = (Σ,X2, Q2, u0, δ2, Inv2,Π2) with disjoint
sets of states and clocks (Q1 ∩Q2 = ∅, X1 ∩X2 = ∅). We also assume a set L ⊆ Σ of synchroniza-
tion actions. Finally, for i ∈ {1, 2}, given a transition e = (q, a, φ,B, q′) ∈ δi, and a probability
distribution πi ∈ Πi with πia(e) we denote the normalized probability of executing transition e with

respect to all other transitions starting from q and labeled with a, i.e. πia(e) = πi(e)
∑

e′∈starta
i
(q)

πi(e′)
,

where startai (q) denotes the set of transitions in δi with q as source state and a as labeling action,
i.e. the set {(q1, a

′, φ,B, q2) ∈ δi | q1 = q ∧ a′ = a}.

Definition 2.6 The parallel composition of two PTAs A1 and A2, with respect to the synchroniza-
tion set L and the advancing speed parameter p ∈]0, 1[, is defined as A1||

p
LA2 = (Σ,X,Q, (r0, u0), δ, Inv,Π).

The set Q = Q1 ×Q2 of states of A1||
p
LA2 is given by the cartesian product of the states of the two

automata A1 and A2, while the set of clocks X = X1∪X2 is given by the union of X1 and X2. State
invariants are defined as Inv : Q1×Q2 → Φ(X1∪X2) where, for any r ∈ Q1 and u ∈ Q2 such that
Inv1(r) = φ1 and Inv2(u) = φ2 we have that Inv(r, u) = φ1 ∧ φ2. Given a state (r, u) of A1||

p
LA2

there is a probability distribution π ∈ Π for any two probability distributions π1 ∈ Π1 and π2 ∈ Π2.
In particular, δ = S1 ∪ S2 ∪

⋃

a∈L S
a
3 where S1 = {((r, u), b, φ,B, (r′, u)) | (r, b, φ,B, r′) ∈ δ1, u ∈

Q2, b 6∈ L}, S2 = {((r, u), b, φ,B, (r, u′)) | (u, b, φ,B, u′) ∈ δ2, r ∈ Q1, b 6∈ L} and, for any a ∈ L,
Sa3 = {((r, u), τ, φ1 ∧ φ2, B1 ∪ B2, (r

′, u′)) | (r, a, φ1, B1, r
′) ∈ δ1, (u, a, φ2, B2, u

′) ∈ δ2}. Moreover,
for any pair π1 ∈ Π1, π2 ∈ Π2, there exists π ∈ Π such that, for all e = (q, a, φ,B, q′) ∈ δ, it holds

that π(e) = f(e)
∑

e′∈δ∩start(q)
f(e′)

where

f(e) =







π1(e) · p if e ∈ S1

π2(e) · (1 − p) if e ∈ S2

π1(e) · p · π2a
(e) + π2(e) · (1 − p) · π1a

(e) if e ∈
⋃

a∈L S
a
3

Note that, given such a definition of parallel composition, automata A1 and A2 are prevented
of performing transitions with label in L without synchronizing. Moreover, whenever A1 and A2

synchronize they give rise to an internal action τ . Also note that, chosen a transition e1 (e2) with
label a ∈ L of automaton A1 (A2) the transition e2 (e1) of A2 (A1) that synchronizes with e1 (e2)
is chosen according to the probability π2a

(e2) (π1a
(e1)) normalized with respect to all the other

transitions labeled with a. Besides, according to Definition 2.1, given the parallel composition
defined above, it holds that

∑

e∈start(q) π(e) ∈ {0, 1} for each state q of A1||
p
LA2. This is done

due to the last rule, that uses the auxiliary structure f(e) in order to compute the normalized
probabilities in π. In fact, transitions of the single automata A1 and A2 with label a ∈ L are not
allowed to be performed without synchronization, and therefore they are lost in the compound
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Figure 2.5: Example of parallel composition for PTAs.

system together with their probabilities (and therefore probabilities of the compound system must
be renormalized).

Example 2.5 In Figure 2.5 we show the PAs A1, A2 and A1||
1
2

LA2 with L = {a, b}. States q0, q1
and q2 of A1||LA2 correspond to the pairs (r0, u0), (r1, u1) and (r0, u2), respectively.

Proposition 2.4 Given the PTAs A1 and A2, A1||
p
LA2 is a PTA for all p ∈]0, 1[ and L ⊆ Σ.

2.4 Removing Time and Probability from PTAs

We define operators to remove probability and time from a given PTA, and we show that these
operators preserve weak bisimulation.

2.4.1 From PTAs to TAs

Given a PTA A, we call unprob(A) the TA obtained from A by simply removing probabilities from
A. This can be done since we assumed that for each transition of A there is at least a probability
distribution which assigns to such a transition a probability greater than 0 (see Definition 2.1).

Definition 2.7 Given a PTA A = (Σ,X,Q, q0, δ, Inv,Π), unprob(A) = (Σ,X,Q, q0, δ, Inv).

Example 2.6 Let A be the PTA in Figure 2.1. If we remove probabilities from A the TA unprob(A)
can be found in Figure 1.9.

2.4.2 From PTAs to PAs

Given a PTA A, we call untime(A) the PA obtained as the region automaton of A, with proba-
bility functions chosen according to Π. Intuitively, the region automaton (see [9]) is obtained by
considering timed regions as states. Note that in the region automaton there is a step between

regions R and R′ with symbol (a, π) if and only if there is an admissible run s
t

−→ s′′
(a,π)
−→ s′ of

the PTA such that t ∈ IR>0 and where s ∈ R and s′ ∈ R′. We consider the special symbol λ to
label all the transitions of the PA untime(A) arising from time steps of the PTA A. Intuitively,
since time steps are no more visible in the untimed setting, the invisible action τ is then used to
hide all the λ steps.

Definition 2.8 Given a PTA A = (Σ,X,Q, q0, δ, Inv,Π), untime(A) = (Σ∪{λ}, Q×[V ], (q0, [v0]), δ
′,Π′)/{λ}

where:

• ((q, [v]), λ, (q, [v′])) ∈ δ′ iff v′ = v + t for some time t ∈ IR>0 and v + t′ |= Inv(q) ∀t′ ∈ [0, t];

• ((q, [v]), a, (q′, [v′])) ∈ δ′ iff (q, a, φ,B, q′) ∈ δ, v |= φ ∧ Inv(q), v′ = v[B] and v′ |= Inv(q′);
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Figure 2.6: Example of untime(A).

• For any λ-transition e′ = ((q, [v]), λ, (q′, [v′])) ∈ δ′ there exists π′ ∈ Π′ such that π′(e′) = 1.

Moreover, for all π ∈ Π there exists π′ ∈ Π′ such that, π′(e′) =

∑

ei∈S
π(ei)

∑

ej∈Adm((q,v))
π(ej)

where

e′ = ((q, [v]), a, (q′, [v′])) ∈ δ′ and S = {(q, a, φ,B, q′) ∈ δ | v |= φ, v′ = v[B]}.

Example 2.7 In Figure 2.6 we show the PTA A, and its untimed version, the PA untime(A).
We assume Inv(q0) = x < 1 and Inv(q1) = Inv(q2) = true. States u0, u1 and u2 correspond,
respectively, to the pairs (q0, [v0]), (q2, [v0]) and (q2, [v1]), where [v0] = {v | v(x) < 1} and [v1] =
{v | v(x) ≥ 1}. In the figure we omitted self-loop transitions ei(ui, τ, ui) for any i ∈ [0, 2]. Note that,
since Inv(q0) = x < 1, transition labeled with b form q0 to q2 cannot be executed (it has constraint
x > 1). Such a transition is lost in the PA untime(A) and probabilities are redistributed. If
e3 = (u0, a, u1) and e4 = (u1, τ, u2) we have two probability distributions, namely π1 and π2, for
the PA untime(A). In particular, we have π1(ei) = 1 for i ∈ [0, 2] and π1(ei) = 0 for i ∈ [3, 4] and
π2(ei) = 0 for i ∈ [0, 2] and π2(ei) = 1 for i ∈ [3, 4].

Given an execution σ = (q0, v0) → . . . → (qn, vn) of A, with [σ] we denote the execution
(q0, [v0]) → . . .→ (qn, [vn]) of untime(A).

As a consequence of Lemma 4.13 in [9] and Lemma 4.8 in [84] we have the following result.

Lemma 2.1 Given a PTA A, we have that, for any scheduler F of A, there exists a scheduler
F ′ of untime(A) such that, for any σ ∈ ExecFragFA , ProbFA(σ) = ProbF

′

untime(A)([σ]). Viceversa,

for any scheduler F of untime(A), there exists a scheduler F ′ of A such that, for any [σ] ∈
ExecFragFuntime(A), Prob

F
untime(A)([σ]) = ProbF

′

A (σ′) for some σ′ ∈ [σ].

The following proposition states that given a PTA, we may obtain a NS by removing time and
probability in two successive steps, no matter about the order.

Proposition 2.5 Given a PTA A, unprob(untime(A)) = untime(unprob(A)).

Proof. The proof derives trivially by the construction of the region automaton in the untime
operators. Such an operator, in fact, is exactly the same for PTAs and TAs (except for the last
point of Definition 2.8, were probability distributions are considered). Now, the NS obtained does
not change if we remove probabilities through the unprob operator either before or after applying
the untime construction. This holds since we assumed that for each transition of A there is at
least a probability distribution which assigns to such a transition a probability greater than 0 (see
Definition 2.1). 2

2.4.3 Relations among weak bisimulations

Lemma 2.2 The following statements hold:

1. Given PTAs A and A′, A ≈ A′ ⇒ unprob(A) ≈ unprob(A′).
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2. Given PTAs A and A′, A ≈ A′ ⇒ untime(A) ≈ untime(A′).

Proof. For case 1, let us assume A = (Σ,X,Q, q0, δ, Inv,Π), A′ = (Σ′,X ′, Q′, q′0, δ
′, Inv,Π′) and

Â constructed as in Definition 2.3. Since A ≈ A′ for a weak bisimulation R, we have that for all
(s, r) ∈ R, C ∈ SÂ/R and schedulers F , there exists a scheduler F ′ such that ProbF

Â
(s, τ∗α, C) =

ProbF
′

Â
(r, τ∗α, C) ∀α ∈ Σ ∪ {τ} ∪ IR>0. Now, if ProbF

Â
(s, α, s′) > 0 for some s′ ∈ C there exists a

configuration r′ and a scheduler F ′ such that ProbF
′

Â
(r, τ∗α, r′) = ProbF

Â
(s, α, s′) > 0. Therefore

if s
α

−→ s′, then there exists r′ such that r
α

=⇒ r′ and, since s′ and r′ are in the same equivalence
class, there exists also a bisimulation R′ on SÂnp

such that (s′, r′) ∈ R′, where Ânp is constructed

as in Definition 1.16 starting from unprob(A) and unprob(A′). The same holds if we exchange the
roles of s and r.

For cases 2, the implication holds by the construction of the region automaton and by Lem-
mata 2.1 and 1.2. Actually, for each run of a PTA (or TA), there exists an analogous run for the
PA (or NS) obtained with untime(A). Weak bisimulations are, therefore, preserved. 2



26 CHAPTER 2. PROBABILISTIC TIMED AUTOMATA



Chapter 3

Decidability of Weak Bisimulation
for PTA

Bisimilarity is widely accepted as the finest extensional behavioral equivalence one would want to
impose on systems, and it may be used to verify a property of a system by assessing the bisimilarity
of the system considered, with a system one knows to enjoy the property. Most of the times one
wants to assess bisimilarity without taking into account system internal moves. This is called, as
we have seen, weak bisimulation.

In this chapter we develop an algorithm which computes the classes of the weak bisimulation
equivalence and decides if two configurations are weak bisimilar by checking that they are in the
same class. To do this, we have to verify the condition of Definition 2.2.

We give the algorithm and the proof for a restricted version of PTAs which assumes that state
invariants are true for all states and that the set of probability functions Π contains one only
function π (|Π| = 1). Therefore, in this chapter, a PTA is a tuple A = (Σ,X,Q, q0, δ, π). It will be
easy to extend the algorithm to deal with general PTAs.

In Section 3.1 we briefly introduce some problems that arise when dealing with configurations
of a PTA. In Section 3.2 we define classes of configurations. In Section 3.3 we introduce the
algorithm Clean in order to remove the relations between configurations from which it is not
possible to perform the same time step. In Section 3.4 we propose a method to remove relations
from which it is not possible to perform the same probabilistic discrete step. In Section 3.5 we
give the algorithm for computing the set of classes of bisimilar configurations.

3.1 The Context

In order to describe pairs of configurations ((q, v), (q′, v′)) within a certain equivalence relation
we resort to disjoint sets of clocks. We use X to represent the evaluations of the clocks in X
for configuration (q, v), and X to represent the evaluations for configuration (q′, v′) where X =
{x | x ∈ X}.

Example 3.1 Consider the PTAs in Figure 3.1. If we do not consider the time constraints, the
probability of reaching q4 from the state q2 is 1

2 . However, in the timed setting, we observe that
in state q2, when clock x has value smaller then 3, the automaton may execute both transitions
with probability 1

2 . Otherwise, if clock x has value greater than 3, the transition labeled with a
cannot be executed, and hence the probability has to be redistributed; in such a case the probability
of executing the transition with label a is 0, whereas the transition labeled with b gets probability 1.
Therefore, we need to consider the different cases in which a subset of transitions are enabled or
not.
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Figure 3.1: An example.

Moreover, we might consider to use the algorithm for the untimed version on the region graphs of
the two automata, i.e. the graph of regions resulting by applying the predecessor operator. However,
this is not a good solution; in fact, if we consider the clock zone reached in state q1 we have x ≥ 0
and in state q6 we have y ≥ 0. Let us suppose that one wants to compare the probability of reaching
q2 from q1 with the probability of reaching q7 from q6. Now, we must check the two probabilities
for each time t ∈ IR≥0, and these are equal for every time if and only if x = y. This means that
we cannot consider the clocks separately, but we must have formulae on all the pairs of states.

Since we have to check also the bisimilarity for states of the same automaton, as an example
q0 and q1, we have to consider formulae that express conditions on the value of clocks at state
q0 together with the value of clocks at state q1. Therefore, we should represent a set of bisimilar
configurations (called class) by a set of triples. As an example the triple (q0, q1, x < x) means that
the values of clocks x at state q0 are less than those of clock x at state q1.

For deciding our notion of weak bisimulation, we follow the classical approach of refining rela-
tions between configurations ([15, 27]). In particular, starting from the initial relation where all
configurations of a PTA are equivalent, we stepwise specialize relations until we obtain a weak
bisimulation.

At each step we refine the set of classes by deleting the relations between configurations s1 and
s2 which do not satisfy the condition that, for all schedulers F , there exists a scheduler F ′ such
that ProbF (s1, τ∗α, C) = ProbF

′

(s2, τ∗α, C) and vice versa.
To compute the probabilities ProbF (s1, τ∗α, C) and ProbF

′

(s2, τ∗α, C) we construct two PAs
A1 and A2. PAs Ai has triples (q, q′, ψ) as states, while transitions (computed by means of
predecessors operators) reflect the possibility and the probability of performing certain steps from
configurations reached starting from si, for i = 1, 2.

When α is a time, we require that the unsatisfiability of bisimulation requirements is not caused
by the fact that a time step α cannot be performed. Actually, even if a time step α can be performed
from s1 but not from s2, both A1 and A2 do not have a transition representing that step. This
because, since states of A1 and A2 are triples, steps from s1 are affected by configuration s2 and
hence there is no time successor from the triple representing s1 and s2. This does not hold for
transition steps since the guard of a transition triggered from s1 is not affected by the valuation in
s2. We solve this problem by defining an algorithm Clean that refines the classes in such a manner
that the unsatisfiability of bisimulation requirements for α ∈ IR>0, is not caused by the fact that
we cannot perform α. Intuitively, algorithm Clean removes the relations between configurations
from which it is not possible to perform the same time step to reach a certain class of bisimilar
configurations.

The correctness of the methodology we propose is set up on the following inductive definition
of equivalence relations ∼n on SA.

Definition 3.1 Let A = (Σ,X,Q, q0, δ, π) be a PTA. We set ∼0= SA × SA and, for n = 0, 1, . . .,
s ∼n+1 s

′ iff ∀α ∈ Σ ∪ {τ} ∪ IR>0 ∀C ∈ SA/ ∼n it holds that for all schedulers F there exists a
scheduler F ′ such that ProbF (s, τ∗α, C) = ProbF

′

(s′, τ∗α, C) and vice versa.

The next lemma allows us to define an algorithm for computing weak bisimulation equivalence
classes by following the technique discussed above.
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Lemma 3.1 Let A = (Σ,X,Q, q0, δ, π) be a PTA and s, s′ ∈ SA. Then, s ≈ s′ ⇔ ∀n ≥ 0 s ∼n s
′.

Proof. Let ∼′=
⋂

n≥0 ∼n. We have to show that ≈=∼′. It easy to see that ∼′ is an equivalence
relation. By induction on n we can show that ∼0⊇∼1⊇ . . . ⊇≈. Hence, ∼′⊇≈. In order to show
that ∼′⊆≈ we prove that ∼′ is a weak bisimulation.

For each n ≥ 0 and each B ∈ SA/ ∼
′, there exists a unique element Bn ∈ SA/ ∼n with B ⊆ Bn.

Then, B0 = SA ⊇ B1 ⊇ B2 ⊇ . . . and B =
⋂

n≥0Bn.

Claim 1: We want to prove that, for all schedulers F of A, if ProbF (s, τ∗α,B) > 0 and
B ∈ SA/ ∼′, then ProbF (s, τ∗α,B) = infn≥0Prob

F (s, τ∗α,Bn). For short, let us call P [Bn]
the probability ProbF (s, τ∗α,Bn). Since B =

⋂

n≥0Bn and Bn ⊇ Bn+1, we have 1 = P [B0] ≥
P [B1] ≥ . . . ≥ P [Bn]. We put r = infn≥0P [Bn]. Clearly r ≥ P [B]. We suppose, by contradiction,
that r > P [B]. Let ∆ = r − P [B], then ∆ > 0. There exists a subset X of SA \ B such that
P [Y ] < ∆ where Y = SA \ (B ∪ X). For all n ≥ 0, Bn = B ∪ (Y ∩ Bn) ∪ (X ∩ Bn). The sets
B, Y ∩ Bn and X ∩ Bn are pairwise disjoint. Hence, P [Bn] = P [B] + P [Y ∩ Bn] + P [X ∩ Bn] <
P [B] + ∆ + P [X ∩Bn] = r + P [X ∩Bn]. Since r ≤ P [Bn] we get X ∩Bn 6= ∅. As a consequence
X ∩B 6= ∅, giving a contradiction.

Claim 2: Now, we want to prove that ∼′ is a weak bisimulation. Let s ∼′ s′ and ProbF (s, τ∗α,C) >
0 for some scheduler F and C ⊆ SA. By Claim 1 it suffices to show that there exists a scheduler F ′

such that ProbF (s′, τ∗α,C) = ProbF
′

(s, τ∗α,C), for all n ≥ 1 and C ∈ SA/ ∼n. But this directly
derives from the definition of ∼n. In fact, since for all F and n ≥ 1 s ∼n+1 s

′, we have that there
exists a scheduler F ′ such that ProbF (s, τ∗α,C) = ProbF

′

(s′, τ∗α,C) ∀C ∈ SA/ ∼n. 2

3.2 Classes

In this section we define the notion of class of a PTA. A class represents a set of pairs of configu-
rations that belong to the relation we are considering. Hence, a set of classes G defines a relation
≈G .

Definition 3.2 A class of the PTA A is a finite set g ⊆ Q × Q × Ψ(X ∪ X). A class g defines
the relation ≈g⊆ SA ×SA containing pairs ((q, v), (q′, v′)) such that there exists (q, q′, ψ) ∈ g with
v′′ |= ψ, where v′′(x) = v(x) and v′′(x) = v′(x), for any x ∈ X.

From now on, without loss of generality, we suppose that for any q, q′ ∈ Q there exists at most
one (q, q′, ψ) ∈ g, and, in such a case, ψ 6= false. Actually, the triple (q, q′, false) can be deleted,
and, two triples (q, q′, ψ) and (q, q′, ψ′) can be replaced with the triple (q, q′, ψ ∨ ψ′).

Given two classes g1 and g2, we define the class resulting from the intersection g1 ∩ g2 and
from the union g1 ∪ g2. Namely, g1 ∩ g2 = {(q, q′, ψ ∧ ψ′) | (q, q′, ψ) ∈ g1 and (q, q′, ψ′) ∈ g2} and
g1 ∪ g2 = {(q, q′, ψ ∨ ψ′) | (q, q′, ψ) ∈ g1 and (q, q′, ψ′) ∈ g2}. Moreover, with ¬g we denote the
class {(q, q′,¬ψ) | (q, q′, ψ) ∈ g)}.

With Set(A) we denote the set of set of classes G of A such that, for any g1, g2 ∈ G with g1 6= g2,
it holds that, for any (q, q′, ψ) ∈ g1 and (q, q′, ψ′) ∈ g2 it holds that ψ∧ψ′ ≡ false. A set of classes
G defines the relation ≈G that is the relation

⋃

g∈G ≈g.

Now, classes are finitely many since the number of clock zones is finite (see Proposition 1.10).
Moreover, the number of clocks is of the order of |X| . Hence, the number of triples (q, q′, ψ) is in
the order of the number of clock zones of A.

Example 3.2 The set G = {(q0, q2, 0 ≤ x ≤ x)} is in Set(A) where A is the PTA of Example 3.1.
The set G defines the relation ≈G such that (q, v) ≈G (q′, v′) iff q = q0, q

′ = q2 and v(x) ≤ v′(x).
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3.3 The algorithm Clean

We introduce the algorithm CleanA(G) that eliminates the relations between configurations such
that the unsatisfiability of bisimulation requirements is not caused by the fact that we cannot
perform the time step α. Intuitively, we use the algorithm Clean in order to remove the relations
between configurations from which it is not possible to perform the same time step to reach a
certain class of bisimilar configurations.

We denote with ψg the formula

∧

(q1,q2,ψ′)∈g

ψ[Xq1 := Xq1 + t][X
q2

:= X
q2

+ t]

where t is a new variable representing the time elapsed, and, xq and xq are new clocks, for any
state q and for any clock x ∈ X.

Definition 3.3 Given a class g, with precT (g) we denote the class

⋃

(q,q′,ψ)∈g

{(q, q′,∃XQ ∪X
Q
∪ {t}.t > 0 ∧ x = xq ∧ x = xq

′

∧ ψg)}

where XQ = {xq | x ∈ X, q ∈ Q} and X
Q

= {xq | x ∈ X, q ∈ Q}.

The class precT (g) contains the configurations from which g can be reached with the same time
step.

The following lemma states that deleting the relations between configurations such that the
unsatisfiability of bisimulation requirements is not caused by the fact that one cannot perform the
time step α, is equivalent to deleting the relations between configurations from which it is not
possible to perform the same time step to reach a certain class of bisimilar configurations.

Lemma 3.2 Given a commutative reflexive and transitive relation ≈, the two following statements
are equivalent:

• For any s1 ≈ s2, if s1
α

−→ s′1 and s2
α

−→ s′2, with α ∈ IR>0, then s′1 ≈ s′2

• For any s1 ≈ s2, there exists a scheduler F such that, for any scheduler F ′, ProbF (s1, τ
∗α, C) 6=

ProbF
′

(s2, τ
∗α, C) or viceversa, with α ∈ IR>0, then ProbF (s1, τ

∗α, C) > 0 and ProbF
′

(s2, τ
∗α, C) >

0, for C ∈ SA/ ≈.

Proof. We prove the two implications:

1. We prove that if s1 ≈ s2 and if s1
α

−→ s′1 and s2
α

−→ s′2, with α ∈ IR>0, then s′1 ≈ s′2 implies
the property that if s1 ≈ s2 and there exists a scheduler F such that for any scheduler
F ′, ProbF (s1, τ

∗α, C) 6= ProbF
′

(s2, τ
∗α, C) or viceversa, then ProbF (s1, τ

∗α, C) > 0 and
ProbF

′

(s2, τ
∗α, C) > 0, for C ∈ SA/ ≈.

Let us suppose by contradiction that there exists a scheduler F such that for any scheduler
F ′, ProbF (s1, τ

∗α, C) 6= ProbF
′

(s2, τ
∗α, C) or viceversa, and either ProbF (s1, τ

∗α, C) = 0 or
ProbF

′

(s2, τ
∗α, C) = 0, for any C ∈ SA/ ≈.

Let us suppose that ProbF (s1, τ
∗α, C) = 0 (the other case is similar). Since s′1 ≈ s′2 there

exists a C ∈ SA/ ≈ such that s′1, s
′
2 ∈ C. But ProbF (s1, τ

∗α, C) = 0 and s1
α

−→ s′1 imply
s′1 6∈ C, which is a contradiction.

2. We prove that if s1 ≈ s2 and there exists a scheduler F such that for any scheduler
F ′, ProbF (s1, τ

∗α, C) 6= ProbF
′

(s2, τ
∗α, C) or viceversa, then ProbF (s1, τ

∗α, C) > 0 and

ProbF
′

(s2, τ
∗α, C) > 0, for C ∈ SA/ ≈, implies the property that s1 ≈ s2 and if s1

α
−→ s′1

and s2
α

−→ s′2, with α ∈ IR>0, then s′1 ≈ s′2
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Let us suppose by contradiction that s′1 6≈ s′2. The fact that s′1 6≈ s′2 implies that either
s′1 6∈ C or s′2 6∈ C, for any C ∈ SA/ ≈.

Let us suppose that s′1 6∈ C and s′2 ∈ C (the other case is similar). Let F be a scheduler
such that F (s1) = α and F (s2) = α; we have that ProbF (s1, τ

∗α, C) 6= ProbF
′

(s2, τ
∗α, C)

implying that ProbF (s1, τ
∗α, C) > 0 and ProbF

′

(s2, τ
∗α, C) > 0. But ProbF (s1, τ

∗α, C) > 0

and s1
α

−→ s′1 imply that s′1 ∈ C, which is a contradiction. 2

We give now the algorithm CleanA(G) which refines G by using precT until the fixpoint is
reached. By Lemma 3.2, CleanA(G) deletes the relations between configurations from which it is
not possible to perform the same time step to reach a certain class of bisimilar configurations.

CleanA(G : Set(A)) : Set(A)
repeat
G′ := G
g′ :=

⋂

g∈G ¬g

G :=
⋃

g∈G g ∩ ¬
(

⋃

(q,q′,ψ)∈g′ precT ({(q, q′, ψ)})
)

until (G == G′)
return G

The class g′ represents the set of pairs (s, s′) such that s 6≈G s
′. Moreover,

(

⋃

(q,q′,ψ)∈g′ precT ({(q, q′, ψ)})
)

represents the set of configurations from which we can reach configurations non bisimilar through

some time step. Therefore, ¬
(

⋃

(q,q′,ψ)∈g′ precT ({(q, q′, ψ)})
)

represents the set of configurations

from which, through any time step, bisimilar configurations are reached. As a consequence, at each
step, we refine the relation ≈G by deleting the pairs (s, s′) such that it is not possible to perform
the same time step from s and s′ to reach a certain class.

The following lemma states the correctness of the algorithm CleanA.

Lemma 3.3 Relation ≈CleanA(G) is the biggest relation enclosed in ≈G such that if s1 ≈CleanA(G)

s2 and there exists a scheduler F such that for any scheduler F ′, ProbF (s1, τ
∗α, C) 6= ProbF

′

(s2, τ
∗α, C)

or viceversa, with α ∈ IR>0, then ProbF (s1, τ
∗α, C) > 0 and ProbF

′

(s2, τ
∗α, C) > 0, for C ∈

SA/ ≈G. Moreover, CleanA(G) is computable in exponential time w.r.t. the size of A and, if ≈g
is commutative, reflexive and transitive, for any g ∈ G, then ≈g′ is commutative, reflexive and
transitive, for any g′ ∈ CleanA(G).

Proof. Since at each step we refine a triple (q, q′, φ) with a triple (q, q′, φ′) such that φ′ ⇒ φ, it
is obvious that if s ≈CleanA(G) s

′, then s1 ≈G s2. Therefore the relation ≈CleanA(G) is enclosed in
the relation ≈G .

Hence, we must prove that if s1 ≈CleanA(G) s2 and there exists a scheduler F such that

for any scheduler F ′, ProbF (s1, τ
∗α, C) 6= ProbF

′

(s2, τ
∗α, C) or viceversa, with α ∈ IR>0, then

ProbF (s1, τ
∗α, C) > 0 and ProbF

′

(s2, τ
∗α, C) > 0.

If this holds, then, since ≈g is commutative, reflexive and transitive for any g ∈ G, ≈g′ is
commutative, reflexive and transitive for any g′ ∈ CleanA(G).

By Lemma 3.2, it is sufficient to prove that if s1
α

−→ s′1 and s2
α

−→ s′2, for some s′1 and s′2 and
α ∈ IR>0, then s′1 ≈CleanA(G) s

′
2. Given s1 ≈CleanA(G) s2, let us suppose, by contradiction, that

s′1 6≈CleanA(G) s
′
2, for some s′1 and s′2 such that si

α
−→ s′i, for i = 1, 2.

Since s1 ≈CleanA(G) s2, it means that s1 ≈g′ s2 where g′ =
⋂

g∈CleanA(G) ¬g. Moreover s1 ≈g s2

for some g ∈ CleanA(G). Therefore, by Proposition 1.11, since α ∈ IR>0, G′ 6= CleanA(G),

where G′ =
⋃

g∈CleanA(G) g ∩¬
(

⋃

(q,q′,ψ)∈g′ precT ({(q, q′, ψ)})
)

. But this contradicts the fact that

CleanA(G) is the fixpoint.
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We must prove now that for each relation ≈′ satisfying the same requirements of ≈CleanA(G)

we have that ≈′ is contained in ≈CleanA(G).
We suppose by contradiction that there exists such a relation ≈′ with ≈′⊃≈CleanA(G). Hence,

there exist s1 and s′1 such that s1 ≈′ s′1 and s1 6≈CleanA(G) s
′
1.

