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Pour l’agrégation
❖ Ce que dit le programme (2022, 2023): 

« Lambda-calcul pur comme modèle de calcul : 
   définition, propriétés (dont confluence), stratégies. 
   Équivalence avec les machines de Turing et les fonctions récursives. »

❖ Pas de leçon (oral) sur le sujet.

❖ Le λ-calcul typé est hors-sujet.

❖ Liens avec les leçons:
2. Paradigmes de programmation : impératif, fonctionnel, objet. Exemples et applications. 
30. Décidabilité et indécidabilité. Exemples. 
⚠ Vous pouvez y mentionner éventuellement un point de λ-calcul, mais pas plus 
                            (ce ne sont pas des leçons de λ-calcul).



L’essentiel

❖ Motivation: λ-calcul = cœur des langages fonctionnels

❖ Définition: α-équivalence, β-réduction, [η-réduction]

❖ Propriétés fondamentales: 
confluence, non-terminaison, développements finis, standardisation

❖ Implémentations: interprètes simples, machines de Krivine, [combinateurs]

❖ et stratégies: 
par valeur/nom, interne/externe, gauche/droite, faibles ou non, 
réductions de tête et réductions standard

❖ Équivalence avec les machines de Turing et les fonctions récursives; 
   combinateurs de point fixe (Y)
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Motivation



Alonzo Church

❖ Le λ-calcul a été inventé par…

Alonzo Church
By Princeton University, Fair use, https://en.wikipedia.org/w/index.php?curid=6082269

https://en.wikipedia.org/w/index.php?curid=6082269


Historiquement

❖ … en 1932 par A. Church 
pour donner un fondement aux 
mathématiques basé sur la notion 
de fonction plutôt que d’ensemble

❖ (s’est révélé contradictoire plus tard…)
Annals of Mathematics, 2nd series
33(2), April 1932, pages 346-366
https://doi.org/10.2307/1968337 

https://doi.org/10.2307/1968337


Historiquement

❖ …puis en 1933 par A. Church 
pour donner un fondement aux 
mathématiques basé sur la notion 
de fonction plutôt que d’ensemble

❖ (toujours contradictoire… 
détecté par J. B. Rosser en 1936)

Annals of Mathematics, 2nd series
34(4), October 1933, pages 839-864
https://doi.org/10.2307/1968702 

https://doi.org/10.2307/1968702


Historiquement

❖ …puis en 1940 par A. Church 
pour donner un fondement à la 
logique d’ordre supérieur

The Journal of Symbolic Logic 5(2), June 1940, 
pages 56-68 

http://links.jstor.org/sici?sici=0022-4812%28194006%295%3A2%3C56%3AAFOTST%3E2.0.CO%3B2-Q

http://links.jstor.org/sici?sici=0022-4812%28194006%295%3A2%3C56%3AAFOTST%3E2.0.CO%3B2-Q


Historiquement

❖ …puis en 1941 par A. Church 
(d’après ses notes de cours)

Annals of Mathematics, series 6,
Princeton University Press, 1941, 77 pages.

https://archive.org/details/AnnalsOfMathematicalStudies6ChurchAlonzoTheCalculiOfLambdaConversionPrincetonUniversityPress1941/mode/2up

https://archive.org/details/AnnalsOfMathematicalStudies6ChurchAlonzoTheCalculiOfLambdaConversionPrincetonUniversityPress1941/mode/2up


Lisp
❖ Le tout premier langage fonctionnel: 
📖 John McCarthy et al. 
     LISP 1.5 Programmer’s Manual 
     MIT Press (1962)

❖ (define fact(x)  
      (cond (eq x 0)  
            1  
            (* x (fact (- x 1))))))

❖ Lisp est un lambda-calcul enrichi 
(avec des primitives: eq, cond,*, 0, 1, -, etc.)

Langage fonctionnel: 
on calcule en appliquant des fonctions 
à des arguments (eq, cond,*, fact, -)

On peut aussi 
définir des fonctions



Lisp
❖ Le tout premier langage fonctionnel: 
📖 John McCarthy et al. 
     LISP 1.5 Programmer’s Manual, MIT Press (1962)

❖ (define fact  
   (lambda (x)  
      (cond (eq x 0)  
            1  
            (* x (fact (-x 1))))))

❖ (mapcar (lambda (x) (+ x 1))  
        (list 1 2 3))       ; calcule (2 3 4)

On peut même définir des 
fonctions anonymes

Ceci est directement inspiré de la 
notation λx . … du λ-calcul



ML

❖ Dû à Robin Milner (1978) 
λ-calc. → Hope → ML → CaML → CaML light → OCaML 
                    … aussi      → Standard ML (SML/NJ)

❖ fun fact x =  
    if x=0  
       then 1  
    else x*fact(x-1);

Langage fonctionnel: 
on calcule en appliquant des fonctions 

à des arguments (=, if,*, fact, -); 
la syntaxe est simplement plus agréable 

On peut aussi définir des fonctions — récursives, comme en Lisp

https://pictures.abebooks.com/isbn/9780262631327-us.jpg



https://pictures.abebooks.com/isbn/9780262631327-us.jpg

ML

❖ Dû à Robin Milner (1978) 
λ-calc. → Hope → ML → CaML → CaML light → OCaML 
                    … aussi      → Standard ML (SML/NJ)

❖ val rec fact =  
    fn x => if x=0  
               then 1  
            else x*fact(x-1);

❖ map (fn x => x+1) [1, 2, 3];  
    (* calcule [2, 3, 4] *)

