
SizeChangeTool: A Termination Checker for
Rewriting Dependent Types

Guillaume Genestier12

1 LSV, ENS Paris-Saclay, CNRS, Université Paris-Saclay
2 MINES ParisTech, PSL University

1 Introduction

SizeChangeTool [10] is a fully automated termination checker for the λΠ-calculus modulo
rewriting. Its development became essential as various libraries were encoded in an implemen-
tation of this logic: the logical framework Dedukti [3].

A logical framework allows the user to define the logic they want to reason with and then
use it to actually write proofs. To define a logic in Dedukti, the user provides a set of rewriting
rules. Those rules do not only define functions, but can also define types. However, to ensure
that the defined type system has good properties, like logical consistency or decidability, the
rules must satisfy some properties: termination, confluence and type preservation.

Many criteria have been created to check termination of first-order rewriting. For instance,
dependency pairs [2], which evolved in a complete framework [21] or size-change termination
[18], just to mention those appearing in this work. The dynamism of this research area is
illustrated by the numerous tools participating in the various first-order categories of the ter-
mination competition [20]. For higher-order rewriting too, criteria have been crafted, many of
them can be found in [15] and a category exists in the competition. However, one can deplore
the small number of participants in this category: Only 2 in 2019, including SizeChangeTool!

This lack of implementations is even more visible for rewriting with dependent types, for
which criteria have been developed [5, 14], but as far as the author knows, none of them have
been implemented.
Outline After presenting the logical system and examples of programs in Sec. 2, we present the
criterion used by the tool in Sec. 3. Sec. 4 details the implementation choices of SizeChange-
Tool and Sec. 5 compares it with the others termination checkers.

2 The λΠ-calculus Modulo Rewriting

The λΠ-calculus modulo rewriting (λΠ/R for short) is an extension of the logical framework
LF [12]. It is a system of dependent types where types are identified not only modulo the
β-conversion of λ-calculus, but also by user-given rewriting rules.

Definition 1. λΠ/R extends the Pure Type System λP [4] with a finite signature F and a set
of rules R = (∆, f l̄ → r) such that f ∈ F, FV(r) ⊆ FV(l̄) and ∆ is a context associating a
type to every variable of l̄. →R is the closure by substitution and context of R.

The conversion rule is enriched to take into account rewriting rules:

Γ ` t : A Γ ` B : s A↔∗βR B
(conv)

Γ ` t : B

https://github.com/Deducteam/SizeChangeTool
https://github.com/Deducteam/SizeChangeTool
https://deducteam.github.io/
https://deducteam.github.io/
https://github.com/Deducteam/SizeChangeTool
https://github.com/Deducteam/SizeChangeTool
https://github.com/Deducteam/SizeChangeTool


SizeChangeTool: A Termination Checker for Higher-Order Rewriting with Dependent Types G. Genestier

Note that the constraints on the rewriting rules are very loose. In particular, we do not
enforce the rules to be orthogonal, meaning that overlapping or non-linear rules are allowed. Let
us give two examples, highlighting the possibilities offered by the system. A more comprehensive
example can be found in [7].

Example 2 (Summation of variable arity). Rewriting rules at type level allow us for instance
to define F n as the type Nat ⇒ Nat ⇒...⇒ Nat with n arrows. With it, we can type the
function sum which is such that sum n l1...ln = l1 +...+ ln

1.

symbol Nat : TYPE
symbol const 0 : Nat symbol const s : Nat ⇒ Nat

symbol plus : Nat ⇒ Nat ⇒ Nat set infix "+" := plus
rule 0 + &y → &y rule (s &x) + &y → s (&x + &y)

symbol F : Nat ⇒ TYPE
rule F 0 → Nat rule F (s &n) → Nat ⇒ F &n

symbol sum : ∀ n: Nat , F n
rule sum 0 → 0 rule sum (s 0) → λx, x
rule sum (s (s &n)) → λx y, sum (s &n) (x + y)