Let us suppose that CleanA(G) terminates after n steps and let G1, . . . ,Gn be the sets of classes
in Set(A) corresponding to the variable G′ of the beginning of each step.

By induction and by Proposition 1.11, it is easy to show that s1 ≈Gi
s′1 if:

• s1 ≈G s
′
1

• for any runs s1
α1−→ s2 . . .

αm−1
−→ sm and s′1

α1−→ s′2 . . .
αm−1
−→ s′m, with sm 6≈G s

′
m and sh ≈G s

′
h

and αh ∈ IR>0, for any h = 1, . . . ,m− 1, it holds that m > i.

Now, s1 ≈′ s′1 implies s1 ≈G s
′
1. Since s1 6≈CleanA(G) s

′
1, there exists i > 1 such that s1 ≈Gj

s′1,

for any j ∈ [1, i − 1], and s1 6≈Gi
s′1. Hence there exist two runs s1

α1−→ s2 . . .
αi−1
−→ si and

s′1
α1−→ s′2 . . .

αi−1
−→ s′i such that sh 6≈G s′h for some h ≤ i. Therefore, since ≈′⊆≈G it holds that

sh 6≈′ s′h, and hence sl 6≈
′ s′l, for any l = 1, . . . , h, contradicting the fact that s1 ≈′ s′1.

The fixpoint is computable after a finite number of steps since the number of formulae are
finitely many and, at each step of the algorithm, the set G is updated with an enclosed set of
classes. Since the number of classes is exponential w.r.t. the size of A, we have that CleanA(G) is
computable in exponential time w.r.t. the size of A. 2

We note that after applying the algorithm Clean to a set of classes G for α ∈ IR>0, it is sufficient
to check whether ProbF (s1, τ

∗α, C) 6= ProbF
′

(s2, τ
∗α, C) for ProbF (s1, τ

∗α, C), P robF
′

(s2, τ
∗α, C) >

0.

Example 3.3 Given the set of classes G = {g1, g2} of Example 3.1 where

g1 = {(q3, q8, 0 ≤ x ≤ 3 ∧ 0 ≤ x ≤ 3)}

and
g2 = {(q3, q8, x > 3 ∧ x > 3)}.

Since from q3 and q8 only time steps can be performed, we have that, by following Proposition 1.9,

variable t can be deleted, and hence ¬
(

⋃

(q,q′,ψ)∈g′ precT ((q, q′, ψ))
)

= {(q3, q8, (x = x) ∨ (x >

3 ∧ x > 3))}. Therefore, refining G, we have the class {(q3, q8, 0 ≤ x ≤ 3 ∧ x = x)} and the
class {(q3, q8, x > 3 ∧ x > 3} instead of g1 and g2, respectively. Actually, a time step does not
give any problem for the class g2, but for the class g1 we must have that x = x to reach bisimilar

configurations. As an example, (q3, x = 2.5) ≈G (q8, x = 3), but (q3, x = 2.5)
0.2
−→ (q3, x = 2.7),

(q8, x = 3)
0.2
−→ (q8, x = 3.2) and (q3, x = 2.7) 6≈G (q8, x = 3.2).

3.4 The Cut operator

We introduce a model of Unlabeled Probabilistic Automata that differ slightly from the ones in
Definition 1.6. In this chapter, when we refer to PAs we mean Unlabeled PAs. Given a finite set
Q, a distribution π on Q is a function π : Q → [0, 1] such that

∑

q∈Q π(q) = 1. Intuitively, π(q)
models the probability of a transitions with q as target state. With Dist(Q) we denote the set of
finite sets D of distributions on Q.

Definition 3.4 An Unlabeled Probabilistic Automaton (PA) is a pair A = (Q, δ), where:

• Q is a finite set of states.

• δ ⊆ Q×Dist(Q) is a finite set of transitions.
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Let σ ∈ ExecFrag such that σ = q0
π1−→ q1

π2−→ . . . qk; we define P (σ) = π1(q1) · . . . · πk(qk).
As usual, we need a notion of scheduler to resolve the nondeterminism that arises when choosing

the distribution within a set D ∈ Dist(Q). A scheduler for a Probabilistic Automaton A is a
function F assigning to each finite sequence σ in ExecFrag a distribution π ∈ D such that there
exists a transition (q,D) with last(σ) = q.

For a scheduler F of a PA A we define ExecFragF (resp. ExecF ) as the set of execution

fragments (resp. the set of executions) σ = q0
π1−→ q1

π2−→ q2
π3−→ . . . such that F (σi−1) = πi, for

any 0 < i < |σ|.
Given a scheduler F , let ExecF (q) be the set of executions in ExecF starting from q, ExecFragF (q)

be the set of execution fragments in ExecFragF starting from q, and Σ FieldF (q) be the smallest
sigma field on ExecF (q) that contains the basic cylinders σ ↑, where σ ∈ ExecFragF (q). The
probability measure ProbF is the unique measure on Σ FieldF (q) such that ProbF (σ ↑) = P (σ).

Given a set of statesQ′ with ExecF (q,Q′) we denote the set of executions {σ ∈ ExecF (q) | last(σi) ∈
Q′, for some i}.

In this section we define a cut operator that, given a class, splits it into a set of classes satisfying
the requirements of the definition of weak bisimulation. For this purpose we construct two PAs by
using predecessor operators for computing the probabilities ProbF (s, τ∗α, C).

For PTAs the probability strongly depends on the transitions enabled. The following proposi-
tion ensures that configurations s′ reachable from a configuration s by discrete steps have either
the same value for the clocks or the clocks are equal to zero.

Proposition 3.1 For each σ = (q0, v0)
α1−→ s1 . . .

αk−→ (qk, vk), with αi ∈ Σ ∪ {τ}, it holds that,
either vi(x) = v0(x) or vi(x) = 0, for any i and x ∈ X.

Proof. Since there is no time step, vi(x) 6= v0(x) if and only if x is reset and v0(x) > 0. 2

Since g expresses a set of configurations, for any configurations (q, v) and (q, v′) such that

(q, v)
α1−→ . . .

αn−→ (q, v′), with {α1, . . . , αn} ⊆ Σ∪{τ}, Adm((q, v)) can be different fromAdm((q, v′)).
But, by Proposition 3.1, the set of transitions that can be taken from a configuration can be de-
terministically associated with a state, if it is known that x > 0 or x = 0, for each clock x.

Therefore, we define the set F as the set of functions f : Q×2X → 2δ such that f(q,B) ⊆ δ(q),
for any state q and set of clocks B. The set f(q,B) represents the transitions that are enabled
when a configuration is composed by the state q and a valuation with only clocks in B equal to 0.
Sometimes we will write f(q,B, a) with a ∈ Σ ∪ {τ} to denote the set f(q,B) ∩ δ(a).

Definition 3.5 Given a class g and a set of transitions E, with prec(g,E) and prec(g,E) we
denote, respectively, the classes

⋃

(q,a,φ,B,q′)∈E

{(q, q′′, ApA(φ ∧ ∃B.ψ ∧B = 0) | (q′, q′′, ψ) ∈ g)}

and
⋃

(q,a,φ,B,q′)∈E

{(q′′, q, ApA(φ[X := X] ∧ ∃B.ψ ∧B = 0) | (q′′, q′, ψ) ∈ g}.

Moreover, [g] is the set of triples (q, q′, ψ) such that ψ 6≡ false and there exists (q, q′, ψ′) ∈ g with,
for any x ∈ X ∪X, either ψ ⇒ (ψ′ ∧ x = 0) or ψ ⇒ (ψ′ ∧ x > 0).

The formulae prec(g, e) and prec(g, e) give the set of configurations from which, by performing
a transition in E, the first and the second component are reachable, respectively. The set [g] is the
set of triples enclosed in g such that each variable is either equal to 0 or greater than 0.

We can calculate the probability of performing τ∗α by reducing this problem to the reachability
problem in the model of Probabilistic Automata.

Given a class ḡ such that ≈ḡ is commutative, reflexive and transitive, with ḡ sometimes we will
denote the set of configurations {s | s ≈ḡ s

′ and s, s′ ∈ SA}. More precisely, with ProbF (s, τ∗α, ḡ)
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and ExecFragF (s, τ∗α, ḡ) we denote ProbF (s, τ∗α, C) and ExecFragF (s, τ∗α, C), respectively,
where C = {s | s ≈ḡ s

′ and s, s′ ∈ SA}.
Hence, we have to check whether for any scheduler F there exists a scheduler F ′ such that

ProbF (s1, τ
∗α, ḡ) = ProbF

′

(s2, τ
∗α, ḡ) and vice versa. Therefore, we calculate the probability pi

to reach ḡ from si by performing τ∗α, for i = 1, 2. To this purpose we construct two PAs A1 and
A2 such that the probability to reach the special state good from a certain state of Ai is equal to
pi, for i = 1, 2.

States of A1 are either triples (q, q′, ψ) or a state in {wrong, good}. The triple (q, q′, ψ) rep-
resents the configurations (q, v) and (q′, v′), with (q, v) ≈{(q,q′,ψ)} (q′, v′), that can be crossed for
reaching ḡ starting from s1 and s2, respectively. The state wrong represents that a step α′, with
α′ 6∈ {α, τ}, is performed. If α ∈ IR>0, then the state good represents that class ḡ is reached with
the time step α. Otherwise, if α ∈ Σ ∪ {τ}, then the state good represents that class ḡ is reached
with the discrete step α performed by both the configurations reached from s1 and s2.

Hence, the probability associated with two triples z = (q1, q2, ψ) and z′ = (q′1, q
′
2, ψ

′) with
q′2 = q2 is equal to the probability of reaching states expressed by z from those expressed by z′ by
a step performed from q1.

The probability associated with two states z = (q1, q2, ψ) and z′ = (q′1, q
′
2, ψ

′) with q′1 = q1
is equal to 1 if ψ′ is reached from ψ by a τ step performed from q2. Actually, the probability
computed for the first configuration is not affected by the probabilities of the second one.

The PA A2 is constructed similarly.

Definition 3.6 Let α ∈ Σ∪{τ, λ}, where λ denotes a generic time step. We define A1(g, ḡ, f, f
′, α),

the PA (Σ, Q′, q′0, δ
′,Π′) such that

• Q′ = [Q×Q× {true}] ∪ {good,wrong}.

• δ′ is the set of pairs ((q1, q2, ψ),D) such that π′ ∈ D is a distribution satisfying one of the
following requirements:

1. π′(z) =

∑

e∈E
π(e)

∑

e∈f(q1,B)
π(e)

where B = {x | ψ ⇒ x = 0} and one of the following require-

ments hold:

– z 6= good,wrong and E = {e ∈ f(q1, B, τ)|(q1, q2, ψ) = prec(z, e)}, namely a τ step
is performed from q1.

– z = wrong and E is the set
⋃

a∈Σ\α f(q1, B, a). Namely, a wrong state is reached

if a symbol in Σ \ α is performed.

– z = good and α ∈ Σ ∪ {τ} and there exists (q1, q2, ψ
′) ∈ prec(z, f(q1, B, α)) such

that ∃X.ψ′ ⇒ ∃X.ψ, namely z has been reached correctly by a α ∈ Σ ∪ {τ} step.

2. π′(wrong) = 1, in any state one can perform a time step with label different from α,
thus reaching the wrong state.

3. π′(good) = 1, if α = λ and (q1, q2, ψ) ∈ precT ({(q, q′, ψ) ∈ z | (q, q′, ψ′) ∈ g}), namely z
has been reached correctly by a time step.

4. π′(z) = 1, z 6= good,wrong and (q1, q2, ψ) = prec(z, e) for some e ∈ f ′(q2, {x | ψ ⇒ x =
0}, τ), namely, a τ step is performed from q2.

The PA A2(g, ḡ, f, f
′, α) can be defined symmetrically.

The PAs Ai(g, ḡ, f, f
′, α) may have an exponential number of states, but they can be con-

structed by using a more efficient technique based on backward symbolic analysis thanks to the
prec operator and the theory of regions [23, 65, 81].

The following lemma states that it is possible to compute the probability of reaching with
τ∗α the class ḡ from the configurations s and s′ (with s ≈z s

′) by computing the probabilities of
reaching the state good of A1 and A2 from z, where Ai = Ai(g, ḡ, f, f

′, α) for i = 1, 2.
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Lemma 3.4 Let G be such that CleanA(G) = G and ≈g is commutative, reflexive and transitive,
for any g ∈ G. Let g, ḡ ∈ G, and (q1, v1) and (q2, v2) be two configurations such that (q1, v1) ≈{z0}

(q2, v2) with z0 ∈ [g]. For any i = 1, 2 and scheduler F of A there exists a scheduler F ′ of
Ai = Ai(g, ḡ, f, f

′, α′), for some f and f ′, such that ProbFA((qi, vi), τ
∗α, ḡ) = ProbF

′

Ai(z0, good),

and vice versa, where α′ = α if α ∈ Σ ∪ {τ}, and α′ = λ if α ∈ IR>0.

Proof. By Proposition 1.11 and 3.1 we have that, for any a ∈ Σ∪ {τ} ∪ IR>0 and s ≈{z} s
′ with

z ∈ [Q×Q× {true}], given the possible set of steps s
a

−→ s1, s
a

−→ s2, . . . , s
a

−→ sn and s′
a

−→ s′1,

s′
a

−→ s′2, . . . , s
′ a
−→ s′m, such that, if a = α, then either {(si, s

′
j) | i ∈ [1, n], j ∈ [1,m]} ⊆≈ḡ or

{(si, s
′
j) | i ∈ [1, n], j ∈ [1,m]}∩ ≈ḡ= ∅, it holds that

1. a 6∈ α ∪ {τ} iff there exist σl = z −→ z′l of Al, for l = 1, 2, such that:

(a) z′l = wrong, for any l = 1, 2;

(b) PA1
(σ1) =

∑

i∈[1,n] PA(s
a

−→ si) and PA2(σ2) =
∑

j∈[1,m] PA(s′
a

−→ s′j).

2. a = α iff there exist σl = z −→ z′l of Al, for l = 1, 2, such that:

(a) if {(si, s
′
j) | i ∈ [1, n], j ∈ [1,m]} ⊆≈ḡ, then zl = good, for any l = 1, 2;

(b) if {(si, s
′
j) | i ∈ [1, n], j ∈ [1,m]}∩ ≈ḡ= ∅, then zl = wrong, for any l = 1, 2;

(c) PA1(σ1) =
∑

i∈[1,n] PA(s
a

−→ si) and PA2(σ2) =
∑

j∈[1,m] PA(s′
a

−→ s′j).

3. a = τ and n,m > 0 iff there exist σl = z −→ z′l −→ z′′l of Al, for l = 1, 2, such that

PA1(σ1) =
∑

i∈[1,n] PA(s
a

−→ si) and PA2(σ2) =
∑

j∈[1,m] PA(s′
a

−→ s′j);

4. a = τ and n > 0 and m = 0 iff there exist σl = z −→ z′l of Al, for l = 1, 2, such that

PA1(σ1) =
∑

i∈[1,n] PA(s
a

−→ si) and PA2(σ2) = 1;

5. a = τ and n = 0 and m > 0 iff there exist σl = z −→ z′l of Al, for l = 1, 2, such that

PA1(σ1) = 1 and PA2(σ2) =
∑

j∈[1,m] PA(s′
a

−→ s′j).

We consider now two cases: α ∈ IR>0 and α ∈ Σ ∪ {τ}.
If α ∈ IR>0, then it holds that, for any scheduler F such that ExecFragFA((q1, v1), τ

∗α, ḡ)

is empty, there exists a scheduler F ′ such that ExecFragF
′

A′ ((q2, v2), τ
∗α, ḡ) is empty. Actually,

by items 1, 2, 3, 4 and 5 and since ≈g is commutative, reflexive and transitive, for any g ∈
G, there exists a surjective function ζ from ExecFragA to ExecFragAi such that ProbFA({σ′ ∈

ExecFrag | ζ(σ′) = σ}) = ProbF
′

Ai(σ), for any σ ∈ ExecFragAi and i = 1, 2, if and only if it holds
that ExecFragA((q1, v1), τ

∗α, ḡ) 6= ∅ or ExecFragA((q2, v2), τ
∗α, ḡ) 6= ∅. In fact, we note that, if

either ExecFragA((q1, v1), τ
∗α, ḡ) = ∅ or ExecFragA((q2, v2), τ

∗α, ḡ) = ∅, then A1 and A2 cannot
reach the state good, and hence ProbFA((qi, vi), τ

∗α, ḡ) could be different from the probability of
reaching the state good of Ai, for i = 1, 2.

But, since CleanA(G) = G, by Lemma 3.3, it holds that, if there exists a scheduler F of A such
that for any scheduler F ′ of A′, ProbFA((q1, v1), τ

∗α, ḡ) 6= ProbF
′

A′((q2, v2), τ
∗α, ḡ), then it holds that

ProbFA((q1, v1), τ
∗α, ḡ) > 0 and ProbF

′

A′((q2, v2), τ
∗α, ḡ) > 0. Hence, if ProbFA((q1, v1), τ

∗α, ḡ) 6=

ProbF
′

A′((q2, v2), τ
∗α, ḡ), then ExecFragA((q1, v1), τ

∗α, ḡ) is not empty andExecFragA((q2, v2), τ
∗α, ḡ)

is not empty.

Otherwise, if α ∈ Σ ∪ {τ}, it holds that for any i = 1, 2 and scheduler F of A there exists a
scheduler F ′ of Ai such that ProbFA((qi, vi), τ

∗α, ḡ) = ProbF
′

Ai(z0, good), and vice versa. Actually,
by items 1, 2, 3, 4 and 5 and since ≈g is commutative, reflexive and transitive, for any g ∈
G, there exists a surjective function ζ from ExecFragA to ExecFragAi such that ProbA({σ′ ∈
ExecFrag | ζ(σ′) = σ}) = ProbAi(σ), for any σ ∈ ExecFragAi and i = 1, 2.

Since we have required that (q1, q2, ψ) is such that ∃X.ψ′ ⇒ ∃X.ψ, it is not necessary that
ExecFragA((q2, v2), τ

∗α, ḡ) is not empty. In effect, ∃X.ψ hides valuations in the right side of the
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relation since, given two configurations s and s′, the possibility of performing a transition step
from s is not affected by s′. Similarly, if ExecFragA((q1, v1), τ

∗α, ḡ) is empty. 2

Example 3.4 Let us assume the set of classes {g1, g2} of the PTA in Example 3.1 such that g1 =
{(q2, q7, 0 < x < 3 ∧ x = x), (q7, q2, 0 < x < 3 ∧ x = x), (q2, q2, 0 < x < 3 ∧ x = x), (q7, q7, 0 < x <
3∧ x = x)} and g2 = {(q3, q8, true), (q8, q3, true), (q3, q3, x = x), (q8, q8, x = x)}. We note that ≈g1
and ≈g2 are commutative, reflexive and transitive. Let f be the function such that f(q,B) = δ(q).

For the state (q2, q7, 0 < x < 3 ∧ x = x) of A1(g1, g2, f, f, a) we have the distributions π such
that either π(good) = 1

2 and π(wrong) = 1
2 or π(wrong) = 1. For A2(g1, g2, f, f, a) we have

the distributions π such that either π((q2, q7, 0 < x < 3 ∧ x = x)) = 1
2 and π(good) = 1

2 or
π(wrong) = 1.

For the state (q7, q2, 0 < x < 3∧x = x) of A1(g1, g2, f, f, a) we have the distributions π such that
either π((q7, q2, 0 < x < 3 ∧ x = x)) = 1

2 and π(good) = 1
2 or π(wrong) = 1. For A2(g1, g2, f, f, a)

we have the distributions π such that either π(good) = 1
2 and π(wrong) = 1

2 or π(wrong) = 1.
For the state (q2, q2, 0 < x < 3 ∧ x = x) of A1(g1, g2, f, f, a) we have the distributions π such

that either π(good) = 1
2 and π(wrong) = 1

2 or π(wrong) = 1. For A2(g1, g2, f, f, a) we have the
same distributions.

For the state (q7, q7, 0 < x < 3∧x = x) of A1(g1, g2, f, f, a) we have the distributions π such that
either π((q7, q7, 0 < x < 3 ∧ x = x)) = 1

2 and π(good) = 1 or π(wrong) = 1. For A2(g1, g2, f, f, a)
we have the same distributions.

With CutA(g, ḡ) we denote the set {g1, . . . , gn} ∈ Set(A) such that, [g] ⊃
⋃

i∈[1,n][gi], and for

any f, f ′ ∈ F and α ∈ Σ ∪ {τ, λ} it holds that z1, z2 ∈ [gi], for some i = 1, . . . , n, iff for any
scheduler F there exists a scheduler F ′ such that ProbFA1(z1, good) = ProbF

′

A2(z2, good), where
Aj = Aj(g, ḡ, f, f

′, α) with j = 1, 2.

Example 3.5 Let us assume the classes g1 and g2 of Example 3.4. We have that CutA(g1, g2) =
{{(q2, q2, 0 < x < 3 ∧ x = x)}, {(q7, q7, 0 < x < 3 ∧ x = x)}}.

Note that to compute the probabilities ProbFAi(z, good) it is sufficient to compute only once
the automata Ai = Ai(g, ḡ, f, f

′, α), for i = 1, 2. Therefore, since the number of clock zones is
exponential w.r.t. the size of A, we have the following corollary.

Corollary 3.1 For any g, ḡ, CutA(g, ḡ) is computable in double exponential time w.r.t. the size
of A. If A has no τ transitions, CutA(g, ḡ) is computable in exponential time w.r.t. the size of A.

3.5 Computing the Equivalence Classes

We can now define the algorithm Classes(A) that returns a set in Set(A) giving the configura-
tions that are bisimilar. The algorithm refines the classes by using the triples returned by the
Cut operator and the algorithm Clean until the fixpoint is reached when starting from the class
⋃

q,q′∈Q{(q, q
′,X ≥ 0 ∧X ≥ 0)} (namely the class containing all configurations). The refinement

is done by splitting according to CutA(g, g′).

Classes(A : PTA) : Set(A)
G :=

⋃

q,q′∈Q{(q, q
′,X ≥ 0 ∧X ≥ 0)}

repeat
G′ := G
CleanA(G)
for each g, ḡ ∈ G

G′′ := CutA(g, g′)
if G′′ 6= {g} then G := (G \ {g}) ∪ G′′

until (G == G′)
return G
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We have the following theorem stating the correctness of the algorithm. This implies the
decidability of weak bisimulation for PTAs.

Theorem 3.1 For any configurations s, s′ ∈ SA, s ≈ s′ if and only s ≈Classes(A) s
′. Moreover,

Classes(A) is computable in double exponential time w.r.t. the size of A. If A has no τ transitions,
then Classes(A) is computable in exponential time w.r.t. the size of A.

Proof. By Lemma 3.1, it is sufficient to prove that s ≈Class(A) s
′ ⇔ ∀n ≥ 0 s ∼n s′. Let

G1, . . . ,Gn, . . . be the value of variable G at each step of the algorithm. We prove by induction that
s ≈Gi

s′ ⇔ s ∼n s
′, for all n ∈ [0, i].

The base case is obvious since G0 :=
⋃

q,q′∈Q{(q, q
′,X ≥ 0 ∧X ≥ 0)}.

By induction we have that s ≈Gi
s′ ⇔ s ∼n s

′, for all n ∈ [0, i]. Therefore ≈g is commutative,
reflexive and transitive, for any g ∈ Gi. Hence, by Lemma 3.3 and Lemma 3.4, we have that
s ≈Gi+1

s′ ⇔ s ∼n s
′, for all n ∈ [0, i+ 1].

The fixpoint is computable after a finite number of steps since the number of formulae are
finitely many and, at each step of the algorithm, the set G is updated with a set of classes included
in the previous set of classes. By Corollary 3.1 ClassA(G) is computable in double exponential
time w.r.t. the size of A, and, if A has no τ transitions, then Class(A) is computable in exponential
time w.r.t. the size of A. 2
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Chapter 4

Security Properties

In a multilevel system every agent is confined in a bounded security level; information can flow
from a certain agent to another agent only if the level of the former is lower than the level of the
latter. Access rules can be imposed by the system in order to control direct unwanted transmission
from higher levels to lower levels; however, it could be possible to transmit information indirectly
by using system side effects. Usually, this kind of indirect transmissions, called covert channels,
do not violate the access rules imposed by the system.

The existence of covert channels has led to the more general approach of information flow
security, which aims at controlling the way information may flow among different entities. The idea
is to try to directly control the whole flow of information, rather than only the direct communication
among agents. In [52] the authors introduce the notion of Non Interference, stating, intuitively,
that low level agents should not be able to deduce anything about the activity of high level agents.
By imposing some information flow rules, it is possible to control direct and indirect leakages, as
both of them give rise to unwanted information flows.

In the literature there are many different definitions of security based on the information flow
idea, and each is formulated in some system model (see, e.g., [52, 98, 55, 49, 50, 48, 17, 6]).
Most of the properties considered are based on analysis of information flow that does not take
into consideration aspects of time or probability, and therefore they are not useful to check the
existence of probabilistic or timing covert channels. To overcome this, a significant work has been
done in order to extend the study by considering either time (see, e.g., [50, 48, 17]) or probability
(see, e.g., [55, 6, 117]).

Consider, for example, the two level system scheme in which one does not want interference
between confidential data of the high level and the low level behaviors observed by an attacker
who could infer confidential information (exploiting, for example, a covert channel).

Aldini et al. [6] observe that an attack could be done in the following way. Assume that a
secret 1-bit value can be communicated to the unauthorized user among randomly created low-
level noise, and that both secret value and random low-level noise belong to the same domain.
The high behavior does not alter the set of possible low outcomes which are always the same with
or without the high-level interaction. However, for a fixed value of the high input, an attacker
observing the frequency of the low results deriving from repeated executions of the system could
infer (with a certain probability) which one is directly communicated by the high user.

A system which in a nondeterministic setting is considered to be secure, in a richer framework,
where the probability distribution of the possible events is known, may reveal information leakages.
A probabilistic setting may allow estimating the level of security of a system by checking if the
probability of detecting an illegal information flow is beyond a certain threshold.

This has required the use of descriptive means for systems which allow expressing time and
probability. In this chapter we are interested in a general framework where both probabilistic and
timing covert channels can be studied. Hence, for the description of systems we use the class of
Probabilistic Timed Automata (PTAs) introduced in Chapter 2. Such a formalism reveals to be
well-suited for the analysis of information flow security properties.
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The framework of PTAs allows description of timed systems showing a probabilistic behavior
in an intuitive and succinct way. Therefore, within the framework of PTAs, where time and
probabilities are taken into consideration, the modeler can describe different aspects of a system,
and analyze, on a single model, real-time properties, performance and reliability properties (by
using classical model checking techniques), and information flow security properties useful to detect
both probabilistic and timing covert channels.

We show here that these concepts, together with the analogous concepts for Probabilistic Au-
tomata and Timed Automata, can be expressed in a unique framework where both probability and
time are considered.

In Section 4.1 we briefly set the context for dealing with multilevel security within the model
of PTAs. In Section 4.2 we define Non Interference and Non Deducibility on Composition security
properties for the models of NSs, PAs, TAs and PTAs. We give a classification of those properties
according to their discriminating powers. In Section 4.3, as an application, we analyze information
flow that may arise in a shared buffer.

4.1 The Context

One classical definition of secure information flow presupposes that data and principals have dif-
ferent levels of clearance, and requires that high information never flows downwards.

Given a system model with the basic operators of restriction, hiding and parallel composition
together with a notion of observational equivalence, it is easy to set up a framework for the analysis
of information flow.

A finite alphabet Σ of visible actions is assumed. A multilevel system interacts with agents
confined in different levels of clearance. In order to analyze the information flow between parties
with different levels of confidentiality, the set of visible actions is partitioned into high level actions
and low level actions. Formally, we assume the set of possible actions Σ = ΣH∪ΣL, with ΣH∩ΣL =
∅. In the following, with l, l′ . . . and h, h′, . . . we denote low level actions of ΣL and high level actions
of ΣH respectively. With ΓH and ΓL we denote the set of high level agents and low level agents.
Formally, an automaton A with a set of action labels Σ′ is in ΓH (ΓL) if Σ′ ⊆ ΣH (Σ′ ⊆ ΣL).
For simplicity, we specify only two-level systems; note, however, that this is not a real limitation,
since it is always possible to deal with the case of more levels by iteratively grouping them in two
clusters.

A low level agent is able to observe the execution of all the steps labeled with actions in ΣL.
The basic idea of Non Interference is that the high level does not interfere with the low level if
the effects of high level communications are not visible by a low level agent. Finally, an important
assumption when dealing with Non Interference analysis is that a system is considered to be secure
(no information flow can occur) if there is no interaction with high level agents (if high level actions
are prevented).

Other properties have been introduced in the literature in order to capture different behaviour
of systems that have to be considered not secure. In [49] Focardi and Gorrieri promote the clas-
sification of a set of properties capturing the idea of information flow and Non Interference. One
of the most interesting and intuitive security properties is the Non Deducibility on Composition
(NDC ), which states that a system A in isolation has not to be altered when considering all the
potential interactions of A with the high level agents of the external environment.

4.2 Information Flow Security Properties

We define the Non Interference and the Non Deducibility on Composition security properties in
a nondeterministic, in a probabilistic and in a timed setting. The concept of Non Interference
was proposed originally in a purely nondeterministic setting [52, 98, 49]. Non Deducibility on
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A A \ ΣH A/ΣH
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Figure 4.1: A nondeterministic covert channel.

Composition was proposed by Focardi and Gorrieri in order to detect insecure behaviour that the
Non Interference property is not able to detect.

4.2.1 Non Interference

We define Non Interference properties, Probabilistic Timed Non Interference (PTNI ), Probabilistic
Non Interference (PNI ), Timed Non Interference (TNI ) and Nondeterministic Non Interference
(NNI ).