On peut même définir des 
fonctions anonymes

Ceci est directement inspiré de la 
notation λx . … du λ-calcul



Haskell

❖ (1990) 
λ-calc. → Miranda → Haskell

❖ fact 0 = 1  
fact x = x*fact(x-1)  

Langage fonctionnel: 
on calcule en appliquant des fonctions 

à des arguments (*, fact, -)

On peut aussi définir des fonctions — récursives, comme en Lisp et en ML

Par Thought up by Darrin Thompson
and produced by Jeff Wheeler —

Thompson-Wheeler logo on the haskell wiki,
Domaine public,

https://commons.wikimedia.org/w/index.php?curid=8479507

https://commons.wikimedia.org/w/index.php?curid=8479507


On peut même définir des 
fonctions anonymes

Haskell
❖ (1990) 

λ-calc. → Miranda → Haskell

❖ fact = \x | x=0 -> 1  
          | otherwise -> x*fact(x-1)

❖ map (\x -> x+1) [1,2,3]  
      -- calcule [2,3,4]

❖ nat = 0:map (\x -> x+1) nat  
      -- calcule [0, 1, 2, …]  

Par Thought up by Darrin Thompson
and produced by Jeff Wheeler —

Thompson-Wheeler logo on the haskell wiki,
Domaine public,

https://commons.wikimedia.org/w/index.php?curid=8479507Ceci est directement inspiré de la 
notation λx . … du λ-calcul

Evaluation paresseuse: 
(appel par nom, voir stratégies, plus tard dans le cours) 

les arguments de fonction 
(ici, :) ne sont évalués que si 
on a besoin de les connaître

https://commons.wikimedia.org/w/index.php?curid=8479507


La syntaxe du λ-calcul



La syntaxe du λ-calcul
❖ Très très simple!  Les termes sont: 

 s,t,u,v, … ::= 
          x,y,z, …     variables (en nb. ∞ dénombrable) 
       | st                application (de s à t) 
       | λx . s          λ-abstraction (fun x -> s, en Caml)

❖ C’est tout! Pas d’entiers, pas de listes, pas de récursion, 
pas de types, pas de modules, rien d’autre…

❖ Et pourtant, on verra que le langage est Turing-complet



La syntaxe du λ-calcul
❖ Un terme est réellement un arbre. 

La syntaxe représente ces arbres, 
modulo les conventions usuelles 
      de parenthésage 
      et de priorités (à la Caml)

❖ Quelques exemples…

λx

@

λy

@

@

x y

λz

@

z

λz

@

z x

@

x yλx . (λy . xy(λz . z(xy))) (λz . zx)



@

z@

x y

La syntaxe du λ-calcul
❖ xyz dénote (xy)z,

❖ pas x(yz)

❖ L’application 
n’est pas associative @

x @

y z



@

z@

x y

La syntaxe du λ-calcul
❖ λx . xyz dénote (λx . (xyz))

❖ … autrement dit la portée de λx 
s’étend aussi loin à droite que 
possible

λx



Calcul: la β-réduction



rédex

La β-réduction
❖ Une seule règle de calcul: 

         (β)   (λx . u) v → u[x:=v]

❖ applicable n’importe où dans un 
terme

@

λx

u
v

x x x

u

v v v

contractum

Il peut y avoir plusieurs 
rédexes dans un terme,
mais on n’en contracte

qu’un à la fois



La β-réduction est la plus petite relation 
contenant β et compatible aux contextes

Une autre présentation de la β-réduction

❖ (β)   (λx . u) v → u[x:=v]

❖ On dit que s → t ssi 
il existe un contexte C 
et un rédex (λx . u) v  
tels que s = C[(λx . u) v] 
          et t = C[u[x:=v]]

❖ C ::= _             trou (où le terme est inséré) 
      | λx . C     réduction « sous la lambda » 
      | C v         la réduction s’opère dans la fonction 
      | u C         la réduction s’opère dans l’argument

Oralement: « s se contracte en t » 
ou « s se réduit en une étape en t »



Encore une autre présentation

(λx . u) v → u[x:=v]

u → u’

λx . u → λx . u’

u → u’

uv → u’v

v → v’

uv → uv’

❖ Alors s → t si et seulement 
le jugement « s → t » est 
dérivable



Autres relations
❖ On écrira → pour la β-réduction, mais parfois aussi 

pour n’importe quelle autre relation de réduction 
(relation binaire…)

❖ Si ambiguïté, on écrira →β pour la β-réduction

❖ Exemple: on peut ajouter la règle 
           (η)   λx . ux → u          (si x pas libre dans u) 
et considérer la βη-réduction →βη 
(Non, on ne peut pas simuler (η) par (β), cf. λx . yx où y est une variable ≠x)



Clôtures
❖ →* = clôture réflexive-transitive de → (étoile de Kleene) 

      = plus petit préordre contenant → 
u →* v ssi il existe une réduction (un chemin) 
                  u=u0 → u1 → … un–1 → un=v, avec n≥0

❖ →+ = clôture transitive de → 
      = plus petite relation transitive contenant → 
u →+ v ssi il existe une réduction non vide 
                  u=u0 → u1 → … un–1 → un=v, avec n≥1

❖ ⟷* = (← ∪ →)* est la β-équivalence (parfois notée =β)



Substitution



Substitution?
❖ (β)   (λx . u) v → u[x:=v]

❖ D’accord, mais comment définit-on formellement 
la substitution u[x:=v] de v pour x dans u?