Example 3 (Simply-typed λ-calculus). A simple instance of encoding of logic in Dedukti is
the simply-typed λ-calculus, which is presented here with the type typ for code of types and T
which decodes an element of typ into a type of Dedukti.

symbol typ : TYPE symbol arrow : typ ⇒ typ ⇒ typ
symbol T : typ ⇒ TYPE

symbol lambda : ∀(a b : typ), (T a ⇒ T b) ⇒ T (arrow a b)
symbol appli : ∀(a b : typ), T (arrow a b) ⇒ T a ⇒ T b

rule appli &a &b (lambda _ _ &f) &x → &f &x

We are interested in the strong normalization of →βR= (→β ∪ →R).

3 Dependency Pairs and Size-Change Termination
Dependency pairs are at the core of all the state-of-the-art automated termination provers
for first-order term rewriting systems. Arts and Giesl [2] proved that a first-order rewriting
relation is terminating if and only if there is no infinite chain, that is sequence of dependency
pairs interleaved with reductions in the arguments. This notion of dependency pair has been
extended to higher order [6, 9], however those extensions do not include dependent types, which
is a compulsory feature when we are developing a logical framework.

Definition 4 (Dependency pairs). Let f l̄ > g m̄ iff there is a rule f l̄ → r ∈ R, g is the head
of the left-hand side of a rule and g m̄ is a subterm of r maximally applied.

f t1 . . . tp >̃ g u1 . . . uq iff there are a dependency pair f l1 . . . li > gm1 . . .mj with i 6 p and
j 6 q and a substitution σ such that, for all k 6 i, tk →∗βR lkσ and, for all k 6 j, mkσ = uk.

1& is used in Dedukti to identify pattern variables in rewriting rules.

2

https://github.com/Deducteam/SizeChangeTool
https://deducteam.github.io/
https://deducteam.github.io/
https://deducteam.github.io/


SizeChangeTool: A Termination Checker for Higher-Order Rewriting with Dependent Types G. Genestier

One criterion for first-order rewriting is Lee, Jones and Ben-Amram size-change termination
criterion (SCT) [18]. It consists in following the arguments through sequences of recursive calls
and checking that, in every potential loop, one of them strictly decreases.

Definition 5 (Size-Change Termination). Let � be a well-founded order on terms. The call
graph G(R,�) associated to R is the directed labeled graph on the symbols of F such that there
is an edge between f and g iff there is a dependency pair f l1 . . . lp > gm1 . . .mq. This edge is
labeled with the matrix (ai,j)i≤ar(f),j≤ar(g) where:

• if li �mj, then ai,j = −1; • if li = mj, then ai,j = 0;
• otherwise ai,j =∞ (in particular if i > p or j > q).
R is size-change terminating for � if, in the transitive closure of G(R,�) (using the min-

plus semi-ring to multiply the matrices labeling the edges), all idempotent matrices labeling a
loop have some −1 on their diagonal.

In [7], we present an adaptation of dependency pairs to λΠ/R and prove that (under some
conditions) the absence of infinite chains implies the termination of→βR. After Wahlstedt [22],
we used an adaptation of SCT to check the absence of infinite chains of dependency pairs.

Definition 6 (Well-Structured System). We consider a pre-order � on F such that if g occurs
in the type of f or in the right-hand side of a rewriting rule defining f , then f � g. R is
well-structured if for every rule (∆, f l̄ → r), if f is of type Π(x̄ : T̄ ).U , then ∆ ` r : U [x̄ → l̄]
is derivable using only symbols smaller or equal to f .

The result of [7] is:

Theorem 7. The relation →βR terminates on terms typable in λΠ/R if →βR is locally conflu-
ent and preserves typing, R is well-structured, size-change terminating for the subterm ordering
and plain-function passing.

where “plain-function passing” is a quite restrictive condition on the variable allowed to
occur in the right-hand side of rules.

In SizeChangeTool, the criterion used is a (still unpublished) extension of this result
where we replace the plain-function passing hypothesis by a condition analogous to strict posi-
tivity of inductive types and use the structural ordering introduced in [8] for checking size-change
termination.