Definition 4.1 Given a system A in PTAs (PAs, TAs, NSs, resp.) A is PTNI (PNI, TNI, NNI,
resp.)-secure if and only if A/ΣH ≈ A \ΣH . We write A ∈ PTNI (A ∈ PNI, A ∈ TNI, A ∈ NNI,
resp.) when the system A is PTNI (PNI, TNI, NNI, resp.)-secure.

In the definition above, A \ ΣH represents the isolated system, where all high level actions
are prevented. As we have seen, such a system is considered secure due to the notion of Non
Interference. If the observational behavior of the isolated system is equal to the behavior of A/ΣH ,
which represents the system that communicates with high level agents in an invisible manner for
the low agents point of view, A satisfies the security property.

Note that the PNI property is the BSPNI property defined in [6], the TNI property is an
analogous of the tBSNNI property defined in [50], and NNI is the BSNNI property of [49].

The PTNI property, defined in an environment where both probability and time are studied,
is able to detect information flow that may occur either due to the probabilistic behavior of the
system, to the time when an action occurs or to a combination of them.

Proposition 4.1 It is decidable whether a PTA (PA, TA, NS, resp.) A satisfies the PTNI (PNI,
TNI, NNI, resp.) property.

Proof. The result derives directly by the decidability of weak bisimulation for all the models,
and by the computable definitions of the operators of hiding and restriction. 2

Example 4.1 In Figure 4.1 we show a case of nondeterministic information flow. Here, the high
level action h interferes with the observation of the action l. Formally, in A\ΣH , a low level agent
observes only the execution of l′, whereas, in A/ΣH a low level user may either observe the action
l or the action l′. Hence, a low level agent, observing the event l knows that action h has occurred.
This gives rise to an unsecure information flow. Formally we have A/ΣH 6≈ A \ ΣH , so that the
NNI property reveals the covert channel.

The security properties defined in the probabilistic and/or timed settings are conservative
extensions of the security properties defined in the possibilistic and/or untimed settings.

Proposition 4.2 The following implications hold:

• A ∈ PNI ⇒ unprob(A) ∈ NNI.

• A ∈ TNI ⇒ untime(A) ∈ NNI.

• A ∈ PTNI ⇒ unprob(A) ∈ TNI ∧ untime(A) ∈ PNI.
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Figure 4.2: A probabilistic covert channel.

Proof. The implications follow by the bisimulation based definitions of the security properties and
by the conservativeness of the notions of weak bisimulation (Lemmata 1.1, 1.3 and 2.2). Consider a
PA A. If A ∈ PNI, by Lemma 1.1 we have that unprob(A/ΣH) ≈ unprob(A\ΣH). Now, by defini-
tions of unprob, hiding and restriction, it is easy to see that unprob(A/ΣH) = unprob(A)/ΣH and
that unprob(A\ΣH) = unprob(A)\ΣH . Therefore, we have that unprob(A)/ΣH ≈ unprob(A)\ΣH ,
proving that unprob(A) ∈ NNI. The proof is similar for the other cases. 2

The converse implications do not hold. The integration of probability and time adds new
information that extends what is already known in the nondeterministic case. Therefore, sys-
tems considered to be secure in a purely possibilistic setting, may turn out to be insecure when
considering aspects either of probability or of time. This is shown in Examples 4.2 and 4.3.

Example 4.2 In Figure 4.2 we show a case of probabilistic information flow. System A may be
seen either as PA, or as a PTA with Inv(qi) = true for every i ∈ [0, 6]. Abstracting away from
probability, the system A could be considered secure. In a purely possibilistic setting, in both systems
unprob(A)/ΣH and unprob(A) \ ΣH a low level agent can observe the action l or the sequence
ll′ without further information about the execution of action h. It holds that unprob(A)/ΣH ≈
unprob(A) \ ΣH and, therefore, unprob(A) ∈ NNI (if A is PA) or unprob(A) ∈ TNI (if A is a
PTA). In a probabilistic framework, given p+ r+q = 1, the high level action h interferes with the
probability of observing either a single action l or the sequence ll′. Formally, in A\ΣH , a low level
agent observes either the single action l with probability p + r or the sequence ll′ with probability
q. However, in A/ΣH the single event l is observed with probability p and the sequence ll′ with
probability r + q. As a consequence we have A/ΣH 6≈ A \ ΣH , so that the PNI and the PTNI
properties reveal the probabilistic covert channel.

Example 4.3 In Figure 4.3 we show a case of timing information flow for the PTA A. We assume
Inv(qi) = true for i ∈ [2, 3] and Inv(qi) = x ≤ 5 for i ∈ [0, 1]. Abstracting away from time,
the system A could be considered secure. In an untimed setting, in both systems untime(A)/ΣH
and untime(A) \ ΣH a low level agent can observe only the action l executed with probability
1 without further information about the execution of action h. It holds that untime(A)/ΣH ≈
untime(A) \ΣH , and, therefore, untime(A) ∈ PNI. In a timed framework, given a clock x ∈ IR≥0,
the high level action h interferes with the time of observing the action l. Formally, in A \ ΣH , a
low level agent observes the single action l executed immediately. However, in A/ΣH the single
event l could either be observed immediately or when the clock x reaches value 5. A low level agent,
observing the event l when clock x has value 5 knows that action h has occurred. As a consequence,
we have A/ΣH 6≈ A \ΣH , so that the PTNI property reveals the timing covert channel. The same
holds for unprob(A); in this case the covert channel is detected by the TNI property.
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Figure 4.3: A timing covert channel.

For system A in Figure 4.2, untime(A) is not PNI, but unprob(A) ∈ TNI. On the contrary, for
system A in Figure 4.3, unprob(A) is not TNI, but untime(A) ∈ PNI. This shows that the discrim-
inating powers of time and probability, as regards the Non Interference property, are incomparable
as stated in the next proposition.

Proposition 4.3 The following implications hold:

• ∃ PTA A : unprob(A) ∈ TNI ∧ untime(A) 6∈ PNI;

• ∃ PTA A : untime(A) ∈ PNI ∧ unprob(A) 6∈ TNI.

If we can express both time and probability as in PTAs, we are able to describe systems
exhibiting information flow that neither a formalism with only probability nor a formalism with
only time can express. For such systems we are able to show that they are not PTNI, even if they
are both PTI and TNI, and therefore we are able to reveal a new covert channel.

Proposition 4.4 ∃A : A 6∈ PTNI ∧ unprob(A) ∈ TNI ∧ untime(A) ∈ PNI.

Proof. Consider the PTA A in Figure 4.4. We assume Inv(qi) = true for i ∈ {3, 4, 8, 9},
Inv(qi) = x ≤ 3 for i ∈ {0, 1, 5, 7} and Inv(qi) = x ≤ 4 for i ∈ {2, 6}. It is easy to see that
untime(A) ∈ PTI. In both untime(A)/ΣH and untime(A) \ ΣH , a low level agent observes the
single event l taken with probability 1, and therefore untime(A)/ΣH ≈ untime(A) \ΣH . It is also
easy to see that unprob(A) ∈ TNI. In both unprob(A)/ΣH and unprob(A) \ΣH , a low level agent
could either observe the single event l taken when x = 3 or the event l taken when x = 4, and
therefore unprob(A)/ΣH ≈ unprob(A) \ ΣH . Finally, we show that A is not PTNI. In a proba-
bilistic and timed framework, the high level action h interferes with the probability of observing
the action l executed either when x = 3 or when x = 4. Formally, in A \ ΣH , a low level agent
observes the action l either when x = 3 or when x = 4 with probability 1

2 , respectively. However,
in A/ΣH the event l taken when x = 3 is observed with probability 19

30 , while the action l taken
when x = 4 is observed with probability 11

30 . As a consequence, we have A/ΣH 6≈ A \ ΣH , so that
the PTNI properties reveals the probabilistic timing covert channel. 2

The Venn diagram in Figure 4.5 summarizes the classification of timed and probabilistic Non
Interference security properties.

4.2.2 Non Deducibility on Composition

We define the Non Deducibility on Composition properties Probabilistic Timed Non Deducibility
on Composition (PTNDC ), Probabilistic Non Deducibility on Composition (PNDC ), Timed Non
Deducibility on Composition (TNDC ) and Nondeterministic Non Deducibility on Composition
(NNDC ).

Definition 4.2 Given a system A in PTAs (PAs, TAs, NSs, resp.), A is PTNDC (PNDC,
TNDC, NNDC, resp.)-secure if and only if ∀E ∈ ΓH ,∀p ∈]0, 1[, ∀L ⊆ ΣH A/ΣH ≈ (A||pLE)\ΣH .
We write A ∈ PTNDC (A ∈ PNDC, A ∈ TNDC, A ∈ NNDC, resp.) when the system A is PT-
NDC (PNDC, TNDC, NNDC, resp.)-secure.
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Figure 4.4: A probabilistic timing covert channel.
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Figure 4.5: Relations among Non Interference security properties.
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Figure 4.6: A ∈ PTNI, but A 6∈ PTNDC.

As we have seen, A/ΣH represents the observable behavior of A from a low level agent point
of view (i.e. the isolated system where all high level actions are hidden). System (A||pLE) \ ΣH
represents, instead, system A communicating with the high agent E and then prevented by the
execution of other high level actions. If the observational behavior of the isolated system is equal
to the behavior of the system communicating with any high level agent, A satisfies the security
property.

Proposition 4.5 A ∈ PTNDC (PNDC, TNDC, NNDC, resp.) ⇒ A ∈ PTNI (PNI, TNI, NNI,
resp.).

Proof. If A is a NS, consider E = (∅, {q}, q, ∅) ∈ ΓH , if A is a PA consider E = (∅, {q}, q, ∅,Π) ∈
ΓH , if A is a TA consider E = (∅, ∅, {q}, q, ∅, Inv(q) = false) ∈ ΓH while if A is a PTA consider
E = (∅, ∅, {q}, q, ∅, Inv(q) = false,Π) ∈ ΓH . Intuitively, E is an automaton representing a high
level agent which does not perform any transition. Consider then the set L = ∅. If system A is
PTNDC (PNDC, TNDC, NNDC, resp.), then ∀p ∈]0, 1[, A/ΣH ≈ (A||pLE) \ ΣH . Now, by the
definition of parallel composition, (A||pLE) = A′ where A′ is an automaton behaving like A with
only different state names (i.e., the states of A paired with the only state q of E). Now it is easy to
see that A′ = A after a renaming of the states (i.e. by renaming each state (q′, q) of A′ with q′). As
a consequence we have that (A||pLE) = A and, therefore, A/ΣH ≈ A \ΣH , stating that A ∈ PTNI
(PNI, TNI, NNI, resp.). The converse implication does not hold, as it is shown in Example 4.4.2

Example 4.4 Consider the PTA A of Figure 4.6. Again we assume Inv(qi) = true for every
i ∈ [0, 4]. It is easy to see that A is PTNI secure, since A/ΣH ≈ A \ ΣH . In both A/ΣH and
A \ ΣH , a low level agent observes the single event l taken with probability 1. If we consider,
instead, the high level agent Π of Figure 4.6, the set L = {h} and assume probability p = 1

2 , we
can observe that A/ΣH 6≈ (A||pLΠ) \ ΣH . In fact, system A/ΣH always performs action l with
probability 1, while system (A||pLΠ) \ ΣH reaches a deadlock state r1 and does not perform any
visible action with probability 3

4 (as it turns out after the parallel composition of A and Π). As
a consequence, automaton A is not PTNDC secure. We also have that untime(A) ∈ PNI but
untime(A) 6∈ PNDC, unprob(A) is TNI but not TNDC, and, finally, unprob(untime(A)) ∈ NNI,
but unprob(untime(A)) 6∈ NNDC.

Proposition 4.5 and Example 4.4 show that the PTNI property is not able to detect some
potential deadlock due to high level activities, as put in evidence in [49] for the nondeterministic
setting. For this reason we resort to the PTNDC property, which implies PTNI, in order to capture
these finer undesirable behaviour.

Note that the PTAs in Figure 4.2 and Figure 4.3 are also PTNDC, this can be proven by
considering two simple classes of high level agents. For the first class we consider just an high
level agent that may synchronize with the two PTAs by performing an action h, whereas for the
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second class we consider an inactive high level agent that does not perform action h (see proof of
Proposition 4.5).

As we did for the Non Interference security properties in the previous section, now we distin-
guish the discriminating power of time and probability with the Non Deducibility on Composition
properties.

Proposition 4.6 The following implications hold:

• A ∈ PNDC ⇒ unprob(A) ∈ NNDC;

• A ∈ TNDC ⇒ untime(A) ∈ NNDC;

• A ∈ PTNDC ⇒ unprob(A) ∈ TNDC ∧untime(A) ∈ PNDC.

Proof. As for Proposition 4.2, the implications follow by the bisimulation based definitions
of the security properties and by the conservativeness of the notions of weak bisimulation. We
prove the first implication and consider a PA A. If A ∈ PNDC, by Lemma 1.1 we have that for
all E ∈ ΓH , p ∈]0, 1[, L ⊆ ΣH , unprob(A/ΣH) ≈ unprob((A||pLE) \ ΣH). Now, by definitions of
unprob, hiding and restriction, it is easy to see that unprob(A/ΣH) = unprob(A)/ΣH and that
unprob((A||pLE) \ ΣH) = unprob(A||pLE) \ ΣH . Moreover, by definition of parallel composition
for all p ∈]0, 1[ we have that unprob(A||pLE) = unprob(A)||Lunprob(E). Therefore, we have that
unprob(A)/ΣH ≈ (unprob(A)||Lunprob(E)) \ ΣH . Now, since this condition holds for each PA
E ∈ ΓH and since any NS E′ may be derived by unprob(E) for some PA E, we also have that
for all NSs E′ ∈ ΓH , unprob(A)/ΣH ≈ (unprob(A)||LE

′) \ ΣH , thus proving that unprob(A) ∈
NNDC. The proof is similar for the other cases. 2

For the PTA A in Figure 4.2, untime(A) is not PNDC, but unprob(A) ∈ TNDC. On the
contrary, for the PTA A in Figure 4.3, unprob(A) is not TNDC, but untime(A) ∈ PNDC. This
shows that also for the Non Deducibility on Composition, time and probability add discriminating
powers, as stated in the next proposition.

Proposition 4.7 The following implications hold:

• ∃ PTA A : unprob(A) ∈ TNDC ∧ untime(A) 6∈ PNDC;

• ∃ PTA A : untime(A) ∈ PNDC ∧ unprob(A) 6∈ TNDC.

If we can express both time and probability as in PTAs, we are able to describe systems
exhibiting information flow that neither a formalism with only probability nor a formalism with
only time can express. For such systems we are able to show that they are not PTNDC, even if
they are both PNDC and TNDC, and therefore we are able to reveal a new covert channel.

Proposition 4.8 ∃A : A 6∈ PTNDC ∧ unprob(A) ∈ TNDC ∧ untime(A) ∈ PNDC.

Proof. If we consider again the PTA A in Figure 4.4 we may show that untime(A) ∈ PNDC
and unprob(A) ∈ TNDC by considering only two classes of high level systems (one containing high
systems which may synchronize with A and one with systems which may not). But, as we have
seen, A 6∈ PTNI, therefore, for Proposition 4.5 we also have that A 6∈ PTNDC. 2

The Venn diagram in Figure 4.7 summarizes our results.
It is worth noticing that, as it happens for the analogous properties defined in [49, 50, 6],

the definition of the PTNDC property is difficult to be used in practice because of the universal
quantification on the high level agents. As we have seen, decidability of PTNDC depends, in fact,
on the possibility of reducing all the high level automata in ΓH to a finite case suitable for the
particular automaton A we would like to study. In [49, 50, 6] other properties have been defined,
stronger than the PTNDC property, which are easier to check. Such properties, defined for a CCS-
like process algebra, discrete-time process algebra and probabilistic process algebra respectively,
could be translated within our framework of PTAs.
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Figure 4.8: Device description with timing covert channels.

4.3 An Application

As an application we consider a network device, also studied in [50] in a timed framework, that
manages the access to a shared buffer following a mutual exclusion policy. Assuming that the
agents on the network are classified as low and high level agents, the device implements the no-
write-down no-read-up policy [52]. Intuitively, the policy states that high level users can only read
the buffer, while low level users can only write on it. Such a policy avoids direct information flow
from high level to low level, however malicious agents can exploit some covert channel in order
to transmit information indirectly. For example, a low level user could get information about the
high level activity by observing the amount of time the device is locked (non accessible by the low
level) when high agents are reading, or by observing the frequencies with which high level agents
make access on it. We would like to check whether some covert channel can be exploited, by giving
a description of the network device and then checking the PTNDC property.

In the following we consider only a low level user and a high level user communicating with the
network device. We assume that the low level user is always ready to write in the buffer, so we
consider an agent that infinitely waits for a grant from the device and then writes in the buffer.
In this manner we are considering a low level user that continuously monitors the activity of the
device. We also assume that the entire procedure of receiving a grant in the network and writing
in the buffer is executed in a time n. In Figure 4.8, we model a simple device (see the PTA B).
Actions reqH , readH , grantL and writeL model respectively high level read requests, high level
reads, low level write grants and low level writes. The set ΣH of high level actions is {reqH , readH}.
We assume Inv(q0) = Inv(q1) = true and Inv(q2) = y ≤ n. The device B is always ready to accept
an access request from the high level agent with probability 1

2 and to grant a write access to the
low level user with the same probability. Obviously, we always consider the device composed with
a high level agent according to ||pL (we assume p = 1

2 and L = {reqH , readH}). On the one hand,
when the device is composed with a high level agent that performs action reqH with probability 1,
it synchronizes with the high agent accepting his request with probability 3

4 . On the other hand,
if the high level agent does not perform reqH , the composed system performs action grantL with
probability 1. As a consequence, we can find out the following covert channels. Consider the high
agent Π1 of Figure 4.8, which executes a read request without performing the reading afterwards.
System (B||pLΠ1)\ΣH reaches a deadlock state that is not reached by B/ΣH . In this way, the high
level agent could transmit the bit 0 or 1 by alternatively blocking or not the device. Such a covert
channel can be detected by the PTNDC property, in fact we have that B/ΣH 6≈ (B||pLΠ1) \ ΣH ,
so that B 6∈ PTNDC. Another interesting covert channel arises if one considers Π2, which locks
the buffer and executes a reading only after a time k. A low level user observing the behavior of
(B||pLΠ2) \ΣH does not receive any grant access for a time k when a reqH action is performed. In
this way the high level agent could indirectly transmit value k to the low level user. We obviously
have again that B/ΣH 6≈ (B||pLΠ2) \ ΣH .

The two covert channels discussed above could be avoided by introducing a timeout mechanism
which releases the device if readH is not performed and by always releasing the device after a fixed
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Figure 4.9: Improved device descriptions.

amount of time has passed. In Figure 4.9 we show a device B′ that accepts a high level request,
and uses a clock x as timer and t as timeout. When it executes action reqH the timer is set to 0,
action readH could be performed only when x < t, and when x reaches value t the device unlocks
the buffer going back to q0. When transitions starting from a given state have disjoint conditions
we omit probabilities since their execution depends on the time configuration, rather than on the
effective probability. We assume Inv(q0) = true, Inv(q1) = Inv(q3) = x ≤ t and Inv(q2) = y ≤ n.
The timing covert channels shown in the previous case could not be exploited anymore, however
device B′ is still insecure. In fact the device is unavailable for the fixed amount of time when a
high level access is performed, and this is clearly observable by the low level user that has to wait
the termination of the high level request before obtaining access to the buffer. This represents a
typical situation where the unavailability of a shared resource can be encoded as 0 or 1 in order
to transmit data. Such a situation is captured by the PTNDC property by considering again the
automaton Π2 and assuming k < t. In fact we have again that B′/ΣH 6≈ (B′||pLΠ2) \ ΣH .

The capacity of such a covert channel could be reduced, but not totally avoided, by considering
a buffer that probabilistically locks himself without any high level request. In this manner the
low level user could not be sure whether the buffer is really locked by the high user or not. In
Figure 4.9, B′′ represents a device that behaves in such a manner, locking himself with a probability
r. Again, Inv(q0) = true, Inv(q2) = y ≤ n and Inv(q1) = Inv(q3) = Inv(q4) = x ≤ t. As we
have said, this does not avoid entirely the covert channel, but the knowledge the low level user
acquires is affected by some uncertainty. In fact, if the device is locked, the low level user could
deduce that the high user locked the device with a certain probability while with probability r the
device has locked himself for simulating a false higher user’s activity. In this case, if we resorted
to a ε-tolerant weak bisimulation (i.e. for which the probabilities of reaching a certain class from
certain configurations are allowed to be different up to the threshold ε [6]), we would be able to give
a measure of the probabilistic covert channel, by estimating the probability that the information
flow arises according to r, and therefore a measure of the security level of the device.

We can completely hide the high level activity to the low level user by partitioning into two
sessions the time in which users can access the buffer. During a low session, lasting a fixed amount
of time n, only the low level user can access the buffer, then the device goes to the high session,
where access is reserved, for the same amount of time, to the high level user. This makes impossible
for the low level user to discover something about the high level activity, since the same fixed
amount of time is reserved to the high session even if the high user does nothing. In Figure 4.10
we specify a buffer Bs that behaves in such a manner: the buffer is reserved for a time t to the low
level user and to the high level user alternatively. We assume Inv(q0) = Inv(q2) = Inv(q3) = x ≤ t
and Inv(q1) = y ≤ n. Automaton Bs is PTNDC, in fact, for every possible high level user Π,
(Bs||

p
LΠ)\ΣH ≈ Bc ≈ Bs/ΣH . Intuitively, automaton Bc of Figure 4.10 represents the automaton

resulting after the parallel composition between Bs and any high level user Π, and, therefore, Bc
is weakly bisimilar to Bs composed with any possible high level user Π. Finally, it easy to see that
Bc ≈ Bs/ΣH .
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Chapter 5

Parametric Probabilistic
Transition Systems

Real descriptions are often parametric. Actually, the design of a system may depend on certain
parameters of the environment, and concrete instantiations make sense only in the context of a
given concrete environment. These arguments also motivate the theory of parametric reasoning
about real time in [11], where Parametric Timed Automata are proposed as a generalization of the
Timed Automata in [9].

In this chapter we develop a model of Parametric Probabilistic Transition Systems. Probabil-
ities associated with transitions may be parameters, and we are interested in finding instances of
these parameters that either satisfy a given property or maximize (minimize) the probability of
reaching a certain state.

In Section 5.1 we recall some basic notions. In Section 5.2 we introduce Parametric Probabilistic
Transition Systems. In Section 5.3 we tackle the problem of existence of instances of parameters
that satisfy a given property and of finding optimal instances. In Section 5.4, as an application,
we show the model of a probabilistic non-repudiation protocol.

5.1 Basic notions

With α, β, . . . we denote parameters assuming values in the set IR of real numbers. Given a set of
parameters ∆, an instance u : ∆ → IR for ∆ is a function assigning a real value to each parameter
in ∆.

We define the set P(∆) of polynomial terms over parameters in ∆ as follows:

τ ::= c | α | τ1 + τ2 | τ1 · τ2

where τ, τ1, τ2 ∈ P(∆), c ∈ IR and α ∈ ∆. A polynomial term τ is a linear term if there exist
c0, c1, . . . , cn+1 ∈ R and α1, . . . , αn ∈ ∆ such that τ ≡ c0 + c1 · α1 + . . .+ cn · αn + cn+1.

An instance u extends to P(∆) as follows: u(c) = c, u(τ1 + τ2) = u(τ1) + u(τ2) and u(τ1 · τ2) =
u(τ1) · u(τ2).

We define the set Φ(∆) of formulae as follows:

φ ::= τ ∼ τ ′ | ¬φ1 | φ1 ∨ φ2 | φ1 ∧ φ2

where φ, φ1, φ2 range over Φ(∆), τ, τ ′ are in P(∆), and ∼∈ {<,≤,=,≥, >}. A formula φ in Φ(∆)
is linear iff all terms τ ∈ P(∆) appearing in φ are linear.
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Figure 5.1: A Parametric Probabilistic Transition System.

Let φ ∈ Φ(∆) and u be an instance; we say that u satisfies φ, written u |= φ, iff:

u |= τ ∼ τ ′ iff u(τ) ∼ u(τ ′)
u |= ¬φ1 iff u 6|= φ1

u |= φ1 ∨ φ2 iff either u |= φ1 or u |= φ2

u |= φ1 ∧ φ2 iff both u |= φ1 and u |= φ2.

A known property of formulae in Φ is the following.

Theorem 5.1 For each φ ∈ Φ(∆), it is decidable in exponential time w.r.t. the size of φ whether
there exists an instance u such that u |= φ.

5.2 Parametric Probabilistic Transition Systems

In this section we introduce the model of Parametric Probabilistic Transition Systems.

Definition 5.1 A Parametric Probabilistic Transition System (PPTS) S is a tuple (∆, Q, q0, T r, λ)
such that:

• ∆ is a finite set of parameters.

• Q is a set of states;

• q0 ∈ Q is the initial state;

• Tr ⊆ Q×Q is a set of transitions;

• λ : Tr → P(∆) is a function assigning to each transition (q, q′) a polynomial term τ repre-
senting the probability of taking that transition.

Given a PPTS S = (∆, Q, q0, T r, λ), with Par(S) we denote the set of parameters ∆ and with
Start(q) we denote the set of transitions with q as source state, namely the set {(qi, qj) ∈ Tr | qi =
q}.

Example 5.1 Let us consider the PPTS S of Figure 5.1. We have Par(S) = {α1, α2}, Start(q2) =
{(q2, q1), (q2, q3), (q2, q5)} and λ((q2, q5)) = α1 + α2.

A run of S is a (possibly infinite) sequence of steps of the form ω = q0 → q1 → . . . where
(qi, qi+1) is in Tr. The length of ω, denoted |ω|, is the number of transitions between states
performed by the run and is equal to n if ω is the finite run q0 → q1 → . . .→ qn, and ∞ otherwise.
With Pathfin(S) (resp. Pathful(S)) we denote the set of finite (resp. infinite) runs of S.
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Let k ≤ |ω|; with ω(k) we denote the state qk and with ω(k) we denote the run q0 if k = 0, and
the run q0 → q1 → . . .→ qk, otherwise.

If k = |ω|, then we say that ω is a prefix of ω′ if and only if length(ω′) ≥ k and ω = (ω′)(k).
With last(ω) we denote the state ω(k).

Definition 5.2 An instance u is well defined for a PPTS S if and only if for each transition e of
S we have that u(λ(e)) ∈ [0, 1], and, for each state q of S, it holds that

∑

e∈Start(q) u(λ(e)) = 1.

Example 5.2 The instance u1 such that u1(α1) = u1(α2) = 1
4 , and the instance u2 such that

u2(α1) = 0, u2(α2) = 1
2 are well defined for the PPTS of Figure 5.1. The instance u3 such that

u3(α1) = u3(α2) = 1 is not well defined.

Note that, since for well defined instances u we have
∑

e∈Start(q) u(λ(e)) = 1, for every state qs
with no transition to other states, we should have a self-loop transition (qs, qs) with u(λ((qs, qs))) =
1 (see states q4 and q5 in Figure 5.1). As a consequence, we have the following proposition.

Proposition 5.1 If a well defined instance u exists for a PPTS S, then for any ω ∈ Pathfin(S)
there exists ω′ ∈ Pathful(S) such that ω is a prefix of ω′.

If ω is a finite run q0 → q1 → . . . → qn and u is a well defined instance for S, then we denote
with µ(ω, u) the probability of ω according to u, defined as follows:

µ(ω, u) =

{

1 if n = 0
µ(ω(n−1), u) · u(λ((qn−1, qn))) if n > 0

Assuming the basic notions of probability theory (see e.g. [57]), the measure µu defined on the
set Pathful(S) is the unique measure such that

µu({ω′ | ω′ ∈ Pathful(S) ∧ ω is a prefix of ω′}) = µ(ω, u)

for any ω ∈ Pathfin(S).

5.3 Reachability Problem and Decidability Results

In this section we consider the problem of computing the probability of reaching a certain state.
We tackle this problem in a parametric setting, hence we consider existence, search and optimiza-
tion of a well defined instance.

Let q be a state of S and u be a well defined instance for S. With Pu(q, S) we denote the
probability of reaching the state q with the instance u, more precisely

Pu(q, S) = µu({ω ∈ Pathful(S) | ∃k : ω(k) = q}).

We note that the set {ω ∈ Pathful(S) | ∃k : ω(k) = q} is measurable, and hence the probability
Pu(q, S) is well defined.

With Adm(q) ⊆ Q we denote the set of states that can be crossed for reaching the state q from
the initial state q0 of S. More precisely,

Adm(q) = {q0, . . . , qn | q0 → . . .→ qn → q ∈ Pathfin(S) and qj 6= q, ∀j ∈ [0, n]}.

We note that q 6∈ Adm(q). Moreover with AdmTr(q, q′) ⊆ Tr we denote the set of transitions
starting from q′ and reaching a state in Adm(q) ∪ {q}, more precisely the set

AdmTr(q, q′) = {(q′, q′′) ∈ Tr | q′′ ∈ Adm(q) ∪ {q}}.
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Example 5.3 Let us consider the PPTS S of the example in Figure 5.1. We have that Adm(q4) =
{q0, q1, q2}. Moreover, we have that AdmTr(q4, q1) = {(q1, q2), (q1, q4)} and AdmTr(q4, q2) =
{(q2, q1)}.

Proposition 5.2 Let S = (∆, Q, q0, T r, λ); the probability Pu(q, S) is equal to the solution of xq0
of the following system of linear equations:

{

xq = 1
xq′ =

∑

(q′,q′′)∈AdmTr(q,q′) u(λ((q′, q′′))) · xq′′ ∀q′ ∈ Adm(q)

Proof. It derives from the fact that

Pu(q, S) =

{

1 q = q0
∑

(q0,q′)∈AdmTr(q,q0)
u(λ((q0, q

′))) · Pu(q, Sq
′

) q 6= q0

where Sq
′

= (∆, Q, q′, T r, λ). 2

5.3.1 The Problem of existence of an instance

Let S be a PPTS, q be a state of S, αq be a parameter not in Par(S) and φ be a formula in
Φ(Par(S)∪{αq}). With Set(S, q, φ) we denote the set of well defined instances u such that u |= φ
and u(αq) = Pu(q, S). The parameter αq appearing in φ represents the value of the probability
Pu(q, S).

