
Dependency Pairs Termination in Dependent1

Type Theory Modulo Rewriting2

Frédéric Blanqui1,2
3

Guillaume Genestier2,3
4

Olivier Hermant3
5

1 INRIA6
2 LSV, ENS Paris-Saclay, CNRS, Université Paris-Saclay7
3 MINES ParisTech, PSL University8

Abstract9

Dependency pairs are a key concept at the core of modern automated termination provers for10

first-order term rewriting systems. In this paper, we introduce an extension of this technique for11

a large class of dependently-typed higher-order rewriting systems. This improves previous results12

by Wahlstedt on the one hand and the first author on the other hand to strong normalization and13

non-orthogonal rewriting systems. This new criterion is implemented in the type-checker Dedukti.14

2012 ACM Subject Classification Logic → Equational logic and rewriting; Logic → Type theory15

Keywords and phrases Termination, Higher-Order Rewriting, Dependent Types, Dependency Pairs16

Digital Object Identifier 10.4230/LIPIcs...17

1 Introduction18

Termination, that is, the absence of infinite computations, is an important problem in19

software verification, as well as in logic. In logic, it is often used to prove cut elimination and20

consistency. In automated theorem provers and proof assistants, it is often used (together21

with confluence) to check decidability of equational theories and type-checking algorithms.22

This paper introduces a new termination criterion for a large class of programs whose23

operational semantics can be described by higher-order rewriting rules [33] typable in the24

λΠ-calculus modulo rewriting (λΠ/R for short). λΠ/R is a system of dependent types where25

types are identified modulo the β-reduction of λ-calculus and a set R of rewriting rules given26

by the user to define not only functions but also types. It extends Barendregt’s Pure Type27

System (PTS) λP [3], the logical framework LF [16] or Martin-Löf’s type theory. It can28

encode any functional PTS like System F or the Calculus of Constructions [10].29

Dependent types, introduced by de Bruijn in Automath, subsume generalized algebraic30

data types (GADT) used in some functional programming languages. They are at the core of31

many proof assistants and programming languages: Coq, Twelf, Agda, Lean, Idris, . . .32

Our criterion has been implemented in Dedukti, a type-checker for λΠ/R that we will33

use in our examples. The code is available in [12] and could be easily adapted to a subset of34

other languages like Agda. As far as we know, this tool is the first one to automatically35

check termination in λΠ/R, which includes both higher-order rewriting and dependent types.36

An important concept in the termination of first-order term rewriting systems is the37

one of dependency pair. It generalizes the notion of recursive call in first-order functional38

programs to rewriting. Namely, the dependency pairs of a rewriting rule f(l1, . . . , lp)→ r are39

the pairs (f(l1, . . . , lp), g(m1, . . . ,mq)) such that g(m1, . . . ,mq) is a subterm of r and g is a40

function symbol defined by some rewriting rules. Dependency pairs have been introduced by41

Arts and Giesl [2] and have evolved into a general framework for termination [13]. It is now42

at the heart of many state-of-the-art automated termination provers for first-order rewriting43

systems and Haskell, Java or C programs.44

© Frédéric Blanqui, Guillaume Genestier and Olivier Hermant;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs...
https://deducteam.github.io/
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

XX:2 Dependency Pairs Termination in Dependent Type Theory Modulo Rewriting

Dependency pairs have been extended to different simply-typed settings for higher-order45

rewriting: Combinatory Reduction Systems [23] and Higher-order Rewriting Systems [29],46

with two different approaches: dynamic dependency pairs include variable applications [24],47

while static dependency pairs exclude them by slightly restricting the class of systems that48

can be considered [25]. Here, we use the static approach.49

In [38], Wahlstedt considered a system slightly less general than λΠ/R for which he50

proved the weak normalization property, that is, the existence of a finite reduction to normal51

form, when R uses matching on constructors only, like in the languages OCaml or Haskell.52

In this case, R is orthogonal: rules are left-linear (no variable occurs twice in a left-hand53

side) and have no critical pairs (no two rule left-hand side instances overlap). Interestingly,54

