A-calcul pour

["agrégation

Jean Goubault-Larrecq

Tous droits réservés, Jean Goubault-Larrecq, professeur, ENS Paris-Saclay, Université Paris-Saclay
Cours « Lambda-calcul » (master FESUP préparation a 1’agrégation d’informatique Sorbonne
Université), 2023-

Ce document est protégé par le droit d’auteur. Toute représentation ou reproduction intégrale ou
partielle faite sans le consentement de I’auteur est illicite.



Pour I"agrégation

# Ce que dit le programme (2022, 2023):
« Lambda-calcul pur comme modele de calcul :

définition, propriétés (dont confluence), stratégies.
Equivalence avec les machines de Turing et les fonctions récursives. »

* Pas de lecon (oral) sur le sujet.
* Le A-calcul typé est hors-sujet.

* Liens avec les lecons:

2. Paradigmes de programmation : impératif, fonctionnel, objet. Exemples et applications.
30. Décidabilité et indécidabilité. Exemples.

I. Vous pouvez y mentionner éventuellement un point de A-calcul, mais pas plus
(ce ne sont pas des lecons de A-calcul).



| essentiel

» Motivation: A-calcul = coeur des langages fonctionnels

+ Définition: a-équivalence, B-réduction, [n-réduction]

+ Propriétés fondamentales:

confluence, non-terminaison, développements finis, standardisation

« Implémentations: interpretes simples, machines de Krivine, [combinateurs]

+ et stratégies:

par valeur/nom, interne/externe, gauche/droite, faibles ou non,
réductions de téte et réductions standard

« Equivalence avec les machines de Turing et les fonctions récursives;
combinateurs de point fixe (Y)
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Alonzo Church

+ Le A-calcul a été inventé par...

Alonzo Church

By Princeton University, Fair use, https://en.wikipedia.org/w/index.php?curid=6082269
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Historiquement

... en 1932 par A. Church

pour donner un fondement aux
mathématiques basé sur la notion
de fonction plutdét que d’ensemble

(s’est révélé contradictoire plus tard...)

A SET OF POSTULATES FOR THE FOUNDATION
OF LOGIC.!

By Avoxzo Cmumcn.”

1. Introduction. In this paper we present a set of postulates for the
foundation of formal logic, in which we avoid use of the free, or real,
variable, and in which we introduce a certain restriction on the law of
excluded middle as a means of avoiding the paradoxes connected with the
mathematics of the transfinite.

Our reason for avoiding use of the free variable is that we require that
every combination of symbols belonging to our system, if it represents
a proposition at all, shall represent a particular proposition, unambigou-
ously, and without the addition of verbal explanations. That the use of
the free variable involves violation of this requirement, we believe is
readily seen. For example, the identity

(1) ab+c¢) = ab+ac

in which @, U, and ¢ are used as free variables, does note state a definite
proposition unless it is known what values may be taken on by these
variables, and this information, if not implied in the context, must be given
by a verbal addition. The range allowed to the vyariables a, b, and ¢
might consist of all real numbers, or of all complex numbers, or of some
other set, or the ranges allowed to the variables might differ, and for
each possibility equation (1) has a different meaning. Clearly, when this
equation is written alone, the proposition intended has not been completely
translated into symbolic language, and, in order to make the translation
complete, the necessary verbal addition must be expressed by means of
the symbols of formal logic and included, with the equation, in the formula
used to represent the proposition. When this is done we obtain, say,

(2) R(a) R(b) R(c¢) Dape-alb+¢) = ab+ac

Annals of Mathematics, 2nd series
33(2), April 1932, pages 346-366

https://doi.org/10.2307/1968337
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Historiquement

« ...puis en 1933 par A. Church
pour donner un fondement aHx
mathématiques basé sur la notion
de fonction plutdt que d’ensemble

—_— =

A SET OF POSTULATES F OR THE FOUNDATION
OF LOGIC.:

(SECOND PAPER.)

By Avroxzo Cruxrca,

to a system of mathematical logic free of some of the complications entailed
by Bertrand Russell's theory of types, and would at the same time avoid
the well known paradoxes, in particular the Russell paradox, by weakening
the classical principle of reductio ad absurdum. But, in the course of

Postulate 19 makes it possible to prove ~X({F}(U)) if there can be
found some consequence of X ({F} (y)) which is false of U, subject only to
the restriction that {F} (U, 2) shall be known to be false for some z. This
is not far from assuming the principle of reductio ad absurdum in its fy)
strength as applied to Propositions of the form > (A). But, given a pro-
position which is not of the form ¥ (A), it is ordinarily possible in various
Wways, to write another proposition of much the same import, which is
of the form > (A). And in this way we find that Postulate 19 contains

We take 9 to be Audv E) E(v) and prove, in a straightforward

namer, ~(3) 4y . ~9 () 4), (9} (9} L1 . ~pp) @), where
4 is defined as in § 5 below. Hence, by Rule I1T, ~ig . ~e((9) (9)}
(19} 19 .~ (13) (). Hence, by Theorem 8 below, ~ {19.~9((9) )
({9}(«19 -~ ({9} (y)))). And hence we prove 2y3Iz.~a(y(@) .z
=49 .~9(y(y). But, assuming Xz . ~ZY@) .z = 4. ~9(yly),
we can prove 3y, r(r).~r(y(»)), because ~ {A9.~g (¥(9)} (y(dp.r»y(y(y)))}
is convertible into {ig. ~9(yly)) (19. ~9(yly), which, by Theorem 6
below, yields in turn {49 ~o(ylg)) (¢ -~ o (ylg)). Therefore, by
Theorem I, 2((F) ) v {B) (), where {&) @) stands for Az.~a(y(z). 2
= A9 .~g9(ylp) and [} @) stands for > . T . ~r(ye). Now we

' Received January 3, 1933,

% (touj OurS ContradiCt()lre LR ] L These Annals vol. 33 (1932)_pp. 346-365.

ics, 2nd series

: : . B. Rosser en 1936) Annals of Mathematics,

deteCte par ] 34(4), OCtOber 1933, pages 839'864
https://doi.org/10.2307/1968702
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Historiquement

nected wigp,

to \Vhitehead and
to forerunners of
S in COgnize,
1. The lu'enrchy of typ,

eseribed

Pe symbols is d.

