
Jean Goubault-Larrecq
λ-calcul pour
l’agrégation

Tous droits réservés, Jean Goubault-Larrecq, professeur, ENS Paris-Saclay, Université Paris-Saclay
Cours « Lambda-calcul » (master FESUP préparation à l’agrégation d’informatique Sorbonne
Université), 2023-
Ce document est protégé par le droit d’auteur. Toute représentation ou reproduction intégrale ou
partielle faite sans le consentement de l’auteur est illicite.

Pour l’agrégation
❖ Ce que dit le programme (2022, 2023):

« Lambda-calcul pur comme modèle de calcul :
 définition, propriétés (dont confluence), stratégies.
 Équivalence avec les machines de Turing et les fonctions récursives. »

❖ Pas de leçon (oral) sur le sujet.

❖ Le λ-calcul typé est hors-sujet.

❖ Liens avec les leçons:
2. Paradigmes de programmation : impératif, fonctionnel, objet. Exemples et applications.
30. Décidabilité et indécidabilité. Exemples.
⚠ Vous pouvez y mentionner éventuellement un point de λ-calcul, mais pas plus
 (ce ne sont pas des leçons de λ-calcul).

L’essentiel

❖ Motivation: λ-calcul = cœur des langages fonctionnels

❖ Définition: α-équivalence, β-réduction, [η-réduction]

❖ Propriétés fondamentales:
confluence, non-terminaison, développements finis, standardisation

❖ Implémentations: interprètes simples, machines de Krivine, [combinateurs]

❖ et stratégies:
par valeur/nom, interne/externe, gauche/droite, faibles ou non,
réductions de tête et réductions standard

❖ Équivalence avec les machines de Turing et les fonctions récursives;
 combinateurs de point fixe (Y)

Références bibliographiques
❖ 📖 Henk Barendregt

The Lambda Calculus — Its Syntax and Semantics
North-Holland (revised ed., 1984)
 l’encyclopédie! contient tout

❖ 📖 Jean-Louis Krivine
Lambda-calcul, types et modèles [seuls les chapitres 1 et 2 sont au programme]
Masson (1991)
 version anglaise en ligne: https://www.irif.fr/~krivine/articles/Lambda.pdf

❖ 📖 Richard Lassaigne et Michel de Rougemont
Logique et fondements de l’informatique:
 logique du 1er ordre, calculabilité et lambda-calcul
Hermès (1993)

❖ 📂 Thérèse Hardin-Accart, cours de lambda-calcul, DEA SPP, 2003-04
http://www-spi.lip6.fr/~hardin/DEA/poly.pdf

❖ 📂 JGL, cours de L3 « logique informatique — lambda-calcul », ENS Paris-Saclay,
https://projects.lsv.fr/agreg/?page_id=113

https://www.irif.fr/~krivine/articles/Lambda.pdf
http://www-spi.lip6.fr/~hardin/DEA/poly.pdf
https://projects.lsv.fr/agreg/?page_id=113

Motivation

Alonzo Church

❖ Le λ-calcul a été inventé par…

Alonzo Church
By Princeton University, Fair use, https://en.wikipedia.org/w/index.php?curid=6082269

https://en.wikipedia.org/w/index.php?curid=6082269

Historiquement

❖ … en 1932 par A. Church
pour donner un fondement aux
mathématiques basé sur la notion
de fonction plutôt que d’ensemble

❖ (s’est révélé contradictoire plus tard…)
Annals of Mathematics, 2nd series
33(2), April 1932, pages 346-366
https://doi.org/10.2307/1968337

https://doi.org/10.2307/1968337

Historiquement

❖ …puis en 1933 par A. Church
pour donner un fondement aux
mathématiques basé sur la notion
de fonction plutôt que d’ensemble

❖ (toujours contradictoire…
détecté par J. B. Rosser en 1936)

Annals of Mathematics, 2nd series
34(4), October 1933, pages 839-864
https://doi.org/10.2307/1968702

https://doi.org/10.2307/1968702

Historiquement

❖ …puis en 1940 par A. Church
pour donner un fondement à la
logique d’ordre supérieur

The Journal of Symbolic Logic 5(2), June 1940,
pages 56-68

http://links.jstor.org/sici?sici=0022-4812%28194006%295%3A2%3C56%3AAFOTST%3E2.0.CO%3B2-Q

http://links.jstor.org/sici?sici=0022-4812%28194006%295%3A2%3C56%3AAFOTST%3E2.0.CO%3B2-Q

Historiquement

❖ …puis en 1941 par A. Church
(d’après ses notes de cours)

Annals of Mathematics, series 6,
Princeton University Press, 1941, 77 pages.

https://archive.org/details/AnnalsOfMathematicalStudies6ChurchAlonzoTheCalculiOfLambdaConversionPrincetonUniversityPress1941/mode/2up

https://archive.org/details/AnnalsOfMathematicalStudies6ChurchAlonzoTheCalculiOfLambdaConversionPrincetonUniversityPress1941/mode/2up

Lisp
❖ Le tout premier langage fonctionnel:
📖 John McCarthy et al.
 LISP 1.5 Programmer’s Manual
 MIT Press (1962)

❖ (define fact(x)  
 (cond (eq x 0)  
 1  
 (* x (fact (- x 1))))))

❖ Lisp est un lambda-calcul enrichi
(avec des primitives: eq, cond,*, 0, 1, -, etc.)