Wahlstedt’s proof proceeds in two steps. First, he proves that typable terms have a normal55

form if there is no infinite sequences of function calls. Second, he proves that there is no56

infinite sequences of function calls if R satisfies Lee, Jones and Ben-Amram’s size-change57

termination criterion (SCT) [26].58

In this paper, we extend Wahlstedt’s results in two directions. First, we prove a stronger59

normalization property: the absence of infinite reductions. Second, we assume that R is60

locally confluent, a much weaker condition than orthogonality: rules can be non-left-linear61

and have joinable critical pairs.62

In [5], the first author developed a termination criterion for a calculus slightly more general63

than λΠ/R, based on the notion of computability closure, assuming also that type-level64

rules are orthogonal. The computability closure of a term f(l1, . . . , lp) is a set of terms that65

terminate whenever l1, . . . , lp terminate. It is defined inductively thanks to deduction rules66

preserving this property, using a precedence and a fixed well-founded ordering for dealing67

with function calls. Termination can then be enforced by requiring each rule right-hand side68

to belong to the computability closure of its corresponding left-hand side.69

We extend this work as well by replacing that fixed ordering by the dependency pair70

relation. In [5], there must be a decrease in every function call. Using dependency pairs71

allows one to have non-strict decreases. Then, following Wahlstedt, SCT can be used to72

enforce the absence of infinite sequences of dependency pairs. But other criteria have been73

developed for this purpose that could be adapted to λΠ/R.74

Outline75

The main result is Theorem 11 stating that, for a large class of rewriting systems R, the76

combination of β and R is strongly normalizing on terms typable in λΠ/R if, roughly77

speaking, there is no infinite sequences of dependency pairs.78

The proof involves two steps. First, after recalling the terms and types of λΠ/R in79

Section 2, we introduce in Section 3 a model of this calculus based on Girard’s reducibility80

candidates [15], and prove that every typable term is strongly normalizing if every symbol of81

the signature is in the interpretation of its type (Adequacy lemma). Second, in Section 4, we82

introduce our notion of dependency pair and prove that every symbol of the signature is in83

the interpretation of its type if there is no infinite sequences of dependency pairs.84

In order to show the usefulness of this result, we give simple criteria for checking the85

conditions of the theorem. In Section 5, we show that plain function-passing systems belong86

to the class of systems that we consider. And in Section 6, we show how to use size-change87

termination to obtain the termination of the dependency pair relation.88

Finally, in Section 7 we compare our criterion with other criteria and tools and, in Section89

8, we summarize our results and give some hints on possible extensions.90

For lack of space, some proofs are given in an appendix at the end of the paper.91

F. Blanqui, G. Genestier and O. Hermant XX:3

2 Terms and types92

The set T of terms of λΠ/R is the same as those of Barendregt’s λP [3]:

t ∈ T = s ∈ S | x ∈ V | f ∈ F | (x : t)t | tt | λx : t.t

where S = {?,�} is the set of sorts1, V is an infinite set of variables and F is a set of function93

symbols, so that S, V and F are pairwise disjoint. The dependent product (x : A)B generalizes94

the arrow type A ⇒ B of simply-typed λ-calculus: it is the type of functions taking an95

argument x of type A and returning a term whose type B may depend on x, like λx : A.t. The96

product arity ar(T) of a term T is the integer n ∈ N such that T = (x1 : T1) . . . (xn : Tn)U97

and U is not a product. Let ~t denote a possibly empty sequence of terms t1, . . . , tn of length98

|~t| = n, and FV(t) be the set of free variables of t.99

A typing environment Γ is a (possibly empty) sequence x1 : T1, . . . , xn : Tn of type100

declarations for distinct variables, written ~x : ~T for short. Given an environment Γ = ~x : ~T101

and a term U , let (Γ)U = (~x : ~T)U .102

For each f ∈ F, we assume given a term Θf and a sort sf , and we let Γf be the103

environment such that Θf = (Γf)U and |Γf | = ar(Θf).104

Finally, we assume given a set R of rules l→ r such that FV(r) ⊆ FV(l) and l is of the
form f~l. A symbol f is said to be defined if there is a rule of the form f~l→ r. In this paper,
we are interested in the termination of

→ =→β ∪ →R

where →β is the β-reduction of λ-calculus and →R is the smallest relation containing R and105

closed by substitution and context. Note that we consider rewriting with syntactic matching106

only. Following [6], it should however be possible to extend the present results to rewriting107

with matching modulo βη or some equational theory. Let SN be the set of terminating terms108

and, given a term t, let →(t) = {u ∈ T | t→ u} be the set of immediate reducts of t.109

The application of a substitution σ to a term t is written tσ. Given a substitution σ,110

let dom(σ) = {x|xσ 6= x}, FV(σ) =
⋃
x∈dom(σ) FV(xσ) and [x 7→ a, σ] ([x 7→ a] if σ is the111

identity) be the substitution {(x, a)} ∪ {(y, b) ∈ σ | y 6= x}. Given another substitution σ′,112

let σ → σ′ if there is x such that xσ → xσ′ and, for all y 6= x, yσ = yσ′.113

The typing rules of λΠ/R, in Figure 1, add to those of λP the rule (fun) similar to114