U @ and

h
: uis en 1940 par A. Chm:(cé %
gt r donner un fondemen
pou

Yoonly as g,
ation of the thmry it

/ ieur \J e
; ‘ordre supér
logique d’ord

SCripts Upon Variab)eg
is intendeq that the

§o. (The Simple zheory of types
Cation of Russel)’g ramifieq theory of t Leon Chwiatek
P 6.)

1940,

i ic 5(2), June

The Journal of Symbolic Logic 5( e 56_63

3B2-
3E2.0.CO0%
AFOTST%
http://links.jstor.org %3C56%3A
022-4812%28194006%295%3 A2 %
1ci1?s1ci=0022-
://links .jstor.org/sici’
http://lin



http://links.jstor.org/sici?sici=0022-4812%28194006%295%3A2%3C56%3AAFOTST%3E2.0.CO%3B2-Q

Historiquement

« ...puis en 1941 par A. Church
(d’apres ses notes de cours)

LAMBDA-CONVERSION

Reprinted with the permission of the original publishers
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o
I IS History of Lisp
John McCarthy

Artificial Intelligence Laboratory
Stanford University

12 February 1979

“ Le tout premier langage fonctionnel: B e iy b e Bl
LLJ ]Ohn Mccarthy et alo '1;1)/rf'tr"/ II'-rI'(]I'r.s.ifN!; flf"lﬂ*u//// espe ;;J fi“; o f
LISP 1.5 Programmer’s Manual
MIT Press (1962) Langage fonctionnel:
on calcule en appliquant des fonctions
+ (define fact(x) a des arguments (eq, cond, *, fact, -)
(cond (eq x 0)
1

On peut aussi
définir des fonctions

(* X (fact (- x 1))))))

* Lisp est un lambda-calcul enrichi
(avec des primitives: eq, cond, *, 0, 1, -, etc.)



o
I IS History of Lisp
John McCarthy

Artificial Intelligence Laboratory
Stanford University

12 February 1979

[ ] [ ]
X I t t 1 f t 1- This draft gives insufficicnt mention to many people who helped i
”oe vis draft gives insufficient mention to many people who helped @
*
e Ou premler angage OnC lonne C ment LISP and who contributed ideas. Suggestions for improvemenlts i
directions are particularly welcome. Facts about the history of 'UNAR(

LLI ] OhIl M CC arthy et al. splevel addressing:generally arpesproially needel,
LISP 1.5 Programmer’s Manual, MIT Press (1962)

On peut méme définir des
fonctions anonymes

,

* (define fact
(lambda (x)
(cond (eq x 0)
1
(7 x (Fact = (=x L))

Ceci est directement inspiré de la
notation Ax . ... du A-calcul

* (mapcar (lambda (x) (+ x 1))
CLrst 1 =230 ; calcule (2 3 4)



M I he Definition of Standard ML

(h M

+ Dt a Robin Milner (1978)
A-CaICO — Hope == ML S CaML o= CaML light s Oca‘ML https://pictures.abebc‘mj;';m;;sbn/9780262631327—us.jpg
...aussi — Standard ML (SML/NTJ)

A T LN

/7

Langage fonctionnel:
& fn factax = on calcule en appliquant des fonctions
1f x=0 a des arguments (=, if,*, fact, -);
then 1 la syntaxe est simplement plus agréable

else x*fact(x-1);

On peut aussi définir des fonctions — récursives, comme en Lisp



M I he Definition of Standard ML
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On peut méme définir des
fonctions anonymes

R/

* val rec fact =

fn x => 1f x=( Ceci est directement inspiré de la
then 1 notation Ax . ... du A-calcul

else x*fact(x-1);

Semaps I X e e e e
(r Tcalicale 203, 4~



Haskell

Par Thought up by Darrin Thompson
and produced by Jeff Wheeler —
Thompson-Wheeler logo on the haskell wiki,
Domaine public,
https://commons.wikimedia.org/w/index.php?curid=8479507

+ (1990)

A-calc. — Miranda — Haskell Langage fonctionnel:

on calcule en appliquant des fonctions
T a des arguments (*, fact, -)

« fact 0
fact x

x*fact(x-1)

On peut aussi définir des fonctions — récursives, comme en Lisp et en ML


https://commons.wikimedia.org/w/index.php?curid=8479507

Haskell

On peut méme définir des

(1 990) fonctions anonymes
Par Thought up by Darrin Thompson
© : T - : “eler —_
A-calc. = Miranda — Haskell : : : . e
2 Ceci est directement inspiré de la  ...coicoirssor
notation Ax . ... du A-calcul

fact = \x | x=0 -> 1
otherwise -> x*fact(x-1)

Map: (\Nse == sabla) o] 29 53

Evaluation paresseuse:

EELE C a l C u l e [ 2 4 3 | 4 4 ] (appel par nom, voir stratégies, plus tard dans le cours)
les arguments de fonction
nat =032 map ( N T =i ) nat (ici, :) ne sont évalués que si

—— calcule [O, 1, 2, ] on a besoin de les connaitre


https://commons.wikimedia.org/w/index.php?curid=8479507

La syntaxe du A-calcul



La syntaxe du A-calcul

« Tres tres simple! Les termes sont:

s,t,U,o, ... .:=
X,Y,z, ... variables (en nb. co dénombrable)
st application (de s a t)
AX .S A-abstraction (fun x -> s, en Caml)

« (est tout! Pas d’entiers, pas de listes, pas de récursion,

pas de types, pas de modules, rien d’autre...

