Dependently-Typed Termination and Embedding of

Extensional Universe-Polymorphic Type Theory
using Rewriting

Guillaume Genestier

Under the supervision of Frédéric Blanqui and Olivier Hermant

Thursday, December 10th, 2020

hormale——— . ;/j

supérieure &zulc?/- P;[l\u/}il.rsjl'lésch *

paris—saclay

Guillaume Genestier 1/ 45

The Heart of Logic: Deduction

In logic, we derive new knowledge from axioms using rules.

Socrates is a man All men are mortal FA=B FB=C
Socrates is mortal FA=C

Guillaume Genestier 2 /45

The Heart of Logic: Deduction

In logic, we derive new knowledge from axioms using rules.

Socrates is a man All men are mortal FA=B FB=C
Socrates is mortal FA=C

Socrates is mortal All cats are mortal

Socrates is a cat

Guillaume Genestier 2 /45

We expected Computer Science

Guillaume Genestier

Curry-Howard Correspondence

sin:R—R 2:R—R* FA=B F B=C

Ax.sin(x)? : R — Rt HA=C
3:R True: Bool FA B
(3, True) : R x Bool FAANB
Type Theorem
Program Proof

Type Checking | Correctness Verification

Guillaume Genestier 4 /45

@ Context: Dedukti

© Termination Criterion

© Encoding Agda in Dedukti
@ Universe Polymorphism

© Results, Implementations and Future Work

Guillaume Genestier 5/ 45

Deduction alone is heavy

#5443, Lo, Bel.DtanB=A.=.avBe2

Dem.
Fo%5426. Db a=1z.8=1y.D:avBe2.=.aty.
[#51-231] = tfenity=A.
[%13:12] =.anfB=A (1)

Fo(1).%11°11:85. D
Fi(ga,y).a=tz.B=1y.d:avBe2.=.anB=A (2)
F.(2).%1154.%521.2F. Prop
From this proposition it will follow, when arithmetical addition has been
defined, that 1 +1=2,

Alfred N. Whitehead and Bertrand Russel, Principia Mathematica,
Volume |, p. 379

Guillaume Genestier 6 /45

Dedukti [Boespflug, 2011] [Saillard, 2015]

Dedukti is a type-checker for the All-calculus modulo rewriting.

Example of dependent type

symbol F : N = TYPE
[1 FoO — N
[n] F (s n) — N = F n

Fn=N= N =...= N with n arrows.

Example of rewriting rules

Example : sum 512345 —* 142434445 —* 15

symbol sum : (n: N) = F n
[T sum O — 0
[] sum (s 0) — Ax, X

[n] sum (s (s n)) —— Ax y, sum (s n) (plus x y)

Guillaume Genestier 7/ 45

The Purpose of a Logical Framework

Better Understanding of Theories

LF + A few symbols and rewrite rules

Allow Comparison between Logics

Same feature = Same rewrite rules

Easier to Analyze Proofs

Syntactical analysis of the symbols used

Translation between Logics

Matita HOL-Light
VP TN
‘\79//‘)
< _DK[CIC] DK[HOL}-— N

O Dediki
A
Coq

.

Guillaume Genestier 8/ 45

Non-restrictive Rewriting

@ overlapping: X+ 0—x, 0+ x—x
@ non-linearity: x — x—0
o defined symbols: (x+y)+z—x+(y+2)
@ higher-order: lam (Ax.app F x)—F

there can be rules both at the object and type levels

Guillaume Genestier 9/ 45

Expected Properties of Rewriting

@ Termination: There is no infinite sequence of reduction starting
from a well-typed term;

e Typing preservation (Subject reduction): If a term is well-typed,
its reducts have the same type;

o Confluence: Two reducts of a term have a common reduct.

Guillaume Genestier 10 / 45

Expected Properties of Rewriting

@ Termination: There is no infinite sequence of reduction starting
from a well-typed term;
o We assume preservation of sorts by reduction.

o We assume local confluence.