Langage fonctionnel:
on calcule en appliquant des fonctions
à des arguments (eq, cond,*, fact, -)

On peut aussi
définir des fonctions

Lisp
❖ Le tout premier langage fonctionnel:
📖 John McCarthy et al.
 LISP 1.5 Programmer’s Manual, MIT Press (1962)

❖ (define fact  
 (lambda (x)  
 (cond (eq x 0)  
 1  
 (* x (fact (-x 1))))))

❖ (mapcar (lambda (x) (+ x 1))  
 (list 1 2 3)) ; calcule (2 3 4)

On peut même définir des
fonctions anonymes

Ceci est directement inspiré de la
notation λx . … du λ-calcul

ML

❖ Dû à Robin Milner (1978)
λ-calc. → Hope → ML → CaML → CaML light → OCaML
 … aussi → Standard ML (SML/NJ)

❖ fun fact x =  
 if x=0  
 then 1  
 else x*fact(x-1);

Langage fonctionnel:
on calcule en appliquant des fonctions

à des arguments (=, if,*, fact, -);
la syntaxe est simplement plus agréable

On peut aussi définir des fonctions — récursives, comme en Lisp

https://pictures.abebooks.com/isbn/9780262631327-us.jpg

https://pictures.abebooks.com/isbn/9780262631327-us.jpg

ML

❖ Dû à Robin Milner (1978)
λ-calc. → Hope → ML → CaML → CaML light → OCaML
 … aussi → Standard ML (SML/NJ)

❖ val rec fact =  
 fn x => if x=0  
 then 1  
 else x*fact(x-1);

❖ map (fn x => x+1) [1, 2, 3];  
 (* calcule [2, 3, 4] *)

On peut même définir des
fonctions anonymes

Ceci est directement inspiré de la
notation λx . … du λ-calcul

Haskell

❖ (1990)
λ-calc. → Miranda → Haskell

❖ fact 0 = 1  
fact x = x*fact(x-1)  

Langage fonctionnel:
on calcule en appliquant des fonctions

à des arguments (*, fact, -)

On peut aussi définir des fonctions — récursives, comme en Lisp et en ML

Par Thought up by Darrin Thompson
and produced by Jeff Wheeler —

Thompson-Wheeler logo on the haskell wiki,
Domaine public,

https://commons.wikimedia.org/w/index.php?curid=8479507

https://commons.wikimedia.org/w/index.php?curid=8479507

On peut même définir des
fonctions anonymes

Haskell
❖ (1990)

λ-calc. → Miranda → Haskell

❖ fact = \x | x=0 -> 1  
 | otherwise -> x*fact(x-1)

❖ map (\x -> x+1) [1,2,3]  
 -- calcule [2,3,4]

❖ nat = 0:map (\x -> x+1) nat  
 -- calcule [0, 1, 2, …]  

Par Thought up by Darrin Thompson
and produced by Jeff Wheeler —

Thompson-Wheeler logo on the haskell wiki,
Domaine public,

https://commons.wikimedia.org/w/index.php?curid=8479507Ceci est directement inspiré de la
notation λx . … du λ-calcul

Evaluation paresseuse:
(appel par nom, voir stratégies, plus tard dans le cours)

les arguments de fonction
(ici, :) ne sont évalués que si
on a besoin de les connaître

https://commons.wikimedia.org/w/index.php?curid=8479507

La syntaxe du λ-calcul

La syntaxe du λ-calcul
❖ Très très simple! Les termes sont:

 s,t,u,v, … ::=
 x,y,z, … variables (en nb. ∞ dénombrable)
 | st application (de s à t)
 | λx . s λ-abstraction (fun x -> s, en Caml)

❖ C’est tout! Pas d’entiers, pas de listes, pas de récursion,
pas de types, pas de modules, rien d’autre…

❖ Et pourtant, on verra que le langage est Turing-complet

La syntaxe du λ-calcul
❖ Un terme est réellement un arbre.

La syntaxe représente ces arbres,
modulo les conventions usuelles
 de parenthésage
 et de priorités (à la Caml)

❖ Quelques exemples…

λx

@

λy

@

@

x y

λz

@

z

λz

@

z x

@

x yλx . (λy . xy(λz . z(xy))) (λz . zx)

@

z@

x y

La syntaxe du λ-calcul
❖ xyz dénote (xy)z,

❖ pas x(yz)

❖ L’application
n’est pas associative @

x @

y z

@

z@

x y

La syntaxe du λ-calcul
❖ λx . xyz dénote (λx . (xyz))

❖ … autrement dit la portée de λx
s’étend aussi loin à droite que
possible

λx

Calcul: la β-réduction

rédex

La β-réduction
❖ Une seule règle de calcul:

 (β) (λx . u) v → u[x:=v]

❖ applicable n’importe où dans un
terme

@

λx

u
v

x x x

u

v v v

contractum

Il peut y avoir plusieurs
rédexes dans un terme,
mais on n’en contracte

qu’un à la fois

La β-réduction est la plus petite relation
contenant β et compatible aux contextes

Une autre présentation de la β-réduction

❖ (β) (λx . u) v → u[x:=v]

❖ On dit que s → t ssi
il existe un contexte C
et un rédex (λx . u) v
tels que s = C[(λx . u) v]
 et t = C[u[x:=v]]

❖ C ::= _ trou (où le terme est inséré)
 | λx . C réduction « sous la lambda »
 | C v la réduction s’opère dans la fonction
 | u C la réduction s’opère dans l’argument

Oralement: « s se contracte en t »
ou « s se réduit en une étape en t »

Encore une autre présentation

(λx . u) v → u[x:=v]

u → u’

λx . u → λx . u’

u → u’

uv → u’v

v → v’

uv → uv’

❖ Alors s → t si et seulement
le jugement « s → t » est
dérivable

Autres relations
❖ On écrira → pour la β-réduction, mais parfois aussi

pour n’importe quelle autre relation de réduction
(relation binaire…)