Extension 8. The relation →βR terminates on terms typable in λΠ/R if →βR is locally
confluent and preserves typing, R is well-structured, is size-change terminating for the structural
ordering and there is a pre-order between types such that for every rule (∆, f l̄ → r) and every
c ∈ F occurring in a li, the type of c is strictly positive for this pre-order.

4 Implementation and interaction with the type-checker
SizeChangeTool takes as input Dedukti files or XTC files, the format of the termination
competition [20]. However, XTC does not include dependent types now, hence we proposed a
backward compatible extension of the format. In fact, the tool accepts this format extension.

Checking that the provided rules are confluent with β is left to the user. To check it auto-
matically, Dedukti offers an export to the format of the confluence competition. SizeChange-
Tool performs check of the 4 remaining hypotheses, to use the extension 8 of Thm. 7.

1. type preservation is checked by Dedukti assuming that the provided rewrite rules are
confluent with β. This algorithm can be found in [3].

3

https://github.com/Deducteam/SizeChangeTool
https://github.com/Deducteam/SizeChangeTool
https://github.com/Deducteam/SizeChangeTool
https://deducteam.github.io/
https://deducteam.github.io/
https://github.com/Deducteam/SizeChangeTool
https://github.com/Deducteam/SizeChangeTool
https://deducteam.github.io/


SizeChangeTool: A Termination Checker for Higher-Order Rewriting with Dependent Types G. Genestier

AST representation

XTC File

Dedukti File

Dedukti signature Type preservation

Symbols order Pruned signature Well-structuring

Call graph Size-change termination

Type ordering graph

Type ordering constraints
Strict positivity

→ Parser
→ Translation to Dedukti
→ Rule analyzer

Figure 1: SizeChangeTool Workflow

2. well-structuring requires to construct the pre-order described in Def. 6. Once this pre-
order is computed, Dedukti is reused to check if it is possible to type the right-hand side
of every rule using the pruned signature where symbols greater than the one defined are
removed.

3. size-change termination requires to analyze every rule in order to extract the dependency
pairs. Then the call-graph is constructed. To perform size-change termination checking,
one must compute the transitive closure of the call graph and verify the presence of a
−1 on the diagonal of every idempotent matrix labeling a loop. This check has been
implemented by Lepigre and Raffalli for the language PML2 [19]. SizeChangeTool
reuses their work to analyze the call graph.

4. the strict positivity condition requires to have a pre-order on type constructors. The
user is not asked to provide this order. While analyzing the rules, SizeChangeTool
constructs a graph whose vertices are type constructors and arrows means “is smaller or
equal to” as well as a list of constraints of the form “Type constructor A is strictly greater
than type constructor B.” To check that this relation is a pre-order, one checks that for
every constraint “A is strictly smaller than B.” there is no arrow between A and B in the
transitive closure of the graph.

For the sake of simplicity, representation of terms and rules are mainly shared between
Dedukti and SizeChangeTool. So the red arrows on Fig. 1 are (almost) the identity.
However those translation functions are made explicit, since one could imagine plugging another
type-checker on the rule analyzer offered by SizeChangeTool.

5 Comparison with other tools
As far as the author knows, there are no other termination checker combining dependent types
and non-orthogonal rewriting rules. However, dropping one of these features and restricting
ourselves to simply-typed higher-order rewriting systems or to dependently-typed orthogonal
systems permits comparison with existing tools.

For simply-typed systems, the termination competition [20] proposes a category “higher-
order rewriting union beta”. In 2019, there were only two tools competing in this category:
SizeChangeTool and Wanda [17]. Wanda uses multiple techniques to prove termination:

4

https://github.com/Deducteam/SizeChangeTool
https://deducteam.github.io/
https://github.com/Deducteam/SizeChangeTool
https://github.com/Deducteam/SizeChangeTool
https://deducteam.github.io/
https://github.com/Deducteam/SizeChangeTool
https://github.com/Deducteam/SizeChangeTool
https://github.com/Deducteam/SizeChangeTool


SizeChangeTool: A Termination Checker for Higher-Order Rewriting with Dependent Types G. Genestier

dependency pairs, polynomial interpretations, HORPO. . . [15]. Unsurprisingly, the sole criterion
used in SizeChangeTool cannot prove as many examples as this wide range of techniques.