Guillaume Genestier 10 / 45

© Termination Criterion
@ Logical Relations
@ Dependency Pairs
@ Accessibility
@ Main Theorem

Guillaume Genestier 11 / 45

If=t: T, then t € SN(—pr).

Find a criterion such that:

If=t: T, then t € SN(—pr).

Logical Relations [Tait, 1967][Girard, 1971]

Define [T] such :
o [Ft:Timplieste[T], Under conditions
o t € [T] implies t € SN(—gRr).

v
Our Interpretation

@ Pre-interpretation of type values,

@ Interpretation of the sort x and of the types simultaneously,

@ Interpretation of the sort (1 and of kinds.

A\

Guillaume Genestier 13 / 45

Adequacy

Lemma (Adequacy)
If forall f, f € [©f] andT Ht: T, thent e [T].

Define [T] such that:
o [Ft:Timplieste[T], Condition: Vf, f € [©f]
o t € [T] implies t € SN(—gR). v

Guillaume Genestier 14 / 45

Dependency Pairs
Definition (Dependency Pairs)

A rule f | — r gives rise to the dependency pairs f | > g m where:

@ g is (partially) defined by rewriting,

e g mis a maximally applied subterm of r.

Theorem (Arts and Giesl, 2000)

First-order case:
—R terminates iff there isno ft > g =%, g’ > ...

\

Higher-Order Case

Static and dynamic definitions: [Blanqui06][Kusakari, Sakai 07][Kop,
van Raamsdonk 12][Kop, Fuhs 19]

A,

Guillaume Genestier 15 / 45

symbol infix + : N = N = N.
0 + q — q.
(S p) +q — S (p + q). (1)
p + (8 q) — S (p + q). (2

symbol append: (p: N) = List p =
(q: N) = List g = List (p + q).
append _ nil qm — m.
append _ (cons x p 1) g m —
cons x (p + q) (append p 1 q m). (3)

(1) (s p) +q > Pt q

(2) P + (S q >p+q

(3) append _ (cons x p 1) g m > append p 1 g m
(3) append _ (cons x p 1) gm > p + q

Guillaume Genestier 16 / 45

Call-Graph: Example

def plus : Nat -> Nat -> Nat.

set infix := plus.
0 + q q.
(S p) + g S (p + q). (1)
p + (S q) s (p+ a). (2

def append: (p: Nat) -> List p ->
(q: Nat) -> List q -> List (p + q).
append _ nil qm m.
append _ (cons x p 1) q m
cons x (p + q) (append p 1 q m). (3)

(3)

1,2 @

Guillaume Genestier 17 / 45

Unaccessible Argument: Pure lambda-calculus

symbol Term : *.
symbol abstr : (Term = Term) = Term.
symbol app : Term = Term = Term.

[f] app (abstr f) «—— f.

1t argument of abstr is not accessible.

Guillaume Genestier 18 / 45

Accessible Argument: Brouwer Ordinals

symbol Nat : %
symbol Ord : *
symbol 0 : 0Ord
symbol s : 0Ord = 0Ord
symbol 1lim : (Nat = 0rd) = O0Ord

symbol ordrec : X = (0Ord = X = X)
= ((Nat = 0rd) = (Nat = X) = X)
= 0rd = X
ordrec x y z O — X
ordrec x y z (s o) —

y o (ordrec x y z o)
ordrec x y z (lim f) ——

z £ (A n, ordrec x y z (f n))

With Nat < Ord, 15 argument of 1im is accessible.

Guillaume Genestier 19 / 45

Main Result

Reminder
If forall f, f € [©f] and T ¢t: T, then t € [T].

Every f € [©f], if:
@ The right-hand side of every rule is well-typed,

@ All variables occurring in a right-hand side are accessible in the
left-hand side,

) is well-founded.

