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Abstract. In this note, we describe an over-approximation of the opera-
tional semantics actually implemented in Dedukti [3], 2] and study some of its
properties wrt confluence and termination.

Let R be a set of rules [ — 7.

Let —x be the smallest rewrite relation (i.e. stable by substitution and
context) containing R, g = —%<¢% be the joinability relation, and <% be
the reflexive, symmetric and transitive closure. <% is the equational theory
defined by R when rules are seen as equations.

As we are going to see that, to decide <+%, Dedukti does not use — but
an extension of it that we are going to describe.

Conditional rewriting

Let a condition be a set C' of disjoint non-empty lists of variables X, and a
conditional rule be a triple (1,7, C) where [ and r are terms and C' is a condition
such that | JC C Var(l).

A condition checker ¢ maps every relation R and every non-empty list of
variables X to a set of substitutions ¢(R, X) so that, for all families of relations
(Ri)ken, c(Upen Brs X) = Upen ¢(Re, X). Examples of condition checkers are:

o the reflexivity checker: o € r(R, X) if there is ¢ such that, for all x € X,
xro =t;

e the joinability checker: o € j(R,X) if there is ¢ such that, for all z € X,
roR*t;

e the Dedukti checker: o € d(R,y :: X) if, for all z € X, there is ¢ such that
yoR*t and zo R*t;

e the equivalence checker: o € e(R,X) if there is ¢t such that, for all x € X,
ro(RU R™1)*t.

Given a set S of conditional rewrite rules and a condition checker ¢, let —s.
be the smallest rewrite relation such that, for all (I,r,C) € S and substitution
o,lo =scroif o € Nxeoc(—se, X).



Note that —g. is defined as a fixpoint reachable by w-iteration, that is,
—Se = UZ—GN —Sc,i Where —sc 0= ¢ and —Sc,i+1 is the smallest rewrite re-
lation such that, for all (I,7,C) € S and substitution o, lo —sc;+1 70 if
o€ Nxec c(—seir X)-

Operational semantics of Dedukti 2.5

The operational semantics relative to R actually implemented in Dedukti can
be defined as follows.

Wlog we assume that the set of variables V is made of two disjoint subsets
V1 and Vs, every variable of R belonging to Vi, and that there is an injection
x from words on N (positions in terms) to V.

Thanks to this injection, a term ¢ whose variables are all in V; can be
transformed into a linear term ' whose variables are all in V,: replace each
variable  at position p by z,.

Now, for each term ¢, we assume given a substitution y; mapping every vari-
able x of ¢ to the variable z,, where p is the smallest position in the lexicographic
order of the positions where z occurs in t.

Then, Dedukti implements the rewrite relation —s4 where S is the set of
conditional rewrite rules (I, ry;, C(1)) such that I — r € R and C(1) = {X (I, ) |
z € Var(l)} where X(I,z) is the list of variables z, such that p € Pos(z,1),
ordered lexicographically wrt. p.

For instance, if fzzx — a € R, then (fza'z”,a,{[z,2’,2""]}) € S. So, De-
dukti will reduce ftuv to a if, on the one hand, ¢t and v have a common reduct
wrt. —sq, and on the other hand, ¢ and v have a common reduct wrt. —s4.

Lemma 1

1. If r C ¢, then - C —ge.

2. If c Ce, then —s. C <%.
Proof.

1. Immediate.

2. We prove that, for all ¢, —s.; € <%, by induction on i. For ¢ = 0, this
is immediate since —gc0 = (. Assume now that l'c —Sc,i+1 0. For all
x € Var(l), there is ¢ such that, for all p € Pos(z,1), zp0 <5, ; t. So, there
is o’ such that l'c <%, lo' =g ro’ <%, ; ryo. By induction hypothesis,
—s,i € <% Therefore, l'c <5 0. [ |

Corollary 2 If r C c C e, then <%, = 5.

Proof. Since we have =g C —5. C 5. |

This is in particular the case for ¢ € {r,d, j,e} since r Cj Cd Ce.



Lemma 3 If —% has unique normal forms and r» C ¢ C e, then —s. has unique
normal forms too and the same normal forms as —x.

Proof. Since r C ¢, we have - C —gs. and every term in —g. normal
form is in —5% normal form too.

Conversely, assume that I’o is in —% normal form and l'c —s. ry0. Let
X € C(I). Since ¢ C e, there is t such that, for all € X, zo <% t. Since every
zo is in —x normal form and —x has unique normal forms, there is u such
that, for all x € X, xo = u. Thus, I'c is not in —-normal form. Contradiction.

Assume now that ¢ and u are two —s. normal forms such that ¢ <%, u.
Then, ¢t and u are two —x normal forms such that ¢ <+7, . Hence, t =u. W

Lemma 4 If —5 is confluent and » C ¢ C j, then — g, is confluent too and

lsc = Ir.

Proof. First, <+%5, = <+% = |lr since —x is confluent. Second |z C lsc
since r C c. Therefore, —+s. is confluent. Moreover, |s. C <5, = Ir. |

Here is an example of a non-confluent system R such that |s; € {r:

Example 1 Take R = {a — b,a — ¢,frx — gz}. Then, on the one hand,
fab —-s ga —s gc and, on the other hand, fab —x fcb and fab —x fbb —% gb,
which are in normal form wrt —5.

Note also that we may not have |sq4 C |g if =% is not confluent as shown
by the following example:

Example 2 Take R = {fzzx — a,a — b,a — c}. Then, fabc —g4 a but
fabc [r a.

Finally, note that the termination of —% does not imply the termination of
—sc as shown by the following example:

Example 3 Take R = {ga — fab,a — b,fzax — ga}. We have fab —5. ga —%
fab. On the other hand, —% terminates as shown by AProVE [I] as follows:

e Therule a — b can be eliminated by using the following monotone polynomial
interpretation on N: a=1,b =0, f(z,y) =22+ 2y + 2, g(z) =2z + 2.

e Then, the rule ga — fab can be eliminated by taking the following polynomial
interpretation on N: a=1,b =0, f(z,y) =2+ 2y + 2, g(z) =2z + 2.

e Finally, fxz — gz is proved terminating by taking MPO with f > g.
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