Theorem 5.2 (Existence) For any PPTS S, state q and formula φ ∈ Φ(Par(S) ∪ {αq}), it is
decidable whether Set(S, q, φ) 6= ∅, in exponential time w.r.t. the size of S.

Proof. Given a PPTS S = (∆, Q, q0, T r, λ), a state q ∈ Q and a formula φ, we build the formula
φ̄ as follows:

φ̄ = φ ∧ αq = xq0 ∧ φ1 ∧ φ2 ∧ φ3

where φ1 is the formula

xq = 1 ∧
∧

q′∈Adm(q)

xq′ =
∑

(q′,q′′)∈AdmTr(q,q′)

λ((q′, q′′)) · xq′′ .

and φ2 is the formula
∧

e∈Tr

λ(e) ∈ [0, 1]

and φ3 is the formula
∧

q′∈Q

∑

e∈Start(q′)

λ(e) = 1.

An instance u satisfying the formula φ̄ is such that u |= φ, u(αq) = Pu(q, S) and u is well
defined for S. As a consequence Set(S, q, φ) = {u | u |= φ̄}. By Theorem 5.1 it is decidable in
exponential time to check the existence of an instance u that satisfies φ̄, hence it is also decidable
in exponential time w.r.t. the size of S to check whether Set(S, q, φ) 6= ∅. 2

Example 5.4 Let us consider the PPTS S of example of Figure 5.1. We want to know whether
there exists an instance in the set

Set(S, q5, (αq5 > α1 ∧ α1 > 0)).

This set is not empty if and only if the following formula is satisfiable:
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αq5 > α1

∧ α1 > 0
∧ αq5 = xq0
∧ xq5 = 1
∧ xq3 = xq5
∧ xq2 = (α1 + α2) · xq5 + 1

4 · xq3 + 1
4 · xq1

∧ xq1 = α1 · xq2
∧ xq0 = 1

4 · xq1 + 1
3 · α1 · xq2 + (3

4 − 1
3 · α1) · xq3 .

But the formula above is a formula in Φ, and hence, by Theorem 5.1, it is decidable to check its
satisfiability.

5.3.2 Finding a solution

We consider now the problem of finding an instance in Set(S, q, φ) such that u(αq) = c, for a
given value c ∈ [0, 1]. Actually, Theorem 5.2 answers the problem of existence of an instance but
does not give one. To find an instance in Set(S, q, φ) is a harder problem with respect to the
problem of existence of an instance. More precisely, to find an instance in Set(S, q, φ) is in general
undecidable.

Proposition 5.3 Finding an instance u such that u ∈ Set(S, q, φ) and u(αq) = c is in general
undecidable.

Proof. The problem of finding an instance u ∈ Set(S, q, φ) and u(αq) = c is equivalent to finding
a root of a general polynomial. 2

Hence, to have decidability, we must consider some restrictions.

Let τ be a term and β be a parameter. The degree of τ w.r.t. β, denoted with dg(τ, β), is the
natural n such that τ = cn · βn + . . .+ c1 · β + c0 and cn 6= 0.

Proposition 5.4 Given a PPTS S = (∆, Q, q0, T r, λ) and a state q ∈ Q, two polynomials τ1, τ2 ∈
P(Par(S)) are computable in polynomial time w.r.t. the size of S, such that, for any well defined

instance u, it holds that Pu(q, S) = u(τ1)
u(τ2)

.

Proof. By Proposition 5.2, we have that the possible values that Pu(q, S) can assume are those
of the variable xq0 of the system of equations

xq = 1 ∧
∧

q′∈Adm(q)

xq′ =
∑

(q′,q′′)∈AdmTr(q,q′)

λ((q′, q′′)) · xq′′ .

This can be solved as a system of linear equalities and hence xq0 = τ1
τ2

for some τ1, τ2 ∈ P(Par(S)).2

Example 5.5 Let us consider the PPTS S of example of Figure 5.1. We have that Pu(q5, S) =
u(τ1)
u(τ2)

where τ1 = 7 · α1 · (α1 + α2 + 1
4 ) + (12 − 3 · α1) · (

3
4 − 1

3 · α1) and τ2 = 12 − 3 · α1.

We define now the degree of a PPTS S w.r.t. a state and a parameter.

Definition 5.3 For a PPTS S, the degree of S for parameter α and state q (written dg(S, α, q)) is
equal to the value max(dg(τ1, α), dg(τ2, α)), where τ1 and τ2 are the polynomials of Proposition 5.4.

Example 5.6 Let us consider the PPTS S of example of Figure 5.1. We have that dg(S, α1, q5) =
2 and dg(S, α2, q5) = 1.
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Theorem 5.3 Given a PPTS S = (∆, Q, q0, T r, λ), a state q ∈ Q such that
(

∑

α∈Par(S) dg(S, α, q)
)

≤

2, a linear formula φ and a value c ∈ [0, 1], a well defined instance u, such that u ∈ Set(S, q, φ)
and u(αq) = c, can be found in polynomial time w.r.t. the size of S.

Proof. We consider the case
(

∑

α∈Par(S) dg(S, α, q)
)

= 2.

The cases
(

∑

α∈Par(S) dg(S, α, q)
)

= 1 and
(

∑

α∈Par(S) dg(S, α, q)
)

= 0 are much simpler than

the one considered.
By Proposition 5.4 we have to solve the equation c = τ1

τ2
, but this is equivalent to τ1− c ·τ2 = 0.

Since
(

∑

α∈Par(S) dg(S, α, q)
)

= 2, we have two cases:

1. τ1 − c · τ2 has degree equal to 2 for a parameter α ∈ Par(S) and has degree equal to 0 for
any parameter in Par(S) \ {α}.

2. τ1− c · τ2 has degree equal to 1 for parameters α1, α2 ∈ Par(S) with α1 6= α2, and has degree
equal to 0 for any parameter in Par(S) \ {α1, α2}.

In the former case, by solving the polynomial τ1 − c · τ2 of degree 2 in the space τ2 6= 0 we have
two cases. The polynomial has no solution in the interval [0, 1] in the space described by φ, and
therefore Set(S, q, φ) is empty. Otherwise, the polynomial has at least a solution in the interval
[0, 1] in the space described by φ. Let c′ and c′′ be the solutions in [0, 1] (if there exists only one
solution, then we suppose that c′ = c′′). Hence, we must find a solution in the space

(α ∈ {c′, c′′}) ∧ φ ∧
∧

e∈Tr

λ(e) ∈ [0, 1] ∧
∧

q′∈Q

∑

e∈Start(q′)

λ(e) = 1.

Now each occurrence of λ(e) is at most a polynomial of degree 2 and, therefore,
∧

e∈Tr

λ(e) ∈ [0, 1] ∧
∧

q′∈Q

∑

e∈Start(q′)

λ(e) = 1

can be substituted with a liner formula by resolving the polynomials of degree 2. Actually, each
formula c2 ·α

2+c1 ·α+c0 ∼ 0, where c2, c1, c0 ∈ R, can be written as a finite (at most 2) disjunction
of formulae of the form β ∈ I, where I is an interval.

Hence, the resulting formula is linear, and therefore finding a solution is decidable. Moreover,
since computing the determinant takes a polynomial time, the same holds for finding a solution.

Now we consider the latter case in which τ1 − c · τ2 has degree equal to 1 for parameters
α1 ∈ Par(S) and α2 ∈ Par(S), with α1 6= α2 and has degree equal to 0 for any parameter in
Par(S) \ {α1, α2}. We have that τ1 − c · τ2 = 0 is equivalent to a polynomial a1α1α2 + a2α1 +
a3α2 + a4 = 0. Therefore, we have three cases: τ1 − c · τ2 = 0 has no solutions, α1 = −a3α2−a4

a1α2+a2

with a1α2 + a2 6= 0, and a1α1 + a3 = 0.
In the first case, Set(S, q, φ) is empty. In the second case (the third one is similar), we must

find a solution in the space

(a1α2 + a2 6= 0) ∧ α1 =
−a3α2 − a4

a1α2 + a2
∧ φ ∧

∧

e∈Tr

λ(e) ∈ [0, 1] ∧
∧

q′∈Q

∑

e∈Start(q′)

λ(e) = 1.

The equation α1 = −a3α2−a4

a1α2+a2
can be substituted in

φ ∧
∧

e∈Tr

λ(e) ∈ [0, 1] ∧
∧

q′∈Q

∑

e∈Start(q′)

λ(e) = 1

and then we have a formula with the only parameter α2 and with degree at most 2. Hence we can
find a solution c2 such that (a1c2 + a2 6= 0) as done in the former case, and therefore the instance

found is (α1, α2) =
(

−a3c2−a4

a1c2+a2
, c2

)

. 2
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Example 5.7 Consider the PPTS S of Figure 5.1. We look for an instance u ∈ Set(S, q4, α1 ≥ 1
2 )

such that Pu(q4, S) = 1
6 . We have that

(

∑

α∈Par(S) dg(S, α, q)
)

= dg(S, α1, q4) + dg(S, α2, q4) =

2 + 0 = 2. Actually, Pu(q4, S) = u(τ1)
u(τ2)

, where τ1 = α2
1 + 2 · α1 − 3 and τ2 = 3 · α1 − 12.

Hence we must find a value for α1 such that u(τ1)
u(τ2)

= 1
6 , which is equivalent to solving the

equation 6α2
1 +9α1 − 6 = 0. The solutions are α1 = −2 and α1 = 1

2 . We must check whether these
solutions are admissible. First of all we require that α1 ≥ 1

2 . Hence α1 = −2 is not an admissible
solution1. Now, it is easy to check that for α1 = 1

2 , we have that λ(e) ∈ [0, 1], for all transitions e,
and

∑

e∈Start(q′) λ(e) = 1, for each state q′.

5.3.3 Finding the Maximum/Minimum instance

Now we consider the case in which one wants either to maximize or to minimize the probability of
reaching a certain state. This problem may have interesting applications in practice, as we shall
show in the next section.

Theorem 5.4 (Maximizing/Miniminizing) Given a PPTS S = (∆, Q, q0, T r, λ), a state q ∈

Q such that
(

∑

α∈Par(S) dg(S, α, q)
)

≤ 2, and a linear formula φ, it is decidable in polynomial

time w.r.t. the size of S to find an instance u such that, for each u′ ∈ Set(S, q, φ), it holds that
u(αq) ≥ u′(αq) (resp. u(αq) ≤ u′(αq)).

Proof. By following the proof of Theorem 5.3 we have that xq0 = τ1
τ2

.
Now by mimicking the proof of Theorem 5.2 it is sufficient to maximize (minimize) the function

τ1
τ2

in the space φ′ that is equal to

φ ∧ αq ∈ [0, 1] ∧
∧

e∈Tr

λ(e) ∈ [0, 1] ∧
∧

q′∈Q

∑

e∈Start(q′)

λ(e) = 1.

The maximum of τ1
τ2

is when d
dα

τ1
τ2

= 0, for any α ∈ Par(S).
We have two cases:

1. τ1 and τ2 have degree equal to 2 for a parameter α ∈ Par(S) and have degree equal to 0 for
any parameter in Par(S) \ {α}.

2. τ1 and τ2 have degree equal to 1 for some parameters α1, α2 ∈ Par(S) with α1 6= α2, and
have degree equal to 0, for any parameter in Par(S) \ {α1, α2}.

In the former case, we have that τi = aiα
2 + biα+ ci, for i = 1, 2. Hence we have that

d

dα

τ1
τ2

=
(a1b2 − a2b1)α

2 + (2a1c2 − 2a2c1)α+ (b1c2 − b2c1)

(τ2)2
.

Therefore, the maximum value can be found by studying the function

(a1b2 − a2b1)α
2 + (2a1c2 − 2a2c1)α+ (b1c2 − b2c1)

that is a function of degree 2 in the space φ′ that can be translated in a linear formula as done in
the proof of Theorem 5.3.

Since computing the terms τ1, τ2 takes a polynomial time w.r.t. the size of S, the problem of
finding a maximal (minimal) solution is polynomial time w.r.t. the size of S.

In the latter case we have that dg(τi) = a1iα1α2 + a2iα1 + a3iα2 + a4i, for i = 1, 2. Hence we
have that

d

dα1

τ1
τ2

=
(a11a32 − a12a31)(α2)

2 + (a11a42 + a21a32 − a12a41 + a22a31)α2 + (a21a42 − a22a41)

(τ2)2
.

1Note that a valuation with α1 = −2 is also not well defined.



60 CHAPTER 5. PARAMETRIC PROBABILISTIC TRANSITION SYSTEMS

We note that (a11a32 −a12a31)(α2)
2 +(a11a42 +a21a32 −a12a41 +a22a31)α2 +(a21a42 −a22a41)

is a polynomial of degree 2 on the only parameter α2. Similarly we can find d
dα2

τ1
τ2

. Hence the
maximum can be studied as in the former case. 2

5.4 An Application: Probabilistic Non-Repudiation

In this section, as an application, we model and analyze a non-repudiation protocol that employs
a probabilistic algorithm to achieve a fairness property. This protocol has been studied, from
different points of view, also in [7, 88, 91].

5.4.1 A Probabilistic Non-Repudiation Protocol

We consider a protocol that guarantees a non-repudiation service with a certain probability without
resorting to a trusted third party [112]. In particular, such a probabilistic protocol is fair up to
a given tolerance ε decided by the originator. Assume that an authentication phase precedes the
protocol. We denote by SignE(M) the encryption of message M under the private key of the
entity E and with {M}K the encryption of M under the key K. Finally, we use t to denote a time
stamp. The protocol can be described as follows (with the notation R → O : Msg we denote a
message Msg sent by R and received by O):

1. R→ O : SignR(request,R,O, t)
2. O → R : SignO({M}K , O,R, t) (= M1)
3. R→ O : SignR(ack1)
4.
a.1−p O → R : SignO(Mr, O,R, t) (= Mi)

R→ O : SignR(acki)
goto step 4

b.p O → R : SignO(K,O,R, t) (= Mn)
5. R→ O : SignR(ackn)

The recipient R starts the protocol by sending a signed, timestamped request to the originator
O. This sends to R the requested message M ciphered under the key K, and waits for the ack
from R (acki represents the acknowledgment related to message Mi). At step 4 the originator
makes a probabilistic choice according to p. At step 4a (taken with probability 1 − p) O sends to
R a random message Mr (i.e. a dummy key), receives the ack and returns to step 4, while at step
4b (taken with probability p) O sends to R the key K necessary to decrypt the message {M}K .
Upon reception of the last ack (ackn), related to the message containing the key K, the originator
terminates the protocol correctly. We suppose that each message acki has the following semantics:
R acknowledges having received message Mi from O. This could be easily obtained, for instance,
by assuming that each acki message contains an hash of message Mi.

Intuitively, the non-repudiation of origin is guaranteed by the messages M1 and Mn (signed
with the private key of O), while the non repudiation of receipt is given by the last message
SignR(ackn). If the protocol terminates after the delivery of the last ack, both parties obtain
their expected information, and the protocol is fair. If the protocol terminates before sending the
message containing the key K, then neither the originator nor the recipient obtains any valuable
information, thus preserving fairness. A strategy for a dishonest recipient consists in guessing the
last message containing the key K, verifying whether a received message contains the needed key,
and then blocking the transmission of the last ack. Therefore, for the success of the protocol, it is
necessary that the ack messages are sent back immediately. The originator decides a deadline for
the reception of each ack, after which, if the ack is not received, the protocol is stopped. Obviously,
the cryptosystem must be adequately chosen, in such a way that the time needed to verify a key,
by deciphering the message, is longer than the transmission time of an ack message. Anyway, as we
will see in the next section, a malicious recipient can try to randomly guess the message containing
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Figure 5.2: Parametric Representation of the Protocol.

the key K, and in this case the probability for the recipient of guessing the last message depends
on the parameter p chosen by the originator.

5.4.2 Parametric Analysis of the Protocol

In this section we describe the protocol by using the model of PPTSs. In particular we use
two parameters, p and q. On the one hand, we assume that the originator follows a Bernoulli
distribution with parameter p to decide either to send the real key or to send a dummy key (see
step 4 of the protocol). On the other hand, we assume that the recipient follows a Bernoulli
distribution with parameter q to decide either to send the ack message or to try to compute M by
employing the last received message. In Figure 5.2 we show a parametric Probabilistic Transition
System modeling the communication between the originator and the recipient according to the
parameters p and q.

With the transition (q0, q1) we model the recipient starting a communication with the orig-
inator by sending a request, the originator sending the first ciphered message and the recipient
acknowledging such a message. In state q1 the originator sends, with probability 1 − p, a dummy
key reaching state q2 and, with probability p, sends the last message containing K and reaches
state q3. In state q2 the recipient sends an ack to the originator with probability 1− q going back
to state q1, while with probability q the recipient uses the dummy key in order to decipher the
first message, fails and the protocol is stopped. In this case, state qF is reached. Intuitively, state
qF models a situation in which the protocol ends in a fair way (both participants receive their
expected information or neither the originator nor the recipient obtains any valuable information).
In state q3 the recipient sends the last ack with probability 1−q and fairly terminates the protocol,
and tries to decipher the first message with the last received key (in this case the correct key K)
with probability q. In this case, without sending the last ack, the recipient breaks the fairness of
the protocol (state qU represents the situation in which the protocol ends in an unfair way).

We suppose q to be a fixed constant and not a parameter, we want to find an instance for p
(chosen by the originator) that maximizes the probability of reaching state qF and minimizes the
probability of reaching state qU . In this manner the originator can choose the best value for p that
minimizes the probability that the protocol ends in an unfair way.

Let us assume as S the PPTS of Figure 5.2 (where we omitted self-loops for states qU and qF ).
We want to find a well defined instance u such that ∀u′ ∈ Set(S, qF , true) P

u(qF , S) ≥ Pu
′

(qF , S)
and Pu(qF , S) ∈ [0, 0.9] (namely, an instance that maximizes the probability of having a fair
communication with a probability in [0, 0.9]).

Following the proof of Theorem 5.4 and the system of linear equations of Proposition 5.2, we
get xqF

= p+q−2·p·q
p+q+p·q .

Now, we must find the maximum of the function f(p, q) = p+q−2·p·q
p+q+p·q . We compute the derivative

w.r.t. p and q. We have that d
dpf(p, q) = −3·q2

(p+q+p·q)2 and d
dqf(p, q) = −3·p2

(p+q+p·q)2 . Hence, the function

Pu(qF , S) is decreasing w.r.t. p for q (the point (0, 0) is a flex), and therefore, the maximum in
the space [0, 0.9] is 0.9.

Now it is sufficient to apply Theorem 5.3 to find a well defined instance u such that Pu(qF , S) =
0.9. We have that Pu(qF , S) = 0.9 is equivalent to 1

10 · p+ 1
10 · q − 11

10p · q = 0. Therefore, we have
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that p = − q
1−29·q and q ∈ {0}∪( 1

28 , 1]. A well defined instance is, as an example, p = 1
4 and q = 1

25 .

Let us consider another example where S′ is the PPTS of Figure 5.2 with q = 1
2 (namely, the

attacker throws a coin to decide whether to decipher the key or not). We want to find a well
defined instance u such that ∀u′ ∈ Set(S, qF , true) u(αqF

) ≥ u′(αqF
) (namely, an instance that

maximizes the probability of having a fair communication).
Following the proof of Theorem 5.4 and the system of linear equations of Proposition 5.2, we

get xq0 = 1
1+p . Now, we must find the maximum of the function 1

1+p , that one has for the value

of p such that d
dp

1
1+p = −1

(1+p)2 = 0. But −1 < 0 and then the function is decreasing in (−∞,∞).

Hence the maximum is for p = 0 and P (p=0)(S, qF , true) = 1. Therefore the probability of an
attack decreases if the number of messages sent by O is big. Hence the originator must choose a
value of p small enough. As an example, if the originator wants a probability of fair communication
equal to 0.999, then it is sufficient to apply Theorem 5.3 which gives 1

1+p = 0.999, and therefore

p = 0.001
0.999 .



Chapter 6

Timed Automata with Data
Structures

Systems of communicating agents can be described by automata composed in parallel and sharing
synchronization channels. Transitions labeled with a complementing channel name can be taken at
the same moment and data transmission is typically modeled by a synchronization, where global
variables are updated ([31]).

Security protocols, like distributed programs in general, are sensitive to the passage of time;
however, most methods for the formal analysis of security properties of protocols do not take time
aspects into account (see, among them, [44, 1]). The role of time in the analysis of cryptographic
protocols has only recently received some attention (see [53, 111, 31]).

Time aspects can influence the flow of messages during the execution of a protocol. For instance,
if a message does not arrive in a certain time interval, retransmissions or other behaviour should be
considered and, in this case, the protocol description should model these implementation details.
Time information can also be used within a protocol in order to enrich the information contained
in a message (for example by constructing timestamps). Finally, the timing of the message flow
may be exploited by an adversary to violate the security of the protocol.

In [111] the authors propose a model of communicating automata tailored for describing and
analyzing protocols with timing constraints and verifying their security. Each participant in the
protocol is described by a state transition diagram where transitions are labeled by events which
represent the sending of a structured message along a channel. The performance of a transition
is conditioned by the trigger of a communication event and by the temporal constraints imposed
by a delay and/or timeout. Communication is synchronous. Primitive messages (public/private
keys, identities, nonces, etc.) can be composed by using cryptographic primitives (encryption,
hashing, signature, etc.). An initial evidence function assigns each initial state the set of evidence
that is known by each participant at the beginning. Such evidence can be augmented by receiving
messages from other participants and is reset to the initial conditions every time an input state
is reached. The semantics of these descriptions is given in terms of Timed Automata, on which
properties can be verified.

In this chapter we define Systems of Data Management Timed Automata (SDMTAs). An
SDMTA consists of a finite set of elementary messages, a finite set of functions to elaborate them
and a finite set of Data Management Timed Automata (DMTAs). Each DMTA has a finite set of
channel labels, a finite set of clocks, a finite set of states (one of them is the initial state), an initial
condition and an initial knowledge, a finite set of transitions. Transitions from state to state of
a DMTA represent either an internal move with the computation of a term (which enriches the
knowledge of the automaton) or the input or the output of a term on a channel. The performance
of a transition is conditioned by the fulfillment of a constraint. Two DMTAs of a system may
perform a communication step modeling the communication of a term through a channel. Time
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elapsing is modeled by a time step of the automata of the system.
Our formalism extends the formalism of [111] to deal with a general class of distributed com-

municating systems with data structures. Note that the formalism of [111] assumes a bounded
knowledge and has the power of regular languages, while our formalism assumes an unbound knowl-
edge and, when endowed with a concept of recognized language, does accept languages which are
not regular. Differently with respect to [111], we define a direct operational semantics of SDMTAs
in terms of steps and runs, and we prove the decidability of the reachability. This allows proving
properties expressible in terms of reached states.

We then introduce the model of Cryptographic SDMTAs (CSDMTAs) as a subclass of SDMTAs.
We show how to model cryptographic protocols with CSDMTAs and give the formalization and
the decidability proof of secrecy and authentication properties. As an application we model and
analyze with CSDMTAs a version of the well-known Yahalom protocol adapted to take timeouts
and retransmissions into account.

6.1 Basic notions

Let us assume a set of X positive real variables x called clocks. A valuation over a set of clocks
is a mapping v : X → IR≥0 assigning real values to clocks. For a valuation v and a time value
t ∈ IR≥0, let v + t denote the valuation such that (v + t)(x) = v(x) + t, for each clock x ∈ X.

Let C = {C1, . . . , Cm} be a finite set, where Ci denotes a finite set of elementary messages. For
an elementary message we mean non composed/manipulated message (i.e., names are elementary
messages, lists of elementary messages are not).

Let us assume a set Υ of message variables µ that can assume values in (∪nj=1Cj)∪ IN. Given a
finite set of message variables, an instance I relates a message variable µ to a value in (∪nj=1Cj)∪IN.
Namely, I : Υ → (∪nj=1Cj) ∪ IN.

Let Ω = {f1, . . . , fn} denote a finite set of functions. Given a finite set of message variables Υ,
the set of terms T (Υ) is defined as:

τ ::= c | w | µ | f(τ1, . . . , τk)

where c ∈ Ci for some i, w ∈ IN, µ ∈ Υ is a message variable, f is a function in Ω with arity k.
We use C and Ω to represent a set of data structures and a set of functions to manipulate such

structures. In general, C may be any set of data structures of different types and Ω may be any
set of functions which represent operations on such structures. All the examples we shall use to
explain the framework focus on the application of the model to the case of cryptographic security
protocols. In such a context, the set C may contain sets of ground messages exchanged within
the protocol (for example a set of plaintext messages, a set of agent names, a set of keys...), and
the set Ω may contain the basic cryptographic primitives, as message pairing, encryption, nonce
generation, hashing, etc.

Example 6.1 Consider C = {A,M,K}, where A = {a, b, . . .} is a set of agent names, M =
{m1,m2, . . .} is a set of basic messages (i.e. a set of plaintext messages represented by bitstrings of
a fixed length) and K = {k1, k2, . . .} is a set of keys. Given a finite set of message variables Υ, we
assume Ω = {Pair,Enc,Nonce}, with domains T (Υ)×T (Υ), T (Υ)×K and (A∪Υ)× (Υ∪ IN),
respectively. Pair(τ1, τ2) denotes the concatenation of the terms τ1 and τ2, Enc(m1, k1) denotes
the encryption of message m1 with the key k1, and Nonce(a, 100) denotes a nonce of the agent a
with value 100. Nonce(µ1, µ2), where µ1, µ2 ∈ Υ are variables, may be instantiated by Nonce(a,w)
for some a ∈ A and w ∈ IN. Enc(µ, k), where µ is a variable can be instantiated by Enc(m, k)
for some m ∈ M , by Enc(a, k) for some a ∈ A, by Enc(k, k) for some k ∈ K or by Enc(w, k)
for some w ∈ IN. We remark that µ1, µ2, µ cannot be complex terms, i.e. Enc(Nonce(a, 1), k) or
Enc(Enc(m′, k′), k) are not instances of Enc(µ, k).

With V ar(τ) we denote the message variables appearing in the term τ . For example, we have
that V ar(Enc(Nonce(µ1, 100), µ2)) = {µ1, µ2}.
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We say that two terms τ and τ ′ in T (Υ) are reducible (written τ ≃ τ ′) if they have the same
structure, namely τ ≃ τ ′ if there exist µ1, . . . , µn, µ1, . . . , µn ∈ Υ such that τ = τ ′[µ1/µ1] . . . [µn/µn].

Finally, with K we denote a knowledge. A knowledge K ⊂ T (Υ) is a finite set of terms τ such
that V ar(τ) = ∅.

Given a finite set of clocks X and a finite set of message variables Υ, we define the set Φ(X,Υ)
of formulae as follows:

φ ::= true | τ ∈ K | τ = τ ′ | µ ∈ IN |
x ∼ c | x ∼ y | ¬φ | φ1 ∨ φ2 | φ1 ∧ φ2

where φ, φ1, φ2 ∈ Φ(X,Υ), τ, τ ′ ∈ T (Υ), µ ∈ Υ, x, y ∈ X, ∼∈ {<,≤,=,≥, >} and c ∈ Q.
We will write τ 6= τ ′ for ¬(τ = τ ′), τ 6∈ K for ¬(τ ∈ K), µ 6∈ IN for ¬(µ ∈ IN), and

τ ∈ {τ1, . . . , τk} for τ = τ1 ∨ . . . ∨ τ = τk. As an example, with τ ∈ Ci, for some i, we de-
note the formula

∨

m∈Ci
τ = m.

Given a term τ and an instance I, we define the instantiation of τ as I(τ) = τ ′ where τ ′ is the
term resulting after replacing each µ syntactically occurring in τ with I(µ).

Let φ ∈ Φ(X,Υ), I be an instance, v a valuation of clocks and K a knowledge; we say that I,
v and K satisfy φ, written I, v,K |= φ, in the following cases:

I, v,K |= true
I, v,K |= τ ∈ K iff I(τ) ∈ K
I, v,K |= τ = τ ′ iff I(τ) = I(τ ′)
I, v,K |= µ ∈ IN iff I(µ) ∈ IN
I, v,K |= x ∼ c iff v(x) ∼ c
I, v,K |= x ∼ y iff v(x) ∼ v(y)
I, v,K |= ¬φ1 iff I, v,K 6|= φ1

I, v,K |= φ1 ∨ φ2 iff either I, v,K |= φ1 or I, v,K |= φ2

I, v,K |= φ1 ∧ φ2 iff both I, v,K |= φ1 and I, v,K |= φ2.

Example 6.2 The formula µ1 6= µ2 ∧ µ1 ∈ K ∧ µ2 ∈ K says that in the knowledge K there are
at least two elementary messages. Formula µ ∈ K ∧ µ ∈ K, where K ∈ C denotes the set of keys,
means that in K there is at least one key.

6.2 Data Management Timed Automata

Given a finite set of clocks X and a finite set of message variables Υ, with X ′ and Υ′ we denote
new sets of clocks and message variables such that x′ ∈ X ′ and µ′ ∈ Υ′ iff x ∈ X and µ ∈ Υ,
respectively.

A System of Data Management Timed Automata (SDMTA) is a tuple A = (C,Ω, A1, . . . , Am),
where:

• C = {C1, . . . , Ck} is a set of elementary messages;

• Ω = {f1, . . . , fn} is a set of functions;

• A1, . . . , Am are Data Management Timed Automata (DMTAs).

A DMTA is a tuple A = (Σ,X,Υ, Q, q0, φ0,K0, δ), where:

• Σ is a finite set of channel labels;

• X is a finite set of clocks;

• Υ is a finite set of message variables;
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• Q is a finite set of states with q0 ∈ Q initial state;

• φ0 ∈ Φ(X,Υ) is the initial condition;

• K0 is the initial knowledge of A.