“ Et pourtant, on verra que le langage est Turing-complet



La syntaxe du A-calcul

A
+ Un terme est réellement un arbre. ‘x
La syntaxe représente ces arbres, @
modulo les conventions usuelles / \
p: A AZ
de parenthésage [‘/ |
et de priorités (a la Caml) @ @
A AN
* Quelques exemples... /@\ A‘Z z x
¢ y @
TS
> @

7

Ax . (Ay . xy(Az . z(xy))) (Az . zx) X Y



La syntaxe du A-calcul

+ xyz dénote (xy)z, > /@\
o @ z
* pas x(yz) ma
i L’application\/\ : :
n’est pas associative @
Zin
x @
e

Yy Z



La syntaxe du A-calcul

* Ax . xyz dénote (Ax . (xyz)) > ?\‘x
+ ... autrement dit la portée de Ax @
L o

s’étend aussi loin a droite que pe -

possible e

55 b



Calcul: la p-réduction



La -réduction

rédex contractum

Une seule regle de calcul:
(5 e o =1ilv—u)

Il peut y avoir plusieurs
rédexes dans un terme,
mais on n’en contracte

applicable n"'importe ou dans un X |
qu’un a la fois

terme

)
A |

1 LN
¢' .
' '

D
e

@

7N\

AX

@




Une autre présentation de la [3-réduction

* (B) (Ax.u) v — u[x:=v]

. :

* On dit que s — ¢ ssi X ’ A
il existe un contexte C
et un rédex (Ax . u) v

(EN )

X X X

Oralement: « s se contracte en t »

tels que s = C[(Ax - Lt) U] ou « s se réduit en une étape en t »
et t = Clu[x:=v]] La B-réduction est la plus petite relation
i contenant [3 et compatible aux contextes
S trou (ou le terme est inséré)
Ax.C réduction « sous la lambda »
Co la réduction s’opere dans la fonction
u C la réduction s’opere dans I'argument




Encore une autre présentation

(Ax . u) v = ul[x:=v]

u—u’

AX . Uu—=Ax.u

u—u’ L=

uo = uU'v uo — uv’

@
7N\
MA

+ Alors s — t si et seulement

le jugement « s — t » est
dérivable



Autres relations

“ On écrira — pour la B-réduction, mais parfois aussi
pour n'importe quelle autre relation de réduction
(relation binaire...)

* 51 ambiguité, on écrira —g pour la B-réduction

“ Exemple: on peut ajouter la regle

() e — (si x pas libre dans u)

et considérer la fn-réduction —g;
(Non, on ne peut pas simuler (1) par (3), cf. Ax . yx ol1 y est une variable =x)



Clotures

+ —¥ = cl6ture réflexive-transitive de — (étoile de Kleene)
= plus petit préordre contenant —
u —* v ssi il existe une réduction (un chemin)
H=thy —all=— e = avae =]

+ —+ = clOture transitive de —
= plus petite relation transitive contenant —
u —+ v ssi il existe une réduction non vide
g > = e s o0 avee I

o

* "= (< U—)" est la B-équivalence (parfois notée =g)




Substitution



Substitution?

L)

e (B (Ax ulo— yli—0]

R/

+ D’accord, mais comment définit-on formellement
la substitution u[x:=v]| de v pour x dans u?

“ Bizarrement, c’est une question tres compliquée
(et tres enquiquinante — on s’empressera d’ignorer les difficultés a I’avenir)



Substitution: 1er essai

+ Substitution textuelle: non, donnerait:
e i —alE= A Gile=o})

n’est méme pas syntaxiquement correct
(sauf si v est une variable)



Substitution: 2éme essai

+ Définition par récurrence sur u:

gl -~
=ovl=y (y=x)

o,
D
h

ol = Gile=ob (L=
il e—ul= Az (ilo—

“ Al’air bien défini, mais souffre de quelques

problemes...
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Funarg problem

From Wikipedia, the free encyclopedia

In computer science, the funarg problem refers to the difficulty in implementing first-class functions (functions as first-class objects) in programming language
implementations so as to use stack-based memory allocation of the functions

The difficulty only arises if the body of a nested function refers directly (i.e., not via argument passing) to identifiers defined in the environment in which the function is
defined, but not in the environment of the f call.!l A standard resolution is either to forbid such references or to create closures.?)

There are two subtly different versions of the funarg problem. The upwards funarg problem arises from returning (or otherwise transmitting "upwards") a function
from a function call. The di ds funarg problem arises from passing a function as a parameter to another function call.




Le probléme avec la substitution

(Ax . x)
(A x)

a1

e

« D’apres la définition,

=
=AYy .Y

* Pour corriger ¢a, on va:

x [x:=v] £ v

y[x=v]£y (y=x)

(st) [x:=v] £ (s [x:=0v]) (¢ [x:=0])
(Az . u) [x:=0] £ Az . (u[x:=0])

T — T

« restreindre la substitution par des conditions sur les

variables libres et liées

* autoriser a renommer les variables liées (a-renommage)

+ autre solution: indices de de Bruijn (omis ici; voir exercices)



Variables libres, variables liées

« fv(u) = {variables libres de u}

« qui apparaissent dans u a une position ou on peut les remplacer »

“ bv(u) = {variables liées de u}

fv(x) & {x} bv(x) & &
fv(uo) £ fv(u) U fv(v)  bv(uov) £ bv(u) U bv(v)
fvAx . u) £ tv(u) —{x} | bv(Ax.u) £ bv(u)u {x}

“ Exemples.