❖ Si ambiguïté, on écrira →β pour la β-réduction

❖ Exemple: on peut ajouter la règle
 (η) λx . ux → u (si x pas libre dans u)
et considérer la βη-réduction →βη
(Non, on ne peut pas simuler (η) par (β), cf. λx . yx où y est une variable ≠x)

Clôtures
❖ →* = clôture réflexive-transitive de → (étoile de Kleene)

 = plus petit préordre contenant →
u →* v ssi il existe une réduction (un chemin)
 u=u0 → u1 → … un–1 → un=v, avec n≥0

❖ →+ = clôture transitive de →
 = plus petite relation transitive contenant →
u →+ v ssi il existe une réduction non vide
 u=u0 → u1 → … un–1 → un=v, avec n≥1

❖ ⟷* = (← ∪ →)* est la β-équivalence (parfois notée =β)

Substitution

Substitution?
❖ (β) (λx . u) v → u[x:=v]

❖ D’accord, mais comment définit-on formellement
la substitution u[x:=v] de v pour x dans u?

❖ Bizarrement, c’est une question très compliquée
(et très enquiquinante — on s’empressera d’ignorer les difficultés à l’avenir)

Substitution: 1er essai
❖ Substitution textuelle: non, donnerait:

(λx . u) [x:=v] = λv . (u[x:=v])

n’est même pas syntaxiquement correct
(sauf si v est une variable)

Substitution: 2ème essai
❖ Définition par récurrence sur u:

x [x:=v] ≝ v
y [x:=v] ≝ y (y≠x)
(st) [x:=v] ≝ (s [x:=v]) (t [x:=v])
(λz . u) [x:=v] ≝ λz . (u[x:=v])

❖ A l’air bien défini, mais souffre de quelques
problèmes…

Le problème avec la substitution
❖ D’après la définition,

(λx . x) [x:=y] = λx . y
(λy . x) [x:=y] = λy . y

❖ Pour corriger ça, on va:

❖ restreindre la substitution par des conditions sur les
variables libres et liées

❖ autoriser à renommer les variables liées (α-renommage)

❖ autre solution: indices de de Bruijn (omis ici; voir exercices)

x [x:=v] ≝ v
y [x:=v] ≝ y (y≠x)
(st) [x:=v] ≝ (s [x:=v]) (t [x:=v])
(λz . u) [x:=v] ≝ λz . (u[x:=v])

Variables libres, variables liées
❖ fv(u) = {variables libres de u}

« qui apparaissent dans u à une position où on peut les remplacer »

❖ bv(u) = {variables liées de u}
fv(x) ≝ {x} bv(x) ≝ ∅

fv(uv) ≝ fv(u) ∪ fv(v) bv(uv) ≝ bv(u) ∪ bv(v)
fv(λx . u) ≝ fv(u) – {x} bv(λx . u) ≝ bv(u) ∪ {x}

❖ Exemples. u fv(u) bv(u)
λx . x ? ?

x(λy . z) ? ?
x(λx . x) ? ?

(λx . xx)(y(λz . yz)x) ? ?

Variables libres, variables liées
❖ fv(u) = {variables libres de u}

« qui apparaissent dans u à une position où on peut les remplacer »

❖ bv(u) = {variables liées de u}
fv(x) ≝ {x} bv(x) ≝ ∅

fv(uv) ≝ fv(u) ∪ fv(v) bv(uv) ≝ bv(u) ∪ bv(v)
fv(λx . u) ≝ fv(u) – {x} bv(λx . u) ≝ bv(u) ∪ {x}

❖ Exemples. u fv(u) bv(u)
λx . x ∅ {x}

x(λy . z) ? ?
x(λx . x) ? ?

(λx . xx)(y(λz . yz)x) ? ?

Variables libres, variables liées
❖ fv(u) = {variables libres de u}

« qui apparaissent dans u à une position où on peut les remplacer »

❖ bv(u) = {variables liées de u}
fv(x) ≝ {x} bv(x) ≝ ∅

fv(uv) ≝ fv(u) ∪ fv(v) bv(uv) ≝ bv(u) ∪ bv(v)
fv(λx . u) ≝ fv(u) – {x} bv(λx . u) ≝ bv(u) ∪ {x}

❖ Exemples. u fv(u) bv(u)
λx . x ∅ {x}

x(λy . z) {x,z} {y}
x(λx . x) ? ?

(λx . xx)(y(λz . yz)x) ? ?

Variables libres, variables liées
❖ fv(u) = {variables libres de u}

« qui apparaissent dans u à une position où on peut les remplacer »

❖ bv(u) = {variables liées de u}
fv(x) ≝ {x} bv(x) ≝ ∅

fv(uv) ≝ fv(u) ∪ fv(v) bv(uv) ≝ bv(u) ∪ bv(v)
fv(λx . u) ≝ fv(u) – {x} bv(λx . u) ≝ bv(u) ∪ {x}

❖ Exemples. u fv(u) bv(u)
λx . x ∅ {x}

x(λy . z) {x,z} {y}
x(λx . x) {x} {x}

(λx . xx)(y(λz . yz)x) ? ?

oui, une variable
peut être libre et

liée!

Variables libres, variables liées
❖ fv(u) = {variables libres de u}

« qui apparaissent dans u à une position où on peut les remplacer »

❖ bv(u) = {variables liées de u}
fv(x) ≝ {x} bv(x) ≝ ∅

fv(uv) ≝ fv(u) ∪ fv(v) bv(uv) ≝ bv(u) ∪ bv(v)
fv(λx . u) ≝ fv(u) – {x} bv(λx . u) ≝ bv(u) ∪ {x}

❖ Exemples. u fv(u) bv(u)
λx . x ∅ {x}

x(λy . z) {x,z} {y}
x(λx . x) {x} {x}

(λx . xx)(y(λz . yz)x) {x,y} {x,z}

oui, une variable
peut être libre et

liée!

au fait, la variable
z’ (≠x,y,z) est-elle

libre ici?