• δ is a finite set of transitions. Each transition is a tuple (q, α, φ, q′), where q, q′ ∈ Q are
the source and the target states respectively, for a ∈ Σ, α ∈ {ǫ(τ), a?(τ), a!(τ)} represents,
respectively, the internal move producing the term τ , which enriches the knowledge of A, or
the input or the output of the term τ ∈ T (Υ) on channel a, φ is a formula in Φ(X∪X ′,Υ∪Υ′).
Variables in X ∪Υ and in X ′ ∪Υ′ represent the value of variables before and after the firing
of the transition, respectively.

An example of transition is (q0, a!(µ), x < 5 ∧ µ ∈ K ∧ x′ = x ∧ µ′ ∈ IN, q1), stating that from
the initial state q0 the DMTA may reach state q1 and output a message µ when this is in K and
x < 5. The condition x′ = x means that the transition does not change the clock x, and the
condition µ′ ∈ IN means that the variable µ nondeterministically assumes a natural value after the
transition.

Given an SDMTA A = (C,Ω, A1, . . . , Am), states of A are represented by tuples (q1, . . . , qm),
where qi ∈ Ai.

6.2.1 Semantics

Given two valuations v1, v2 over X, with v1 ⊕ v2 we denote the valuation on X ∪X ′ such that for
any x ∈ X, (v1 ⊕ v2)(x) = v1(x) and (v1 ⊕ v2)(x

′) = v2(x). Given two instances I1, I2 over Υ,
with I1 ⊕ I2 we denote the instance over Υ∪Υ′ such that for any µ ∈ Υ, (I1 ⊕ I2)(µ) = I1(µ) and
(I1 ⊕ I2)(µ

′) = I2(µ).

A configuration of an SDMTA A = (C,Ω, A1, . . . , Am) whereAi = (Σi,Xi,Υi, Qi, qi0, φ
i
0,K

i
0, δ

i),
is a tuple (s1, . . . , sm) such that si = (q, v, I,K) is a configuration of the DMTA Ai with q ∈ Qi a
state of Ai, v a valuation over Xi, I an instance over Υi and K a knowledge.

Given two configurations s = (s1, . . . , sm) and s′ = (s′1, . . . , s
′
m) such that si = (qi, vi, Ii,Ki)

and s′i = (q′i, v
′
i, I

′
i,K

′
i), we have that:

• there is a ǫ-transition step from s to s′ (denoted s →τ s′) if there exist an index i and
e = (qi, ǫ(τ1), φ, q

′
i) ∈ δi such that Ii(τ1) = τ , (Ii ⊕ I ′i), (vi ⊕ v′i),Ki |= φ, K′

i = Ki ∪ {τ} and,
for all j 6= i, s′j = sj ;

• there is a communication transition step from s to s′ with the term τ (denoted s →a(τ) s
′)

if there exist two different indexes i and j, (qi, a!(τ1), φ1, q
′
i) ∈ δi and (qj , a?(τ2), φ2, q

′
j) ∈ δj

such that:

– Ii(τ1) = Ij(τ2) = τ ;

– (Ii ⊕ I ′i), (vi ⊕ v′i),Ki |= φ1 and (Ij ⊕ I ′j), (vj ⊕ v′j),Kj |= φ2,

– K′
i = Ki ∪ {τ} and K′

j = Kj ∪ {τ};

– for all k 6∈ {i, j}, it holds that s′k = sk;

• there is a time step from s to s′ through time t ∈ IR>0, written s→t s
′, if, for any i, q′i = qi,

v′i = (vi + t), I ′i = Ii, and K′
i = Ki.

With the ǫ-transition step we model the internal data manipulation executed by the DMTA
without any communication. For example, given a configuration (q, v, I,K), the transition (q, ǫ(µ), φ, q′),
where φ = Enc(µ, k) ∈ K ∧ k ∈ K, states that if (I ⊕ I ′), (v ⊕ v′),K |= φ the DMTA may decipher
a ciphertext Enc(µ, k) contained in its knowledge if also the key k is known, and then enrich the
knowledge with the instantiation I(µ).
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Figure 6.1: A System of Cryptographic Timed Automata.

A communication transition step →a(τ) models the communication of the term τ through
the channel a. There is a synchronization between two DMTAs, and they both change their
configuration by following the formula in the transition and by augmenting their knowledge. If
variables appear in the output and input terms (τ1 and τ2, respectively), they should be reducible
for transmission. In particular, we require that Ii(τ1) = Ij(τ2) (also see Example 6.3). The other
DMTAs of the system non involved in the communication remain in their original configuration.

Finally, a time step models time elapsing. When time elapses, we reasonably assume that each
DMTA Ai in the system performs a time step by changing its valuation vi.

Example 6.3 Consider the DMTAs A1 and A2 in Figure 6.1, where q0 and r0 are the initial
states of A1 and A2, respectively. If K0 is the initial knowledge of A1 and we assume that k ∈ K0,
the only communications that may happen between A1 and A2 through synchronization steps of
matching terms are either a(Nonce(b, 10)) (when x has value greater than 5) or a(k). In both
cases, the knowledge of A2 is augmented with the term received by A1.

Given a DMTA A = (Σ,X,Υ, Q, q0, φ0,K0, δ), a configuration s = (q0, v, I,K0) of A is initial
if I, v,K0 |= φ0. Given an SDMTA A = (C,Ω, A1, . . . , Am), we say that the configuration s =
(s1, . . . , sm) of A is initial iff si is an initial configuration of the DMTA Ai for all i ∈ [1,m].

A run of an SDMTA A is a finite sequence of steps σ = s0 →α1
s1 →α2

. . .→αl
sl where s0 is

an initial configuration of A, sj is a configuration of A and αj ∈ {τ, a(τ)}∪ IR>0 for each j ∈ [1, l].
A state q̄ = (q1, . . . , qm) of an SDMTA A is reachable iff there is a run σ = (s10, . . . , s

m
0 ) →α1

. . . →αl
(s1l , . . . , s

m
l ) of A such that, for some j, sij = (qi, v, I,K) for all i ∈ [1,m]. A state q of a

DMTA Ai in the SDMTA A is reachable iff there is a run σ = (s10, . . . , s
m
0 ) →α1

. . .→αl
(s1l , . . . , s

m
l )

of A such that, for some j, sij = (q, v, I,K).

6.2.2 Expressiveness

In this section we discuss the expressive power of SDMTAs. To this purpose we introduce a notion
of accepted run with respect to a set of states and a notion of language. We suppose that A has
associated a set F ⊆

⋃

i∈[1,m]Qi of final states.

Given a run r = s0 →α1
s1 →α2

. . .→αl
sl, with word(r) we denote the string a1 · . . . · al such

that, for any i, either αi = ai and αi ∈ IR≥0 or there exists τ such that αi = ai(τ). We say that
r is accepted by A if the states appearing in sl are contained in F . With L(A) we denote the set
{word(r) | r is accepted by A} .
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Figure 6.2: SDMTA for {akbhcm|k ≥ h ≥ m}.

Given a string z = a1 · . . . ·am, with untime(z) we denote the string a′1 · . . . ·a
′
m such that a′i = ǫ

if ai ∈ IR≥0 and a′i = ai otherwise.

Given a language L, with Untime(L) we denote the set {untime(z) | z ∈ L}.

Proposition 6.1 There exists an SDMTA A such that Untime(L(A)) = {akbhcm | k ≥ h ≥ m}.

Proof. In figure 6.2 we give A such that Untime(L(A)) = {akbhcm | k ≥ h ≥ m}.

The second component just receives the messages sent by the first one.

In state q0 of the first component, A generates ak. After the performance of the ǫ transition
from q0 to q1 the knowledge is equal to {fa(c1), . . . , fa(ck)} for some natural number ci such that
ci 6= cj if i 6= j.

In state q1 of the first component, A generates bh. We have that h ≤ k since we require
that fa(µ) ∈ K. After the performance of the ǫ transition from q1 to q2 the knowledge contains
{fb(c

′
1), . . . , fb(c

′
h)} for some natural number c′i such that c′i 6= c′j if i 6= j.

Finally, in state q2 of the first component, A generates cm. We have that m ≤ h since we
require that fb(µ) ∈ K. 2

Now, language {akbhcm | k ≥ h ≥ m} is not regular, while in [9] it is proven that, if L is a
language recognized by a Timed Automaton, then Untime(L) is a regular language. Therefore, by
Proposition 6.1, and since a Timed Automaton can be easily translated into a SDMTA, we have
the following result.

Corollary 6.1 SMDTAs are more expressive than Timed Automata.

As a consequence, also the model presented in [111], equivalent to the class of Timed Automata,
is less expressive than SDMTAs.

We argue that SDMTAs are incomparable with respect to Pushdown Timed Automata (see [35]).
Actually, the language used in the proof of Proposition 6.1 is not context–free. Moreover, we be-
lieve that context–free languages such as {anbn |n ≥ 1} cannot be recognized by any SDMTA. The
idea is that an SDMTA cannot check whether fa(c) ∈ K implies fb(c) ∈ K, for any possible c ∈ IN.
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6.2.3 Decidability of Reachability

We recall the definitions of clock equivalence for DMTAs. Clock equivalence (see also Section 1.3.2)
is a finite index equivalence relation permitting to group sets of valuations and to have decidability
results.

Let A be a DMTA; with CA we denote the greatest constant that appears in A.
Let us consider the equivalence relation ≈ over clock valuations containing precisely the pairs

(v, v′) such that:

• for each clock x, either ⌊v(x)⌋ = ⌊v′(x)⌋, or both v(x) and v′(x) are greater than CA, with
CA the largest integer appearing in clock constraints over x;

• for each pair of clocks x and y with v(x) ≤ CA and v(y) ≤ CA it holds that fract(v(x)) ≤
fract(v(y)) iff fract(v′(x)) ≤ fract(v′(y)) (where fract(·) is the fractional part);

• for each clock x with v(x) ≤ CA, fract(v(x)) = 0 iff fract(v′(x)) = 0.

Let [v] denote the equivalence class {v′ | v ≈ v′}. The set of equivalence classes {[v] | v is a valuation}
is finite, and with V we denote its cardinality.

Known properties of the equivalence classes are summarized in the following theorem [9].

Theorem 6.1 Given a DMTA A, let c < CA and v and v′ be two valuations; v ∈ [v′] implies that
v |= x ∼ c iff v′ |= x ∼ c. Moreover, given a class [v], the set {[v + t] | t ∈ IR≥0} is computable.

For simplicity, we prove that we can always translate an SDMTA into an SDMTA composed
by only one DMTA.

Proposition 6.2 Given an SDMTA A and a state q̄ = (q1, . . . , qm) of A, an SDMTA A′ composed
by only one DMTA with a state q̂ can be constructed such that q̄ is reachable by A iff q̂ is reachable
by A′.

Proof. It is sufficient to consider the cartesian product of the sequential components of A
and introduce two functions pair and triple in Ω. Therefore, given A = (C,Ω, A1, . . . , Am),
where Ai = (Σi,Xi,Υi, Qi, qi0, φ

i
0,K

i
0, δ

i) for i = 1, . . . ,m, we construct A′ = (C,Ω′, A), where
Ω′ = Ω ∪ {pair, triple} and A = (Σ,X,Υ, Q, q0, φ0,K0, δ). The set Σ = ∅ does not contain any
channel label, and the sets X =

⋃

iX
i, Υ =

⋃

i Υ
i and K0 =

⋃

iK
i
0 are given by the union of

the respective sets of each component Ai. The set of states Q = Q1 × . . . × Qm is given by the
cartesian product of the set of states of each Ai with q0 = (q10 , . . . , q

m
0 ) the initial state. The initial

condition of A is φ0 =
∧

i φ
i
0, and the set of transitions δ is defined as follows.

Terms of the form pair(i, τ) are used to represent the fact that τ is in the knowledge of the ith

component thanks to an ǫ transition step. Terms of the form triple(i, j, τ) are used to represent the
fact that τ is in the knowledge of the ith and jth components thanks to a communication between
i and j.

Given a formula φ, with φi we denote the formula φ where each formula of the form τ ∈ K is
replaced with pair(i, τ) ∈ K ∨

∨

j∈[1,m](triple(i, j, τ) ∈ K ∨ triple(j, i, τ) ∈ K).

In A′ we introduce a transition

((q1, . . . , q, . . . qm), ǫ(pair(i, τ)), φi, (q1, . . . , q
′, . . . qm))

if there exists a transition (q, ǫ(τ), φ, q′) of the ith component of A.
In A′ we introduce a transition

((q1, . . . , q, . . . , q
′′, . . . qm), ǫ(triple(i, j, τ)), φi ∧ (φ′)j ∧ φ̄, (q1, . . . , q

′, . . . , q′′′, . . . , qm))

if there exist two transitions (q, α1, φ, q
′) and (q′′, α2, φ

′, q′′′) of the ith and jth components, respec-
tively, such that {α1, α2} = {a!(τ), a?(τ ′)} and φ̄ expresses the set of instances I and I ′ such that
I(τ) = I ′(τ ′). 2
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Hence, from now on we suppose to have SDMTAs composed by only one sequential DMTA
performing only ǫ transitions.

With Term(A) we denote the set of terms τ appearing in the transitions of A.
Given a term τ , with Nat(τ) we denote the set of natural numbers appearing in τ . If K is a

knowledge, with Nat(K) we denote the set
⋃

τ∈KNat(τ). Moreover, given an SDMTA A, with
Nat(A) we denote the set

⋃

τ∈Term(A)Nat(τ). As an example, if the SDMTA A has the transition

(q, a!(Nonce(µ, 10)), Nonce(A, 11) ∈ K, q′), then 10, 11 ∈ Nat(A).

A term τ is simple for a set of message variables Υ if it is equal to f(µi1 , . . . , µik) with
µi1 , . . . , µik ∈ Υ. As an example, f(µ1, µ2) is simple, and f(µ1, f(µ2, µ3)) and f(1, µ2) are not.

With Ψ(Υ) we denote the set of formulae of the form
∧

µ µ ∈ IN ∧
∧

µ∈Υ µ ∼µ,µ µ with
∼µ,µ∈ {=, 6=}. As an example, ψ = (µ1, µ2, µ3 ∈ IN ∧ µ1 = µ2 = µ3) is in Ψ({µ1, µ2, µ3}).

Now, we show that an SDMTA can always be transformed into a standard form that preserves
reachability of states.

Definition 6.1 An SDMTA A = (C,Ω, (Σ,X,Υ, Q, q0, φ0,K0, δ)) is in natural standard form iff:

• C = ∅;

• φ0 =
∧

x∈X x = 0 ∧
∧

µ∈Υ µ ∈ IN ∧
∧

µ∈Υ µ = µ;

• for any (q, ǫ(τ), φ, q′) ∈ δ τ is simple for Υ and φ is of the form φ1 ∧ φ2 ∧ φ3 where φ1 is
equal to

∧n
i=1 τi ∈ K ∧

∧m
j=1 τ

′
j 6∈ K, for some simple terms τ1, . . . , τn, τ

′
1, . . . , τ

′
m on Υ ∪ Υ′,

φ2 ∈ Ψ(Υ ∪ Υ′) and φ3 is a formula on clocks X ∪X ′.

For an SDMTA in natural standard form, message variables can assume only natural values
(C = ∅). The initial condition of an SDMTA in natural standard form guarantees that clocks
are set to 0 at the beginning and all message variables assume the same natural value. Finally,
the condition on the formulas and on the terms appearing in the transitions guarantees that an
SDMTA in natural standard form only operates on simple terms, and that each transition expresses
the relation between message variables.

Proposition 6.3 Given an SDMTA A = (C,Ω, (Σ,X,Υ, Q, q0, φ0,K0, δ)) we can construct an
SDMTA A′ = (C ′,Ω′, (Σ,X,Υ, Q′, q0, φ

′
0, ∅, δ

′)) in natural standard form, with Q ⊆ Q′, such that
for any q ∈ Q, q is reachable by A iff q is reachable by A′.

Proof. We consider C ′ = ∅ and φ′0 =
∧

x∈X x = 0 ∧
∧

µ∈Υ µ ∈ IN ∧
∧

µ∈Υ µ = µ (as for
Definition 6.1). We also consider Q′ = Q∪{q0, . . . , q|K0|}. The set of transition δ′ is obtained from
the set of transitions δ as follows.

If K0 = {τ1, . . . , τn}, then we add the transitions (qn, ǫ(), φ0[µ
′/µ]µ∈Υ[x′/x]x∈X , q0) and (qi, ǫ(τi+1),

∧

x∈X x =
0, qi+1), for all i ∈ [0, n − 1]. These transitions initialize the values of the clocks, of the message
variables and of the knowledge to the initial values expressed by φ0 and K0.

Now, we delete the natural numbers in Nat(A). If Nat(A) = {n1, . . . , nk}, then we consider
c1, . . . , ck new constants and we substitute each ni with ci. Moreover we replace each µ = ni with
µ = ci, and, µ ∈ IN with µ ∈ IN ∨ µ ∈ {c1, . . . , ck}, for any µ ∈ Υ ∪ Υ′.

Let T be the set of terms appearing in the SDMTA after these operations. We can partition T
in T1, . . . , Th such that, for any τ, τ ′ ∈ T , it holds that τ ≃ τ ′ iff τ, τ ′ ∈ Ti for some i.

We then take Ω′ = {f1, . . . , fh}, and, for any τ ∈ Ti, we replace τ with the simple term
fi(µi1 , . . . , µik), where µi1 , . . . , µik is the sequence of variables occurring in τ from left to right.

Now, we replace each formula φ derived by the previous steps with the formula φ∨
∨

ψ∈Ψ(Υ∪Υ′) ψ,

and, finally, we recursively replace each transition (q, ǫ(τ), φ1∨φ2, q
′) with two transitions (q, ǫ(τ), φ1, q

′)
and (q, ǫ(τ), φ2, q

′).
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It is easy to see that such a construction of A′ guarantees that the states in Q reached by A
are the same that are reached by A′. 2

From now on, we suppose that SDMTAs are in natural standard form.

For checking reachability for Timed Automata, in [9] these are reduced to finite state machines.
We note that an unbound knowledge cannot be simulated with a finite state machine. Hence we
prove the decidability of reachability of SDMTAs by reducing the problem to the reachability
problem for Vector Addition Systems (VASs).

We recall now the model of VASs. Given two vectors w,w′ ∈ ZZn, with πi(w) we denote the
ith component of w and with w + w′ we denote the vector w′′ such that πi(w

′′) = πi(w) + πi(w
′),

for any i ∈ [1, n].

Definition 6.2 A Vector Addition System (VAS) of dimension n is a tuple S = (Q, δ) such that
Q is a finite set of states and δ ⊆ Q × ZZn × Q. A configuration is a pair (q, w) with q ∈ Q
and w ∈ INn. There exists a step from configuration (q, w) to configuration (q′, w′) (denoted with
(q, w) → (q′, w′)) if (q, w′′, q′) ∈ δ such that w′ = w + w′′.

The following theorem is proved in [75].

Theorem 6.2 Given two configurations (q, w) and (q′, w′) of a VAS S, the problem of checking
whether there exists a sequence of steps (q, w) → . . .→ (q′, w′) is decidable and EXP-SPACE hard.

We now prove the reduction result from VASs to SDMTAs.

Theorem 6.3 Given an SDMTA A and a state q of A, there exists a VAS S and two states q′

and q′′ of S such that A reaches q iff there exists a sequence of steps (q′, (0, . . . , 0)) → . . . →
(q′′, (0, . . . , 0)) of S.

Proof. First of all, we consider an extension of VASs. If S = (Q, δ) we assume δ ⊆ Q ×
2[1,n] × ZZn × Q. There exists a step from the configuration (q, w) to the configuration (q′, w′) if
(q, In,w′′, q′) ∈ δ such that w′ = w + w′′ and πi(w) > 0 for any i ∈ In.

It is obvious that, given an extended–VAS we can construct an equivalent VAS by replacing
any transition (q, In,w, q′) with two transitions (q, w′, q̂), (q̂, w−w′, q′) where q̂ is a new state and
πi(w

′) = −1 if i ∈ In and πi(w
′) = 0 otherwise. Note that, by definition, the values of w, for any

configuration (q, w), could not be smaller than 0. Therefore, the two transitions introduced above
are enough to check whether the values corresponding to indexes in In are greater than 0.

Let Ω = {f1, . . . , fk}, Q, Υ and X be the set of function symbols, the set of states, the set of
message variables and the set of clocks of A, respectively.

With T (Υ) we denote the set of terms of the form f(A1, . . . , An) such that f ∈ Ω and ∅ 6=
⋃n
i=1Ai ⊆ Υ. Given a set Υ̃ ⊆ Υ and T ⊆ T (Υ), let TΥ̃ denote the set {f((A1 ∩ Υ̃), . . . , (Ak ∩

Υ̃)) | f(A1, . . . , Ak) ∈ T}.
A set T ⊆ T (Υ) is coherent if, for any f(A1, . . . , An), f

′(A′
1, . . . , A

′
m) ∈ T and for any i ∈ [1, n]

and j ∈ [1,m], it holds that either Ai = A′
j or Ai ∩A

′
j = ∅.

The idea is that f(A1, . . . , An) represents the instance I and the term f(c1, . . . , cn) such that
ci = I(µ), if µ ∈ Ai. Hence, if Ai = ∅, then ci is different from I(µ), for any µ. Therefore,
µ1, µ2 ∈ Ai, for some i, iff I(µ1) = I(µ2). Intuitively, a set T is coherent if it defines an instance I.

A set T ⊆ T (Υ) is connected if it is coherent and, for any τ, τ ′ ∈ T , V ar(τ) ∩ V ar(τ ′) 6= ∅.
The idea is that a set is connected if the values appearing in two terms are related.

Given a connected set T ⊆ T (Υ), with [T ] we denote the set of connected sets T ′ in T such
that, given the sets of variables A1, . . . , An appearing in T , there exist sets of variables A′

1, . . . , A
′
n

such that T ′ = T [A′
i/Ai]i∈[1,n]. Intuitively, [T ] expresses the knowledge of T abstracting from

instances.
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A state of the VAS S is constructed as a tuple (q, [v], (A1, T1), . . . , (Ap, Tp)) such that q ∈ Q, v
is a valuation on X, and ∅ 6= Ai ⊆ Υ and Ti is a connected set in T (Ai), for any i, and {A1, . . . , Ap}
is a partition of Υ.

The dimension of S, denoted with U = 2|T (Υ)|, is given by the number of subsets of T (Υ). Let

g : 2T (Υ) → [1, U ] be a surjective function assigning a coordinate of the vector to each subset of
T (Υ).

The configuration ((q, [v], (A1, T1), . . . , (Ap, Tp)), w) of S expresses the configuration (q′, v′, I,K)

of A such that q = q′, v′ ∈ [v], (A1, T1), . . . , (Ap, Tp) define the instance I and w ∈ INU represents

the knowledge K that we can refer when we have the instance I. Note that the subsets of T (Υ)
referred by g and w contain terms with variables, those variables should be instantiated according
to I in order to get the knowledge K.

The set of transitions of S is constructed as follows.
To model time steps of A, we add in S transitions of the form (q, In,w, q′) where In = ∅,

w = (0, . . . , 0), q = (q, [v], (A1, T1), . . . , (Ap, Tp)), for some q, [v], Ai and Ti, and q′ = (q, [v +

t], (A1, T1), . . . , (Ap, Tp)) for some t ∈ IR≥0.
Moreover, there is a transition in S from the state (q, [v], (A1, T1), . . . , (Ap, Tp)) to the state

(q′, [v′], (A′
1, T

′
1), . . . , (A

′
r, T

′
r)), with label (In,w) if there exists a transition (q, ǫ(τ), φ1∧φ2∧φ3, q

′)
of A with φ1 =

∧n
i=1 τi ∈ K ∧

∧m
j=1 τ

′
j 6∈ K, φ2 ∈ Ψ(Υ ∪ Υ′) and φ3 a formula on clocks X ∪X ′,

such that:

• v ⊕ v′ satisfies φ3;

• there exists a coherent set T ⊆ T (Υ ∪ Υ′) and a term τ ′ = f(A1, . . . , Ah) such that τ =
f(µ1, . . . , µh), Ai is the set in which µi appears in T and it holds that:

–
⋃p
i=1 Ti = TΥ and

⋃r
i=1 T

′
i = (TΥ′) [µ/µ′]µ′∈Υ′ ;

– for any i, if τi = f(µ1, . . . , µk), then there exists f(A1, . . . , Ak) ∈ T with µj ∈ Aj , for
any j;

– for any i, if τ ′i = f(µ1, . . . , µk), then for any f(A1, . . . , Ak) ∈ T it holds that µj 6∈ Aj ,
for some j;

– for any µ1, µ2, it holds that φ2 ⇒ (µ1 = µ2) iff either µ1, µ2 ∈ Aj for some j, or, for
some i and j, there exists f(A1, . . . , Al) ∈ Ti such that µ1, µ2 ∈ Aj ;

– for any µ1, µ2, it holds that φ2 ⇒ (µ1 6= µ2) iff either µ1 ∈ Ah and µ2 ∈ Ak with h 6= k,
or, there exists no f(A1, . . . , Al) ∈ Ti such that µ1, µ2 ∈ Aj for any i and j;

• In = {g(Ti) | i = 1, . . . , p};

• if τ ′ ∈
⋃m
i=1 Ti, then w = (0, . . . , 0) and otherwise, if H = {i | V ar(Ti) ∩ V ar(τ) 6= ∅}, then

πj(w) =







−1 if g−1(j) ∈ [Ti] with Ti 6= ∅ and i ∈ H
1 if g−1(j) ∈ [{τ ′} ∪

⋃

i∈H Ti]
0 otherwise

.

The last condition models the fact that, if τ is in the knowledge (namely, τ ′ ∈
⋃m
i=1 Ti), then

the knowledge does not change (namely, w = (0, . . . , 0)). Otherwise, the insertion of τ creates
new relations among the terms in the knowledge. Actually, the natural numbers appearing in τ
can appear in other terms in the knowledge. The terms that become related when τ is inserted
are those with indices in H. Hence, the case πj(w) = −1 means that the set of connected term
Ti represented by coordinate j (namely, g−1(j) ∈ [Ti]) that has relations with τ still cannot be
activated by a certain instance. Actually, it does not express the new relations introduced by τ .
The case πj(w) = 1 means that the set of terms {τ ′} ∪

⋃

i∈H Ti, represented by coordinate j and
expressing the new relations, can be activated by a certain instance.

Hence, we have a transition in S for any step of A. Each transition updates the values of the
vector in the configuration by following the changes of the knowledge due to the step of A. Note
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that, if a transition of S models a time step of A, the knowledge is left unchanged.

Finally, we add a new state qT to S and transitions with label (In, (0, . . . , 0)) and target qT
from each state ((q, [v], (A1, T1), . . . , (Am, Tm)) with In = {g(Ti) | i = 1, . . . ,m}. Moreover, we
add e1, . . . , eU transitions such that, for each i, ei = (qT , ∅, wi, qT ), where πj(wi) = −1 if j = i and
πj(wi) = 0 otherwise. The state qT represents the state q of A, and these new transitions have the
purpose to set the vector to (0, . . . , 0).

Since the construction of S reflects precisely the behavior of each single step of A, A reaches
q iff there exists a sequence of steps in S from the configuration ((q0, [

∧

x∈X x = 0],
∧

µ,µ∈Υ µ =
µ, ∅), (0, . . . , 0)) to the configuration (qT , (0, . . . , 0)). This is easily proven by induction on the
length of the sequence ((q0, [

∧

x∈X x = 0],
∧

µ,µ∈Υ µ = µ, ∅), (0, . . . , 0)) → . . . → (qT , (0, . . . , 0)),
by considering, at the inductive step, the different cases that arise when constructing the set of
transitions of S . 2

Hence, we have the following result.

Corollary 6.2 Given an SDMTA A, it is decidable whether a state q is reachable.

Example 6.4 Consider an SDMTA composed by a DMTA A with initial condition φ0 = (x =
0 ∧ µ1 = µ2) and a transition e = (q, ǫ(f(µ1)), x < 1 ∧ f(µ1) 6∈ K ∧ µ′

1 6= µ1 = µ2 = µ′
2, q).

The set of equivalence classes is {x = 0, 0 < x < 1, x = 1, x > 1}.
As an example, from configuration ((q, x = 0, ({µ1, µ2}, ∅)), (0, . . . , 0)) we have a step with

label (0, . . . , 0) to the configuration ((q, v, ({µ1, µ2}, ∅)), (0, . . . , 0)) with v ∈ {x = 0, 0 < x <
1, x = 1, x > 1} representing a possible time step. The pair ({µ1, µ2}, ∅) means that µ1 = µ2 and
f(µ1), f(µ2) 6∈ K.

By transition e we can reach the configuration ((q, x = 0, ({µ1}, ∅)({µ2}, {f(µ2)})), w) such that
w is one in position g(f({µ1})), g(f({µ2})), g(f({µ1, µ2})), and is zero otherwise. Actually, after
the step we have that µ1 6= µ2, f(µ2) ∈ K and in the future it is possible to create three different
kind of instances such that:

1. f(µ1) ∈ K ∧ f(µ2) 6∈ K is true (since πg(f({µ1}))(w) = 1);

2. f(µ1) 6∈ K ∧ f(µ2) ∈ K is true (since πg(f({µ2}))(w) = 1);

3. f(µ1) ∈ K ∧ µ1 = µ2 is true (since πg(f({µ1,µ2}))(w) = 1).

Let us consider now the transition e′ = (q, ǫ(h(µ1)), x = 0 ∧ f(µ1) ∈ K ∧ µ′
1 = µ1 = µ2 = µ′

2, q)
which inserts the term h(µ1) in the knowledge.

Let us consider also the state ((q, x = 0, ({µ1, µ2}, f({µ1, µ2}))), w), where w is 1 in position
f({µ1, µ2}) and 0 otherwise. This state expresses that µ1 = µ2 and f(µ1) = f(µ2) is in the
knowledge (note that h(µ1) is not in the knowledge).

The transition e′ decrements the coordinate of f({µ1, µ2}) (that becomes 0) and increments that
of {h({µ1, µ2}), f({µ1, µ2})} (that becomes 1). Actually, before the step we can create an instance
for which f(µ1) is in the knowledge and h(µ1) is not, but after the step this is not possible.