U fv(u) bv(u)
AT ? ?
x(Ay . z) ? ?
x(Ax=1) ? ?
? ?

(Ax . xx)(y(Az . yz)x)



Variables libres, variables liées

« fv(u) = {variables libres de u}

« qui apparaissent dans u a une position ou on peut les remplacer »

“ bv(u) = {variables liées de u}

fv(x) & {x} bv(x) & &
fv(uo) £ fv(u) U fv(v)  bv(uov) £ bv(u) U bv(v)
fvAx . u) £ tv(u) —{x} | bv(Ax.u) £ bv(u)u {x}

“ Exemples.

U fv(u) bv(u)
e @ {x}
x(Ay . z) ? %
x(Ax=1) ? ?
? i

(Ax . xx)(y(Az . yz)x)



Variables libres, variables liées

« fv(u) = {variables libres de u}

« qui apparaissent dans u a une position ou on peut les remplacer »

“ bv(u) = {variables liées de u}

fv(x) & {x} bv(x) & &
fv(uo) £ fv(u) U fv(v)  bv(uov) £ bv(u) U bv(v)
fvAx . u) £ tv(u) —{x} | bv(Ax.u) £ bv(u)u {x}

“ Exemples.

U fv(u) bv(u)
e @ {x}
x(Ay . z) e {y}
WA ) ? ?

(Ax . xx)(y(Az . yz)x) 2 ?



Variables libres, variables liées

« fv(u) = {variables libres de u}

« qui apparaissent dans u a une position ou on peut les remplacer »

“ bv(u) = {variables liées de u}

fv(x) & {x} bv(x) & &
fv(uo) £ fv(u) U fv(v)  bv(uov) £ bv(u) U bv(v)

oui, une variable
fv(Ax . u) £ fv(u) - {x} bv(Ax.u)2bv(u)U {x} peut étre libre et

+ Exemples. 3 PR— IS
e @ {x}
x(Ay . z) ) W)
x(Ax . x) {x} {x}

(Ax . xx)(y(Az . yz)x) 2 ?



Variables libres, variables liées

« fv(u) = {variables libres de u}

« qui apparaissent dans u a une position ou on peut les remplacer »

“ bv(u) = {variables liées de u}

fv(x) & {x} bv(x) & &
fv(uo) £ fv(u) U fv(v)  bv(uov) £ bv(u) U bv(v)

oui, une variable
fvAx . u) £ tv(u) —{x} | bv(Ax.u) £ bv(u)u {x}

peut étre libre et

oo lléE!
Exemples. ’ P ——
AT %) {x)
x(Ay . z) {x,z) W) au fait, la variable
*(Ax . %) (x) (! z” (#x,y,z) est-elle

libre ici?

s a7 7)) ) e



Substitution, 3éme essai

5 s gt x [x:=v] £ v
»* On de.)fm?t une OPeratlon de yLemo] £y (yx)
substitution partielle (st) [x:=0] £ (s [x:=0]) (¢ [x:=0])
1 :XZZZ)] (Az . u) [x:=0] £ Az . (u[x:=0])

B

définie uniquement lorsque on dit que x est
x €bv(u) et fv(v)nbv(u) = substituable

par v dans u

pour éviter le probleme pour éviter le probleme

«(Ax.x) [x:=y] =Ax .y » «(Ay.x) [x:=y]=Ay .y »

“ On peut assurer cette condition en renommant x...



O-renommage

* On souhaite considérer que
« Ax . u(x) et Ay . u(y) sont interchangeables »

“ On définit la relation a par:
Ax . u o Ay. (u[x:=y])

a condition que x soit substituable par y dans u e, xy Ebv(u)
et que y ne soit pas libre dans u et y & f(u)
(sinon on aurait Ax . xy a Ay.yy)

* La relation d’a-équivalence =, est la plus petite congruence
(rel. d’équivalence compatible aux contextes) contenant a



Propriét¢s du a-renommage

CAx.u a Ay (u[x=y])
(oy Ebv(u), y & tv(u))

S Bemples Ao Ny vy o ANz — —

(avec z=x,y—noter le passage au contexte)

=0 AY .AZ.Yz=o AY.AX.Yx

“ On peut toujours a-renommer Ax . u

de sorte que u|x:=v] soit bien défini
(= de sorte que x & bv(u) et fv(v) nbv(u) = )

« Permet de (re)définir proprement la 3-réduction!



La p-réduction... vraiment



La -réduction, vraiment

e (b (Ax o > ulx—0]

+ On dit que s — ¢ ssi
il existe un contexte C
et un rédex (Ax . u) v

tels que s =« C[(Ax . u) v]
et t =4 Clu|x:=v]]

X ( oo
[ 3N )

_Ax.C
@i
u C

trou (ou le terme est inséré)
réduction « sous la lambda »

la réduction s’opere dans la fonction
la réduction s’opere dans I’'argument




Ou, de facon équivalente

(Ax . u) v — u[x:=0]

u—u’

J

AX . U—=>AXx .U

u—u’ v—70
uo = uU'v uo — uv’
U=,0 0—7 u—u u' =,v

u—7v u—7v

+ Alors s — t si et seulement
le jugement « s — t » est
dérivable



Un exemple de réductions

Azlz) 2 rédexes

e

(Ao Az i)k salie )