❖ Bizarrement, c’est une question très compliquée 
(et très enquiquinante — on s’empressera d’ignorer les difficultés à l’avenir)



Substitution: 1er essai
❖ Substitution textuelle: non, donnerait: 

(λx . u) [x:=v] = λv . (u[x:=v])

n’est même pas syntaxiquement correct 
(sauf si v est une variable)



Substitution: 2ème essai
❖ Définition par récurrence sur u: 

x [x:=v] ≝ v 
y [x:=v] ≝ y   (y≠x) 
(st) [x:=v] ≝ (s [x:=v]) (t [x:=v]) 
(λz . u) [x:=v] ≝ λz . (u[x:=v])

❖ A l’air bien défini, mais souffre de quelques 
problèmes…



Le problème avec la substitution
❖ D’après la définition, 

(λx . x) [x:=y] = λx . y 
(λy . x) [x:=y] = λy . y

❖ Pour corriger ça, on va:

❖ restreindre la substitution par des conditions sur les 
variables libres et liées

❖ autoriser à renommer les variables liées (α-renommage)

❖ autre solution: indices de de Bruijn (omis ici; voir exercices)

x [x:=v] ≝ v 
y [x:=v] ≝ y   (y≠x) 
(st) [x:=v] ≝ (s [x:=v]) (t [x:=v]) 
(λz . u) [x:=v] ≝ λz . (u[x:=v])



Variables libres, variables liées
❖ fv(u) = {variables libres de u} 

« qui apparaissent dans u à une position où on peut les remplacer »

❖ bv(u) = {variables liées de u}
fv(x) ≝ {x} bv(x) ≝ ∅

fv(uv) ≝ fv(u) ∪ fv(v) bv(uv) ≝ bv(u) ∪ bv(v)
fv(λx . u) ≝ fv(u) – {x} bv(λx . u) ≝ bv(u) ∪ {x}

❖ Exemples. u fv(u) bv(u)
λx . x ? ?

x(λy . z) ? ?
x(λx . x) ? ?

(λx . xx)(y(λz . yz)x) ? ?



Variables libres, variables liées
❖ fv(u) = {variables libres de u} 

« qui apparaissent dans u à une position où on peut les remplacer »

❖ bv(u) = {variables liées de u}
fv(x) ≝ {x} bv(x) ≝ ∅

fv(uv) ≝ fv(u) ∪ fv(v) bv(uv) ≝ bv(u) ∪ bv(v)
fv(λx . u) ≝ fv(u) – {x} bv(λx . u) ≝ bv(u) ∪ {x}

❖ Exemples. u fv(u) bv(u)
λx . x ∅ {x}

x(λy . z) ? ?
x(λx . x) ? ?

(λx . xx)(y(λz . yz)x) ? ?



Variables libres, variables liées
❖ fv(u) = {variables libres de u} 

« qui apparaissent dans u à une position où on peut les remplacer »

❖ bv(u) = {variables liées de u}
fv(x) ≝ {x} bv(x) ≝ ∅

fv(uv) ≝ fv(u) ∪ fv(v) bv(uv) ≝ bv(u) ∪ bv(v)
fv(λx . u) ≝ fv(u) – {x} bv(λx . u) ≝ bv(u) ∪ {x}

❖ Exemples. u fv(u) bv(u)
λx . x ∅ {x}

x(λy . z) {x,z} {y}
x(λx . x) ? ?

(λx . xx)(y(λz . yz)x) ? ?



Variables libres, variables liées
❖ fv(u) = {variables libres de u} 

« qui apparaissent dans u à une position où on peut les remplacer »

❖ bv(u) = {variables liées de u}
fv(x) ≝ {x} bv(x) ≝ ∅

fv(uv) ≝ fv(u) ∪ fv(v) bv(uv) ≝ bv(u) ∪ bv(v)
fv(λx . u) ≝ fv(u) – {x} bv(λx . u) ≝ bv(u) ∪ {x}

❖ Exemples. u fv(u) bv(u)
λx . x ∅ {x}

x(λy . z) {x,z} {y}
x(λx . x) {x} {x}

(λx . xx)(y(λz . yz)x) ? ?

oui, une variable 
peut être libre et 

liée!



Variables libres, variables liées
❖ fv(u) = {variables libres de u} 

« qui apparaissent dans u à une position où on peut les remplacer »

❖ bv(u) = {variables liées de u}
fv(x) ≝ {x} bv(x) ≝ ∅

fv(uv) ≝ fv(u) ∪ fv(v) bv(uv) ≝ bv(u) ∪ bv(v)
fv(λx . u) ≝ fv(u) – {x} bv(λx . u) ≝ bv(u) ∪ {x}

❖ Exemples. u fv(u) bv(u)
λx . x ∅ {x}

x(λy . z) {x,z} {y}
x(λx . x) {x} {x}

(λx . xx)(y(λz . yz)x) {x,y} {x,z}

oui, une variable 
peut être libre et 

liée!

au fait, la variable 
z’ (≠x,y,z) est-elle 

libre ici?