This is necessary to deal with conditions of the form f(µ1) ∈ K ∧ g(µ1) 6∈ K.

6.3 Modeling Cryptographic Protocols with SDMTAs

Security protocols are sensitive to the passage of time since time aspects can influence the flow of
messages during the execution of a protocol.

On the one hand, timeouts may be integrated within the protocol and retransmissions or other
behaviour can be considered. In this case, the description of the protocol should model these
implementation details. On the other hand, time information can be used within a protocol in
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order to enrich the information contained in a message. This kind of application may be very useful,
for example, when generating timestamps. Finally, one should also be aware that the timing of the
message flow may be exploited by an adversary to violate the security of the protocol.

In this section we define an instantiation of SDMTAs to the case of cryptographic protocols
(CSDMTAs). We formalize intruder’s capabilities and we a give the definitions of secrecy and
authentication properties for cryptographic protocols within this framework. Then we study the
Yahalom protocol by modeling each principal of the protocol and the intruder with DMTAs. The
execution of the protocol is modeled by the resulting CSDMTA.

Definition 6.3 A Cryptographic SDMTA (CSDMTA) is an SDMTA AC = (C,Ω, A1, . . . , Am, I),
where C and Ω are defined as in Example 6.1, DMTAs Ai model the principals in the protocol, and
I is the DMTA modeling the intruder.

In the following, we give a formalization of a classical Dolev–Yao style intruder [44].

Definition 6.4 Given a CSDMTA AC = (C,Ω, A1, . . . , Am, I), where DMTAs Ai = (Σi,Xi,Υi, Qi, qi0, φ
i
0,K

i
0, δ

i)
model the principals in a cryptographic protocol, we say that I = (Σ,X,Υ, Q, q0, φ0,K0, δ) is the
intruder for AC iff:

• Σ = ∪mi=1Σ
i;

• X = {x};

• Q = {q0};

• K0 is given by the initial public information necessary for the execution of the protocol;

• (q0, ǫ(), x
′ = 0, q0) ∈ δ′;

• for all i ∈ [1,m], if either (q, a!(τ), φ, q′) ∈ δi or (q, a?(τ), φ, q′) ∈ δi, then (q0, a?(τ
′), x′ =

0, q0) and (q0, a!(τ
′), τ ′ ∈ K ∧ x′ = 0, q0) are in δ, where τ ≃ τ ′;

• for all i ∈ [1,m], if Pair(τ1, τ2) is a subformula of τ with (q, a!(τ), φ, q′) ∈ δi, then both
(q0, ǫ(τ

′
1), Pair(τ

′
1, τ

′
2) ∈ K ∧ x ≥ tu ∧ x′ = 0, q0) and (q0, ǫ(τ

′
2), Pair(τ

′
1, τ

′
2) ∈ K ∧ x ≥

tu ∧ x
′ = 0, q0) are in δ, where τ1 ≃ τ ′1, τ2 ≃ τ ′2 and tu is a constant;

• for all i ∈ [1,m], if Pair(τ1, τ2) is a subformula of τ with (q, a?(τ), φ, q′) ∈ δi, then (q0, ǫ(Pair(τ
′
1, τ

′
2)), τ

′
1 ∈

K ∧ τ ′2 ∈ K ∧ x ≥ tp ∧ x
′ = 0, q0) ∈ δ, where τ1 ≃ τ ′1 ∧ τ2 ≃ τ ′2 and tp is a constant;

• for all i ∈ [1,m], if Enc(τ1, τ2) is a subformula of τ with (q, a!(τ), φ, q′) ∈ δi, then (q0, ǫ(τ
′
1), Enc(τ

′
1, τ

′
2) ∈

K ∧ τ ′2 ∈ K ∧ x ≥ td ∧ x
′ = 0, q0) ∈ δ, where τ1 ≃ τ ′1, τ2 ≃ τ ′2 and td is a constant;

• for all i ∈ [1,m], if Enc(τ1, τ2) is a subformula of τ with (q, a?(τ), φ, q′) ∈ δi, then (q0, ǫ(Enc(τ
′
1, τ

′
2)), τ

′
1 ∈

K ∧ τ ′2 ∈ K ∧ x ≥ te ∧ x
′ = 0, q0) ∈ δ, where τ1 ≃ τ ′1, τ2 ≃ τ ′2 and te is a constant;

With such a definition of a single state intruder, we assume that principals of the protocol
use only public channels, therefore the intruder may intercept each message exchanged within the
network and spread any information. This is modeled by taking Σ as the set containing all channel
names appearing in the automata Ai and by adding an input transition to the intruder for any
output transitions of any Ai. Viceversa, an output transition is added to the intruder for any
input transition of any Ai. Moreover, we give the intruder classical Dolev-Yao capabilities such as
extraction of a term from a pair, pairing of two terms, and encryption and decryption of terms,
assuming that the key is known. Note that, according to some given algorithms, this operations
may require some amount of time to be performed. Therefore, for each of those transitions,
we require that the value of the clock x is equal or greater than the constants tu, tp, td and te
representing, respectively, the time needed for extracting a term from a pair, for pairing two terms,
for deciphering an encrypted term and for encrypting a term. Finally, with the empty ǫ-transition
the intruder may nondeterministically instantiate variables by modifying its actual instance. Note
that by performing such a transition no messages are added to the knowledge.
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6.3.1 Security Properties

Many security properties may be defined in order to analyze cryptographic protocols (among them,
secrecy, authentication, integrity, fairness, anonymity, non-repudiation, etc.).

In this chapter we focus on the definition of secrecy and authentication properties for our
framework. Intuitively, a term is secret to a principal if it never appears within its knowledge
(see [1, 51]), while a principal A truly authenticates to a principal B if whenever B thinks to
communicate with A, B is really communicating with A.

For specifying and verifying the secrecy property, we require that a term τ , that should be kept
secret to a set of principals P , does never appear within the knowledge of a principal in the set P .

Definition 6.5 Given a CSDMTA AC = (C,Ω, A1, . . . , Am, I), a term τ with V ar(τ) = ∅ and a
set of principals P ⊆ {A1, . . . , Am, I}, we say that τ is P -secret for any principal in P iff there
exists no run σ = s0 →α1

s1 →α2
. . .→αl

sl of AC, with si = (sA1
, . . . , sAm

, sI) for some i ∈ [0, l]
and sj = (q, I, v,K) for some j ∈ P such that τ ∈ K.

Proposition 6.4 Given a CSDMTA AC = (C,Ω, A1, . . . , Am, I), it is decidable whether a term τ
with V ar(τ) = ∅ is P -secret for a set of principals P ⊆ {A1, . . . , Am, I}.

Proof. We build the CSDMTA AC′ = (C,Ω, A′
1, . . . , A

′
m, I

′) such that for each DMTA A 6∈ P ,
A′ = A and for each A = (Σ,X,Υ, Q, q0, φ0,K0, δ) ∈ P , A′ = (Σ,X,Υ, Q ∪ qs, q0, φ0,K0, δ ∪ δs),
where qs 6∈ Q and δs = δ ∪ {(q, ǫ(τ), τ ∈ K, qs) | q ∈ Q}. Now, for each DMTA in P , we have
a special transition reaching the special state qs when the term to be kept secret appears in its
knowledge. Therefore, we can say that the term τ is P -secret for AC if no qs can be reached
in the CSDMTA AC′. Thus, by the decidability of state reachability given in Corollary 6.2, also
P -secrecy is decidable. 2

In the literature several authentication flaws are defined (see, for example, [34, 1, 96]). The
authentication failure that we will define in our framework is inspired by Lowe [96]. For specify-
ing and verifying the authentication property, we require that whenever the principal B ends a
communication protocol with the principal A, then A had previously started the communication
protocol.

In order to formally define the authentication property for the model of CSDMTAs, we may
assume that, given a CSDMTA AC = (C,Ω, A1, . . . , Am, I) and two principals Ai, Aj , whenever
Ai starts a communication protocol with Aj , it reaches the state qSij

, and that whenever Aj ends
the protocol with Ai, it reaches the state qEij

. This property can be defined very easily within our
model by requiring that for each run of a CSDMTA, whenever the state qEij

is reached, then the
state qSij

was previously crossed. Intuitively, this means that any closing event qEij
is preceded

by a starting event qSij
. In fact, if Aj reaches the state qEij

without Ai reaching state qSij
, then

it means that another principal, simulating to be Ai, started and performed a complete session of
the communication protocol with Aj .

Definition 6.6 Given a CSDMTA AC = (C,Ω, A1, . . . , Am, I), and two principals Ai, Aj, we
say that the principal Ai truly authenticates to principal Aj, if there exists no run σ = s0 →α1

s1 →α2
. . . →αl

sl of AC, with configurations sk = (skA1
, . . . , skAm

, skI ) for k ∈ [0, l], such that
spAj

= (qEij
, Ip, vp,Kp) and srAj

= s0Aj
or srAj

= (qEij
, Ir, vr,Kr) for some p, r with r < p and

sqAi
6= (qSij

, Iq, vq,Kq) for all q ∈ [r, p].

Proposition 6.5 Given a CSDMTA AC = (C,Ω, A1, . . . , Am, I), it is decidable whether a princi-
pal Ai truly authenticates to principal Aj.

Proof. We build the CSDMTA AC′ = (C,Ω, A1, . . . , A
′
i, . . . , A

′
j , . . . , Am, O, I). On the one

hand, given Ai = (Σ,X,Υ, Q, q0, φ0,K0, δ), we have A′
i = (Σ,X,Υ, Q ∪ qrun, q0, φ0,K0, δ

′), where
qrun 6∈ Q and δ′ is obtained by replacing each transition (qSij

, α, φ, q) ∈ δ with the two tran-
sitions (qSij

, run!(),
∧

x∈X x
′ = x ∧

∧

µ∈Υ µ
′ = µ, qrun) and (qrun, α, φ, q). On the other hand,
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given Aj = (Σ,X,Υ, Q, q0, φ0,K0, δ), we have A′
j = (Σ,X,Υ, Q ∪ qcom, q0, φ0,K0, δ

′), where
qcom 6∈ Q and δ′ is obtained by replacing each transition (qEij

, α, φ, q) ∈ δ with the two tran-
sitions (qEij

, commit!(),
∧

x∈X x
′ = x ∧

∧

µ∈Υ µ
′ = µ, qcom) and (qcom, α, φ, q). We assume that

run and commit are special unused labels. Therefore, every time the DMTA Ai starts a run of
the communication protocol it performs a transition with label run, while every time the DMTA
Aj commits the ending of the communication it performs a transition with label commit.

Now, the new principal O has the task to observe the run and the commit transitions performed
by Ai and Aj . Formally, O = ({com, run}, ∅, ∅, {o0, o1, oAutF }, o0, true, ∅, δ0) where δo is composed
by the four transitions (o0, run?(), true, o1), (o0, commit?(), true, oAutF ), (o1, run?(), true, o1) and
(o1, commit?(), true, o0).

Hence, if a commit transition is performed without being preceded by a run transition (thus
violating the authentication property), the observer O will reach state oAutF .

Therefore, we can say that, given the protocol modeled by AC, the principal Ai truly authen-
ticates to the principal Aj if the state oAutF can not be reached in the CSDMTA AC′. Thus,
by the decidability of state reachability given in Corollary 6.2, also the authentication property is
decidable. 2

Now, we can use the framework of CSDMTAs to model and analyze a real cryptographic
protocol in a timed setting.

6.3.2 The Yahalom Protocol

The Yahalom protocol [25] is designed for the distribution of a fresh symmetric key shared between
two users. The protocol resorts to a trusted server, and each user is assumed to share a symmetric
key with the server. Here we consider a strengthened version of the Yahalom protocol proposed by
Paulson in [114]. In the standard protocol notation, we denote with A→ B : Msg a message Msg
sent by A and received by B, with {Msg}K we denote the encryption of the message Msg under
the key K. If A, B and S are the principals of the protocols (with S the trusted server), Na and
Nb are fresh nonces and Kas, Kbs and Kab are symmetric keys shared by the principals in the
subscript, the Yahalom protocol can be described as follows:

1. A→ B : A,Na
2. B → S : B,Nb, {A,Na}Kbs
3. S → A : Nb, {B,Kab,Na}Kas, {A,B,Kab,Nb}Kbs
4. A→ B : {A,B,Kab,Nb}Kbs, {Nb}Kab

It is also assumed that principal A only knows elements in the set {A,B, S,Kas}, the knowledge
of principal B is given by {B,S,Kbs}, the trusted server S knows {A,B,Kas,Kbs}.

User A starts the protocol by communicating to B its intention to share a new session key with
it (step 1). User B generates a fresh nonce Nb and creates a new term containing the identity of
A and its nonce Na encrypted with the key Kbs shared with the trusted server. User B sends
its identity, the fresh nonce Nb and the encrypted term to the server (step 2). Server S deciphers
the encrypted term, obtains the identity of A and generates a new fresh key Kab. It also builds
two terms encrypted with Kas and Kbs, and sends the whole message to A (step 3). Finally, A
deciphers the first encryption and checks whether it contains nonce Na. If this is the case, A sends
to B the second term encrypted with Kbs and mutually authenticates to B by sending nonce Nb
encrypted with the fresh session key (step 4).

The basic requirements that this protocol must satisfy are the secrecy of the key Kab (in every
session, the value of Kab must be known only by the participants playing the roles of A, B and
S) and a proper authentication of the principal A to the principal B.

In a timed setting, the protocol can be adapted to take timeouts and retransmissions into
account. In step 1, after sending its message, A may start a timer while waiting for the message
of step 3. If the timeout occurs, A may retransmit its message (even the same nonce Na can be
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resent as it was already sent in clear). As some amount of time must pass while B and S receive
and elaborate messages, if A receives an answer too early, this might signal some misbehaviour as,
for example, the reception of a faked message from the intruder. Therefore, if we suppose that A
knows the encryption and decryption times of B and S, we might adapt the Yahalom protocol to
take time into account. In a formalism where time aspects are not considered this would not be
possible.

6.3.3 Specification of the Yahalom Protocol through SDMTAs

Principal S

Principal B

Principal A

hq0- -c!(a, N
µA
1

a )

µA
1

∈ IN ∧ t′ = 0∧

N
µA
1

a 6∈ K

hq1

-ǫ(abort)

t > to

6

ǫ(retr)

t > to

-
c?(N

µA
2

b , {b, µA
3 , N

µA
1

a }kas , {a, b, µA
3 , N

µA
2

b }µA
4

)

N
µA
2

b
6∈ K ∧ µA

2
∈ IN ∧ µA

3
, µA

4
∈ K ∧ tmin ≤ t ≤ to ∧ x′ = 0

hq2 -
ǫ(b, µA

3 , N
µA
1

a )

kas ∈ K ∧ x = Adec ∧ x′ = 0

hq3 -
ǫ({N

µA
2

b }µA
3

)

x = Aenc

hq4

� c!({a, b, µA
3 , N

µA
2

b }µA
4

, {N
µA
2

b }µA
3

)hq5

?

ǫ(again), true

hr0- -
c?(µB

1 , N
µB
2

µB
1

)

N
µB
2

µB
1

6∈ K ∧ µB
2

∈ IN ∧

µB
1

∈ A ∧ y′ = 0

hr1
-

ǫ({µB
1 , N

µB
2

µB
1

}kbs
)

kbs ∈ K ∧ y = Benc

hr2 -
c!(b, N

µB
3

b , {µB
1 , N

µB
2

µB
1

}kbs
)

µB
3

∈ IN ∧ N
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3

b
6∈ K

hr3 -
c?({µB

1 , b, µB
4 , N

µB
3

b }kbs
, {N

µB
3

b }µB
4

)

µB
4

∈ K

hr4

6

ǫ(again), true
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Figure 6.3: CSDMTA descriptions of the principals of the Yahalom protocol.

We model the execution of the Yahalom protocol through a CSDMTA AC = (C,Ω, A,B, S, I),
where A, B and S are the DMTAs representing the principal A, the principal B and the trusted
server S, respectively, while I is the intruder as specified in Definition 6.4.

The principals in the protocol are specified by the following DMTAs, graphically represented
in Figure 6.3:

A = ({c}, {x, t},ΥA, QA, q0, φ
A
0 , {a, b, s, kas}, δ

A);
B = ({c}, {y},ΥB , QB , r0, φ

B
0 , {b, s, kbs}, δ

B);
S = ({c}, {z},ΥS , QS , u0, φ

S
0 , {a, b, s, kas, kbs}, δ

S).

We assume that all communications happen on the only public channel c. All initial formulas
φi0 reset to 0 the clocks of the DMTA i and set message variables to a random value. All principals
i ∈ {A,B, S} have the set of variable messages Υi = {µi1, . . . , µ

i
6}.

For readability, in Figure 6.3 we use the notation Nµ′

µ for Nonce(µ, µ′); τ, τ ′ for Pair(τ, τ ′)
and {τ}µ for Enc(τ, µ). Moreover, we suppose that when a message (τ1, . . . , τn) is send/received,
τ1, . . . , τn fall in the knowledge (this is simply implementable by a finite sequence of ǫ transitions).
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In the figure, for all principals, we omit the condition ∀µ ∈ Υi µ′ = µ from transition guards,
but we assume that it holds for all transitions but the transitions with label ǫ(again), true, where
the guard true means that message variables assume a value nondeterministically.

Note that K on a transition is intended to refer to the knowledge in the configuration from
which the transition is performed.

If we do not consider the intruder, which is always capable of intercepting all messages, the
guarantee that each message sent within the network will be received by the right participant is
given by the reducibility of the terms sent.

The protocol is started by A that sends a message a,N
µA

1
a , where N

µA
1

a is a fresh unused nonce,

and starts waiting for a reply from S. In the formula on this transition, N
µA

1
a should not be in

the knowledge of A. When A sends the message to B it also resets a timer t to 0, and a timeout
can be fixed (in the figure it is fixed to the value to). Moreover, we assume that A knows the
encryption/decryption time of B and S, and hence it does not expect to receive a message before
time tmin.

After B receives the message from A, it checks whether the nonce is unused, generates a fresh
nonce, and builds the encrypted terms it will send to S. Note that Benc is a constant representing
the time needed by B for encrypting a term.

When S receives the term from B it deciphers the encrypted term and builds the ciphered
terms it should send to A. Again, Sdec and Senc are constant values representing the time needed
by S to decipher and cipher a term.

Note that the key chosen by S through the instantiation of the variable µS6 is fresh (since it
does not appear in the knowledge of S, it was not chosen before).

When S finishes to elaborate the messages, it sends to A the message containing the new fresh
key in the two subterms ciphered with kas and kbs, respectively.

If A receives such a message before the timeout has expired, it extracts the new fresh key and
uses it to cipher the nonce sent by B to S, and then sends to B the ciphered nonce together with
the term containing the fresh key built by S for B.

Some policies can be implemented when A does not receive an answer before the timeout expires.
In Figure 6.3, we considered a couple of them (see the dashed transitions from q1). In one case,
A may think that B or S are ”down” and abort the execution of the protocol (dashed transition
to state q5). In the other case, A may think that its first message was lost, and retransmits its
first message (dashed transition to state q0). With our methodology, both policies are proved to
be secure.

Given the description of the Yahalom protocol through the model of CSDMTA, we can, in
fact, prove the secrecy for the fresh generated key Kab (the intruder is not be able to deduce any
information about the new session key). In particular we require that after the generation of the
key (state u3 of S) the key I(µS6 ) is {I}-secret for the CSDMTA AC modeling the execution of the
protocol.

We can also prove that the principal A truly authenticates to the principal B (during the
execution of the communication protocol no other principal is able to simulate of being A).

These properties can be easily verified through the reachability proof method, as we have shown
in Example 6.4.

Let us consider a variant of the protocol in which a second timer is set by B after sending its
message at step 2. In this case, if a timeout occurs, the retransmission decision is more delicate.
It is not clear whether B should resend the original message, should send a new nonce or should
abort. Intuitively, the nonce Nb could be reused. In fact, if we implement such a retransmission
policy and we check again the secrecy and authentication properties, we obtain that the protocol it
still secure, thus confirming that, in this case, retransmission of the same message by B is secure.
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Chapter 7

Automatic Analysis of a
Non-Repudiation Protocol

Repudiation is defined as denial by one of the entities involved in a communication of having
participated in all or part of the communication. One speaks of repudiation of the origin if the
originator of a message denies having sent the message, and of repudiation of receipt if the recipient
of the message denies having received the message.

Protocols have been defined which ensure non-repudiation by making use of a trusted third
party in the communication. Protocols involving no third party have been proposed in fault-
less scenarios. Markowitch and Roggeman [112] give the probabilistic protocol (introduced in
Section 5.4.1) which achieves fair non-repudiation services without the need of a third party and
without further assumptions. In particular, the probabilistic protocol is fair up to a given tolerance
ε. This tolerance depends on the values chosen for various parameters of the protocol.

In [7], the protocol is described by means of a probabilistic process algebra and analyzed, in an
untimed setting, through a notion of probabilistic weak bisimulation. In this chapter we translate
into PRISM descriptions [119] the Probabilistic Timed Systems modeling the protocol. We shall
estimate how the tolerance varies when the parameters of the protocol are varied.

In Section 7.1 we recall Probabilistic Timed Systems. In Section 7.2 we use the Probabilis-
tic Timed Systems to model the protocol. In Section 7.3 we translate our model into PRISM
descriptions. In Section 7.4 we show the results obtained by running the PRISM model checker.

7.1 Probabilistic Timed Systems

We give a definition of Probabilistic Timed Systems that is a subclass of Probabilistic Timed
Automata (see Section 2.1) assuming discrete time domain. Let us assume a set X of integer
variables, with a subset Y of variables called clocks. A valuation over X is a mapping v : X → ZZ
assigning natural values to clocks and integer values to variables in X \ Y . For a valuation v and
a time value t ∈ IN, let v + t denote the valuation such that (v + t)(x) = v(x), for each integer
variable x ∈ X \ Y , and (v + t)(y) = v(y) + t, for each clock y ∈ Y . The set of constraints over
X, denoted Φ(X), is defined by the following grammar, where φ ranges over Φ(X), x ∈ X, c ∈ ZZ
and ∼∈ {<,≤,=, 6=, >,≥}:

φ ::= x ∼ c |φ ∧ φ | ¬φ |φ ∨ φ | true

We write v |= φ when the valuation v satisfies the constraint φ. Formally, v |= x ∼ c iff v(x) ∼ c,
v |= φ1∧φ2 iff v |= φ1 and v |= φ2, v |= ¬φ iff v 6|= φ, v |= φ1∨φ2 iff v |= φ1 or v |= φ2, and v |= true.

An assignment over X is a set of expressions either of the form x′ = c or of the form x′ = y+ c,
where x, y ∈ X and c ∈ ZZ.
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With Ass(X) we denote the set of sets of assignments {x′1 = ρ1, . . . , x
′
n = ρn} such that xi ∈ X

and xi 6= xj , for any i 6= j.
Let B ∈ Ass(X); with v[B] we denote the valuation resulting after the assignments in B. More

precisely, v[B](x) = c if x′ = c is in B, v[B](x) = v(y)+ c if x′ = y+ c is in B, and v[B](x) = v(x),
otherwise.

A Probabilistic Timed System A is a tuple (Σ,X,Q, q0, δ, γ, π), where:

• Σ is a finite alphabet of actions. With τ ∈ Σ we denote the silent or internal action.

• X is a finite set of variables with a subset Y of clocks.

• Q is a finite set of states and q0 ∈ Q is the initial state.

• δ ⊆ Q× Σ × Φ(X) ×Ass(X) ×Q is a finite set of transitions. With δ(q), we denote the set
of transitions starting from state q. More precisely, δ(q) = {(q1, α, φ,B, q2) ∈ δ | q1 = q}.

• γ is an interval function such that for each e = (q1, α, φ,B, q2) ∈ δ, it holds that γ(e)
is a closed interval of naturals. With |γ(e)| we denote the natural value u − l + 1, where
γ(e) = [l, u]. Intuitively, γ(e) represents an interval of time within which the time t when
the transition e will be performed is probabilistically chosen. It must also hold that the
constraint φ is true during the interval γ(e).

• π is a probability function such that for each state q and transition e ∈ δ(q), it holds that
π(e) · 1

|γ(e)| is the probability of performing the transition e from state q in a generic time t

in γ(e). Hence, we have a uniform distribution for time t, since for each time t ∈ γ(e) the
probability is fixed to π(e) · 1

|γ(e)| . Therefore we require that for each state q it holds that
∑

e∈δ(q) π(e) ∈ {0, 1}.

A configuration of A is a pair (q, v), where q ∈ Q is a state of A, and v is a valuation over X.
The set of all the configurations of A is denoted with SA.

There is a step from a configuration s1 = (q1, v1) to a configuration s2 = (q2, v2) through action

a ∈ Σ, after t ∈ IN time units, written s1
(a,t)
−→ s2, if there is a transition e = (q1, a, φ,B, q2) ∈ δ such

that (v1 + t) |= φ, v2 = (v1 + t)[B] and t ∈ γ(e). With prob(s1
(a,t)
−→ s2) we denote the probability

∑

e∈E π(e) · 1
|γ(e)| , where E is the set of transitions that could have triggered the step s1

(a,t)
−→ s2,

namely the set {e = (q1, a, φ,B, q2) ∈ δ | (v1 + t) |= φ ∧ v2 = (v1 + t)[B] ∧ t ∈ γ(e)}.

If s is a configuration, then with Adm(s) we denote the set of steps s
(a,t)
−→ s′. The configuration

s is called terminal iff Adm(s) = ∅.

An execution fragment starting from s0 is a finite sequence of steps σ = s0
(a1,t1)
−→ s1

(a2,t2)
−→

s2
(a3,t3)
−→ . . .

(ak,tk)
−→ sk such that s0, s1, . . . , sk ∈ SA, a1, a2, . . . , ak ∈ Σ. We define last(σ) = sk,

|σ| = k and σj the sequence of steps s0
(a1,t1)
−→ s1

(a2,t2)
−→ . . .

(aj ,tj)
−→ sj , where j ≤ k. Moreover we

define the following probability

P (σ) =







1 if k = 0

P (σk−1) · prob(sk−1

(ak,tk)
−→ sk)

∑

g∈Adm(sk−1)
prob(g)

if k > 0
.

The execution fragment σ is called maximal iff last(σ) is terminal. We denote with ExecFrag(s)
the set of execution fragments starting from s.

An execution is either a maximal execution fragment or an infinite sequence s0
(a1,t1)
−→ s1

(a2,t2)
−→

. . ., where s0, s1 . . . ∈ SA, a1, a2, . . . ∈ Σ. We denote with Exec(s) the set of executions starting
from s. Finally, let σ ↑ denote the set of executions σ′ such that σ ≤prefix σ

′, where prefix is the
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usual prefix relation over sequences. Assuming the basic notions of probability theory (see e.g.
[57]) we define the probability space on the executions starting in a given configuration s ∈ SA as
follows. Let Exec(s) be the set of executions starting in s, ExecFrag(s) be the set of execution
fragments starting in s, and ΣF (s) be the smallest sigma field on Exec(S) that contains the basic
cylinders σ ↑, where σ ∈ ExecFrag(s). The probability measure Prob is the unique measure on
ΣF (s) such that Prob(σ ↑) = P (σ).

7.1.1 Parallel composition

Given two probabilistic timed systems A1 and A2, and given the set L = ΣA1

⋂

ΣA2
, where ΣAi

is the set of actions of the system Ai, we define the parallel composition of A1 and A2, denoted
A1||

pA2, where p ∈ [0, 1]. Intuitively p represents the different advancing speeds for the two
systems. The set of states of A1||

pA2 is given by the cartesian product of the states of the two
systems A1 and A2. Given a state (r, q) of A1||

pA2, the set of transitions starting from (r, q) is
obtained by the following rules:

• If from state r the system A1 has a transition e = (r, a, φ,B, r′) with action a 6∈ L and
probability p′, A1||

pA2 has a transition ((r, q), a, φ,B, (r′, q)) with probability p·p′ and interval
γ(e).

• If from state q the system A2 has a transition e = (q, a, φ,B, q′) with action a 6∈ L and
probability p′, A1||

pA2 has a transition ((r, q), a, φ,B, (r, q′)) with probability (1− p) · p′ and
interval γ(e).

• If from state r the system A1 has a transition e = (r, a, φ1, B1, r
′) with action a ∈ L and

probability p′, and from state q the system A2 has a transition e′ = (q, a, φ2, B2, q
′) with

probability p′′ and B1 ∪ B2 ∈ Ass(X), then A1 and A2 synchronize and A1||
pA2 has a

transition ((r, q), a, φ1 ∧ φ2, B1 ∪B2, (r
′, q′)) with probability p · p′ + (1− p) · p′′ and interval

γ(e) ∩ γ(e′).

When we omit parameter p from the composition operator we assume the two systems to have the
same advancing speeds, and hence p equal to 1

2 .

7.2 Modeling the Non-Repudiation Protocol with PTSs

In this section we use the model of Probabilistic Timed Systems to formally describe the protocol
seen in Section 5.4.1. When no constraint is put on a transition we assume it will be taken
instantly. Moreover, if for the transition starting from a certain state q we omit probabilities,
then the transitions with source q are equiprobable. Hence, if a state has only one transition e,
then π(e) = 1, and, if a state has two transitions e and e′, then π(e) = π(e′) = 1

2 . We start
with introducing the Probabilistic Timed Systems modeling an originator and a recipient behaving
correctly. The originator (Figure 7.1) is always ready to start a communication by accepting a
request, sending the first message containing M encrypted with K (action firstmes) and receiving
the first ack (see steps 1, 2 and 3 of the protocol in Section 5.4.1). Then, in state q3, with probability
1− p, it sends a random message reaching state q2 and, with probability p, sends the last message
containing K, sets the variable l to 1, and reaches state q4 (step 4 of the protocol). We do not model
value passing, hence we simply call all these actions message. In state q2 the reception of the ack
message is modeled by the input action ack, while the expiration of the deadline (represented by
the constant AD) is modeled by the action stop executed when the clock x assumes a value greater
than AD. The fair termination of the protocol is reached when the originator receives the last ack
(step 5 of the protocol) and performs the action correctstop. The protocol terminates in an unfair
way if and only if the originator does not receive the ack related to the message containing K, and
in such a case it executes the action unfair. The constants ad and AD used in the constraints of
the ack transitions, represent an estimation of the minimum and maximum transmission delay of
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an ack message, respectively. In particular, we assume that an ack, sent within the net, will always
arrive at destination in time t such that ad ≤ t ≤ AD.

