
Universe Polymorphism Expressed as a Rewriting System
Guillaume Genestier123

1 Université Paris-Saclay, ENS Paris-Saclay, Inria, CNRS, LSV
2 MINES ParisTech, PSL University

3 This work was supported by the Cost Action EUTypes CA15123

The λΠ-calculus modulo rewriting (λΠ/R for short) is a system of dependent types where
types are identified modulo the β-reduction of λ-calculus and rewriting rules given by the user
to define not only functions but also types.

Cousineau and Dowek [3] showed that λΠ/R is well-suited to encode a whole class of rich
logics: Functional Pure Type System (PTS) [2]. To do so, they use a symbol Univs for each
sort s, which contains the codes of elements of this sort and the associated decoder Ts. Then
code and prod reflect the PTS axioms and rules, respectively. For the simply typed λ-calculus,
which is the PTS with S = {∗,�}, A = {(∗,�)} and R = {(∗, ∗, ∗)}, the encoding is:

symbol Univ� : TYPE. symbol T� : Univ� ⇒ TYPE. symbol code∗� : Univ�.
symbol Univ∗ : TYPE. symbol T∗ : Univ∗ ⇒ TYPE. T� code∗� −→ Univ∗.
symbol prod∗∗∗ : (A : Univ∗) ⇒ (T∗ A ⇒ Univ∗) ⇒ Univ∗.
T∗ (prod∗∗∗ A B) −→ (x : T∗ A) ⇒ T∗ (B x).

In their encoding, every sort has its own symbol, and every rule has its associated product
symbol. However, having an infinite number of symbols and rules is not well-suited for practical
implementations. Hence, to encode PTS with an infinite number of sorts, Assaf suggested to
have a type Sort for sorts and a single symbol for products [1]. For Full Pure Type Systems1

this extension is quite direct: Univ, T, code and prod are now symbols in the syntax and the
meta-arguments of type Sort are now real arguments in the syntax. The peculiarity of each
PTS is reflected in the encoding of Sort and of the functions axiom and rule.

Let us suppose that all sorts are of the form Set` with ` ∈ L called a level 2. It is common to
enrich PTS with Universe Polymorphism [4], i.e. add the possibility for the user to quantify over
universe levels, introducing ∀`,Set` among the terms. Indeed, just like we use polymorphism
to avoid declaring a type of lists for each type of elements, we do not want to declare a new
type for each level. Hence, we want to declare List in ∀`, (A : Set`)→ Set`.

To assign a type to ∀`,Set`, a new sort Setω is introduced, which is not typable, is the type
of no sort and over which one cannot quantify. This sort is for internal purposes only, it is not
in the syntax of the system we are encoding (even if it is in the syntax of the encoded version
of the system). In addition to this new sort, we add to the encoding a new symbol ∀L which
reprents this universal quantification.

symbol setOmega : Sort. symbol set : L ⇒ Sort.
symbol ∀L : (f : (L⇒Sort)) ⇒ ((l:L) ⇒ Univ (f l)) ⇒ Univ setOmega.
T _ (∀L f t) −→ (l : L) ⇒ T (f l) (t l).

For instance, the encoding of ∀`,Set` is ∀L (λ l, axiom (set l)) (λ l, code (set l)).
And its decoding (when applying T setOmega) is, as expected, (l:L) -> Univ (set l).

Definition 1 (Translation). Given a well-typed term t in a Universe Polymorphic Full Pure
Type System, we translate it by: |x|=x |Set`|=code ‖Set`‖; ‖Setω‖=setOmega;

1A PTS is called full if axioms and rules are total functions, respectively from S and S × S to S. This
definition is more restrictive than the one given in [5], where axioms are not enforced to be total.

2We could also, without difficulty, consider several hierarchies sharing the same levels, like Set` and Prop`.

Universe Polymorphism Expressed as a Rewriting System Guillaume Genestier

‖Set`‖=set |`|L, if ` 6= ω; |(x : A)→ B|=prod ‖s‖ ‖s′‖ |A| (λx : T ‖s‖ |A|.|B|);∣∣λxA.t∣∣=λ(x : T ‖s‖ |A|).|t|; |∀`, A|=∀L (λ` : L. ‖s‖) (λ` : L. |A|).
Each time it is used, s is the sort of A and s′ the one of B.