Substitution, 3ème essai
❖ On définit une opération de

substitution partielle
 u [x:=v]
définie uniquement lorsque
 x ∉ bv(u) et fv(v) ∩ bv(u) = ∅

❖ On peut assurer cette condition en renommant x…

x [x:=v] ≝ v
y [x:=v] ≝ y (y≠x)
(st) [x:=v] ≝ (s [x:=v]) (t [x:=v])
(λz . u) [x:=v] ≝ λz . (u[x:=v])

pour éviter le problème
« (λx . x) [x:=y] = λx . y »

pour éviter le problème
« (λy . x) [x:=y] = λy . y »

on dit que x est
substituable
par v dans u

i.e., x,y ∉ bv(u)

α-renommage
❖ On souhaite considérer que

« λx . u(x) et λy . u(y) sont interchangeables »

❖ On définit la relation α par:
 λx . u α λy . (u[x:=y])
à condition que x soit substituable par y dans u
 et que y ne soit pas libre dans u
 (sinon on aurait λx . xy α λy . yy)

❖ La relation d’α-équivalence =α est la plus petite congruence
(rel. d’équivalence compatible aux contextes) contenant α

et y ∉ fv(u)

Propriétés du α-renommage
❖ Exemple: λx . λy . xy =α λx . λz . xz

 (avec z≠x,y—noter le passage au contexte)
 =α λy . λz . yz =α λy . λx . yx

❖ On peut toujours α-renommer λx . u
 de sorte que u[x:=v] soit bien défini
(= de sorte que x ∉ bv(u) et fv(v) ∩ bv(u) = ∅)

❖ Permet de (re)définir proprement la β-réduction!

λx . u α λy . (u[x:=y])
 (x,y ∉ bv(u), y ∉ fv(u))

La β-réduction… vraiment

La β-réduction, vraiment
❖ (β) (λx . u) v → u[x:=v]

❖ On dit que s → t ssi
il existe un contexte C
et un rédex (λx . u) v
tels que s =α C[(λx . u) v]
 et t =α C[u[x:=v]]

❖ C ::= _ trou (où le terme est inséré)
 | λx . C réduction « sous la lambda »
 | C v la réduction s’opère dans la fonction
 | u C la réduction s’opère dans l’argument

Ou, de façon équivalente

(λx . u) v → u[x:=v]

u → u’

λx . u → λx . u’

u → u’

uv → u’v

v → v’

uv → uv’

❖ Alors s → t si et seulement
le jugement « s → t » est
dérivable

u =α v v → v’

u → v’

u → u’ u’ =α v’

u → v’

(λy . (λx . yxx)(λz . z(xy)))(λz’ . z’)

Un exemple de réductions
2 rédexes

(λy . y(λz . z(xy))(λz . z(xy)))(λz’ . z’)

(λz’ . z’)(λz . z(x(λz’ . z’)))(λz . z(x(λz’ . z’)))

(λz . z(x(λz’ . z’)))(λz . z(x(λz’ . z’)))

(λz . z(x(λz’ . z’)))(x(λz’ . z’))

x(λz’ . z’)(x(λz’ . z’))

(λx . (λz’ . z’)xx)(λz . z(x(λz’ . z’)))

Forme normale
(=sans rédex)

(λx . xx)(λz . z(x(λz’ . z’)))

Les réductions
confluent,

et la forme normale
est unique

Sont-ce des phénomènes généraux?

Terminaison
❖ Une forme normale est un terme u sans rédex,

 i.e., u ↛

❖ Un terme u est normalisable (= faiblement terminant)
ssi il a une forme normale
ssi il existe une réduction partant
 de u qui termine

❖ Un terme u est
fortement normalisable (=terminant)
ssi toutes les réductions partant de u terminent

u → → … → ✔

…
…

…
…

u → → … → ✔

✔
✔

✔
✔

Le terme Ω
❖ Posons Ω ≝ δδ, où δ ≝ λx . xx [auto-application]

❖ Son « arbre » de réductions est:
(Ω = (λx . xx) δ → δδ = Ω,
 et c’est la seule réduction possible)

❖ Ω est un terme qui n’est (même) pas normalisable

❖ Y a-t-il un terme normalisable mais pas fortement?

❖ On a donc tous les cas possibles:
fortement norm./norm./pas normalisable

Ω

(λx . y) Ω

y

Confluence

confluence Church-Rosser

forme normale unique

confluence forte

confluence locale

Propriété de forme normale unique

❖ On dit qu’une relation de réduction a la
 propriété de forme normale unique
ssi tout terme a au plus une forme normale

❖ On verra que la β-réduction a cette propriété.

Confluence
❖ Une relation de réduction → est confluente ssi

toutes les réductions u →* v1 et u →* v2
sont joignables, i.e. il existe des
réductions v1 →* w et v2 →* w
vers le même terme w

❖ Fait. Toute relation confluente
a la propriété de forme normale unique.

