
Note on the operational semantics of

Dedukti 2.5

Frédéric Blanqui (Inria) and Guillaume Genestier (LSV)

5 March 2018

Abstract. In this note, we describe an over-approximation of the opera-
tional semantics actually implemented in Dedukti [3, 2] and study some of its
properties wrt confluence and termination.

Let R be a set of rules l→ r.
Let →R be the smallest rewrite relation (i.e. stable by substitution and

context) containing R, ↓R = →∗R←∗R be the joinability relation, and ↔∗R be
the reflexive, symmetric and transitive closure. ↔∗R is the equational theory
defined by R when rules are seen as equations.

As we are going to see that, to decide ↔∗R, Dedukti does not use →R but
an extension of it that we are going to describe.

Conditional rewriting

Let a condition be a set C of disjoint non-empty lists of variables X, and a
conditional rule be a triple (l, r, C) where l and r are terms and C is a condition
such that

⋃
C ⊆ Var(l).

A condition checker c maps every relation R and every non-empty list of
variables X to a set of substitutions c(R,X) so that, for all families of relations
(Rk)k∈N, c(

⋃
k∈NRk, X) =

⋃
k∈N c(Rk, X). Examples of condition checkers are:

• the reflexivity checker: σ ∈ r(R,X) if there is t such that, for all x ∈ X,
xσ = t;

• the joinability checker: σ ∈ j(R,X) if there is t such that, for all x ∈ X,
xσR∗t;

• the Dedukti checker: σ ∈ d(R, y :: X) if, for all x ∈ X, there is t such that
yσR∗t and xσR∗t;

• the equivalence checker: σ ∈ e(R,X) if there is t such that, for all x ∈ X,
xσ(R ∪R−1)∗t.

Given a set S of conditional rewrite rules and a condition checker c, let→Sc
be the smallest rewrite relation such that, for all (l, r, C) ∈ S and substitution
σ, lσ →Sc rσ if σ ∈

⋂
X∈C c(→Sc, X).

1



Note that →Sc is defined as a fixpoint reachable by ω-iteration, that is,
→Sc =

⋃
i∈N →Sc,i where →Sc,0= ∅ and →Sc,i+1 is the smallest rewrite re-

lation such that, for all (l, r, C) ∈ S and substitution σ, lσ →Sc,i+1 rσ if
σ ∈

⋂
X∈C c(→Sc,i, X).

Operational semantics of Dedukti 2.5

The operational semantics relative to R actually implemented in Dedukti can
be defined as follows.

Wlog we assume that the set of variables V is made of two disjoint subsets
V1 and V2, every variable of R belonging to V1, and that there is an injection
x from words on N (positions in terms) to V2.

Thanks to this injection, a term t whose variables are all in V1 can be
transformed into a linear term t′ whose variables are all in V2: replace each
variable x at position p by xp.

Now, for each term t, we assume given a substitution γt mapping every vari-
able x of t to the variable xp where p is the smallest position in the lexicographic
order of the positions where x occurs in t.

Then, Dedukti implements the rewrite relation →Sd where S is the set of
conditional rewrite rules (l′, rγl, C(l)) such that l→ r ∈ R and C(l) = {X(l, x) |
x ∈ Var(l)} where X(l, x) is the list of variables xp such that p ∈ Pos(x, l),
ordered lexicographically wrt. p.

For instance, if fxxx → a ∈ R, then (fxx′x′′, a, {[x, x′, x′′]}) ∈ S. So, De-
dukti will reduce ftuv to a if, on the one hand, t and u have a common reduct
wrt. →Sd, and on the other hand, t and v have a common reduct wrt. →Sd.

Lemma 1

1. If r ⊆ c, then →R ⊆ →Sc.

2. If c ⊆ e, then →Sc ⊆ ↔∗R.

Proof.