° (>—>ng

Guillaume Genestier 20 / 45

Size-Change Termination : Example

Introduced in [Lee, Jones, Ben Amram, 02] and used for MLTT in

[Wahlstedt07].

Keeping track of the evolution of the sizes of the arguments:

P 4
(1) plus (S p) q > plus p q Sp < o0
q x =

P q

(3) append n (cons x p qm cons x p | < o

> plus p q
q o =
m oo X

(3)

1,2 @

Guillaume Genestier

21 / 45

Size-Change Termination : Example

Introduced in [Lee, Jones, Ben Amram, 02] and used for MLTT in

[Wahlstedt07].

Keeping track of the evolution of the sizes of the arguments:

P 4
(1) plus (S p) q > plus p g Sp < o0
q x© =

P 9

(3) append n (cons x p qm cons x p | < o

> plus p q
q 0 =
m oo 0

(3)

1,2 @

Guillaume Genestier

21 / 45

Size-Change Termination : Example

Introduced in [Lee, Jones, Ben Amram, 02] and used for MLTT in

[Wahlstedt07].

Keeping track of the evolution of the sizes of the arguments:

P 9
(1) plus (S p) g9 > plus p g Sp < oo
q x© =

P 4

(3) append n (cons x p qm cons x p | < o

> plus p q
q 0 =
m oo 0

(3)

1,2 @

Guillaume Genestier

21 / 45

Main Result

(>—31g) is well-founded if the signature is finite and the set of rules
is size-change terminating.

—gR terminates on every typable term in A[1/R if:

e — R Is locally confluent and sort preserving,

The right-hand side of every rule is well-typed,

All variables occurring in a right-hand side are accessible in the
left-hand side,

The signature is finite,

The set of rules is size-change terminating.

Guillaume Genestier 22 /45

© Encoding Agda in Dedukti
o A few words on Agda
@ Encoding Type System using Rewriting
@ On the n-convertibility

Guillaume Genestier 23 /45

Agda in a Nutshell

Agda is a dependently typed programming language. It is
an extension of Martin-L&f's type theory [...].

Because of strong typing and dependent types, Agda can
be used as a proof assistant, allowing to prove mathematical
theorems (in a constructive setting) and to run such proofs
as algorithms.

— Agda user manual

Guillaume Genestier 24 / 45

The Agda we want to translate

@ A Predicative Pure Type System with an infinite hierarchy of
types,

zero : Nat : Setg : Sety : ---: Set; : Setjy1: ...

e with inductive datatypes.

data Nat : Setg where
zero : Nat
suc : (m : Nat) — Nat

e with n-equality of functions and records,
f=pAx:Afx

@ with universe polymorphism,

data List (£ : Level) (A : Sety) : Set;, where
[] : List £ A
:: : A — List £ A — List ¢ A

Guillaume Genestier 25 / 45

Encoding of Types [Cousineau, Dowek, 2007]

constant Univ : (1 : Lvl) = TYPE

Agda | Dedukti
Bool : Setg Bool : Univ O
True : Bool True : Bool X

Terms and types are different objects in Dedukti.

Guillaume Genestier 26 / 45

Encoding of Types [Cousineau, Dowek, 2007]

constant Univ : (1 : Lvl) = TYPE

Agda | Dedukti
Bool : Setg Bool : Univ O
True : Bool True : Bool X

Terms and types are different objects in Dedukti.

symbol Lift : (1 : Lvl) = (A : Univ 1) = TYPE

True : Bool ‘ True : Lift O Bool

Guillaume Genestier 26 / 45

Encoding of Types [Cousineau, Dowek, 2006]

constant prod : (11 : Lvl) = (12 : Lvl)
= (A : Univ 11)
= (Lift 11 A = Univ 12)
= Univ (max 11 12)

[11,12,A,A] Lift _ (prod 11 12 A B) —
(x : Lift 11 A) = Lift 12 (B x)
Agda | Dedukti
Bool — Bool : Setg prod 0 0 Bool (A_,Bool) : Univ O
neg : Bool — Bool neg : Lift O (prod 0 O Bool (A_,Bool))
i