Az 20z Az 2N Az cl(Az 20)) )i a A (A z 2 Az )

N 4

(AZ "2 (A DAz 2 e (A 222 )

\ Les réductions
confluent,

(Az . z(x(Az" . 2')))(x(Az" . 2)) et la forme normale

\ est unique

Forme normale s il
NlAZ A 7

(=sans rédex)

Sont-ce des phénomenes géné



Terminaison

+ Une forme normale est un terme u sans rédex,
l.e., U »

+ Un terme u est normalisable (= faiblement terminant)
ssi il a une forme normale

.*
.
.
.
*
.

ssi il existe une réduction partant W= >V
de u qui termine =g
. v
* Un terme u est i
/—>
fortement normalisable (=terminant Lz e V.
( ) Sy



l.e terme €2

® Posens () = 00,0010 = Ax. xx lauto-application]
+ Son « arbre » de réductions est: O
(Q=Ax.xx)0—=00=0Q, U

et c’est la seule réduction possible)
# () est un terme qui n’est (méme) pas normalisable
“ Y a-t-il un terme normalisable mais pas fortement?

* On a donc tous les cas possibles: (AxX. 1) 0 :>
fortement norm./norm./pas normalisable y‘/



Confluence

confluence forte
confluence Church-Rosser

confluence locale forme normale unique



Propriét¢ de forme normale unique

* On dit qu'une relation de réduction a la
propriété de forme normale unique
ssi tout terme a au plus une forme normale

“ On verra que la 3-réduction a cette propriété.



Confluence

%+ Une relation de réduction — est confluente ssi
toutes les réductions u —=* v et u =~ v
sont joignables, i.e. il existe des

réductions v1 =" w et v, =" w : :
U1 02
vers le méme terme w :
+ Fait. Toute relation confluente
s » . 4 5
a la propriété de forme normale unique. =

+ Preuve. Si v1 et v2 sont deux
formes normales de u, les réductions
confluence
v1 —" w et v, = w sont de longueur 0. \

forme normale unique



Propriéi¢ de Church-Rosser

*

“ — ala propriété de Church-Rosser ssi —* = =7, <~
i.e., pour tous u, v tels que u —* v, il existe w tel que
es et e

* A quoi ¢a sert?
Un exemple en théorie des groupes...



Exemple: la théorie des groupes

@nveusdit: - dxr-—>x xlxe =1 (xxylxz_—=axip)
(pour tous termes x,y,z)

(((x 1) 1xx1)xx)x1

, * /\
X
Démontrer xx1 ™ x... (I (xa)x] (et xrt)x(x1)
- ' (L) Txx-)xx ((x-1)-1x1)x1 1x(xx1)
Oui, on peut! 2 daNe
‘/1><x (x D Ix(x1xx) (x1)1x(1x1) xx1
X et xt

mais ceci demande de I'inventivité

Ca serait plus simple si on pouvait simpler réduire xx1 et x
et vérifier qu’ils se réduisent aux mémes termes...



La procédure de Knuth-Bendix (un apercu)

# On cherche deux regles ¢ — r1 et & — 1 telles que
6> s’unifie avec un sous-terme non var. f de ¢4

(6=C[t], o=mgu(e,t))

+ Alors 40 — r10, mais aussi ¢o = Col[bo] — Colro]

410}
« Le couple (40|, Colr2o]) est ‘/ \
rlcj CO‘ [720]
une paire critique . .
*'¢ C ['* I
: : s Y10 O|r20
* Si (u,v) est une paire critique avec u=v, v v

rajouter la regle u — v ou v — u... et recommencer.



Exemple: la théorie des groupes

* Onvousdit: Ixx—x EEl—1 @E)><z — xx(yxz)

(el <

/\

1><z e
v

v
Z

v

+ Rajouter la regle x-1x(xxz) — z

“ Cecl peut rajouter de nouvelles paires critiques,

et on 1tere...



Exemple: la théorie des groupes

2 Onvousdit: Ixx >x  xlxx =1 (exy)xz —axpx<)

+ Résultat (apres effacement de regles inutiles):

Ixx =x xx]1—=x 11—1

(x—l)—l — Y (xxy)—l — y—1><x—1

xxx1—1 xlxx—=1 (xxy)xz — xx(yxz)
xX(x1xz) =z  xIx(xxz) =z

“ Ce systeme de réécriture est Church-Rosser!

* Corollaire: la théorie des groupes est décidable.
(Pour savoir si u —* v, comparer leurs formes normales dans ce nouveau

systeme.)



Confluence et Church-Rosser

+ Théoreme. Confluence = Church-Rosser.

* Preuve (1/2). Suppons — Church-Rosser.

2 u
Sil’on a:
en particulier v1 —” v>
: 02

(par une preuve dite en pic) o’

+ Par Church-Rosser...

*
‘0 *
0. .0
*
4 &

(preuve de v1 —* v dite en vallée) .*, -

w

+ donc — est confluente.



Confluence et Church-Rosser

+ Théoreme. Confluence = Church-Rosser.

* Preuve (2/2). Suppons — confluente, et u —* v
On peut organiser cette preuve en pics et vallées:

a /\w w/\*z, e

Conﬂuence; e Plus de plC!
- ‘* . On a obtenu une
g preuve en vallée
il s ey de u —* 0.
(Ceci est en réalité & )
une preuve par récurrence Donc — est

4K

sur le nombre de pics.) i Church-Rosser,



Confluence et Church-Rosser

» Théoreme. Confluence = Church-Rosser.