We modeled the actions request, firstmes, and message as instant actions, since the time
needed for the transmission of such messages in the network is not interesting in our analysis.

In Figure 7.2, we show the system representing a recipient that behaves correctly. The recipient
starts the protocol by sending a request, receives the first message, sends the first ack and reaches
state r3, from where, whenever it receives a message, it sends an ack back. The protocol terminates
when the input action correctstop is executed.

The whole system representing the protocol is defined as Orig||HRecip, where originator and re-
cipient synchronize through actions in the set L = {request, firstmes, ack,message, correctstop}.

The protocol ends in a fair correct way when the action correctstop is performed, i.e. when the
system reaches the state (q0, r5). In particular, if both participants behave correctly, the unfair
behavior cannot be executed; instead, it is possible to find a malicious recipient that receives the
expected information and denies sending the final ack.

In Figure 7.3 we show the system representing a malicious recipient that maximizes the prob-
ability of guessing the last message of the protocol (we assume that it knows the probability
distribution chosen by the originator). It follows a Bernoulli distribution with parameter q to de-
cide either to send the ack message (transition τ from state r4 to state r6) or to try to compute M
by employing the last received message (transition from state r4 to state r5). We assume that the
time necessary to decipher the message is within the interval [dd,DD]. Note that if ad+ dd < AD
the recipient can send an ack even after failing to decipher the message (see transition from r5 to
r6). So the originator should take care of the protocol parameters ad, AD, dd and DD. State r7
represents, instead, the state reached by the malicious recipient when correctly guessing the last
message. Since we set the variable l to 1 when the originator sends the last message, the malicious
recipient succeeds in its strategy when in state r5 such a variable has value 1 reaching the final
state r7. On the other hand, if variable l has value 0, the malicious recipient goes to state r6, from
which it tries to send the ack back.

The probability of executing the action unfair for the system Orig||HRecip is equal to 0, while
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the probability of executing it for the system Orig||MRecip is (as ad+ dd > AD):

z = p · q ·
∞
∑

i=0

((1 − p) · (1 − q))i =
p · q

1 − (1 − p) · (1 − q)
.

Given 0 < p ≤ 1 chosen by the originator and 0 < q ≤ 1, the maximum value for z is p, obtained
by taking q = 1. The recipient model, which optimizes the probability of violating the fairness
condition, is obtained by removing the transition labeled with τ from state r4 to state r6.

7.2.1 The case of slow networks

As we have seen the probability for the malicious user to break the protocol is always smaller than
p, which is a parameter decided by the designer of the protocol. This happens, obviously, when the
condition ad+dd > AD holds. In such a case, in fact, the malicious user could only try to decrypt
the first message with the last received one as key (risking in this case to stop the protocol), or
send an ack to the originator.

On the other hand, the condition above holds only if the time needed to send/receive an
ack within the network is smaller than the time needed to decrypt a message within a given
cryptosystem. Could we still use the protocol with a reasonable margin of risk in a network where
the maximum acknowledgement delay time is bigger than the maximum decryption time, or in a
network that is frequently subject to congestion? If the condition ad+ dd > AD does not hold, in
fact, the malicious user could try to send an ack to the originator even after trying to decrypt the
last received message.

We are interested in analyzing how the probability of breaking the protocol fairness increases
when operating with a network with a long round trip time (high values for parameter AD), and
in networks that are frequently subject to congestions (high values for the length of the interval
[ad,AD]).

7.3 The PRISM Verifier

PRISM [119] is a probabilistic model checker that allows modeling and analyzing systems which
exhibit a probabilistic behavior. Given a description of the system to be modeled, PRISM con-
structs a probabilistic model that can be either a discrete-time Markov chain (DTMC), a Markov
decision process (MDP), or a continuous-time Markov chain(CTMC) [78]. On the constructed
model PRISM can check properties specified by using a temporal logic (PCTL for DTMCs and
MDPs, and CSL for CTMCs).

A system in PRISM is composed of modules and variables. A module has local variables and
its behavior is expressed by commands of the form:

[sym] g → λ1 : u1 + . . .+ λn : un

where sym is the synchronization symbol, g is a guard on all the variables in the system and ui is
a set of updates on local variables. The constant λi is the probability of performing the update ui.



86 CHAPTER 7. AUTOMATIC ANALYSIS OF A NON-REPUDIATION PROTOCOL

Constraints can be of the form x ∼ c, where c is a natural and x a variable of the whole system.
Updates are expressed by using primed variables, as an example x′ = 0 represents the reset to 0
of variable x.

Since we used the model of DTMC, we use the PCTL specification language [59, 22, 16] to
specify properties of systems.

The syntax of PCTL is given by the following grammar:

φ ::= true | false | a | φ ∧ φ | φ ∨ φ | ¬φ | P∼p[ψ]

ψ ::= Xφ | φU≤kφ | φUφ

where a is an atomic proposition, ∼∈ {<,≤,≥, >} is a relational operator, p ∈ [0, 1] is a probability,
and k is an integer.

An atomic proposition a is satisfied or not by a given state of a Probabilistic Timed System.
Symbol X denotes the “next state operator”, symbol U denotes the “until” operator, and U≤k

denotes the “bounded until” (i.e. within k steps) operator. Intuitively, φ1Uφ2 is satisfied when the
formula φ1 holds until φ2 holds; φ1U

≤kφ2 is satisfied if φ2 becomes true within k steps. Moreover,
P∼p[ψ] is satisfied by a given set of computations iff the overall probability p′ of the computations
satisfying ψ is such that p′ ∼ p.

7.3.1 Modeling the Non-Repudiation Protocol in PRISM

In this section we show the PRISM description of the systems introduced in Section 7.2, and the
results of some properties verified on such models1.

Honest Recipient

In Figure 7.4 we show the PRISM code of the modules representing the originator (Orig) and
an honest recipient (HRecip). A third module (AckDel) is used for modeling the probability
distribution of the variable t representing the acknowledgement delay. We decided to use a uniform
probability distribution for the variable t. So, given the random variable t that can range in the
interval [ad,AD], we have that:

∀k ∈ [ad, AD] p(t = k) =
1

AD− ad + 1
,

where p(t = k) represents the probability that variable t assumes value k.
The constant p1 used in the Orig module represents the probability p used in the Probabilistic

Timed System Orig seen in Section 7.2.
Given the above participants the protocol always ends in a fair correct way. When the protocol

ends in a fair way, the recipient state variable r assumes value 5. As a consequence, we can verify
that the protocol always ends in a fair way by simply checking the property:

P≥1[true U (r = 5)].

The model checking for the above property took 0,004 seconds, giving as result that the property
is true in all the states of the model.

Malicious Recipient

In Figure 7.5 we show the PRISM code of the modules representing the originator (Orig) and
a malicious recipient (MRecip). As in the previous case, a third module (AckDel) is used for
modeling the uniform probability distribution of the variable t representing the acknowledgement
delay. Also the random variable x, used in the module MRecip and representing the time needed
to decrypt a message, follows a uniform distribution with range [dd,DD]. The constant q1 used in
the MRecip module represents the probability q used in the Probabilistic Timed System MRecip
seen in Section 7.2.

1Tests are done on a 1,15GHz AMD Athlon PC with Linux OS and 512 MB of RAM.
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probabilistic

const AD = 3;
const ad = 1;

rate p1 = 0.001;

rate u1 = 1/(1+AD-ad);

module Orig
q : [0..6];
l : [0..1];

[request] (q=0)&(r=0) -> (q’=1);
[firstmes] (q=1)&(r=1) -> (q’=2);
[ack_r] (q=2)&(a=2)&(t<=AD) -> (q’=3);
[stop] (q=2)&(t>AD) -> (q’=0);
[message] (q=3)&(r=3) -> p1:(q’=4)&(l’=1) + (1-p1):(q’=2);
[ack_r] (q=4)&(a=2)&(t<=AD) -> (q’=5);
[unfair] (q=4)&(t>AD) -> (q’=6);
[correctstop] (q=5)&(r=3) -> (q’=0);

endmodule

module HRecip
r : [0..5];

[request] (r=0)&(q=0) -> (r’=1);
[firstmes] (r=1)&(q=1) -> (r’=2);
[ack_s] (r=2)&(a=0) -> (r’=3);
[message] (r=3)&(q=3) -> (r’=4);
[ack_s] (r=4)&(a=0) -> (r’=3);
[correctstop] (r=3)&(q=5) -> (r’=5);

endmodule

module AckDel
a: [0..2];
t: [0..AD];

[ack_s] (a=0)&((r=2)|(r=4)) -> (a’=1);
[] (a=1) -> u1:(a’=2)&(t’=1) + u1:(a’=2)&(t’=2) + u1:(a’=2)&(t’=3);
[ack_r] (a=2)&((q=2)|(q=4)) -> (a’=0);

endmodule

Figure 7.4: Orig + HRecip.

7.4 Experimental Results

Setting : set a set b set c set d

ad 10 1 1 1
AD 13 4 12 12

dd 14 1 1 1
DD 15 5 2 2

p1 0.1 0.1 0.1 0.001

Table 7.1: Protocol Settings.

We studied the probability for a malicious user of breaking the fairness of the non-repudiation for
several settings of our model parameters. More precisely in the settings set a, set b, set c and
set d, we studied the probability of breaking the protocol fairness as a parameter of the value of
q1, assuming various values for the constants ad, AD, dd, DD and p1 (see table 7.1). Since the
malicious user’s state variable r assumes value 7 when it successfully gets its information without
sending the last ack, the properties we used in order to estimate the probability of breaking the
protocol fairness are of the form:

P≥v[true U (r = 7)].

So we can approximate to v the probability of breaking the protocol when the property P≥v[true U (r =
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probabilistic

const AD = 3;
const ad = 1;
const DD = 2;
const dd = 1;

rate p1 = 0.001;
rate q1 = 1;

rate u1 = 1/(1+AD-ad);
rate v1 = 1/(1+DD-dd);

module Orig
q : [0..6];
l : [0..1];

[request] (q=0)&(r=0) -> (q’=1);
[firstmes] (q=1)&(r=1) -> (q’=2);
[ack_r] (q=2)&(a=2)&(t+x<=AD) -> (q’=3);
[stop] (q=2)&(t+x>AD) -> (q’=0);
[message] (q=3)&(r=3) -> p1:(q’=4)&(l’=1) + (1-p1):(q’=2);
[ack_r] (q=4)&(a=2)&(t+x<=AD) -> (q’=5);
[unfair] (q=4)&(r=7) -> (q’=6);
[correctstop] (q=5)&(r=3) -> (q’=0);

endmodule

module MRecip
r : [0..8];
x : [0..DD];

[request] (r=0)&(q=0) -> (r’=1);
[firstmes] (r=1)&(q=1) -> (r’=2);
[ack_s] (r=2)&(a=0) -> (r’=3);
[message] (r=3)&(q=3) -> (r’=4);
[] (r=4) -> q1:(r’=5) + (1-q1):(r’=6)&(x’=0);
[] (r=5)&(l=0) -> v1:(r’=6)&(x’=1) + v1:(r’=6)&(x’=2);
[won] (r=5)&(l=1) -> (r’=7);
[ack_s] (r=6)&(a=0) -> (r’=3);
[correctstop] (r=3)&(q=5) -> (r’=8);

endmodule

module AckDel
a : [0..2];
t : [ad..AD];

[ack_s] (a=0)&((r=2)|(r=6)) -> (a’=1);
[] (a=1) -> u1:(a’=2)&(t’=1) + u1:(a’=2)&(t’=2) + u1:(a’=2)&(t’=3);
[ack_r] (a=2)&((q=2)|(q=4)) -> (a’=0);

endmodule

Figure 7.5: Orig + MRecip.

7)] is satisfied by the initial state of the model, and the property P≥v+ε[true U (r = 7)] is not,
with ε a small value. The checking procedure of a property of the above type always took less then
half a second.

Figures 7.6, 7.7 and 7.8 show the probability of breaking the protocol fairness as a function of
q1 for the parameter settings in table 7.1.

In the set a setting, we have that ad + dd > AD. In such a case the malicious recipient could
not send an ack after trying to decrypt the first message using the last received one as key, and
so the probability of breaking the protocol fairness, shown in Figure 7.6, is given by the formula

p1·q1
1−(1−p1)·(1−q1)

. As we have seen, the maximum value for this probability is represented by the

parameter p1.

In the set b, set c and set d settings we have, instead, that ad + dd ≤ AD. With these three
settings we propose a first analysis of the case of slow networks described in Section 7.2.1. In
such a case, as can be seen from Figures 7.7 and 7.8, we have that the probability of breaking the
protocol fairness increases as q1 goes to 1 and reaches also values that are bigger than p1.
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Figure 7.6: Varying q1 in an ideal network.
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Figure 7.7: Varying q1 in slow networks.

In the settings e,f,g, we studied the probability of breaking the protocol fairness as a parameter
of the value of AD, assuming various values for the constants ad, dd, DD and p1 (see Table 7.2).

Figure 7.9 shows the probability of breaking the protocol fairness as a function of AD for
the parameter settings in Table 7.2. In particular those settings model the case of “slow and
congestioned network” described in Section 7.2.1.

Obviously, as AD increases, also the probability of breaking the non-repudiation protocol in-
creases. But, as it can be seen from Figure 7.9, with a small value of p1, the protocol could be
reasonably used also in the case when the time needed to send an ack is bigger than the time
needed to decrypt a message.
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Figure 7.8: Varying q1 in a slow network, given a low p1.

Setting : set e set f set g

ad 1 1 1

dd 1 1 1
DD 4 4 4

p1 0.001 0.01 0.1
q1 1 1 1

Table 7.2: Protocol Settings.
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Figure 7.9: Analysis of congestioned networks.



Chapter 8

Automatic Analysis of the NRL
Pump

A computer system may store and process information with a range of classification levels and
provide services to users with a range of clearances. The system is multilevel secure [19] if users
have access only to information classified at or below their clearance. In a distributed framework,
multilevel security can be achieved by using trusted secure components, called Multilevel Secure
Components (MSCs) [70, 71], to connect single-level systems bounded at different security levels,
thus creating a multiple single-level security architecture [70, 71].

Many applications must satisfy time performance as well as security constraints which, as well
known, are conflicting requirements (e.g. see [129]). This has motivated research into probabilistic
protocols that can trade-off between security and time performance requirements. MSCs are an
example of such protocols. Their role is to minimize leaks of high level information from high level
systems to lower level systems without degrading average time performances.

An MSC proposal is the Naval Research Laboratory’s Pump (NRL Pump) [108, 72, 73]. It
is a trusted device that acts as a router forwarding messages from a low-level system to one
at higher level. Now, acks are needed for reliable communication. If the high system passed
acks directly to the low one, then it could pass high information by altering ack delays. To
minimize such covert channel, the pump decouples the acks stream by inserting random delays.
To avoid time performance degradation, the long-term high-system-to-pump time behavior should
be reflected in the long-term pump-to-low-system time behavior. The NRL pump achieves this
result by statistically modulating acks: the pump-to-low-system ack delay is probabilistic based
on the moving average of the high-system-to-pump ack delays. This approach guarantees that the
average time performances of the secure system (with the NRL pump) are the same as those of the
insecure one (without the NRL pump).

Analysis of information leakage of protocols is usually carried out by estimating covert channel
capacity [4, 36, 56, 129], which can be estimated by simulation, since an analytical approach usually
cannot handle a full model of the protocol at hand. Using the NRL Pump case study, we show
how probabilistic model checking can be exploited to estimate covert channel capacity for various
system configurations. This allows a formal as well as automatic security analysis (see [101] for a
survey on this subject) of the probabilistic protocol.

In [108] a NRL Pump assurance strategy is proposed. A logical view of the pump is refined
using a combination of Statemate activity charts and state charts. Activities and behavior of the
logical design are mapped to an implementation described in terms of Statemate module charts.
A Verdi [33] specification expresses the requirements to which the implementation must be shown
to conform. Verification is done through proof using the EVES [76, 77] verification system, and
by testing using WhiteBox DeepCover tool [124].

In this chapter we model the NRL Pump by Probabilistic Automata enriched with variables.
The advantage of using these model as representation formalism is twofold. Firstly, on such
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systems state-space reduction algorithms can be used. Second, classic automaton-theoretic means
for analysis of properties of the described system can be employed. These systems and requirements
on their behavior are then translated into specifications for the FHP-Murϕ tool [115, 116, 26].

We show how FHP-Murϕ, a probabilistic version of Murϕ [43], can compute the probability
of security violation of the NRL Pump protocol as a function of (discrete) time, for various con-
figurations of the system parameters (e.g. buffer sizes, moving average size, etc). This allows us
to estimate the capacity of the probabilistic covert channel left by decoupling the acks stream.
Notwithstanding the huge amount of system states, we are able to complete our analysis and to
compute covert channel capacity for various NRL pump parameters settings.

To the best of our knowledge, this is the first time that probabilistic model checking is used for
a quantitative analysis of the covert channel capacity. Symbolic model checking, based on PRISM
[119, 79, 79], has already been widely used for verification of probabilistic protocols. However,
for protocols involving arithmetical computations or many FIFO queues, PRISM tends to fill
up the RAM [115]. This is due to OBDDs troubles in representing arithmetical operations and
FIFO queues. Since probabilistic protocols involving arithmetics or FIFO queues can be often
conveniently analyzed using an explicit approach, we use FHP-Murϕ to carry out our analysis.
Note that indeed the Murϕ verifier has already been widely used for security verification, e.g. see
[43, 106, 107, 102]. We use FHP-Murϕ instead of Murϕ since FHP-Murϕ extends Murϕ capabilities
to a probabilistic setting.

We note that an approximate analysis of the covert channel studied here is presented in [109].
However, because of model complexity, only bounds to covert channel capacity can be obtained in
[109]. In such cases probabilistic model checking complements the analytical approach by allowing
an exact analysis on some aspects (i.e., security) of models that are out of reach for the analytical
approach.

As for simulation based results (see [73]), the interesting case is when covert channel capacity,
as well as the probability of a security violation, is small. Hence, estimating such probabilities by
a simulator can be quite hard. In fact, such analysis is not pursued in [73]. In such cases a model
checker can be used as an efficient exhaustive simulator. Of course a model checker may have to
handle a scaled down model (with model parameters instanced to small enough values) w.r.t. the
model handled by a simulator (e.g. w.r.t. the model considered in [73]).

Summing up, we show how probabilistic model checking can complement the covert channel
approximate analysis of [109] and the simulation results of [73].

In Section 8.1 we report a brief description of the NRL pump device. In Section 8.2 we define
the formal framework of Probabilistic Systems that we use in Section 8.3 in order to formally
describe the device. The FHP-Murϕ specifications of the pump are reported in Section 8.4. In
Section 8.5 we show the results of our analysis technique by estimating the covert channel capacity.

8.1 The NRL Pump

The NRL Pump is a special purpose trusted device that acts as a router forwarding messages from
low level agents to high level ones by monitoring the timing of the acks in the opposite way. As
shown in Figure 8.1, a low agent sends a message to some high agent through the pump. In order
to make the communication reliable, the pump stores the message in a buffer and sends an ack
to the low agent (in Figure 8.2, we formalize the communication steps between the agents). The
delay of the ack is probabilistically based on a moving average of ack delays from the high agents
to the pump. This is an attempt to prevent the high agent to alter the ack timing in order to send
information to the low agent. Moreover, the long-term high-agents-to-pump behavior is reflected
by the long-term pump-to-low-agents behavior, so that performance is not degraded. It is also
assumed that the low level agent cannot send any new message until the acknowledgment of the
previous message is received.

The pump keeps the message in the buffer until the high agent is able to receive it. When
the high agent receives the message, it sends an ack to the pump. If the high agent does not
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Figure 8.1: The NRL Pump

LS → P : dataL low system sends to pump data to deliver to high system

P → LS : ACKL
pump acknowledges to low system with a probabilistic
delay

P → HS : dataH the pump sends the data to the high system
HS → P : ACKH the high system acknowledges to the pump

Figure 8.2: Data communication protocol

acknowledge a received message before a timeout fixed by the pump-administrator expires, the
pump stops the communication.

8.1.1 NRL Pump probabilistic ack delay modeling

Let x1, . . . , xn denote the delays of the last n acks sent by the high system to the pump, and x
denote their average

∑n
i=1 xi/n. We denote with p(l, x) the probability that the pump sends an ack

to the low system with a delay l when x is the average of received acks. Now, p(l, x) can be defined
in many ways each of which yields different probabilistic ack schema with security performances.
Let us consider two possible scenarios.

In the first one, l = x + d, with d a uniformly distributed random variable taking integer values
in range [−Λ,+Λ]. Since the expected value of d (notation E(d)) is 0, we have E(l) = x + E(d)
= x, as required by the NRL Pump specification. We have p(l, x) = if (l ∈ [x − Λ, x + Λ]) then
1/(2Λ + 1) else 0.

The drawback of this approach is that, if the schema is known to the low and high systems,
then the following deterministic covert channel can be established. To transmit bit b (b = 0, 1) to
the low system, the high system sends h consecutive acks to the pump with a given delay Hb. If
h is large enough, from the law of large numbers we will have x ∼ Hb, and l ∈ [Hb − Λ,Hb + Λ].
Without loss of generality let us assume H0 < H1. Whenever the low system sees an ack time
l ∈ [H0 −Λ,H1 −Λ) (resp. l ∈ (H0 +Λ,H1 +Λ]), it knows with certainty that a bit 0 (1) has been
sent from the high system. Of course, if the ack time is in the interval [H1 − Λ,H0 + Λ] the low
system does not know which bit is being sent from the high system. However, if the high system is
sending acks with delay H0 (H1) and h is large enough, then we know that (with high probability)
the low system will observe an ack delay in [H0 − Λ,H1 − Λ) (resp. (H0 + Λ,H1 + Λ]). Note that
once the low system receives an ack with delay in [H0 −Λ,H1 −Λ) (resp. (H0 + Λ,H1 + Λ]) then
it is sure that the high system has sent bit 0 (1).

Note that the deterministic covert channel arises since the range of l depends on x. To solve
the problem, in the second scenario we use a binomial distribution.

Let p ∈ [0, 1] and ∆ be an integer. Let d be a random variable taking integer values in [0,∆]

with probabilities: P (d = k) =

(

∆
k

)

pk(1 − p)∆−k. The range of d does not depend on p. Let

p be (x − 1)/∆. Since d has a binomial distribution we have E(d) = ∆ · p = ∆ · x−1
∆ = (x − 1).

We define the pump ack delay l as follows: l = d+ 1. Then, E(l) = x, as required from the NRL
Pump specification.

Since the range of l does not depend on x, the covert channel of the first scenario does not
exist. However the high system can send information to the low one as follows. To transmit bit b
(b = 0, 1), the high system sends h consecutive acks to the pump with a given delay Hb. If h is
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large enough, from the law of large numbers we know that we will have x ∼ Hb. The low system
can compute a moving average y of the last m ack delays from the NRL Pump. If m is large
enough we have x ∼ y. Then, by comparing y with H0 and H1, the low system can estimate (with
arbitrarily low error probability) the bit b.

Now, the low system knows the bit b only in a probabilistic sense. In Section 8.5 we will show
that the error probability depends on many parameters, and, by modeling the NRL Pump with
FHP-Murϕ [115], we will compute such error probability. This, in turn, allows us to estimate the
covert channel capacity.

8.2 Probabilistic Systems with Variables

In this section we define a model of Probabilistic Systems with variables (PSs).
Let us assume a set X of real variables, a valuation over X is a mapping v : X → IR assigning

real values to variables in X. We also assume a set of function symbols F .
The set of constraints over X, denoted Φ(X), is defined by the following grammar, where φ

ranges over Φ(X), x1, . . . , xn, y1, . . . , ym ∈ X, f, q ∈ F and ∼∈ {<,≤,=, 6=, >,≥}:

φ ::= f(x1, . . . , xn) ∼ g(y1, . . . , ym) |φ ∧ φ | ¬φ |φ ∨ φ | true

We suppose a unique interpretation I for function symbols in F such that I(f) : IRn → IR where
n is the arity of the function f . Since the interpretation I is unique, when it is clear from the
context, we may write f instead of I(f).

We write v |= φ when the valuation v satisfies the constraint φ. Formally, v |= f(x1, . . . , xn) ∼
g(y1, . . . , ym) iff I(f)(v(x1), . . . , v(xn)) ∼ I(g)(v(y1), . . . , v(ym)), v |= φ1 ∧ φ2 iff v |= φ1 and
v |= φ2, v |= ¬φ iff v 6|= φ, v |= φ1 ∨ φ2 iff v |= φ1 or v |= φ2, and v |= true.

WithX ′ we denote the set of variables {x′ |x ∈ X}, where variable x′ is the variable representing
a new value to assign to x.

An assignment is a formula in Φ(X ∪X ′) of the form x′ = f(y1, . . . , ym), where x′ ∈ X ′ and
{y1, . . . , ym} ⊆ X. As an example, the constraint x′ = x+ 1 updates x with its successor.

A set of assignments S is complete with respect to X if, for any x ∈ X, there exists a unique
assignment x′ = f(y1, . . . , ym) in S. The set of complete assignments on X is denoted by S(X).

We define an operator of valuation merging ⊕ such that given a valuation v, v′ of variables in
X, v⊕ v′ is a valuation on variables in X ∪X ′ such that v⊕ v′(x) returns v(x) if x ∈ X and v′(y)
if x ∈ X ′ and x = y′.

Definition 8.1 A Probabilistic System (PS for short) is a tuple A = (Σ,X,Q, q0, φ0, δ, π), where:

• Σ is a finite alphabet of actions.

• X is a finite set of variables.

• Q is a finite set of states and q0 ∈ Q is the initial state.

• φ0 ∈ Φ(X) is the initial condition. We require that |{v|v |= φ0}| = 1.

• δ ⊆ Q× Σ × Φ(X) × S(X) ×Q is a finite set of transitions. For a state q, we denote with
start(q) the set of transitions with q as source state, i.e. the set {(q1, a, φ, S, q2) ∈ δ | q1 = q};
and we denote with start(q, a) the set of transitions with q as source state and a as action,
i.e. the set {(q1, α, φ, S, q2) ∈ δ | q1 = q and α = a}.

• π : δ →]0, 1] is a probability function such that π(e) is the probability of performing the
transition e. We require that for each state q,

∑

e∈start(q) π(e) ∈ {0, 1}.

In Figure 8.3 we show an example of Probabilistic System. When no condition is put on a transition
we assume that it is the condition true and all assignments are x′ = x for every x ∈ X. We
represent transition probabilities with bold numbers and we assume the probability is equal to 1
when omitted.
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Figure 8.3: Example of Probabilistic System with Variables.

8.2.1 Semantics of PSs

A configuration of A is a pair s = (q, v), where q ∈ Q is a state of A, and v is a valuation over
X. The initial configuration of A is represented by (q0, v), where v |= φ0. The set of all the
configurations of A is denoted with SA. We assumed a single initial configuration. This is not a
limitation, since one can deal with a set of initial configurations by assuming a fictitious initial
configuration with equiprobable transitions to all the configurations of the set.

There is a transition step from a configuration si = (qi, vi) to a configuration sj = (qj , vj)

through action a ∈ Σ, written si
a

−→ sj , if there is a transition e = (qi, a, φ, S, qj) ∈ δ such that
vi ⊕ vj |= φ ∧

∧

φ′∈S φ
′.

We note that, for any transition (qi, a, φ, S, qj) and valuation vi, there exists a unique vj such
that vi ⊕ vj |= φ ∧

∧

φ′∈S φ
′, since S is complete.

Given a configuration s = (qi, vi), Adm(s) represents the set of transitions that a system could
execute from configuration s, and we say that a transition in Adm(s) is enabled in s. Given si =
(qi, vi) and sj = (qj , vj), Adm(si, a, sj) = {e = (qi, a, φ, S, qj) ∈ start(qi) | vi ⊕ vj |= φ ∧

∧

φ′∈S φ
′}

denotes the set of transitions that lead from configuration si to configuration sj through a transition
labeled with a.

A configuration s = (qi, vi) is called terminal iff Adm(s′) = ∅, and we denote with ST the set of
terminal configurations. In order to deal with infinite runs we add self-loop steps for any terminal

configuration. Namely, there is a self-loop step (qi, vi)
SL
−→ (qi, vi) for any (qi, vi) ∈ ST .

For configurations si = (qi, vi), sj = (qj , vj) and a ∈ Σ, we define with P (si, a, sj) the proba-

bility of reaching configuration sj from configuration si through a step si
a

−→ sj labeled with a.

Formally, we have that P (si, a, sj) =

∑

e∈Adm(si,a,sj)
π(e)

∑

e′∈Adm(si)
π(e′)

.

The probability of executing a transition step from a configuration s is chosen according to
the values returned by the function π among all the transitions enabled in s. The probability of

executing a self loop step
SL
−→ is assumed to be equal to 1.

An execution fragment starting from s0 is a finite sequence of transition steps σ = s0
a1−→

s1
a2−→ s2

a3−→ . . .
ak−→ sk, where s0, s1, . . . , sk ∈ SA and ai ∈ Σ. With ExecFrag we denote the set

of execution fragments and with ExecFrag(s) the set of execution fragments starting from s. We
define last(σ) = sk and |σ| = k.

For any j < k, with σj we define the sequence of steps s0
a1−→ s1

a2−→ . . .
aj
−→ sj .

If |σ| = 0 we put P (σ) = 1, else, if |σ| = k ≥ 1, we define P (σ) = P (s0, a1, s1) · . . . ·
P (sk−1, ak, sk).