Substitution, 3ème essai
❖ On définit une opération de 

substitution partielle 
                 u [x:=v] 
définie uniquement lorsque 
                 x ∉ bv(u) et fv(v) ∩ bv(u) = ∅

❖ On peut assurer cette condition en renommant x…

x [x:=v] ≝ v 
y [x:=v] ≝ y   (y≠x) 
(st) [x:=v] ≝ (s [x:=v]) (t [x:=v]) 
(λz . u) [x:=v] ≝ λz . (u[x:=v])

pour éviter le problème 
« (λx . x) [x:=y] = λx . y »

pour éviter le problème 
« (λy . x) [x:=y] = λy . y »

on dit que x est 
substituable
par v dans u



i.e., x,y ∉ bv(u)

α-renommage
❖ On souhaite considérer que 

« λx . u(x) et λy . u(y) sont interchangeables »

❖ On définit la relation α par: 
       λx . u   α    λy . (u[x:=y]) 
à condition que x soit substituable par y dans u 
       et que y ne soit pas libre dans u 
       (sinon on aurait λx . xy   α    λy . yy)

❖ La relation d’α-équivalence =α est la plus petite congruence 
(rel. d’équivalence compatible aux contextes) contenant α

et y ∉ fv(u)



Propriétés du α-renommage
❖ Exemple: λx . λy . xy   =α  λx . λz . xz 

                                              (avec z≠x,y—noter le passage au contexte) 
                                        =α  λy . λz . yz =α  λy . λx . yx

❖ On peut toujours α-renommer λx . u 
       de sorte que u[x:=v] soit bien défini 
(= de sorte que x ∉ bv(u) et fv(v) ∩ bv(u) = ∅)

❖ Permet de (re)définir proprement la β-réduction!

λx . u   α    λy . (u[x:=y]) 
   (x,y ∉ bv(u), y ∉ fv(u))



La β-réduction… vraiment



La β-réduction, vraiment
❖ (β)   (λx . u) v → u[x:=v]

❖ On dit que s → t ssi 
il existe un contexte C 
et un rédex (λx . u) v  
tels que s =α C[(λx . u) v] 
          et t =α C[u[x:=v]]

❖ C ::= _             trou (où le terme est inséré) 
      | λx . C     réduction « sous la lambda » 
      | C v         la réduction s’opère dans la fonction 
      | u C         la réduction s’opère dans l’argument



Ou, de façon équivalente

(λx . u) v → u[x:=v]

u → u’

λx . u → λx . u’

u → u’

uv → u’v

v → v’

uv → uv’

❖ Alors s → t si et seulement 
le jugement « s → t » est 
dérivable

u =α v  v → v’

u → v’

u → u’  u’ =α v’

u → v’



(λy . (λx . yxx)(λz . z(xy)))(λz’ . z’)

Un exemple de réductions
2 rédexes

(λy . y(λz . z(xy))(λz . z(xy)))(λz’ . z’)

(λz’ . z’)(λz . z(x(λz’ . z’)))(λz . z(x(λz’ . z’)))

(λz . z(x(λz’ . z’)))(λz . z(x(λz’ . z’)))

(λz . z(x(λz’ . z’)))(x(λz’ . z’))

x(λz’ . z’)(x(λz’ . z’))

(λx . (λz’ . z’)xx)(λz . z(x(λz’ . z’)))

Forme normale 
(=sans rédex)

(λx . xx)(λz . z(x(λz’ . z’)))

Les réductions 
confluent, 

et la forme normale 
est unique

Sont-ce des phénomènes généraux?



Terminaison
❖ Une forme normale est un terme u sans rédex, 

                    i.e., u ↛

❖ Un terme u est normalisable (= faiblement terminant) 
ssi il a une forme normale 
ssi il existe une réduction partant 
     de u qui termine

❖ Un terme u est 
fortement normalisable (=terminant) 
ssi toutes les réductions partant de u terminent

u → → … → ✔

…
…

…
…

u → → … → ✔

✔
✔

✔
✔



Le terme Ω
❖ Posons Ω ≝ δδ, où δ ≝ λx . xx             [auto-application]

❖ Son « arbre » de réductions est: 
(Ω = (λx . xx) δ → δδ = Ω, 
 et c’est la seule réduction possible)

❖ Ω est un terme qui n’est (même) pas normalisable

❖ Y a-t-il un terme normalisable mais pas fortement?

❖ On a donc tous les cas possibles: 
fortement norm./norm./pas normalisable

Ω

(λx . y) Ω

y



Confluence

confluence Church-Rosser

forme normale unique

confluence forte

confluence locale



Propriété de forme normale unique

❖ On dit qu’une relation de réduction a la 
      propriété de forme normale unique 
ssi tout terme a au plus une forme normale

❖ On verra que la β-réduction a cette propriété.



Confluence
❖ Une relation de réduction → est confluente ssi 

toutes les réductions u →* v1 et u →* v2 
sont joignables, i.e. il existe des 
réductions v1 →* w et v2 →* w 
vers le même terme w

❖ Fait.  Toute relation confluente 
a la propriété de forme normale unique.

❖ Preuve.  Si v1 et v2 sont deux 
formes normales de u, les réductions 
v1 →* w et v2 →* w sont de longueur 0.

u

* *

**

v1 v2

w

confluence Church-Rosser

forme normale unique

confl

confl



Propriété de Church-Rosser
❖ → a la propriété de Church-Rosser ssi ⟷* = →*; ←* 

i.e., pour tous u, v tels que u ⟷* v, il existe w tel que 
                  u →* w et w ←* v

❖ A quoi ça sert? 
Un exemple en théorie des groupes…



Exemple: la théorie des groupes
❖ On vous dit:    1×x → x     x–1×x → 1   (x×y)×z → x×(y×z) 

(pour tous termes x,y,z)

❖ Démontrer x×1 ⟷* x…

❖ Oui, on peut! 
     