❖ Preuve. Si v1 et v2 sont deux
formes normales de u, les réductions
v1 →* w et v2 →* w sont de longueur 0.

u

* *

**

v1 v2

w

confluence Church-Rosser

forme normale unique

confl

confl

Propriété de Church-Rosser
❖ → a la propriété de Church-Rosser ssi ⟷* = →*; ←*

i.e., pour tous u, v tels que u ⟷* v, il existe w tel que
 u →* w et w ←* v

❖ A quoi ça sert?
Un exemple en théorie des groupes…

Exemple: la théorie des groupes
❖ On vous dit: 1×x → x x–1×x → 1 (x×y)×z → x×(y×z)

(pour tous termes x,y,z)

❖ Démontrer x×1 ⟷* x…

❖ Oui, on peut!

❖ mais ceci demande de l’inventivité

❖ Ça serait plus simple si on pouvait simpler réduire x×1 et x
et vérifier qu’ils se réduisent aux mêmes termes…

(((x–1)–1×x–1)×x)×1

((x–1)–1×x–1)×(x×1)

1×(x×1)

x×1

((x–1)–1×(x–1×x))×1

((x–1)–1×1)×1

(x–1)–1×(1×1)

(x–1)–1×1

(x–1)–1×(x–1×x)

((x–1)–1×x–1)×x

1×x

x

La procédure de Knuth-Bendix (un aperçu)

❖ On cherche deux règles l1 → r1 et l2 → r2 telles que
 l2 s’unifie avec un sous-terme non var. t de l1
 (l1=C[t], σ=mgu(l2,t))

❖ Alors l1σ → r1σ, mais aussi l1σ = Cσ[l2σ] → Cσ[r2σ]

❖ Le couple (l1σ↓, Cσ[r2σ]↓) est
 une paire critique

❖ Si (u,v) est une paire critique avec u≠v,
rajouter la règle u → v ou v → u… et recommencer.

l1σ

r1σ Cσ[r2σ]

r1σ↓
✔

Cσ[r2σ]↓
✔

* *

Exemple: la théorie des groupes
❖ On vous dit: 1×x → x x–1×x → 1 (x×y)×z → x×(y×z)

(x–1×x)×z

1×z x–1×(x×z)

z
✔

✔

❖ Rajouter la règle x–1×(x×z) → z

❖ Ceci peut rajouter de nouvelles paires critiques,
et on itère…

Exemple: la théorie des groupes
❖ On vous dit: 1×x → x x–1×x → 1 (x×y)×z → x×(y×z)

❖ Résultat (après effacement de règles inutiles):
 1×x → x x×1 → x 1–1 → 1
 (x–1)–1 → x (x×y)–1 → y–1×x–1

 x×x–1 → 1 x–1×x → 1 (x×y)×z → x×(y×z)
 x×(x–1×z) → z x–1×(x×z) → z

❖ Ce système de réécriture est Church-Rosser!

❖ Corollaire: la théorie des groupes est décidable.
(Pour savoir si u ⟷* v, comparer leurs formes normales dans ce nouveau
système.)

Confluence et Church-Rosser
❖ Théorème. Confluence = Church-Rosser.

❖ Preuve (1/2). Suppons → Church-Rosser.
 Si l’on a:
 en particulier v1 ⟷* v2
 (par une preuve dite en pic)

❖ Par Church-Rosser…
(preuve de v1 ⟷* v2 dite en vallée)

❖ donc → est confluente.

u

* *
v1 v2

** w

❖ Théorème. Confluence = Church-Rosser.

❖ Preuve (2/2). Suppons → confluente, et u ⟷* v
On peut organiser cette preuve en pics et vallées:

Confluence et Church-Rosser

* *u * * v* *…

* *

confluence

* *

confluence

**

confluence

…

**

← n pics← n–1 pics← n–2 pics
* *

← 1 pic

Plus de pic!
On a obtenu une
preuve en vallée
de u ⟷* v.
Donc → est
Church-Rosser.

(Ceci est en réalité
une preuve par récurrence

sur le nombre de pics.)

❖ Théorème. Confluence = Church-Rosser.

❖ Preuve (2/2). Suppons → confluente, et u ⟷* v
On peut organiser cette preuve en pics et vallées:

Confluence et Church-Rosser

* *u * * v* *…

* *

confluence

* *

confluence

**

confluence

…

**

← n pics← n–1 pics← n–2 pics
* *

← 1 pic

Plus de pic!
On a obtenu une
preuve en vallée
de u ⟷* v.
Donc → est
Church-Rosser.

(Ceci est en réalité
une preuve par récurrence

sur le nombre de pics.)

confluence Church-Rosser

forme normale unique

confl

confl

❖ En principe, on devrait énumérer toutes
les situations v1 ←* u →* v2…

❖ … pour toutes les longueurs de
réduction possibles de u à v1 (resp. v2)

❖ On va donc chercher des critères de
confluence plus simples

Comment prouver la confluence?

confluence Church-Rosser

forme normale unique

confl

confl

u

* *

**

v1 v2

w

Confluence forte, confluence locale

❖ → est localement confluente ssi:

❖ Voyez-vous la différence avec
la confluence?

❖ Plus facile à vérifier
(en fait, on n’a qu’à énumérer les
 paires critiques)

❖ Fait. Confluence implique
 confluence locale.

Confluence locale

confluence Church-Rosser

forme normale unique

confl

confl

u

**

v1 v2

w

(L’implication n’est pas dans le sens souhaité… ça arrive.)

❖ La preuve suivante est fausse, dites-moi pourquoi.

❖ Arnaque. Si → loc. confluente alors → confluente (non).

❖ Supposons:

Confluence locale et confluence?

u

* *
v1 v2

Si u=v1…

0 étape

u=

*

0 étape

*
v2

Si u=v2, on raisonne
 symétriquement.
Regardons donc ce qui se
passe si ≥1 étape de u à v1,
resp. à v2

❖ La preuve suivante est fausse, dites-moi pourquoi.