However, on the bench of the competition, SizeChangeTool is 11 times faster than
Wanda. The speed of SizeChangeTool permits it to show in less than 0.1 second ter-
mination of 3 examples on which Wanda is unable to answer with a timeout of 300 seconds:
Mixed_HO_10/deriv.xml encodes derivation of usual mathematical functions, like:2

rule der (λx, (&F x) + (&G x)) → λx: real , (der &F x) + (der &G x)
rule der (λx, ln (&F x)) → λx: real , (der &F x) / (&F x)

Hamana_17/churchNum.xml and Hamana_17/churchNum2.xml, contain the Church encoding of
natural numbers, with rules like:

rule two (λx, &I x) (λx, &J x) (λx, &F1 x) &Y1
→ &I (&I (λy, &J y)) (λy, &F1 y) &Y1

The very low time consumption of the presented criterion suggests that Wanda would improve
significantly its efficiency by implementing this technique.

If we restrict ourselves to orthogonal systems, it is then possible to compare our technique
to the ones implemented in Coq and Agda. Coq essentially implements a higher-order version
of primitive recursion [11], whereas Agda uses subterm criterion (a criterion very similar to
size-change termination) [1]. Hence, Coq cannot handle function definitions with permuted
arguments in function calls, which is not a problem for Agda and SizeChangeTool. Agda
recently added the possibility of declaring rewriting rules but this feature is highly experimental
and no check is performed on the rules. In particular, Agda termination checker does not handle
rewriting rules.

6 Conclusion and future work
For now on, the accepted input files are restricted to Dedukti and XTC files. One could
imagine extending it to other input formats, for instance the rewriting rules offered in Agda.

Following the approach adopted by Wanda, one could also just study truly higher-order
rules, use a state-of-the-art first-order prover for the remaining rules and then rely on a modu-
larity theorem to conclude. This strategy would improve the performance of SizeChangeTool
in the competition, since, according to C. Kop: “about half the benchmarks now do little more
than test the strength of the first-order back-end that some higher-order tools use.” [16].

One could also think of various enhancement of the criterion, for instance to handle rules
with a local increase of the size of the arguments like in:

rule f &x → g (s &x) rule g (s (s &x)) → f &x

Hyvernat proposed such an extension of SCT for constructor-based first-order languages [13].
Adapting other so-called “dependency pairs processors” [9] to the λΠ/R is of course another

active subject of study and would improve the tool.
Now that a higher-order rewriting with dependent types termination prover has been de-

veloped, one can hope such development will emulate other researches. The adoption of an
extension of XTC and the creation of a category for λΠ/R in the competition, would probably
support the creation of such new implementations.

2For sake of readability, examples are presented in Dedukti syntax and some η-reduction are performed.

5

https://github.com/Deducteam/SizeChangeTool
https://github.com/Deducteam/SizeChangeTool
https://github.com/Deducteam/SizeChangeTool
https://github.com/Deducteam/SizeChangeTool
https://github.com/Deducteam/SizeChangeTool
https://deducteam.github.io/
https://github.com/Deducteam/SizeChangeTool
https://deducteam.github.io/


SizeChangeTool: A Termination Checker for Higher-Order Rewriting with Dependent Types G. Genestier

References
[1] A. Abel. foetus – Termination Checker for Simple Functional Programs. 1998.
[2] T. Arts, J. Giesl. Termination of term rewriting using dependency pairs. TCS 236:133–178, 2000.
[3] A. Assaf, G. Burel, R. Cauderlier, D. Delahaye, G. Dowek, C. Dubois, F. Gilbert, P. Halmagrand,

O. Hermant, R. Saillard. Dedukti: a Logical Framework based on the λΠ-Calculus Modulo Theory.
[4] H. Barendregt. Lambda calculi with types. In Handbook of logic in computer science. Volume 2.

