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We introduce a termination criterion for a large class of programs whose operational se-
mantics can be described by higher-order rewriting rules typable in the λΠ-calculus modulo
rewriting (λΠ/R for short).

λΠ/R is a system of dependent types where types are identified modulo the β-reduction
of λ-calculus and rewriting rules given by the user to define not only functions but also types.
Those rewriting rules can be non-orthogonal, meaning that they can overlap or be non-linear.
An example including overlapping and a type defined by rewriting rules is the propositional
integer comparison:

symbol Prop : TYPE symbol ⊥ : Prop symbol > : Prop
symbol Prf : Prop ⇒ TYPE symbol infix ≤ : Nat ⇒ Nat ⇒ Prop
rule Prf > −→ Πc:Prop. Prf c ⇒ Prf c rule (s x) ≤ 0 −→ ⊥
rule Prf ⊥ −→ Πc:Prop. Prf c rule 0 ≤ y −→ >
rule x ≤ x −→ > rule (s x) ≤ (s y) −→ x ≤ y

Dependency pairs are a key concept at the core of modern automated termination provers
for first-order term rewriting systems. Arts and Giesl [2] proved that a first-order rewriting
relation terminates if and only if there are no infinite chains, that are sequences of dependency
pairs interleaved with reductions in the arguments. We extend this notion of dependency pair
to higher-order rewriting. Then we prove that, for a large class of rewriting systems R, the
combination of β and R is strongly normalizing on terms typable in λΠ/R if, there is no infinite
chain.

To do so, we first construct a model of this calculus based on an adaptation of Girard’s
reducibility candidates [5], and prove that every typable term is strongly normalizing if every
symbol of the signature is in the interpretation of its type (Adequacy lemma). We then prove
that this hypothesis is verified if there is no infinite chain.

Our criterion has been implemented in SizeChangeTool. For now, it takes as input Xtc
(used for the termination competition) or Dedukti files, but it could be easily adapted to a
subset of other languages like Agda. As far as we know, this tool is the first one to automatically
check termination in λΠ/R, which includes both higher-order rewriting and dependent types.

Definition 1 (λΠ/R). λΠ/R is the PTS λP [3], enriched by a finite signature F and a set R
of rules (∆, f ~l → r) such that FV(r) ⊆ FV(l) and ∆ is a context associating a type to every
variable of ~l. Each f ∈ F has a type Θf and a sort sf . f is (partially) defined if it is the head
of the left-hand side of a rule.

Let → = →β ∪ →R where →β is the β-reduction of λ-calculus and →R is the smallest
relation containing R and closed by substitution and context. The typing rules are the ones of
λP too, but the conversion is enriched with R and function symbol introduction is similar to
variable introduction.

Γ ` a : A A→∗ ∗← B Γ ` B : s(conv)
Γ ` a : B

Γ ` Θf : sf(fun)
Γ ` f : Θf

https://github.com/Deducteam/SizeChangeTool
http://cl2-informatik.uibk.ac.at/mercurial.cgi/TPDB
https://deducteam.github.io/
https://wiki.portal.chalmers.se/agda/pmwiki.php
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We assume that→ is locally confluent and preserves typing. For all f , we require ` Θf : sf .
As a β step can generate anR step, and vice versa, we cannot expect to prove the termination

of→β∪→R from the termination of→β and→R. The termination of λΠ/R cannot be reduced
to the termination of the simply-typed λ-calculus either because of type-level rewriting rules.

So we build a model of our calculus by interpreting types into sets of terminating terms,
adapting Girard’s candidates [5]. To do so, we assume given a well-founded order on symbols
of sort 2. This interpretation is such that if f is a function symbol of type Π(~x : ~T ).U ~y, then
f ~x ∈ JU ~yK implies xi ∈ JTiK if i is an accessible position in f (accessibility is similar to the
constraint of positivity of inductive types, for rewriting; see [4] for a definition).

We then extend this definition to interpret all types, such that if T → U , then JT K = JUK.
We use σ � Γ to denote that for all x : T in Γ, σ(x) ∈ JT Kσ.

Lemma 2 (Adequacy). Assuming for all f , f ∈ JΘf K, if Γ ` t : T and σ |= Γ, then tσ ∈ JT Kσ.

The hypothesis “for all f , f ∈ JΘf K” can be reduced to the absence of infinite chains, as
shown by Arts and Giesl for first-order rewriting [2].

Definition 3 (Dependency pairs). Let f ~l > g ~m iff there is a rule f ~l→ r ∈ R, g is (partially)
defined and g ~m is a maximally applied subterm of r.

f t1 . . . tp >̃ g u1 . . . uq iff there are a dependency pair f l1 . . . li > gm1 . . .mj with i ≤ p and
j ≤ q and a substitution σ such that, for all k ≤ i, tk →∗ lkσ and, for all k ≤ j, mkσ = uk.

We consider a pre-order � on F compatible with typing and rewriting (ie. if g ∈ Θf or
r � g for f ~l → r ∈ R, then f � g). R is well-structured and accessible if for every rule
(∆, f ~l → r), r is typable using only symbols smaller or equal to f and for every substitution
σ, if Θf = Π~x : ~T .U , then [~x 7→ ~l]σ |= ~x : ~T implies σ |= ∆.

Theorem 4. The relation→ =→β ∪→R terminates on terms typable in λΠ/R if→ is locally
confluent and preserves typing, R is well-structured and accessible, and >̃ terminates.

Following [4], accessibility can be checked, by imposing that every variable occurring in
the right-hand side of a rule is accessible in the left-hand side. Following [7], to prove that >̃
terminates, we can use Lee, Jones and Ben-Amram’s size-change termination criterion [6].

Thus, we obtain a modular criterion extending Arts and Giesl’s theorem that a rewriting
relation terminates if there are no infinite chains [2] from first-order rewriting to dependently-
typed higher-order rewriting.

This result also extends Wahlstedt’s work [7] from weak to strong normalisation. Like
Wahlstedt’s work, Agda’s termination checker [1] is designed for rules defined by constructors
pattern matching, enforcing the rewriting system to be orthogonal and every definition to be
total. Our criterion requires a much weaker condition: local confluence.
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