❖ mais ceci demande de l’inventivité

❖ Ça serait plus simple si on pouvait simpler réduire x×1 et x 
et vérifier qu’ils se réduisent aux mêmes termes…

(((x–1)–1×x–1)×x)×1

((x–1)–1×x–1)×(x×1)

1×(x×1)

x×1

((x–1)–1×(x–1×x))×1

((x–1)–1×1)×1

(x–1)–1×(1×1)

(x–1)–1×1

(x–1)–1×(x–1×x)

((x–1)–1×x–1)×x

1×x

x



La procédure de Knuth-Bendix (un aperçu)

❖ On cherche deux règles l1 → r1 et l2 → r2 telles que 
       l2 s’unifie avec un sous-terme non var. t de l1  
       (l1=C[t], σ=mgu(l2,t))

❖ Alors l1σ → r1σ, mais aussi l1σ = Cσ[l2σ] → Cσ[r2σ]

❖ Le couple (l1σ↓, Cσ[r2σ]↓) est 
                   une paire critique

❖ Si (u,v) est une paire critique avec u≠v, 
rajouter la règle u → v ou v → u… et recommencer.

l1σ

r1σ Cσ[r2σ]

r1σ↓
✔

Cσ[r2σ]↓
✔

* *



Exemple: la théorie des groupes
❖ On vous dit:    1×x → x     x–1×x → 1   (x×y)×z → x×(y×z)

(x–1×x)×z

1×z x–1×(x×z)

z
✔

✔

❖ Rajouter la règle x–1×(x×z) → z

❖ Ceci peut rajouter de nouvelles paires critiques, 
et on itère…



Exemple: la théorie des groupes
❖ On vous dit:    1×x → x     x–1×x → 1   (x×y)×z → x×(y×z)

❖ Résultat (après effacement de règles inutiles): 
             1×x → x     x×1 → x     1–1 → 1 
             (x–1)–1 → x     (x×y)–1 → y–1×x–1 

                   x×x–1 → 1      x–1×x → 1      (x×y)×z → x×(y×z) 
             x×(x–1×z) → z      x–1×(x×z) → z

❖ Ce système de réécriture est Church-Rosser!

❖ Corollaire: la théorie des groupes est décidable. 
(Pour savoir si u ⟷* v, comparer leurs formes normales dans ce nouveau 
système.)



Confluence et Church-Rosser
❖ Théorème.  Confluence = Church-Rosser.

❖ Preuve (1/2). Suppons → Church-Rosser. 
                                        Si l’on a: 
   en particulier v1 ⟷* v2 
   (par une preuve dite en pic)

❖ Par Church-Rosser… 
(preuve de v1 ⟷* v2  dite en vallée)

❖ donc → est confluente.

u

* *
v1 v2

** w



❖ Théorème.  Confluence = Church-Rosser.

❖ Preuve (2/2). Suppons → confluente, et u ⟷* v 
On peut organiser cette preuve en pics et vallées:

Confluence et Church-Rosser

* *u * * v* *…

* *

confluence

* *

confluence

**

confluence

…

**

← n pics← n–1 pics← n–2 pics
* *

← 1 pic

Plus de pic!
On a obtenu une
preuve en vallée
de u ⟷* v.
Donc → est 
Church-Rosser.

(Ceci est en réalité
une preuve par récurrence

sur le nombre de pics.)



❖ Théorème.  Confluence = Church-Rosser.

❖ Preuve (2/2). Suppons → confluente, et u ⟷* v 
On peut organiser cette preuve en pics et vallées:

Confluence et Church-Rosser

* *u * * v* *…

* *

confluence

* *

confluence

**

confluence

…

**

← n pics← n–1 pics← n–2 pics
* *

← 1 pic

Plus de pic!
On a obtenu une
preuve en vallée
de u ⟷* v.
Donc → est 
Church-Rosser.

(Ceci est en réalité
une preuve par récurrence

sur le nombre de pics.)

confluence Church-Rosser

forme normale unique

confl

confl



❖ En principe, on devrait énumérer toutes 
les situations v1 ←* u →* v2…

❖ … pour toutes les longueurs de 
réduction possibles de u à v1 (resp. v2)

❖ On va donc chercher des critères de 
confluence plus simples

Comment prouver la confluence?

confluence Church-Rosser

forme normale unique

confl

confl

u

* *

**

v1 v2

w



Confluence forte, confluence locale



❖ → est localement confluente ssi:

❖ Voyez-vous la différence avec 
la confluence?

❖ Plus facile à vérifier 
(en fait, on n’a qu’à énumérer les 
 paires critiques)

❖ Fait. Confluence implique 
         confluence locale.

Confluence locale

confluence Church-Rosser

forme normale unique

confl

confl

u

**

v1 v2

w

(L’implication n’est pas dans le sens souhaité… ça arrive.)



❖ La preuve suivante est fausse, dites-moi pourquoi.

❖ Arnaque. Si → loc. confluente alors → confluente (non).

❖ Supposons:

Confluence locale et confluence?

u

* *
v1 v2

Si u=v1…

0 étape

u=

*

0 étape

*
v2

Si u=v2, on raisonne 
              symétriquement. 
Regardons donc ce qui se 
passe si ≥1 étape de u à v1, 
resp. à v2



❖ La preuve suivante est fausse, dites-moi pourquoi.

❖ Arnaque. Si → loc. confluente alors → confluente (non).

❖ Cas de récurrence:

Confluence locale et confluence?

u

* *
v1 v2

* *

confluence 
locale

* *

hyp. réc.

**

hyp. réc.

Où est l’erreur?



❖ Une relation → définie 
sur un ensemble à 4 éléments {a,b,c,d}

❖ Localement confluent: 
— c ← a → b joignable 
— a ← b → d joignable

❖ Pas confluent 
(a n’a pas de 
forme normale 
unique)

Le contre-exemple de Curry

a b

c d

a
c b

d
✔

✔ confluence Church-Rosser

forme normale unique

confl

confluence locale

https://upload.wikimedia.org/wikipedia/commons/8/86/HaskellBCurry.jpg

Haskell B. Curry



❖ → est fortement confluente ssi:

❖ Lemme. La confluence forte implique 
                la confluence.