1. Immediate.

2. We prove that, for all i, →Sc,i ⊆ ↔∗R, by induction on i. For i = 0, this
is immediate since →Sc,0 = ∅. Assume now that l′σ →Sc,i+1 rγlσ. For all
x ∈ Var(l), there is t such that, for all p ∈ Pos(x, l), xpσ ↔∗Sc,i t. So, there
is σ′ such that l′σ ↔∗Sc,i lσ′ →R rσ′ ←∗Sc,i rγlσ. By induction hypothesis,
→S,i ⊆ ↔∗R. Therefore, l′σ ↔∗R rγlσ. �

Corollary 2 If r ⊆ c ⊆ e, then ↔∗Sc =↔∗R.

Proof. Since we have →R ⊆ →Sc ⊆ ↔∗R. �

This is in particular the case for c ∈ {r, d, j, e} since r ⊆ j ⊆ d ⊆ e.

2



Lemma 3 If→R has unique normal forms and r ⊆ c ⊆ e, then→Sc has unique
normal forms too and the same normal forms as →R.

Proof. Since r ⊆ c, we have →R ⊆ →Sc and every term in →Sc normal
form is in →R normal form too.

Conversely, assume that l′σ is in →R normal form and l′σ →Sc rγlσ. Let
X ∈ C(l). Since c ⊆ e, there is t such that, for all x ∈ X, xσ ↔∗R t. Since every
xσ is in →R normal form and →R has unique normal forms, there is u such
that, for all x ∈ X, xσ = u. Thus, l′σ is not in→R-normal form. Contradiction.

Assume now that t and u are two →Sc normal forms such that t ↔∗Sc u.
Then, t and u are two →R normal forms such that t↔∗R u. Hence, t = u. �

Lemma 4 If →R is confluent and r ⊆ c ⊆ j, then →Sc is confluent too and
↓Sc = ↓R.

Proof. First, ↔∗Sc = ↔∗R = ↓R since →R is confluent. Second ↓R ⊆ ↓Sc
since r ⊆ c. Therefore, →Sc is confluent. Moreover, ↓Sc ⊆ ↔∗Sc = ↓R. �

Here is an example of a non-confluent system R such that ↓Sj 6⊆ ↓R:

Example 1 Take R = {a → b, a → c, fxx → gx}. Then, on the one hand,
fab→S ga→S gc and, on the other hand, fab→R fcb and fab→R fbb→R gb,
which are in normal form wrt →R.

Note also that we may not have ↓Sd ⊆ ↓R if →R is not confluent as shown
by the following example:

Example 2 Take R = {fxxx → a, a → b, a → c}. Then, fabc →Sd a but
fabc 6↓R a.

Finally, note that the termination of →R does not imply the termination of
→Sc as shown by the following example:

Example 3 Take R = {ga→ fab, a→ b, fxx→ gx}. We have fab→Sc ga→R
fab. On the other hand, →R terminates as shown by AProVE [1] as follows:

• The rule a→ b can be eliminated by using the following monotone polynomial
interpretation on N: a = 1, b = 0, f(x, y) = 2x+ 2y + 2, g(x) = 2x+ 2.

• Then, the rule ga→ fab can be eliminated by taking the following polynomial
interpretation on N: a = 1, b = 0, f(x, y) = x+ 2y + 2, g(x) = 2x+ 2.

• Finally, fxx→ gx is proved terminating by taking MPO with f > g.

3



References

[1] http://aprove.informatik.rwth-aachen.de/, 2018.

[2] A. Assaf, G. Burel, R. Cauderlier, D. Delahaye, G. Dowek, C. Dubois,
F. Gilbert, P. Halmagrand, O. Hermant, and R. Saillard. Dedukti: a Logical
Framework based on the λΠ-Calculus Modulo Theory, 2016. Draft.

[3] https://deducteam.github.io/, 2018.

4

http://aprove.informatik.rwth-aachen.de/
http://lsv.fr/~dowek/Publi/expressing.pdf
http://lsv.fr/~dowek/Publi/expressing.pdf
https://deducteam.github.io/