* Preuve (2/2). Suppons — confluente, et u —* v
On peut organiser cette preuve en pics et vallées:

iise

/\/\Ww/\@ g

conﬂuence Plu S d c p 1C !

confluence .

e On a obtenu une

.“’A ‘.Q“ ‘.."0. .“".Q’ P

¥ confluence ‘

‘.‘A " o C

(CeCi est en réalité -~ % 5 confluence==pChurch-Rosser
une preuve par récurrence ,‘ , | \
sur le nombre de pics.) S C forme normale unique
A LGA L AL L A W JLUILIN Lo



» On va donc chercher des criteres de

Comment prouver la confluence?

» En principe, on devrait énumérer toutes

les situations v1 <™ u =" vs...
* ... pour toutes les longueurs de

reductlon possibles de u a v1 (resp. vz)

confluence plus simples

Conﬂuence@Church-Rosser

N\

forme normale unique



Confluence forte, confluence locale



Confluence locale

» — est localement confluente ssi:

“ Voyez-vous la différence avec
la confluence?

153 e
+ Plus tacile a vérifier : |
(en fait, on n’a qu’a énumérer les 4 »
paires critiques) s
* Fait. Confluence implique
confluence locale. /Qm

(L'implication n’est pas dans le sens souhaité... ¢a arrive.) forme normale unique



Confluence locale et confluence?

* La preuve suivante est fausse, dites-moi pourquoi.
“ Arnaque. Si — loc. confluente alors — confluente (non).

SuppOSOHSZ : Si u=01...

0 éta S1 u=0vy, on raisonne
: : symeétriquement.

U= 01 02 .
Regardons donc ce qui se

0 ét - 2 =
i passe si >1 étape de u a v,

*
*
0. *
* *
- *
. * g
* * £
- *

. resp. a v2



Confluence locale et confluence?

* La preuve suivante est fausse, dites-moi pourquoi.

“ Arnaque. Si — loc. confluente alors — confluente (non).

+ Cas de récurrence:

u
Aluen\ce\
-, locale
] / R \ g
45

B J
01 hypore v Ouestl'erreur?
% X hyp. réc.
4 K

* ‘. .0
4 »



Le contre-exemple de Curry §

Haskell B. Curry

https://upload.wikimedia.org/wikipedia/commons/8/86/HaskellBCurry.jpg

+ Une relation — définie

sur un ensemble a 4 éléments {a,b,c,d}
ey

»* Localement confluent: b

a
— ¢ < a — b joignable /\/\d
— a < b — djoignable ;

* d
+ Pas confluent : / \b

J
(an’a pas de 7 \ ;
fOr me nOr male confluence==pChurch-Rosser

unique) g X /

confluence locale forme normale unique



Confluence forte

— est fortement confluente ssi:

Lemme. La confluence forte implique
la confluence.

Preuve: quasiment comme avant

On montre: :
m et

*

par récurrence -

sur m-—nmn.

Evident si m=0 ou n=0.

esS

<n etapes

*
*
*
.
L3
*
4

*

u

ctapes
*

02

<m-8tapes

-
4
*
*
*
‘

w

*

U1 02

confluence forte

confluence==pChurch-Rosser

X 2D

confluence locale forme normale unique



Confluence forte

+ — est fortement confluente ssi:

u
Lemme. La confluence forte implique
la confluence.
U1 02
St et a e - “al g
S appllque car confluence K
m_l _|_1 = m -, forte w
(1) el 2 ol N
<m+n a»
o1 3 e ~ v2 confluence forte
s’applique car Slf ‘_m 1hyp e
1 1 1 <m confluence==pChurch-Rosser
(m-1+1)+(n-1) g X /
— — 'Y
=mthn 1 5 confluence locale forme normale unique

< m-+n



[.e A-calcul est-1] fortement confluent?

@
o N
X I

on.. @ Ax/ \
maginons AA
>V WY
Ax

pk‘
(enegemeralzest="
autant que
ns u)

d’occurrences

3 éta
én
de x da



e A-calcul est-1l localement confluent?

@

* Qul... mais ca

n’implique pas la
confluence &)

* 3 cas a examiner:

A

+ Cas 1:
v — W,

v argument \
p 3 étapes
d’un rédex e pl

aaaaaaaa
cccccccccccc




e A-calcul est-1l localement confluent?

@

* Qul... mais ca

n’implique pas la
confluence &
* 3 cas a examiner: a
Lemme (exercice). Siu — w
* Cas 2: alors u[x:=v] — w[x:=v]
u—w,

u sous la \ /
A-abstraction
d’un rédex




e A-calcul est-1l localement confluent?

A

* 3 cas a examiner: \‘

/4
+ Cas 3:
rédex disjoints A A AA
u—u,v—70 \\ /

* Qul... mais ca
n’implique pas la
confluence &




|.e lemme de Newman



|.e lemme de Newman

Lemme (Newman 1941). Toute relation localement confluente
et fortement normalisable
est confluente.

Preuve(s): transparents suivants.
Note 1: le contre-ex. de Curry n’est pas fortement normalisable
Note 2: la normalisabilité (faible) ne suffit pas (cf. Curry)

Note 3: ne s’applique toujours pas au
A-calcul, qui n’est pas fortement
. si fortement
nor mallsable co normalisable  confluenceé—=pChurch-Rosser

mais sera utile quand méme! X /

confluence locale forme normale unique

confluence forte



*

|.e lemme de Newman

Lemme (Newman 1941). Toute relation localement confluente
et fortement normalisable
est confluente.

Deux preuves, dont I'une sous une hypothese supplémentaire
(mais plus simple que l'autre).