❖ Preuve: quasiment comme avant

❖ On montre:

❖ par récurrence 
sur m+n.

❖ Évident si m=0 ou n=0.

Confluence forte

confluence Church-Rosser

forme normale unique

confluence forte

confluence locale

u

v1 v2

w

≤1 ≤1
u

* *

**

v1 v2

w

m étapes n étapes

≤n étapes ≤m étapes

* *



≤n–1

s’applique car
(m–1+1)+(n–1) 

= m+n–1 
< m+n

s’applique car
(m–1)+1 = m 

< m+n

❖ → est fortement confluente ssi:

❖ Lemme. La confluence forte implique 
                la confluence.

❖ Si m≥1 et n≥1:

Confluence forte

confluence Church-Rosser

forme normale unique

confluence forte

confluence locale

u

v1 v2

w

≤1 ≤1u

* *
v1 v2

* *

hyp. réc.

**

hyp. réc.

* *

confluence 
forte

1 1

m–1 n–1≤1 ≤1

≤1 ≤m–1
≤m



❖ Non… 😢

❖ Imaginons 
que  v  →  w  .  Alors:

Le λ-calcul est-il fortement confluent?
@

λx

u
v

x x x

u

v v v

@

λx

u
w

x x x

u

ww w

*
3 étapes 

(en général, 
autant que 

d’occurrences
de x dans u)

v w



❖ Oui… mais ça 
n’implique pas la 
confluence 😕

❖ 3 cas à examiner:

❖ Cas 1: 
v → w, 
v argument 
d’un rédex

Le λ-calcul est-il localement confluent?
@

λx

u
v

x x x

u

v v v

@

λx

u
w

x x x

u

ww w

*
3 étapes 

(en général, 
autant que 

d’occurrences
de x dans u)



❖ Oui… mais ça 
n’implique pas la 
confluence 😕

❖ 3 cas à examiner:

❖ Cas 2: 
u → w, 
u sous la 
λ-abstraction 
d’un rédex

Le λ-calcul est-il localement confluent?
@

λx

u
v

x x x

u

v v v

@

λx

w
v

x x

w

v v

Lemme (exercice).  Si u → w 
alors u[x:=v] → w[x:=v]



❖ Oui… mais ça 
n’implique pas la 
confluence 😕

❖ 3 cas à examiner:

❖ Cas 3: 
rédex disjoints 
u → u’, v → v’

Le λ-calcul est-il localement confluent?

u v

u’ v u v’

u’ v’



Le lemme de Newman



❖ Lemme (Newman 1941). Toute relation localement confluente 
               et fortement normalisable 
               est confluente.

❖ Preuve(s): transparents suivants.

❖ Note 1: le contre-ex. de Curry n’est pas fortement normalisable

❖ Note 2: la normalisabilité (faible) ne suffit pas (cf. Curry)

❖ Note 3: ne s’applique toujours pas au 
              λ-calcul, qui n’est pas fortement 
              normalisable… 
              mais sera utile quand même!

Le lemme de Newman

confluence Church-Rosser

forme normale unique

confluence forte

confluence locale

si fortement
normalisable



❖ Lemme (Newman 1941). Toute relation localement confluente 
               et fortement normalisable 
               est confluente.

❖ Deux preuves, dont l’une sous une hypothèse supplémentaire 
                          (mais plus simple que l’autre).

❖ Première preuve: on suppose que → est à branchement fini: 
pour tout u, {v | u → v} est fini 
     (c’est clairement le cas en λ-calcul)

❖ Alors pour tout u, ν(u) ≝ longueur max. 
d’une réduction partant de u existe: 
                       pourquoi?

Le lemme de Newman

confluence Church-Rosser

forme normale unique

confluence forte

confluence locale

si fortement
normalisable



Le lemme de Kőnig
❖ Lemme (Kőnig).  Tout arbre à branchement fini 

          et dont toutes les branches sont finies 
          … est fini (n’a qu’un nombre fini de sommets).

❖ Preuve.  Soit T un arbre infini, à branchement fini.

❖ * n’a qu’un #fini de successeurs

❖ Tiroirs et chaussettes: un de ceux-là 
est racine d’un sous-arbre infini

❖ … et l’on continue à l’infini, 
produisant une branche infinie.

*



❖ Supposons → fortement normalisable et à branchement fini: 
                     pour tout u, {v | u → v} est fini

❖ ∀ u, ν(u) ≝ longueur max. d’une réduction partant de u existe: 
            on forme l’arbre T(u) ≝ {v | u →* v}

❖ Il est à branchement fini par hypothèse

❖ Ses branches sont finies car → fortement normalisable

❖ Par Kőnig, T(u) est fini, et il n’y a en particulier 
            qu’un nombre fini de réductions partant de u

Pourquoi ν(u) existe-t-il?



❖ Supposons → fortement normalisable et à branchement fini: 
                     pour tout u, {v | u → v} est fini

❖ ∀ u, ν(u) ≝ longueur max. d’une réduction partant de u existe: 
            on forme l’arbre T(u) ≝ {v | u →* v}

❖ Il est à branchement fini par hypothèse

❖ Ses branches sont finies car → fortement normalisable

❖ Par Kőnig, T(u) est fini, et il n’y a en particulier 
            qu’un nombre fini de réductions partant de u

Pourquoi ν(u) existe-t-il?