It can be noted that the translation |.|L of levels is not given yet. Indeed, with universe
polymorphism, universe levels are open terms, hence, convertibility between universe levels is
now an issue. Fortunately, it is the last one, since once this issue is overcomed, the encoding
has one of the expected properties: we check at least as much as in the original system.

Theorem 2 (Correctness). If the translation function is such that equality of levels implies
convertibility of their translations, if Γ `P t : A, in a Universe Polymorphic Full Pure Type
System P , then |Γ| `λΠ/P |t| : T ‖s‖ |A|, where s is the sort of A.

Of course, collapsing all levels satisfies the first hypothesis of the theorem. However it is not
satisfactory, since it comes down to do an encoding in the inconsistent PTS with only one sort.

We present a correct and complete rewriting system modulo associativity and commutativity
(AC), to decide level equality for the PTS where levels are natural numbers and axioms and
rules are respectively the functions successor and max 3 4. The whole encoding, written in
Dedukti, can be found in github.com/Deducteam/Agda2Dedukti, in the files theory/Agda.dk
and theory/univ.dk.

More formally, given the grammar t, u ::= x ∈ X | 0 | s t | max t u, every term t in
this grammar has a unique normal form denoted t↓, such that t↓ ≡AC u↓ if and only if for all
σ : X → N, JtKσ = JuKσ, where the interpretation of 0, s and max are the expected ones.

We must note that having a confluent system is not an issue here, since we desire the unique
normal form property only for some specific terms. We obtain this thanks to the guarantee
that all variables are of type L.

With our system a normal form is either a variable, or of the form Max i {jk + xk}k with
x1, x2, . . . distinct variables, and i, j1, j2, . . . ground natural numbers such that for all k, i > jk.
It must be noted, that we do not have + in our original grammar, however encoding sn(x) as
n + x avoids to duplicate infinitely rewrite rules, depending on the number of s applied. The
first argument is counting iterations, it is why it is restricted to be a ground natural number.

So that they are not confused with levels, a separate type N of ground natural numbers
is introduced5. To encode sets, we use symbols modulo AC, since a set is either empty, a
singleton of the form {i+ x}, or the union of two sets. The only non-left-linear rule of the
encoding eliminates redundancies, ensuring that all variables in the normal forms are distinct.

symbol ∅ : LSet. infix ⊕ : N⇒L⇒LSet. infix ac ∪ : LSet⇒LSet⇒LSet.
x ∪ ∅ −→ x. (i ⊕ l) ∪ (j ⊕ l) −→ maxN i j ⊕ l.

The rule stating that i+max(t, u) = max(i+ t, i+u) must not break the ordering invariant.
Hence it has to update the natural number at the head of Max : N ⇒ LSet ⇒ L 6.

Max i (j ⊕ Max k l) −→ Max (maxN i (j +N k)) (mapPlus j l).
Max i ((j ⊕ Max k l) ∪ tl) −→ Max (maxN i (j +N k)) (mapPlus j l ∪ tl).

We can now reflect the syntax we are interested in, using Max.

0 −→ Max 0N ∅. s x −→ Max 1N (1N ⊕ x).
max x y −→ Max 0N ((0N ⊕ x) ∪ (0N ⊕ y)).

3It is the level hierarchy behind the proof-assistant Agda, which has two families of sorts Prop` and Set`.
4The impredicative version, behind Coq and Lean, can also be encoded using a similar technique.
5 Symbols of type N are in red and indexed with N.
6 Rules defining mapPlus of type N ⇒ LSet ⇒ LSet can easily be inferred and is not detailed.

2

https://github.com/Deducteam/Agda2Dedukti

Universe Polymorphism Expressed as a Rewriting System Guillaume Genestier

References
[1] A. Assaf. A Framework for Defining Computational Higher-Order Logics. PhD thesis, École

polytechnique, 2015.
[2] H. Barendregt. Lambda calculi with types. In Handbook of logic in computer science. Volume 2.

Background: computational structures, p. 117–309. Oxford University Press, 1992.
[3] D. Cousineau and G. Dowek. Embedding Pure Type Systems in the Lambda-Pi-Calculus Modulo.

TLCA, LNCS 4583:102-117, 2007.
[4] R. Harper and R. Pollack. Type Checking with Universes. TCS 89:107-136, 1991.
[5] L. van Benthem Jutting, J. McKinna and R. Pollack. Checking Algorithms for Pure Type Systems.

Types, LNCS 806:19-61, 1993.

3