An execution is an infinite sequence s0
a1−→ s1

a2−→ s2
a3−→ . . ., where s0, s1 . . . ∈ SA and

a1, a2, . . . ∈ Σ ∪ IN>0 ∪ {SL}. We denote with Exec the set of executions and with Exec(s) the
set of executions starting from s. Finally, with σ ↑ we denote the set of executions σ′ such that
σ ≤prefix σ

′, where prefix is the usual prefix relation over sequences.
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Assuming the basic notions of probability theory (see e.g. [57]), we define the probability space
on the executions starting in a given configuration s ∈ SA as follows. Let Exec(s) be the set of exe-
cutions starting in s, ExecFrag(s) be the set of execution fragments starting in s, and ΣField(s) be
the smallest sigma field on Exec(s) that contains the basic cylinders σ ↑, where σ ∈ ExecFrag(s).
The probability measure Prob is the unique measure on ΣField(s) such that Prob(σ ↑) = P (σ).

A Probabilistic Systems may have an infinite number of configuration even though the number
of transitions exiting a state is finite. Therefore, Probabilistic Systems are equivalent to infinite-
state Markov Chains. Infinite-state Markov Chains have been studied, for instance, in [97, 13].

8.3 Modeling the NRL Pump with PSs

In this section we show how the NRL Pump presented in Section 8.1 can be modeled by a PS. The
PS NRL Pump is shown in Figure 8.4.

We restrict our attention to the NRL Pump features involved in the probabilistic covert channel
described before.

Our goal is to compute the error probability of the low system when it estimates the bit value
sent from the high system. This probability depends on the number of consecutive high system acks
to the pump with delay Hb and on several parameters, which are defined as constants. Without
loss of generality, we consider the case b = 0.

The system representing the pump is specified by using the set of constants and variables shown
in Table 8.1.

Cosntants : Value

BUFFER SIZE 5
NRL WINDOW SIZE 5
LS WINDOW SIZE 5
INIT NRL AVG 4
INIT LS AVG 0
DELTA 10
HS DELAY 4
DECISION THR 1

Variables : Value assigned by init condition

b 0
nrl avg INIT NRL AVG

nrl delays[i] INIT NRL AVG ∀ i∈ [0,NRL WINDOW SIZE-1]
nrl first index 0
ls avg INIT LS AVG

ls delays[i] INIT LS AVG ∀ i∈ [0,LS WINDOW SIZE-1]
ls first index 0
nrl ack 0
ls decision state 0
ls decision 0

Table 8.1: Pump Constants and Variables

BUFFER SIZE is the size of the buffer used by the pump to store the messages sent from the
low system to the high one. NRL WINDOW SIZE is the size of the sliding window used by the pump
to keep track of the last ack delays from the high system. These delays are used to compute
the high-system-to-pump moving average. LS WINDOW SIZE is the size of the sliding window used
by the low system to keep track of the last ack delays from the pump. These delays are used
to compute the pump-to-low-system moving average. INIT NRL AVG is the initial value of high-
system-to-pump moving average. INIT LS AVG is the initial value of pump-to-low-system moving
average. DELTA is the maximal pump-to-low-system ack delay: each of these delays ranges in
[0, DELTA] and is computed probabilistically. HS DELAY is such that the delay used by the high
system to transmit bit 0 is H0 = HS DELAY, and the delay used by the high system to transmit bit
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hs wait ≤ 0 ∧ b > 0 ∧ hs wait′ = HS DELAY

∨
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(update ls delays ∧ lsdiff′ = |ls avg′ − ls avg|∧
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{d′ = i,pi}i∈[0,DELTA]

pi = prob delay bin(nrl avg, i)

Figure 8.4: NRL pump: PS modeling the NRL Pump
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1 is H1 = HS DELAY+2.0. DECISION THR is such that the low system decides that the bit sent by the
high system is b, for b ∈ {0, 1}, when it receives an ack from the pump and the difference between
the new and the old pump-to-low-system moving average is below DECISION THR, i.e. when the
pump-to-low-system moving average is stable enough. Now, waiting for a long time before making
a decision (e.g. by making DECISION THR small), the low system can be quite sure of making a
correct decision, but the more the low system waits for making a decision, the smaller the bit-rate
of this covert channel.

Valuations of global variables define the configuration state of our model. For simplicity we use
arrays. They can be easily modeled in PS by using a number of variables equal to the size of the
array. Variable b represents the number of messages in the pump buffer. Variable nrl avg is the
average of the last delays for the acks received by the pump from the high system. These delays
are saved in array nrl delays, where index nrl first index points to the eldest one. Variable
ls avg is the average of the last delays of the acks sent by the pump and received by the low
system. These delays are saved in array ls delays, where index ls first index points to the
eldest one. Variable nrl ack is the timer used by the pump for sending the next ack to the low
system. Once initialized, at each step nrl ack is decremented by 1. The pump sends the ack
when nrl ack ≤ 0. Similarly, hs wait is the timer used by the high system for sending acks to the
pump. Variable ls decision state is 0 if the low system has not yet decided the value of the bit
sent by the high system, 1 if the low system has already decided, 2 if the whole system must be
restarted after a decision. If ls decision state is 1 or 2, ls decision takes the value of the bit.

In Table 8.2 and Table 8.3 we report the descriptions of formulas and functions referred to in
Figure 8.4.

For readability, we have not written constraints to describe variables that do not change their
value after the firing of a certain transition. Hence, we suppose that, if a variable x does not appear
in a condition of a transition, then the condition contains also the formula x′ = x.

Label : ConstraintDescription

send low nrl ack ≤ 0 ∧ b < BUFFER SIZE

receive high hs wait ≤ 0 ∧ b > 0
update nrl delays nrl delays[last(nrl first index)]′ =

nrl delays[last(nrl first index)] + 1
update ls delays ls delays[last(ls first index)]′ = d
update avg(avg, first index, delays, SIZE) avg′ = compute avg(avg, delays, first index, SIZE)∧

first index′ = (first index + 1) mod SIZE∧
delays′[last(first index, SIZE)] = 0

near(C) lsdiff < DECISION THR∧
ls avg ∈]HS DELAY − 1 + 2 ∗ C, HS DELAY + 1 + 2 ∗ C[

dec(C) ls decision state = 1 ∧ ls decision = C

Table 8.2: Pump Constraits

Label : FunctionDescription

prob delay bin(avg, i)

(

DELTA
i

)

∗
(

avg

DELTA

)i
∗
(

avg

DELTA

)DELTA−i

last(first index, SIZE) (first index + SIZE − 1) mod SIZE

compute avg(avg, delays, first index, SIZE) avg +
delays[last(first index)]−delays[first index]

SIZE

Table 8.3: Pump Functions

The initial condition init defines the initial configuration for our model. In this configuration
variables assume the values given in Table 8.1.

The PS has a transition from state q0 to state q1 for every i ∈ [0, DELTA] with a formula d’= i
and with a binomial probability distribution. In particular, the parameter d is computed by the
function prob delay bin(avg, i) (see Table 8.3) which returns the probability that the pump ack
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time is i when the pump moving average is avg. This function implements a binomial distribution
with average value avg on the interval [0,DELTA].

Let us consider the PS NRL pump.
From state q1, if no decision has been taken yet (when ls decision=0) the system can reach

state q2, otherwise it goes to the stop state qs.
Transition from state q2 to state q3 defines the transition relation for the pump buffer. We have

three cases: 1) hs wait and nrl ack are ≤ 0 (pump received ack from the high system and sent
ack to the low one), the pump can send a message to the high system and receive a message from
the low one; 2) only hs wait is ≤ 0 (pump received ack from the high system), the pump can only
send; 3) only nrl ack is ≤ 0 (pump sent an ack to the low system), the pump can only receive.
These cases are modeled with the constraints send low and receive high in Table 8.2.

Transition from state q3 to state q4 defines the transitions for the pump-to-low-system ack timer
(nrl ack). When it reaches 0, the low system gets an ack from the pump. If the pump buffer is
not full, the low system sends a new message, and the pump picks the value d as the delay to ack
to such message.

Transition from state q4 to state q5 updates the moving average of the delays from the high
system ack to the pump. When the pump waits for the ack (hs wait > 0), it updates the value
of the last ack delay (see update nrl delays in Table 8.2). When the hs wait timer expires (−1 ≤
hs wait ≤ 0), the pump updates the new average for the acks delays and its auxiliary variables
(see update avg(avg, first index, delays, SIZE) in Table 8.2).

Transitions from state q5 to state q6 and the q7 define the low system estimation of the high
system ack delay. Again, d is the value of the last ack delay. Initially, the low system updates
its information about the last ack delay received, as done by the pump in the previous transi-
tion (see again update ls delays and update avg(avg, first index, delays, SIZE) in Table 8.2). If
the difference between the new and old pump-to-low-system moving average (lsdiff) is below
DECISION THR, the pump-to-low-system moving average is stable enough and the low system de-
cides that the high system sent either 0, if HS DELAY - 1.0 < ls avg < HS DELAY + 1.0, or 1, if
HS DELAY + 1.0 < ls avg < HS DELAY 3.0 (see near(C) in Table 8.2). So, the low system may or
not take a decision that, in turn, may or not be correct (see dec(C) in Table 8.2).

Transition from state q7 to state q0 defines the transitions for the high-system-to-pump ack
timer (hs wait). As we have seen, the initial value is HS DELAY, since we are in the case b = 0.

8.4 The FHP-Murϕ Verifier

FHP-Murϕ (Finite Horizon Probabilistic Murϕ) [115, 116, 26] is a modified version of the Murϕ
verifier [43, 110]. FHP-Murϕ allows us to define Finite State/Discrete Time Markov Chains and
to automatically verify that the probability of reaching a given error state in at most k steps is
below a given threshold.

Translations of PSs into FHP-Murϕ specifications are almost immediate.

8.4.1 FHP-Murϕ model of the NRL Pump

We give an immediate translation of the NRL pump in Figure 8.4 into a specification for the
FHP-Murϕ model checker.

The system representing the pump is specified by using the set of constants and variables shown
in Figure 8.5 and Figure 8.6 (see also Table 8.1).

Global variables define the state of our model and, hence, the number of bytes needed to
represent it (76 in our case).

FHP-Murϕ allows definition of functions/procedures. Parameters are passed by reference.
Function and procedures can modify only those declared “var”.

Procedure main (Figure 8.8) triggers the next state computation of all subsystems. The parame-
ter d, which is passed to obs and nrlpump ack, is computed in Figure 8.9, where prob delay bin(m,d)

returns the probability that the pump ack time is d when the pump moving average is m. As we
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const -- constant declarations (i.e. system parameters)

BUFFER_SIZE : 5; -- size of pump buffer

NRL_WINDOW_SIZE: 5; -- size of nrl pump sliding window

LS_WINDOW_SIZE: 5; -- size of low system sliding window

INIT_NRL_AVG : 4.0; -- init. value of high-sys-to-pump moving average

INIT_LS_AVG : 0.0; -- init. value of pump-to-low-syst moving average

DELTA : 10; -- maximal pump-to-low-system ack delay

HS_DELAY : 4.0; -- H_0 = HS_DELAY; H_1 = HS_DELAY + 2.0

DECISION_THR : 1.0; -- decision threshold

type -- type definitions (i.e. data structures)

real_type : real(6,99); -- 6 decimal digits, |mantissa| <= 99

BufSizeType : 0 .. BUFFER_SIZE; -- interval

NrlWindow : 0 .. (NRL_WINDOW_SIZE - 1); -- interval

LSWindow : 0 .. (LS_WINDOW_SIZE - 1); -- interval

AckDelay : 0 .. DELTA; -- range of pump-to-low-system ack delay

Figure 8.5: Constants (system parameters) and types (data structures)

var -- declarations of global variables (i.e. model state variables)

b : BufSizeType; -- number of msgs in pump buffer

nrl_avg : real_type; -- high-system-to-pump moving average

ls_avg : real_type; -- pump-to-low-system moving average

nrl_delays : array[NrlWindow] of real_type;

-- pump sliding window: last high-system-to-pump ack delays

ls_delays : array[LSWindow] of real_type;

-- low system sliding window: last pump-to-low-system ack delays

nrl_first_index : NrlWindow; -- cursor nrl sliding window

ls_first_index : LSWindow; -- cursor low system sliding window

nrl_ack : real_type; -- pump-to-low-system ack timer

hs_wait : real_type; -- high-system-to-pump ack timer

ls_decision: 0 .. 1; -- 0: hs sent 0, 1: hs sent 1

ls_decision_state: 0 .. 2; -- 0: to be decided;

-- 1: decision taken; 2: decision taken and state reset done

Figure 8.6: Global variables (state variables)
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-- reset all, but obs_decision_state

procedure goto_stop_state(); begin init();

ls_decision_state := 2; end; -- decision taken and reset done

Figure 8.7: Procedure goto stop state resets system states

have seen (see Table 8.3), this function implements a binomial distribution with average value m

on the interval [0,DELTA].
Figure 8.10 shows the definition of the initial state and of the probabilistic transition rules for

our model of the NRL Pump.

procedure main(d : AckDelay);

Var b_new : BufSizeType; Var nrl_ack_new : real_type;

Var hs_wait_new : real_type; Var avg_new : real_type;

begin -- decision taken and state reset already done

if (ls_decision_state = 2) then return; endif;

if (ls_decision_state = 0) then -- decision not taken yet

b_new := b; nrl_ack_new := nrl_ack;

hs_wait_new := hs_wait; avg_new := nrl_avg;

buffer(b_new); nrlpump_ack(nrl_ack_new, d);

obs(d); nrlpump(avg_new);

hs(hs_wait_new); b := b_new;

nrl_ack := nrl_ack_new; hs_wait := hs_wait_new;

nrl_avg := avg_new;

else -- decision taken but state reset to be done

goto_stop_state(); endif; end;

Figure 8.8: Procedure main updates system state

function binomial(n : real_type; k : real_type) : real_type;

var result : real_type; var nn, kk : real_type;

begin result := 1; nn := n; kk := k;

while (kk >= 1) do

result := result*(nn/kk); nn := nn - 1; kk := kk - 1; endwhile;

return (result); end;

function prob_delay_bin(m : real_type; d : AckDelay) : real_type;

var p : real_type;

begin p := m/DELTA;

return ( binomial(DELTA, d)*pow(p, d)*pow(1 - p, DELTA - d) ); end;

Figure 8.9: Function prob delay bin() updates high sys ack timer

Procedure init (Figure 8.11) defines the initial state for our model (condition init and state
q0 in Figure 8.4).

Procedure main and init, together with the startstate implement the transitions from state
q0 to state q1 and q2 in Figure 8.4.

Procedure buffer (Figure 8.12) implements the transition from state q2 to state q3.
Procedure nrlpump ack (Figure 8.13) implements the transition from state q3 to state q4 of the

PS in Figure 8.4
Procedure nrlpump (Figure 8.14) implements the transition from state q4 to state q5.
Procedure obs (Figure 8.15) implements the transition from state q5 to state q6 and q7.
Procedure hs (Figure 8.16) implements the transition from state q7 to state q0.
Procedure goto stop state (Figure 8.7) resets the NRL Pump (by calling init) after the

decision has been made by the low system. This procedure has nothing to do with the pump
working. It is only used to easy our covert channel measures (see transition to state qs in Figure 8.4)
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startstate "initstate" init(); end; -- define init state

ruleset d : AckDelay do -- define transition rules

rule "time step" prob_delay_bin(nrlavg, d) ==> begin main(d) end; end;

Figure 8.10: Startstate and transition rules for NRL pump model

procedure init(); begin

b := 0; nrl_avg := INIT_NRL_AVG; ls_avg := INIT_LS_AVG;

for i : NrlWindow do nrl_delays[i] := INIT_NRL_AVG; end;

for i : LSWindow do ls_delays[i] := INIT_LS_AVG; end;

nrl_first_index := 0; ls_first_index := 0; nrl_ack := 0;

hs_wait := 0; ls_decision := 0; ls_decision_state := 0; end;

Figure 8.11: Procedure init defines the initial state

procedure buffer(Var b_new : BufSizeType);

begin -- send and get at the same time, b does not change

if (((hs_wait <= 0.0)&(b > 0)) & ((nrl_ack <= 0.0)&(b < BUFFER_SIZE)))

then return; endif;

-- high system gets msg from buffer

if ((hs_wait <= 0.0)&(b > 0)) then b_new := b - 1; return; endif;

-- low system sends msg to buffer

if ((nrl_ack <= 0.0)&(b < BUFFER_SIZE)) then b_new := b+1;return;endif;

end;

Figure 8.12: Procedure buffer models the pump buffer

procedure nrlpump_ack(Var nrl_ack_new : real_type; d : AckDelay);

begin -- ack timer expired, low system sends new msg, timer takes d

if ((nrl_ack <= 0.0) & (b < BUFFER_SIZE))

then nrl_ack_new := d; return; endif;

-- ack timer not expired, waiting ack, timer decremented

if (nrl_ack > 0.0) then nrl_ack_new := nrl_ack - 1; return; endif; end;

Figure 8.13: Procedure nrlpump ack defines pump-to-low-system ack timer
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procedure nrlpump(Var avg_new : real_type); var last_index : NrlWindow;

begin

last_index := (nrl_first_index + NRL_WINDOW_SIZE - 1)%NRL_WINDOW_SIZE;

-- high system processing message

if (hs_wait > 0)

then nrl_delays[last_index] := nrl_delays[last_index] + 1.0; endif;

-- high system sends ack to the pump

if ((hs_wait >= -1) & (hs_wait <= 0.0)) then

avg_new := nrl_avg +

((nrl_delays[last_index]-nrl_delays[nrl_first_index])/NRL_WINDOW_SIZE);

nrl_first_index := (nrl_first_index + 1)%NRL_WINDOW_SIZE;

nrl_delays[(nrl_first_index+NRL_WINDOW_SIZE-1)%NRL_WINDOW_SIZE] := 0;

endif; end;

Figure 8.14: Procedure nrlpump updates value of moving average of high syst ack times

procedure obs(d : AckDelay);

var ls_last_index : LSWindow; var ackval : real_type;

var ls_old : real_type; var lsdiff : real_type;

begin

if ((nrl_ack <= 0.0) & (b < BUFFER_SIZE)) then ackval := d;

ls_last_index := (ls_first_index + LS_WINDOW_SIZE - 1)%LS_WINDOW_SIZE;

ls_delays[ls_last_index] := ackval; ls_old := ls_avg;

ls_avg := ls_avg + ((ls_delays[ls_last_index] -

ls_delays[ls_first_index])/LS_WINDOW_SIZE);

ls_first_index := (ls_first_index + 1)%LS_WINDOW_SIZE;

ls_delays[(ls_first_index + LS_WINDOW_SIZE - 1)%LS_WINDOW_SIZE] := 0;

-- make decision

if (ls_decision_state = 0) then -- decision has not been taken yet

-- make decision only when ls_avg stable (i.e. lsdiff small)

lsdiff := fabs(ls_avg - ls_old);

if ((lsdiff < DECISION_THR) & (HS_DELAY - 1.0 < ls_avg) &

(ls_avg < HS_DELAY + 1.0))

then ls_decision := 0; ls_decision_state := 1; return; endif;

if ((lsdiff < DECISION_THR) & (HS_DELAY + 1.0 < ls_avg) &

(ls_avg < HS_DELAY + 3.0))

then ls_decision := 1; ls_decision_state := 1; return; endif;

endif; endif; end;

Figure 8.15: Procedure obs computes the low syst estimate of the high syst ack time

FHP-Murϕ returns the probability of reaching a state in which a given invariant fails. Invariant
“no decision taken” in Figure 8.17 states that no decision has been taken, and allows us to
compute Pdec(h). Invariant “no-dec or right-dec” in Figure 8.17 states that no decision or the
correct decision has been taken, and allows us to compute Pwrong(h).

8.5 Experimental Results

Let us study the probabilities of making a decision, the wrong decision, or the right decision within
h time units, denoted Pdec(h), Pwrong(h), and Pright(h) (= Pdec(h) (1-Pwrong(h)). FHP-Murϕ

returns the probability of reaching a state in which a given invariant fails, allowing us to compute
Pdec(h)and Pwrong(h).

We studied how Pdec(h), Pwrong(h) and Pright(h) depend on BUFFER SIZE, NRL WINDOW SIZE,

LS WINDOW SIZE. Figure 8.18 shows Pdec(h) and Pwrong(h), and Figure 8.19 shows Pright(h), as

functions of h for some parameter settings. We label A-B-C-d (resp. A-B-C-w, A-B-C-r) the
experiments referring to Pdec(h) (resp. Pwrong(h), Pright(h)) with settings BUFFER SIZE = A,

NRL WINDOW SIZE = B, LS WINDOW SIZE = C. (Each of the curves in Figs. 8.18,8.19 required about
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procedure hs(Var hs_wait_new : real_type);

var last_index : NrlWindow;

begin

-- ack timer not expired, waiting ack, timer decremented

if (hs_wait > 0) then hs_wait_new := hs_wait - 1; return; endif;

-- ack timer expired, high syst receives new msg, timer takes HS_DELAY

if ((hs_wait <= 0.0)&(b > 0)) then hs_wait_new := HS_DELAY;return;endif;

-- ack timer expired, high system waiting for new msg

if ((hs_wait <= 0.0) & (b <= 0)) then hs_wait_new := -2.0; return;endif;

end; -- hs()

Figure 8.16: Procedure hs defines high-system-to-pump ack timer

invariant "no_decision_taken" 0.0 (ls_decision_state = 0);

invariant "no-dec_or_right-dec" 0.0

(ls_decision_state = 0) | ((ls_decision_state>0) & (ls_decision=0));

Figure 8.17: Invariants

2 days of computation on a 2 GHz Pentium PC with 512 MB of RAM.)
Figure 8.18 shows that the low system with probability almost 1 decides correctly the value of

the bit sent by the high system within 100 time units. Our time unit is about the time needed to
transfer messages from/to the pump. Thus we may reasonably assume that a time unit is about
1ms. Then Figure 8.19 tells us that the high system can send bits to the low system at a rate of
about 1 bit every 0.1 seconds, i.e. 10 bits/sec. Hence, for many applications the NRL Pump can
be considered secure, i.e. the covert channel has such a low capacity that it would take too long
to the high system to send interesting messages to the low system. On the other hand, it is not
hard to conceive scenarios where also a few bits sent from the high system to the low system are
a security threat.

Notice that, for the parameter settings we studied, the most important parameter is LS WINDOW SIZE,
i.e., different parameter settings with the same value of LS WINDOW SIZE yield the same curves in
Figs. 8.18, 8.19. Moreover, the larger is LS WINDOW SIZE the later and more precise is the decision
of the low system. This is quite natural since LS WINDOW SIZE is the width of the moving average
used by the low system to estimate the average ack delays from the high system. The more samples
we use in such a moving average the better is the estimation, event though the longer is the waiting
to get it.

Figure 8.19 shows that the transition from the situation in which no covert channel exists
(Pright(h) close to 0) to that in which a covert channel exists (Pright(h) close to 1) is steep. Hence,

relatively small changes in system parameters (namely LS WINDOW SIZE) may have a dramatic effect
on security.
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Figure 8.18: Probabilities of taking a decision and a wrong decision within h time units
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Conclusions

Our society is becoming more and more dependent on computer networks. Unsafe behaviors must
be avoided, and data which are elaborated, transmitted or stored need some form of protection.
Cryptographic algorithms have been proposed to protect information which is transmitted on
communication networks. However, cryptography is mainly used as a building block of many
complex applications where the correctness of the cryptographic algorithm is not a guarantee, per
se, of the correctness of the applications.

Only the development and use of formal tools may allow analysts and designers to describe
faithfully, to analyze in detail and to prove the correctness of systems. Formal specifications and
application of verification techniques may significantly reduce the risk of errors in the development
of systems, compared with traditional informal specification and testing.

The application of formal methods to the development of validated systems mainly concentrates
on specification languages, with semantics adequate to support implementation and verification,
and methods and tools for verifying specifications with respect to properties expressed in suitable
formalisms.

Models based on the concept of states and transitions, also called automata, have turned out
to be particularly intuitive. States of the automaton represent snapshots of the described system,
while transitions represent state changes.

The nondeterministic approximation however makes it impossible to capture the leakage of
probabilistic and time information and prevent possible attacks based, for instance, on statistical
or timing analysis. For this reason, theoretical foundations of security properties should take
probability and time into account.

C.1 Approximating Weak Bisimulation

The correctness of a system with respect to a desired behavior is verified by checking whether a
structure that models the system satisfies a formula describing that behavior.

The fact that the system cannot reach unwanted states (safety) and that there is no possibility
of leakage of information (security and privacy) are among the most interesting properties.

In general, behavioural equivalences may be used to verify a property of a system by assessing
the equivalence of the system considered, with a system one knows to enjoy the property. The
problem of formalising the notion of confidentiality boils down to that of formalising equivalence
of processes. This is a central and difficult question at the heart of computer science to which
there is no unique answer. Which notion of equivalence is appropriate depends on the context
and application. Consequently, one should not be surprised that the information security commu-
nity has failed to come up with a consensus on what constitutes confidentiality. However, weak
bisimulation equivalence has been successfully used for the analysis of information flow security
properties in multilevel systems. Fine enough to capture any unsecure behavior that can give rise
to information flow, but not so strict to classify as unsecure behaviours which are instead correct.
Decidability of weak bisimulation for a class of Probabilistic Timed Automata has been proved.
This result has been used for the analysis of Information Flow security in a context where both



108 CHAPTER H. CONCLUSIONS

time and probability are taken into account.

In systems that model quantitative processes, steps are associated with a given quantity, such
as the probability that the step will happen or the resources (e.g. time or cost) needed to perform
that step. The standard notion of bisimulation can be adapted to these systems by treating the
quantities as labels, but this does not provide a robust relation, since quantities are matched only
when they are identical. Processes that differ for a very small probability, for instance, would be
considered just as different as processes that perform completely different actions. This is partic-
ularly relevant to security systems where specifications can be given as perfect, but impractical
processes and other, practical processes are considered safe if they only differ from the specification
with a negligible probability.

To find a more flexible way to differentiate processes, one may consider the notion of metric,
which is a function that associates a real number (distance) with a pair of elements.

In [42, 41, 39] metrics are introduced in order to quantify the similarity of the behavior of
probabilistic transitions systems that are not strictly bisimilar.

While the notion of weak bisimulation introduced in this thesis is quite strict, a notion of
approximate weak bisimulation could be extremely useful when analyzing security aspects of prob-
abilistic systems.

In fact, new aspects in the study of insecure behaviors can be analyzed by modeling the prob-
abilistic behavior of systems. More precisely, within a purely nondeterministic qualitative setting
we can just establish whether a system is secure or not, while in a probabilistic model we can
also verify the security level of a system by establishing with which probability a certain insecure
behavior might arise.

Moreover, many problems solved by using deterministic algorithms turn out to be secure, but
require exponential time. The same problems can be solved by resorting to probabilistic algorithms
running in polynomial time, but allowing the execution of potential insecure behaviors. In the
classical nondeterministic approach to security analysis, such probabilistic algorithms turn out to
be insecure even though the probability of executing an insecure behavior is close to 0. As a
consequence, a quantitative study of the unwanted behaviors is crucial for the evaluation of the
security level of probabilistic systems.

In order to introduce a quantitative measure for insecure behavior (by defining quantitative
security properties) and to estimate the probability that a certain insecure behavior arises, one
can resort to a quantitative notion of weak bisimulation for deciding whether two systems behave
almost in the same way (up to a given threshold).

As a future work, one may think of introducing a notion of approximate weak bisimulation
with epsilon-precision within the model of Probabilistic Timed Automata. Such a notion should
be able to tolerate fluctuations making the security conditions less restrictive and relating systems
that may have largely different possible behaviors under the condition that such behaviors are
observable with a negligible probability. This will allow assessing bisimilarity of automata for
which the difference between the quantitative behaviors is within a small distance.

C.2 A Unified Cryptographic Model

A recent but well-known formal view of cryptography has been introduced by Abadi and Rogaway
in [3], which describes formal algebraic expressions on which encryption operates and defines what
it means for two encrypted expressions to be equivalent. As a novelty, [3] relates the formal view
and the classical computational model of cryptography, by proving as the main result the soundness
of the formal world with respect to the computational world.

The treatment of cryptographic operations within formal models is covered by a large and well-
established body of literature, but most of these efforts do not consider cryptographic operations
in an imperfect cryptography scenario. The classical Dolev-Yao model, which is based on the
perfect cryptography assumption and the restricted expressive power of the adversary, favours a
convenient application of formal methods that treat cryptographic operations as purely formal.



C.3. DEVELOPMENT OF AUTOMATIC TOOLS 109

On the basis of such considerations, we aim at relaxing the strict requirements of the Dolev-Yao
approach to cryptography. In order to overcome the limitations of such requirements, we may take
into account the probability for a polynomial time adversary of attacking with success a message
encrypted with a secret key. While in a Dolev-Yao setting such a possibility is simply disregarded
(a message encrypted with an unknown key is a black box) in a real scenario an adversary with
a suitable knowledge may have a good chance of obtaining useful information from a ciphertext
that, from a purely formal standpoint, is considered to be a black box.

In [132, 133] we tried to fill this gap. A technique is shown for verifying whether the privacy of
the ciphertexts exchanged during a protocol can be guaranteed at a reasonable level. The model is
based on the analysis of the structure of the messages, by considering all possible ways an attacker
may guess some keys contained in the messages at his disposal. For this purpose, a simple formal
model of cryptography is extended with probabilistic information which represents an estimation
of the robustness of the encryption algorithm and of the used key.

This technique can be used to extend any quantitative formal model used for the analysis of
probabilistic non-interference. In this setting, one may think at providing a probabilistic formal
model capable of estimating the information leakage due to both the information flows which can
derive from the protocol (probabilistic or time) behavior and the weaknesses of the encryption
algorithms and secret keys.

A step in this direction can be done by enriching a probabilistic and timed model for systems
description with notions of cryptographic operations (encryption, decryption, hashing, etc.) in or-
der to deal with cryptographic systems (e.g. by enriching with probabilities the model of SDMTAs
introduced in Chapter 6).

C.3 Development of Automatic Tools

In the long term, we expect our results to lay the foundations for automated verification techniques
of infomation flow security properties. A good starting point could be the implementation of the
notions of weak bisimulation and of approximate weak bisimulation.
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