Premiere preuve: on suppose que — est a branchement fini:
pour tout u, {v | u — v} est fini
(C'est clairement le cas en A-calcul)

confluence forte

Alors pour tout u, v(u) £ longueur max.

si fortement

d une reduCtlon partant de U eXISte, normalisable  confluence—=pChurch-Rosser

pourquoi? / /

confluence locale forme normale unique



+ Tiroirs et chaussettes: un de ceux-la

Le lemme de Konig

* Lemme (K6nig). Tout arbre a branchement fini
et dont toutes les branches sont finies
... est fini (n"a qu'un nombre fini de sommets).

+ Preuve. Soit T un arbre infini, a branchement fini.

“ "n’a qu'un #fini de successeurs

est racine d’un sous-arbre infini

<

Y. .

» ... et1l'on continue a l'infini,
produisant une branche infinie.

AN

<



Pourquoi v(z) existe-t-il?

“ Supposons — fortement normalisable et a branchement fini:

pour tout u, (v | u — v} est fini

» Y u, v(u) £ longueur max. d’une réduction partant de u existe:
on forme 'arbre T(u) € {v | u =" v}

« [l est a branchement fini par hypothese

+ Ses branches sont finies car — fortement normalisable

« Par Koénig, T(u) est fini, et il n'y a en particulier

qu'un nombre fini de réductions partant de u



Pourquoi v(z) existe-t-il?

Supposons — fortement normalisable et a branchement fini:
pour tout u, (v | u — v} est fini

VY u, v(u) £ longueur max. d’une réduction partant de u existe:
on forme 'arbre "(u) £ {v | u =" v}

Note (f acile mais 1mpor tante)- Les gens rigoureux dans 1’assistance auront remarqué que
Siu — v alors V(M) > V(U). T(u) est un graphe orienté, pas un arbre... deux solutions:

(1) montrer que Konig reste vrai pour tout graphe
acyclique a branchement fini

Par Kénlg > T(M) est flnl et 11 n 1 (2) définir les sommets de T(z) comme les réductions finies

partant de u elles-mémes, poser * £ (u) et

qu'un nombre fini de 1€ pou—w = ...> w = w) = (40— w1 ... u)



Le lemme de Newman: 1¢re preuve

*

X/
0.0

Lemme (Newman 1941). Toute relation localement confluente

et fortement normalisable
est confluente.

et 2 branchement fini

On montre que si v1 < u =" v2 alors v1 et v2 ont un réduit commun

par récurrence sur v(u)

Les cas u=v1 et u=v>

confluence

sont comme avant focele

* / ‘...:*
: sy
Sinon: UL " hyporec
s’applique car 5 da i
V(M) > V(ul) :
*
‘4 N

s’applique car
v(u) > v(uz)

confluence forte

si fortement
normalisable  confluenceé—=pChurch-Rosser

X 2D

confluence locale forme normale unique



Le lemme de Newman: 2¢me preuve

Lemme (Newman 1941). Toute relation localement confluente

et fortement normalisable et 3 hranchamant G

est confluente.

Méme preuve, mais on raisonne par
récurrence bien fondée sur 1, directement,
ordonné strictement par < £ <+

Principe de récurrence bien fondée: voir transparent suivant



Récurrence bien fondée

» Soit < un ordre strict. Les affirmations suivantes sont équivalentes:
1. <est bien fondée: pas de chaine co décroissante uo > u1 > ... > u, > ...
2. pour toute prop. P, si (Vu, (Vv < u, P(v)) implique P(u)) alors Yu, P(u)

* Preuve (non 2 implique non 1). Il y a une prop. P falsifiée par un uo,
et vérifiant (Vu, (Vv < u, P(v)) implique P(u))

* par contraposée, Yu,, si non P(u,) alors Ju,+1 < u,, non P(uy+1)

* (2 implique 1). Prendre P(u) £ « pas de chaine « décroissante partant
de u »



Récurrence bien fondée

Soit < un ordre strict. Les affirmations suivantes sont équivalentes:

1. <est bien fondée: pas de chaine oo décroissante uo > u1 > ... > u, > ...

2. pour toute prop. P, si (Vu, (Vv < u, P(v)) implique P(u)) alors Yu, P(u)

Preuve (non 2 implique non 1). Il y a une prop
et vérifiant (Vu, (Vv < u, P(v)) impliq (1))

-

Autrement dit, pour prouver Yu, P(u), il suffit de
prendre un u quelconque,
et de prouver P(u) sous
I"hypothese de récurrence: Vv < u, P(v)

~

falsifiée par un uy,

Y

e partant




Le lemme de Newman: 2¢me preuve

*

Lemme (Newman 1941). Toute relation localement confluente

et fortement normalisable et 3 hranchamant G

est confluente.

On montre que si v1 <= u =" v alors v1 et v2 ont un réduit commun
par récurrence bien fondée sur u strictement ordonné par < £ <~

Les cas u=v1 et u=0v; / \
confluence

sont comme avant / Focele
*

e %
0 SEa 0
SIHOH. 1 » Usssies % Z confluence forte
S’ a li u e C ar ”“0.’ NS % 0.“..‘ hyp. l”éC. ..,0'..
pp q 4 K si fortement
normalisable confluence Church-Rosser
u > u (=)

Q
e
‘o o
* *
O K3
* *
L3 Q
® *
L3 * * o
< *
< *
< *
28 S
o &

S/ a p pl 1 qu e car confluence locale forme normale unique
u>1u



l.e A-calcul est confluent



Réductions parallcles

La preuve standard de confluence du A-calcul

On introduit une relation = de réduction parallele

qui intuitivement autorise a réduire plusieurs rédexes, a condition qu’aucun n’en
contienne un autre

On montre que = est fortement confluente

donc confluente

Enfin, - C = C —~

donc — sera confluente.