Les gens rigoureux dans l’assistance auront remarqué que 
T(u) est un graphe orienté, pas un arbre… deux solutions: 

(1) montrer que Kőnig reste vrai pour tout graphe 
acyclique à branchement fini

(2) définir les sommets de T(u) comme les réductions finies 
partant de u elles-mêmes, poser * ≝ (u) et 

p(u → u1 → …→ un–1 → un) = (u → u1 → …→ un–1)

Note (facile mais importante). 
Si u → v alors ν(u) > ν(v).



❖ Lemme (Newman 1941). Toute relation localement confluente 
               et fortement normalisable 
               est confluente.

❖ On montre que si v1 ←* u →* v2 alors v1 et v2 ont un réduit commun 
par récurrence sur ν(u)

❖ Les cas u=v1 et u=v2 
sont comme avant

❖ Sinon:

Le lemme de Newman: 1ère preuve

confluence Church-Rosser

forme normale unique

confluence forte

confluence locale

si fortement
normalisable

et à branchement fini

u

* *
v1 v2

* *

hyp. réc.

**

hyp. réc.

* *

confluence 
localeu1 u2

s’applique car 
ν(u) > ν(u1)

s’applique car
ν(u) > ν(u2)



❖ Lemme (Newman 1941). Toute relation localement confluente 
               et fortement normalisable 
               est confluente.

❖ Même preuve, mais on raisonne par 
            récurrence bien fondée sur u, directement, 
ordonné strictement par ≺ ≝ ←+

❖ Principe de récurrence bien fondée: voir transparent suivant

Le lemme de Newman: 2ème preuve

et à branchement fini



Récurrence bien fondée
❖ Soit ≺ un ordre strict.  Les affirmations suivantes sont équivalentes:

1. ≺ est bien fondée: pas de chaîne ∞ décroissante u0 ≻ u1 ≻ … ≻ un ≻ …

2. pour toute prop. P, si (∀u, (∀v ≺ u, P(v)) implique P(u)) alors ∀u, P(u)

❖ Preuve (non 2 implique non 1).  Il y a une prop. P falsifiée par un u0, 
                 et vérifiant (∀u, (∀v ≺ u, P(v)) implique P(u))

❖ par contraposée, ∀un, si non P(un) alors ∃un+1 ≺ un, non P(un+1)

❖ (2 implique 1).  Prendre P(u) ≝ « pas de chaîne ∞ décroissante partant 
de u »



Récurrence bien fondée
❖ Soit ≺ un ordre strict.  Les affirmations suivantes sont équivalentes:

1. ≺ est bien fondée: pas de chaîne ∞ décroissante u0 ≻ u1 ≻ … ≻ un ≻ …

2. pour toute prop. P, si (∀u, (∀v ≺ u, P(v)) implique P(u)) alors ∀u, P(u)

❖ Preuve (non 2 implique non 1).  Il y a une prop. P falsifiée par un u0, 
                 et vérifiant (∀u, (∀v ≺ u, P(v)) implique P(u))

❖ par contraposée, ∀un, si non P(un) alors ∃un+1 ≺ un, non P(un+1)

❖ (2 implique 1).  Prendre P(u) ≝ « pas de chaîne ∞ décroissante partant 
de u »

Autrement dit, pour prouver ∀u, P(u), il suffit de 
prendre un u quelconque, 

et de prouver P(u) sous 
l’hypothèse de récurrence: ∀v ≺ u, P(v)



❖ Lemme (Newman 1941). Toute relation localement confluente 
               et fortement normalisable 
               est confluente.

❖ On montre que si v1 ←* u →* v2 alors v1 et v2 ont un réduit commun 
par récurrence bien fondée sur u strictement ordonné par ≺ ≝ ←+

❖ Les cas u=v1 et u=v2 
sont comme avant

❖ Sinon:

Le lemme de Newman: 2ème preuve

confluence Church-Rosser

forme normale unique

confluence forte

confluence locale

si fortement
normalisable

et à branchement fini

u

* *
v1 v2

* *

hyp. réc.

**

hyp. réc.

* *

confluence 
localeu1 u2

s’applique car 
u ≻ u1

s’applique car
u ≻ u2



Le λ-calcul est confluent



Réductions parallèles

❖ La preuve standard de confluence du λ-calcul

❖ On introduit une relation ⇒ de réduction parallèle 
qui intuitivement autorise à réduire plusieurs rédexes, à condition qu’aucun n’en 
contienne un autre

❖ On montre que ⇒ est fortement confluente 
                            donc confluente

❖ Enfin, → ⊆ ⇒ ⊆ →* 
           donc → sera confluente.



u ⇒ u’  v ⇒ v’

(λx . u) v ⇒ u’[x:=v’]

u ⇒ u’

λx . u ⇒ λx . u’

u ⇒ u

u ⇒ u’    v ⇒ v’

uv ⇒ u’v’

(0)

(β)

(λ)

(@)

Réductions parallèles
❖ Pour simplifier, raisonnons à α-

équivalence près: 
les règles suivantes sont donc inutiles

u → u’

uv → u’v

v → v’

uv → uv’

A comparer avec:

On peut réduire 
en parallèle 

dans u et dans v

u =α v  v → v’

u → v’

u → u’  u’ =α v’

u → v’

0 réduction parallèle
(nouvelle règle)



→ ⊆ ⇒ ⊆ →*
❖ Commençons par les derniers résultats 

(les plus faciles)

❖ Lemme (→ ⊆ ⇒).  Si u → v alors u ⇒ v. 
               (Récurrence sur la profondeur du rédex contracté dans u.)