❖ Arnaque. Si → loc. confluente alors → confluente (non).

❖ Cas de récurrence:

Confluence locale et confluence?

u

* *
v1 v2

* *

confluence
locale

* *

hyp. réc.

**

hyp. réc.

Où est l’erreur?

❖ Une relation → définie
sur un ensemble à 4 éléments {a,b,c,d}

❖ Localement confluent:
— c ← a → b joignable
— a ← b → d joignable

❖ Pas confluent
(a n’a pas de
forme normale
unique)

Le contre-exemple de Curry

a b

c d

a
c b

d
✔

✔ confluence Church-Rosser

forme normale unique

confl

confluence locale

https://upload.wikimedia.org/wikipedia/commons/8/86/HaskellBCurry.jpg

Haskell B. Curry

❖ → est fortement confluente ssi:

❖ Lemme. La confluence forte implique
 la confluence.

❖ Preuve: quasiment comme avant

❖ On montre:

❖ par récurrence
sur m+n.

❖ Évident si m=0 ou n=0.

Confluence forte

confluence Church-Rosser

forme normale unique

confluence forte

confluence locale

u

v1 v2

w

≤1 ≤1
u

* *

**

v1 v2

w

m étapes n étapes

≤n étapes ≤m étapes

* *

≤n–1

s’applique car
(m–1+1)+(n–1)

= m+n–1
< m+n

s’applique car
(m–1)+1 = m

< m+n

❖ → est fortement confluente ssi:

❖ Lemme. La confluence forte implique
 la confluence.

❖ Si m≥1 et n≥1:

Confluence forte

confluence Church-Rosser

forme normale unique

confluence forte

confluence locale

u

v1 v2

w

≤1 ≤1u

* *
v1 v2

* *

hyp. réc.

**

hyp. réc.

* *

confluence
forte

1 1

m–1 n–1≤1 ≤1

≤1 ≤m–1
≤m

❖ Non… 😢

❖ Imaginons
que v → w . Alors:

Le λ-calcul est-il fortement confluent?
@

λx

u
v

x x x

u

v v v

@

λx

u
w

x x x

u

ww w

*
3 étapes

(en général,
autant que

d’occurrences
de x dans u)

v w

❖ Oui… mais ça
n’implique pas la
confluence 😕

❖ 3 cas à examiner:

❖ Cas 1:
v → w,
v argument
d’un rédex

Le λ-calcul est-il localement confluent?
@

λx

u
v

x x x

u

v v v

@

λx

u
w

x x x

u

ww w

*
3 étapes

(en général,
autant que

d’occurrences
de x dans u)

❖ Oui… mais ça
n’implique pas la
confluence 😕

❖ 3 cas à examiner:

❖ Cas 2:
u → w,
u sous la
λ-abstraction
d’un rédex

Le λ-calcul est-il localement confluent?
@

λx

u
v

x x x

u

v v v

@

λx

w
v

x x

w

v v

Lemme (exercice). Si u → w
alors u[x:=v] → w[x:=v]

❖ Oui… mais ça
n’implique pas la
confluence 😕

❖ 3 cas à examiner:

❖ Cas 3:
rédex disjoints
u → u’, v → v’

Le λ-calcul est-il localement confluent?

u v

u’ v u v’

u’ v’

Le lemme de Newman

❖ Lemme (Newman 1941). Toute relation localement confluente
 et fortement normalisable
 est confluente.

❖ Preuve(s): transparents suivants.

❖ Note 1: le contre-ex. de Curry n’est pas fortement normalisable

❖ Note 2: la normalisabilité (faible) ne suffit pas (cf. Curry)

❖ Note 3: ne s’applique toujours pas au
 λ-calcul, qui n’est pas fortement
 normalisable…
 mais sera utile quand même!

Le lemme de Newman

confluence Church-Rosser

forme normale unique

confluence forte

confluence locale

si fortement
normalisable

❖ Lemme (Newman 1941). Toute relation localement confluente
 et fortement normalisable
 est confluente.

❖ Deux preuves, dont l’une sous une hypothèse supplémentaire
 (mais plus simple que l’autre).

❖ Première preuve: on suppose que → est à branchement fini:
pour tout u, {v | u → v} est fini
 (c’est clairement le cas en λ-calcul)

❖ Alors pour tout u, ν(u) ≝ longueur max.
d’une réduction partant de u existe:
 pourquoi?

Le lemme de Newman

confluence Church-Rosser

forme normale unique

confluence forte

confluence locale

si fortement
normalisable

Le lemme de Kőnig
❖ Lemme (Kőnig). Tout arbre à branchement fini

 et dont toutes les branches sont finies
 … est fini (n’a qu’un nombre fini de sommets).

❖ Preuve. Soit T un arbre infini, à branchement fini.

❖ * n’a qu’un #fini de successeurs

❖ Tiroirs et chaussettes: un de ceux-là
est racine d’un sous-arbre infini

❖ … et l’on continue à l’infini,
produisant une branche infinie.

*

❖ Supposons → fortement normalisable et à branchement fini:
 pour tout u, {v | u → v} est fini

❖ ∀ u, ν(u) ≝ longueur max. d’une réduction partant de u existe:
 on forme l’arbre T(u) ≝ {v | u →* v}

❖ Il est à branchement fini par hypothèse

❖ Ses branches sont finies car → fortement normalisable

❖ Par Kőnig, T(u) est fini, et il n’y a en particulier
 qu’un nombre fini de réductions partant de u

Pourquoi ν(u) existe-t-il?