(Lift 0 Bool) = (Lift O Bool)

Guillaume Genestier 27 / 45

Encoding of Inductive Datatypes

The Agda declaration of natural numbers:

data Nat : Sety where
zero : Nat
suc : (m : Nat) — Nat

is translated in Dedukti by:

constant Nat : Univ O

constant Nat__zero: Lift O Nat
constant Nat__suc: Lift O (prod O 0 Nat (A_, Nat))

Guillaume Genestier 28 / 45

Recursive Functions

The Great Principle: Shape Preservation

Definitions in Agda are rewrite rules.

The Agda declaration of addition:

+ : Nat — Nat — Nat
Zero + n = n
(suc m) + n

suc (n + m)
is translated in Dedukti by:

symbol + : (Lift O Nat) = (Lift O Nat)

= (Lift O Nat)
[n] + Nat__zero n < n

[m,n] + (Nat__suc m) n «— Nat__suc (+ m n)

Guillaume Genestier 29 / 45

On n-conversion: The Time-Bomb Solution

Declare a symbol ng in Dedukti, to annotate every subterm with its

type, as long as it is required. J
x : Nat X
f: Nat — Nat | Ax, fx
t: X ne Xt~ ...

symbol ng : (1 : Lvl) =
(A : Univ 1) =
Lift 1 A =
Lift 1 A.

ne _ Nat X
ne _ (prod n B) f

— x
—

Ax, ng n (B x) (f x)

Guillaume Genestier 30/ 45

@ Universe Polymorphism
@ Encoding Universe Polymorphism in Dedukti
@ Overcoming Convertibility Issue

Guillaume Genestier 31/ 45

New Problem

What is the type of ¥/, Set,? I

Guillaume Genestier 32 /45

New Problem

What is the type of ¥/, Set,?

A brand new sort: Set,,

o Not typable,

@ Type of no sorts,

@ On which we cannot quantify,
°

For internal use only, not in the syntax.

Guillaume Genestier 32 /45

Encoding Universe Polymorphism in Dedukti

constant w : Lvl

constant V,, : (s : (Lvl = Lvl)) =
((1 : Lvl) = Univ (s 1)) =
Univ w.

[s, bl Lift _ (VLVI s b)) «—
(1 : Lvl) = Lift (s 1) (b 1)

Example (V/, Sety)

Yiy (A1, succ 1) (A1, univ 1).

Guillaume Genestier 33 /45

Translation

Definition (Translation of sorts)

(Sety):= w; (Sety):= succ zero.

Definition (Translation of terms)

A well-typed term is translated by:

| AxA.¢| = Ax :Lift(sa) |A|.|t];
|(x : A) = B| :=prod (sa) (sg) |A| (Ax :Lift(sa) |A|.|B|);
Ve, Al = Viw (M : Lvl.(sa)) (M : Lvl.|A|).

Guillaume Genestier 34 / 45

A Good Encoding
Context for Prenex Universe Polymorphism

The global signature The level variables The local context
foV[l,...,0].A / x: A

Theorem (Soundness of the encoding)

Assuming (.) is such that equality of levels implies convertibility of
their translations.

If P is a functional uniform universe polymorphic PTS, then

Y;0;TFpt:A:s implies Lift |X;0;T|Fpk |t]:Lift (s) |A].

Guillaume Genestier 35 /45

The Convertibility Issue
Grammar of universe levels

t,tur=x€X | 0 | succt | maxtu

t «~" wuifand only if Vo : X — N, [t], = [u]~

The problems

For all n > m and all o,

[max (succ” x) (succ™ x)]» = [succ” x|,

[max (succ” x) (succ™ 0)], = [succ” x|,

We do not want an infinity of (non-linear) rewrite rules.