Réductions parallcles

0 réduction parallele
(nouvelle regle)

Pour simplifier, raisonnons a a-
(0) équivalence pres:

U= 1u les regles suivantes sont donc inutiles

u=u v=17v’

(B)

(Ax . u) v = u'[x:=0v’]

u=u’

(A)
Ax .u=Ax.u
A comparer avec:
u=u ov=17 u—=u’ U0
(@)
uo = 1’0’ uv — u'v oo

On peut réduire
en parallele
dans u et dans v



L)

7/
%?

7/
%*

—-_C=06—

(0)

U=>1u

u=u" v=7"

(Ax . u) v = u'[x:=0"]

B)

Commencons par les derniers résultats

u=u’

(A)

(les plus faciles) e

U= =0

Lemme (— C =). Siu — v alors u = v. I

(Récurrence sur la profondeur du rédex contracté dans u.)

(@)

Lemme (= C —%). Siu = v alorsu =" v.

(Récurrence sur la taille de la dérivation de u = v.)

Corl. —=F = =~



Le lemme de substitution pour =

=

u=u" v=7"

(Ax . u) v = u'[x:=0"]

B)

* Lemme.Siu=uetw= w’

u=u’

(A)

alors u[z:=w] = u’'[z:=w’] T

U= =0

+ Preuve. Récurrence sur la taille e
de la dérivation donnée de u = u’.

(Exercice. Vous aurez a prouver quelques lemmes auxiliaires.
Attention a a-renommer dans le cas de la regle (p).)

(@)

* Note: avec la -réduction (ordinaire), on a:
—si w — w’ alors u|z:=w] =" u’[z:=w’]
—si u — u’ alors u|z:=w] — u’|z:=w]



—> est fortement confluente

Uu=u

(0)

u=u" =99

(B)

“ Supposons s = t1ets =t Lt
u=u’ N
# On montre qu’il existe f3 / t1, tr=> 13 At
par récurrence sur la somme des tailles i o=
des dérivations de s = t1ets = 1 ==

* A symeétrie pres, 10 cas

+ (0)/—: s=t1 [=u], poser t3£t;
= (B)/(A), (A)/(@): impossibles
+ (A)/(A), (@)/(@): par hyp. réc.

* (B)/(P): voir transparent suivant




—> est fortement confluente

Uu=u

(0)

u=u" =99

& (F))/(F)) Oon a (Ax. u) 0 = u'[x:=v']

(B)

u=u’ N
Ax . u=Ax.u
U=U1 0= 701 i O O u=u v=>0 @
uv=>u'v’
(Ax . u) v = ui[x:=0v1] (Accu)io— 1Hl=0]
| | l | l | l |
S t S to

+ Par h.r.,, on a u1, u» = us
et v1, V2 = U3

« Parle Lemme.Siu=u'etv= 170’
t1 = us[x:=03] alors u[x:=v] = u'[x:=0v]

« Parle Lemme.Siu=u'etv= 170’
tr = us[x:=03] alors u[x:=v] = u’[x:=v’]

(’est le t3 désiré



—> est fortement confluente

Uu=u

(0)

u=u" =99

(B)

* Dans le (dernier) cas ($)/ (@), on a: e ot
. . . AX . U=>AX . U W
U=>U U=>01 Ax.u)=w v=10 .
(/\x . u) 0 = ul[x::’(]l] (/\x . U)U = W0» uv =>u'v
‘ = ' : e
: h S fo

* Mais (Ax . u) = w ne peut
étre dérivé que par (0) ou (A)
... donc la situation est...




—> est fortement confluente

Uu=u

(0)

u=u" =99

(B)

* Dans le (dernier) cas ($)/ (@), on a: W):[]
. . u;uz : M.Zzix‘ul W
U=U =711 e — A 1) U.=>7)2 g s
‘(/\x L U) v => 1;11[x:=01|] ‘()\x . u)vl=> \(Ax . UD) UZ. —
S t

+ Par h.r.,, on a u1, u» = us
et v1, V2 = U3

« Parle Lemme.Siu=u'etv= 170’
t1 = us[x:=03] alors u[x:=v] = u'[x:=0v]

= Par (),

tr = us|x:=vs]

(est le t3 désiré



[.e A-calcul est confluent

* Nous venons de démontrer:
Prop. Sis =t ets = ty alorsil existe t3 / t1, ta=> t3.

» Le., = est fortement confluente ... donc confluente.

* :*.

* On rappelle aussi: —

u u
.:. Sio /—\
[ ]
* * * *
U1 02 01 | 02

. Q LR 0
. Q LR QR
. * * o ¢
. * . O
. o *e s RN
* * *, R4
. . 0 CHRS
. * GG L
- Q e QR
. * * e o
* * (9259 O
. * G .0
* * * e o’ e
- 0 LR QR
* * * e LR 4
* * LS LR 4
o & 298 O
4 X S

* * * *

w

Donc le A-calcul est confluent (pour la 3-réduction).




Confluence: [5 n’entraine pas 1)

“ Vous vous souvenez de la regle suivante?
(R) A 1r— 1 (si x pas libre dans u)
et considérer la Bn-réduction —g;,

« Elle a I'air raisonnablement mathématiquement
(pas informatiquement). Surtout, elle est indépendante de f3:

“ Prop. En général, Ax . ux #g u (méme si x pas libre dans u).

“ Preuve. On prend u = une variable = x:
les deux cOtés sont en forme [3-normale est pas a-équivalents,
donc pas 3-équivalents

(confluence implique forme normale unique). O



La prochaine fois

* Pouvoir expressif: fonctions récursives, combinateurs de
point fixe

“ Et plus tard: stratégies