❖ Supposons → fortement normalisable et à branchement fini:
 pour tout u, {v | u → v} est fini

❖ ∀ u, ν(u) ≝ longueur max. d’une réduction partant de u existe:
 on forme l’arbre T(u) ≝ {v | u →* v}

❖ Il est à branchement fini par hypothèse

❖ Ses branches sont finies car → fortement normalisable

❖ Par Kőnig, T(u) est fini, et il n’y a en particulier
 qu’un nombre fini de réductions partant de u

Pourquoi ν(u) existe-t-il?

Les gens rigoureux dans l’assistance auront remarqué que
T(u) est un graphe orienté, pas un arbre… deux solutions:

(1) montrer que Kőnig reste vrai pour tout graphe
acyclique à branchement fini

(2) définir les sommets de T(u) comme les réductions finies
partant de u elles-mêmes, poser * ≝ (u) et

p(u → u1 → …→ un–1 → un) = (u → u1 → …→ un–1)

Note (facile mais importante).
Si u → v alors ν(u) > ν(v).

❖ Lemme (Newman 1941). Toute relation localement confluente
 et fortement normalisable
 est confluente.

❖ On montre que si v1 ←* u →* v2 alors v1 et v2 ont un réduit commun
par récurrence sur ν(u)

❖ Les cas u=v1 et u=v2
sont comme avant

❖ Sinon:

Le lemme de Newman: 1ère preuve

confluence Church-Rosser

forme normale unique

confluence forte

confluence locale

si fortement
normalisable

et à branchement fini

u

* *
v1 v2

* *

hyp. réc.

**

hyp. réc.

* *

confluence
localeu1 u2

s’applique car
ν(u) > ν(u1)

s’applique car
ν(u) > ν(u2)

❖ Lemme (Newman 1941). Toute relation localement confluente
 et fortement normalisable
 est confluente.

❖ Même preuve, mais on raisonne par
 récurrence bien fondée sur u, directement,
ordonné strictement par ≺ ≝ ←+

❖ Principe de récurrence bien fondée: voir transparent suivant

Le lemme de Newman: 2ème preuve

et à branchement fini

Récurrence bien fondée
❖ Soit ≺ un ordre strict. Les affirmations suivantes sont équivalentes:

1. ≺ est bien fondée: pas de chaîne ∞ décroissante u0 ≻ u1 ≻ … ≻ un ≻ …

2. pour toute prop. P, si (∀u, (∀v ≺ u, P(v)) implique P(u)) alors ∀u, P(u)

❖ Preuve (non 2 implique non 1). Il y a une prop. P falsifiée par un u0,
 et vérifiant (∀u, (∀v ≺ u, P(v)) implique P(u))

❖ par contraposée, ∀un, si non P(un) alors ∃un+1 ≺ un, non P(un+1)

❖ (2 implique 1). Prendre P(u) ≝ « pas de chaîne ∞ décroissante partant
de u »

Récurrence bien fondée
❖ Soit ≺ un ordre strict. Les affirmations suivantes sont équivalentes:

1. ≺ est bien fondée: pas de chaîne ∞ décroissante u0 ≻ u1 ≻ … ≻ un ≻ …

2. pour toute prop. P, si (∀u, (∀v ≺ u, P(v)) implique P(u)) alors ∀u, P(u)

❖ Preuve (non 2 implique non 1). Il y a une prop. P falsifiée par un u0,
 et vérifiant (∀u, (∀v ≺ u, P(v)) implique P(u))

❖ par contraposée, ∀un, si non P(un) alors ∃un+1 ≺ un, non P(un+1)

❖ (2 implique 1). Prendre P(u) ≝ « pas de chaîne ∞ décroissante partant
de u »

Autrement dit, pour prouver ∀u, P(u), il suffit de
prendre un u quelconque,

et de prouver P(u) sous
l’hypothèse de récurrence: ∀v ≺ u, P(v)

❖ Lemme (Newman 1941). Toute relation localement confluente
 et fortement normalisable
 est confluente.

❖ On montre que si v1 ←* u →* v2 alors v1 et v2 ont un réduit commun
par récurrence bien fondée sur u strictement ordonné par ≺ ≝ ←+

❖ Les cas u=v1 et u=v2
sont comme avant

❖ Sinon:

Le lemme de Newman: 2ème preuve

confluence Church-Rosser

forme normale unique

confluence forte

confluence locale

si fortement
normalisable

et à branchement fini

u

* *
v1 v2

* *

hyp. réc.

**

hyp. réc.

* *

confluence
localeu1 u2

s’applique car
u ≻ u1

s’applique car
u ≻ u2

Le λ-calcul est confluent

Réductions parallèles

❖ La preuve standard de confluence du λ-calcul

❖ On introduit une relation ⇒ de réduction parallèle
qui intuitivement autorise à réduire plusieurs rédexes, à condition qu’aucun n’en
contienne un autre

❖ On montre que ⇒ est fortement confluente
 donc confluente

❖ Enfin, → ⊆ ⇒ ⊆ →*
 donc → sera confluente.

u ⇒ u’ v ⇒ v’

(λx . u) v ⇒ u’[x:=v’]

u ⇒ u’

λx . u ⇒ λx . u’

u ⇒ u

u ⇒ u’ v ⇒ v’

uv ⇒ u’v’

(0)

(β)

(λ)

(@)

Réductions parallèles
❖ Pour simplifier, raisonnons à α-

équivalence près:
les règles suivantes sont donc inutiles

u → u’

uv → u’v

v → v’

uv → uv’

A comparer avec:

On peut réduire
en parallèle

dans u et dans v

u =α v v → v’

u → v’

u → u’ u’ =α v’

u → v’

0 réduction parallèle
(nouvelle règle)

→ ⊆ ⇒ ⊆ →*
❖ Commençons par les derniers résultats

(les plus faciles)

❖ Lemme (→ ⊆ ⇒). Si u → v alors u ⇒ v.
 (Récurrence sur la profondeur du rédex contracté dans u.)