❖ Lemme (⇒ ⊆ →*).  Si u ⇒ v alors u →* v. 
               (Récurrence sur la taille de la dérivation de u ⇒ v.)

❖ Corl.  →*  =  ⇒*.



Le lemme de substitution pour ⇒
❖ Lemme. Si u ⇒ u’ et w ⇒ w’ 

               alors u[z:=w] ⇒ u’[z:=w’]

❖ Preuve.  Récurrence sur la taille 
              de la dérivation donnée de u ⇒ u’. 
                       (Exercice.  Vous aurez à prouver quelques lemmes auxiliaires. 
                        Attention à α-renommer dans le cas de la règle (β).)

❖ Note: avec la β-réduction (ordinaire), on a: 
           — si w → w’ alors u[z:=w] →* u’[z:=w’] 
           — si u → u’ alors u[z:=w] → u’[z:=w] 



⇒ est fortement confluente
❖ Supposons s ⇒ t1 et s ⇒ t2 

❖ On montre qu’il existe t3 / t1, t2 ⇒ t3 
par récurrence sur la somme des tailles 
des dérivations de s ⇒ t1 et s ⇒ t2

❖ A symétrie près, 10 cas

❖ (0)/–: s=t1 [=u], poser t3≝t2

❖ (β)/(λ), (λ)/(@): impossibles

❖ (λ)/(λ), (@)/(@): par hyp. réc.

❖ (β)/(β): voir transparent suivant

(0) (β) (λ) (@)

(0)

(β) –
(λ) – –
(@) – – –

(0) (β) (λ) (@)

(0) ✔ ✔ ✔ ✔

(β) –
(λ) – –
(@) – – –

–
–✔

✔



Lemme. Si u ⇒ u’ et v ⇒ v’ 
               alors u[x:=v] ⇒ u’[x:=v’]

Lemme. Si u ⇒ u’ et v ⇒ v’ 
               alors u[x:=v] ⇒ u’[x:=v’]

⇒ est fortement confluente
❖ (β)/(β): on a

(0) (β) (λ) (@)

(0)

(β) –
(λ) – –
(@) – – –

(0) (β) (λ) (@)

(0) ✔ ✔ ✔ ✔

(β) –
(λ) – –
(@) – – –

✔ –
–✔

✔

u ⇒ u1  v ⇒ v1 

(λx . u) v ⇒ u1[x:=v1]

… …

u ⇒ u2  v ⇒ v2

(λx . u) v ⇒ u2[x:=v2]

… …

❖ Par h.r., on a u1, u2 ⇒ u3 
                    et v1, v2 ⇒ v3

❖ Par le 
t1 ⇒ u3[x:=v3]

❖ Par le 
t2 ⇒ u3[x:=v3]

s t1 s t2

C’est le t3 désiré



⇒ est fortement confluente
❖ Dans le (dernier) cas (β)/(@), on a:

(0) (β) (λ) (@)

(0) ✔ ✔ ✔ ✔

(β) – ✔ –
(λ) – – ✔ –
(@) – – – ✔

u ⇒ u1  v ⇒ v1 

(λx . u) v ⇒ u1[x:=v1]

(λx . u) ⇒ w    v ⇒ v2

(λx . u)v ⇒ wv2

s st1 t2

… … …

❖ Mais (λx . u) ⇒ w ne peut 
être dérivé que par (0) ou (λ) 
… donc la situation est…

…



Lemme. Si u ⇒ u’ et v ⇒ v’ 
               alors u[x:=v] ⇒ u’[x:=v’]

❖ Par h.r., on a u1, u2 ⇒ u3 
                    et v1, v2 ⇒ v3

❖ Par le 
t1 ⇒ u3[x:=v3]

❖ Par (β), 
t2 ⇒ u3[x:=v3]

(0) (β) (λ) (@)

(0) ✔ ✔ ✔ ✔

(β) – ✔ –
(λ) – – ✔ –
(@) – – – ✔

⇒ est fortement confluente
❖ Dans le (dernier) cas (β)/(@), on a:

(λx . u) ⇒ (λx . u2)    v ⇒ v2

(λx . u)v ⇒ (λx . u2) v2

s s t2

…

…u ⇒ u2

C’est le t3 désiré

✔

t1

u ⇒ u1  v ⇒ v1 

(λx . u) v ⇒ u1[x:=v1]

… …



Le λ-calcul est confluent
❖ Nous venons de démontrer: 

Prop.  Si s ⇒ t1 et s ⇒ t2 alors il existe t3 / t1, t2 ⇒ t3.

❖ I.e., ⇒ est fortement confluente  …   donc confluente.

❖ On rappelle aussi:

❖ Si:

→*  =  ⇒*.
u

v1 v2
* *

w* * w* *

u

v1 v2
* *

Donc le λ-calcul est confluent (pour la β-réduction).  ☐



Confluence: β n’entraîne pas η
❖ Vous vous souvenez de la règle suivante? 

           (η)   λx . ux → u          (si x pas libre dans u) 
et considérer la βη-réduction →βη

❖ Elle a l’air raisonnablement mathématiquement 
(pas informatiquement).  Surtout, elle est indépendante de β:

❖ Prop.  En général, λx . ux ≠β u (même si x pas libre dans u).

❖ Preuve.  On prend u = une variable ≠ x: 
les deux côtés sont en forme β-normale est pas α-équivalents, 
donc pas β-équivalents 
                (confluence implique forme normale unique).  ☐



La prochaine fois
❖ Pouvoir expressif: fonctions récursives, combinateurs de 

point fixe

❖ Et plus tard: stratégies