Background: computational structures, p. 117–309. Oxford University Press, 1992.
[5] F. Blanqui. Definitions by rewriting in the calculus of constructions. MSCS 15(1):37–92, 2005.
[6] F. Blanqui. Higher-order dependency pairs. WST, 2006.
[7] F. Blanqui, G. Genestier, O. Hermant. Dependency Pairs Termination in Dependent Type Theory

Modulo Rewriting. FSCD, 2019.
[8] T. Coquand. Pattern matching with dependent types. TYPES, 1992.
[9] C. Fuhs, C. Kop. A Static Higher-Order Dependency Pair Framework. ESOP, LNCS, 2019.

[10] G. Genestier. SizeChangeTool. https://github.com/Deducteam/SizeChangeTool, 2018.
[11] E. Giménez. Codifying Guarded Definitions with Recursive Schemes. TYPES 1994.
[12] R. Harper, F. Honsell, G. Plotkin. A framework for defining logics. JACM 40(1):143–184, 1993.
[13] P. Hyvernat. The size-change termination principle for constructor based languages. LMCS 2014.
[14] J.-P. Jouannaud, J. Li. Termination of Dependently Typed Rewrite Rules. TLCA, 2015.
[15] C. Kop. Higher order termination. PhD thesis, VU University Amsterdam, 2012.
[16] C. Kop. Mail to the termtools list. higher-order union beta category in the TPDB. 19/03/2019.
[17] C. Kop. Wanda. http://wandahot.sourceforge.net/.
[18] C. S. Lee, N. Jones, A. Ben-Amram. The size-change principle for program termination. POPL’01.
[19] R. Lepigre. PML2. https://github.com/rlepigre/pml, 2017.
[20] Termination Competition. http://termination-portal.org/wiki/Termination_Competition.
[21] R. Thiemann. The DP framework for proving termination of term rewriting. PhD thesis, RWTH

Aachen University, 2007. Technical Report AIB-2007-17.
[22] D. Wahlstedt. Dependent type theory with first-order parameterized data types and well-founded

recursion. PhD thesis, Chalmers University of Technology, 2007.

6

https://github.com/Deducteam/SizeChangeTool
http://www.cse.chalmers.se/~abela/foetus.pdf
http://doi.org/10.1016/S0304-3975(99)00207-8
http://www.lsv.fr/~dowek/Publi/expressing.pdf
http://doi.org/10.1017/S0960129504004426
http://rewriting.gforge.inria.fr/papers/wst06hodp.pdf
http://www.lsv.fr/~genestier/Documents/Publi/FSCD_2019.pdf
http://www.lsv.fr/~genestier/Documents/Publi/FSCD_2019.pdf
http://www.lfcs.inf.ed.ac.uk/research/types-bra/proc/proc92.ps.gz
https://github.com/Deducteam/SizeChangeTool
https://doi.org/10.1007/3-540-60579-7_3
http://doi.org/10.1145/138027.138060
http://doi.org/10.2168/LMCS-10(1:11)2014
http://doi.org/10.4230/LIPIcs.TLCA.2015.257
http://hdl.handle.net/1871/39346
http://lists.lri.fr/pipermail/termtools/2019-March/001226.html
http://wandahot.sourceforge.net/
http://doi.org/10.1145/360204.360210
https://github.com/rlepigre/pml
http://termination-portal.org/wiki/Termination_Competition
http://aib.informatik.rwth-aachen.de/2007/2007-17.pdf
http://www.cse.chalmers.se/alumni/davidw/wdt_phd_printed_version.pdf
http://www.cse.chalmers.se/alumni/davidw/wdt_phd_printed_version.pdf

	Introduction
	The -calculus Modulo Rewriting
	Dependency Pairs and Size-Change Termination
	Implementation and interaction with the type-checker
	Comparison with other tools
	Conclusion and future work