❖ Lemme (⇒ ⊆ →*). Si u ⇒ v alors u →* v.
 (Récurrence sur la taille de la dérivation de u ⇒ v.)

❖ Corl. →* = ⇒*.

Le lemme de substitution pour ⇒
❖ Lemme. Si u ⇒ u’ et w ⇒ w’

 alors u[z:=w] ⇒ u’[z:=w’]

❖ Preuve. Récurrence sur la taille
 de la dérivation donnée de u ⇒ u’.
 (Exercice. Vous aurez à prouver quelques lemmes auxiliaires.
 Attention à α-renommer dans le cas de la règle (β).)

❖ Note: avec la β-réduction (ordinaire), on a:
 — si w → w’ alors u[z:=w] →* u’[z:=w’]
 — si u → u’ alors u[z:=w] → u’[z:=w]

⇒ est fortement confluente
❖ Supposons s ⇒ t1 et s ⇒ t2

❖ On montre qu’il existe t3 / t1, t2 ⇒ t3
par récurrence sur la somme des tailles
des dérivations de s ⇒ t1 et s ⇒ t2

❖ A symétrie près, 10 cas

❖ (0)/–: s=t1 [=u], poser t3≝t2

❖ (β)/(λ), (λ)/(@): impossibles

❖ (λ)/(λ), (@)/(@): par hyp. réc.

❖ (β)/(β): voir transparent suivant

(0) (β) (λ) (@)

(0)

(β) –
(λ) – –
(@) – – –

(0) (β) (λ) (@)

(0) ✔ ✔ ✔ ✔

(β) –
(λ) – –
(@) – – –

–
–✔

✔

Lemme. Si u ⇒ u’ et v ⇒ v’
 alors u[x:=v] ⇒ u’[x:=v’]

Lemme. Si u ⇒ u’ et v ⇒ v’
 alors u[x:=v] ⇒ u’[x:=v’]

⇒ est fortement confluente
❖ (β)/(β): on a

(0) (β) (λ) (@)

(0)

(β) –
(λ) – –
(@) – – –

(0) (β) (λ) (@)

(0) ✔ ✔ ✔ ✔

(β) –
(λ) – –
(@) – – –

✔ –
–✔

✔

u ⇒ u1 v ⇒ v1

(λx . u) v ⇒ u1[x:=v1]

… …

u ⇒ u2 v ⇒ v2

(λx . u) v ⇒ u2[x:=v2]

… …

❖ Par h.r., on a u1, u2 ⇒ u3
 et v1, v2 ⇒ v3

❖ Par le
t1 ⇒ u3[x:=v3]

❖ Par le
t2 ⇒ u3[x:=v3]

s t1 s t2

C’est le t3 désiré

⇒ est fortement confluente
❖ Dans le (dernier) cas (β)/(@), on a:

(0) (β) (λ) (@)

(0) ✔ ✔ ✔ ✔

(β) – ✔ –
(λ) – – ✔ –
(@) – – – ✔

u ⇒ u1 v ⇒ v1

(λx . u) v ⇒ u1[x:=v1]

(λx . u) ⇒ w v ⇒ v2

(λx . u)v ⇒ wv2

s st1 t2

… … …

❖ Mais (λx . u) ⇒ w ne peut
être dérivé que par (0) ou (λ)
… donc la situation est…

…

Lemme. Si u ⇒ u’ et v ⇒ v’
 alors u[x:=v] ⇒ u’[x:=v’]

❖ Par h.r., on a u1, u2 ⇒ u3
 et v1, v2 ⇒ v3

❖ Par le
t1 ⇒ u3[x:=v3]

❖ Par (β),
t2 ⇒ u3[x:=v3]

(0) (β) (λ) (@)

(0) ✔ ✔ ✔ ✔

(β) – ✔ –
(λ) – – ✔ –
(@) – – – ✔

⇒ est fortement confluente
❖ Dans le (dernier) cas (β)/(@), on a:

(λx . u) ⇒ (λx . u2) v ⇒ v2

(λx . u)v ⇒ (λx . u2) v2

s s t2

…

…u ⇒ u2

C’est le t3 désiré

✔

t1

u ⇒ u1 v ⇒ v1

(λx . u) v ⇒ u1[x:=v1]

… …

Le λ-calcul est confluent
❖ Nous venons de démontrer:

Prop. Si s ⇒ t1 et s ⇒ t2 alors il existe t3 / t1, t2 ⇒ t3.

❖ I.e., ⇒ est fortement confluente … donc confluente.

❖ On rappelle aussi:

❖ Si:

→* = ⇒*.
u

v1 v2
* *

w* * w* *

u

v1 v2
* *

Donc le λ-calcul est confluent (pour la β-réduction). ☐

Confluence: β n’entraîne pas η
❖ Vous vous souvenez de la règle suivante?

 (η) λx . ux → u (si x pas libre dans u)
et considérer la βη-réduction →βη

❖ Elle a l’air raisonnablement mathématiquement
(pas informatiquement). Surtout, elle est indépendante de β:

❖ Prop. En général, λx . ux ≠β u (même si x pas libre dans u).

❖ Preuve. On prend u = une variable ≠ x:
les deux côtés sont en forme β-normale est pas α-équivalents,
donc pas β-équivalents
 (confluence implique forme normale unique). ☐

La prochaine fois
❖ Pouvoir expressif: fonctions récursives, combinateurs de

point fixe

❖ Et plus tard: stratégies