A\

Guillaume Genestier 36 / 45

A New Hope
Reasoning Modulo AC

e for all ¢, t has a unique normal form (modulo associativity and
commutativity),

o forall t and v in L,

t} =ac ul ifandonlyif Vo:X — N/[t], = [v]s

Max | {jl + X1, J2 + X2, }

where:
@ i,j1,/»,... are closed natural numbers,
@ xi,Xp,... are distinct variables,

o forall k, i > ji.

Guillaume Genestier 37/ 45

Sets Using Rewriting

symbol LvlSet : «*.

symbol () : LvlSet.
symbol {_@&_} : N = Level = LvlSet.
associative-commutative _U_ on LvlSet.

Rules on Union

[x] x U — x.
[i,7,1] {4 & 1} U {j & 1} <« {(maxy i j) & 1}%}.

Guillaume Genestier 38 /45

Good Property of the Encoding

Implementation of the Syntax

[] 0 —— Max Oy 0.
[x] (succ x) <— Max 1y {1y @ x1}.
[x,y] (max x y) <« Max Oy ({Oy & x} U {0y & y}).

Proposition
The absence of variable of type N or LvlSet ensures the uniqueness
of normal form (modulo AC) property.

Guillaume Genestier 39 /45

© Results, Implementations and Future Work

Guillaume Genestier 40 / 45

Termination

A new termination criterion for higher-order rewriting with dependent
types:

—gR terminates on every typable term in A[1/R if:
e — R Is locally confluent and sort preserving,
@ The right-hand side of all rules are well-typed,

o All variables occurring in a right-hand side are accessible in the
left-hand side,

e The signature is finite,

@ The set of rules is size-change terminating.

Guillaume Genestier 41 / 45

Size-Change Tool

@ An implementation of the criterion,

@ First termination checker to combine higher-order rewriting and
dependent types,

@ Prove less simply-typed examples than Wanda and SOL, much
faster,

@ Very similar to Agda’s termination checker on orthogonal
rewriting rules.

Open-source, available on
https://github.com/Deducteam/SizeChangeTool

Guillaume Genestier 42 / 45

https://github.com/Deducteam/SizeChangeTool

Dependency Pairs

@ Adapt more “processors’,

@ Recover completeness.

Modularity results:

o with simple types (like [Harper, Honsell, Plotkin 93]),
o with first-order (like [Jouannaud, Okada97] and [Fuhs, Kop11])

?
v

Non-termination

Analysis of the potential loop detected while constructing the
size-change graph.

Guillaume Genestier 43 / 45

Agda2Dedukti

e Correct encoding of prenex universe polymorphism,

@ Specialization to the universe levels of Agda.

A translator from Agda to Dedukti
Translate 29% of the standard library (162 files out of 562).

Open-source, freely available on:
https://github.com/Deducteam/Agda2Dedukti

Guillaume Genestier 44 / 45

https://github.com/Deducteam/Agda2Dedukti

Complete the translator

o Co-inductive types,

Sized-types,

@ Proof irrelevant types,

@ Primitive strings and floats,
°

etc...

Interoperability

@ Other way translator,

@ Export proofs in this encoding to weaker logics.

Guillaume Genestier 45 / 45

Dependently-Typed Termination and Embedding of

Extensional Universe-Polymorphic Type Theory
using Rewriting

Guillaume Genestier

Under the supervision of Frédéric Blanqui and Olivier Hermant

Thursday, December 10th, 2020

hormale——— . ;/j

supérieure &zulc?/- P;[l\u/}il.rsjl'lésch *

paris—saclay

Guillaume Genestier 45 / 45

	Context: Dedukti
	Termination Criterion
	Logical Relations
	Dependency Pairs
	Accessibility
	Main Theorem

	Encoding Agda in Dedukti
	A few words on Agda
	Encoding Type System using Rewriting
	On the -convertibility

	Universe Polymorphism
	Encoding Universe Polymorphism in Dedukti
	Overcoming Convertibility Issue

	Results, Implementations and Future Work