(var). Moreover, (conv) uses ↓ instead of ↓β , where ↓ = →∗ ∗← is the joinability relation115

and →∗ the reflexive and transitive closure of →. We say that t has type T in Γ if Γ ` t : T116

is derivable. A substitution σ is well-typed from ∆ to Γ, written Γ ` σ : ∆, if, for all117

(x : T) ∈ ∆, Γ ` xσ : Tσ holds.118

The word “type” is used to denote a term occurring at the right-hand side of a colon in a119

typing judgment (and we usually use capital letters for types). Hence, � is the type of ?,120

Θf is the type of f , and sf is the type of Θf . Usual data types like natural numbers N are121

usually declared in λΠ as function symbols of type ?: ΘN = ? and sN = �.122

Typing induces a hierarchy on terms [4, Lemma 47]. At the top, there is the sort � that123

is not typable. Then, comes the class K of kinds, whose type is �: K = ? | (x : t)K where124

t ∈ T. Then, comes the class of predicates, whose types are kinds. Finally, at the bottom lie125

(proof) objects whose types are predicates.126

1 Sorts refer here to the notion of sort in Pure Type Systems, not the one used in some first-order settings.

XX:4 Dependency Pairs Termination in Dependent Type Theory Modulo Rewriting

Figure 1 Typing rules of λΠ/R

(ax) ` ? : �

(var)
Γ ` A : s x /∈ dom(Γ)

Γ, x : A ` x : A

(weak)
Γ ` A : s Γ ` b : B x /∈ dom(Γ)

Γ, x : A ` b : B

(prod)
Γ ` A : ? Γ, x : A ` B : s

Γ ` (x : A)B : s

(abs)
Γ, x : A ` b : B Γ ` (x : A)B : s

Γ ` λx : A.b : (x : A)B

(app)
Γ ` t : (x : A)B Γ ` a : A

Γ ` ta : B[x 7→ a]

(conv)
Γ ` a : A A ↓ B Γ ` B : s

Γ ` a : B

(fun)
` Θf : sf

` f : Θf

I Example 1 (Filter function on dependent lists). To illustrate the kind of systems we consider,127

we give an extensive example in the new Dedukti syntax combining type-level rewriting rules128

(El converts datatype codes into Dedukti types), dependent types (L is the polymorphic129

type of lists parameterized with their length), higher-order variables (fil is a function130

filtering elements out of a list along a boolean function f), and matching on defined function131

symbols (fil can match a list defined by concatenation). In Dedukti, ? is represented132

by TYPE. Note that this example cannot be represented in Coq or Agda because of the133

rules using matching on app. And its termination can be handled neither by [38] nor by [5]134

because the system is not orthogonal and has no strict decrease in every recursive call. It135

can however be handled by our new termination criterion and its implementation [12].136

137
symbol Set:TYPE symbol arrow:Set⇒Set⇒Set138

139

symbol El:Set⇒TYPE140

rule El (arrow a b) → El a ⇒ El b141

142

symbol B:TYPE symbol true:B symbol false:B143

symbol N:TYPE symbol 0:N symbol s:N⇒N144

145

symbol infix +:N⇒N⇒N146

rule 0 + q → q147

rule (s p) + q → s (p + q)148

149

symbol L:Set⇒N⇒TYPE150

symbol nil: ∀a,L a 0151

symbol cons:∀a,El a ⇒ ∀p,L a p ⇒ L a (s p)152

153

symbol app:∀a p,L a p ⇒ ∀q,L a q ⇒ L a (p+q)154

rule app a _ (nil _) q m → m155

rule app a _ (cons _ x p l) q m → cons a x (p+q) (app a p l q m)156

157

symbol len_fil:∀a,(El a ⇒ B) ⇒ ∀p,L a p ⇒ N158

symbol len_fil_aux:B ⇒ ∀a,(El a ⇒ B) ⇒ ∀p,L a p ⇒ N159

rule len_fil a f _ (nil _) → 0160

rule len_fil a f _ (cons _ x p l) → len_fil_aux (f x) a f p l161

rule len_fil a f _ (app _ p l q m)162

→ (len_fil a f p l) + (len_fil a f q m)163

rule len_fil_aux true a f p l → s (len_fil a f p l)164

rule len_fil_aux false a f p l → len_fil a f p l165

F. Blanqui, G. Genestier and O. Hermant XX:5

166

symbol fil:∀a f p l,L a (len_fil a f p l)167

symbol fil_aux:∀b a f,El a ⇒ ∀p l,L a (len_fil_aux b a f p l)168

rule fil a f _ (nil _) → nil a169

rule fil a f _ (cons _ x p l) → fil_aux (f x) a f x p l170

rule fil a f _ (app _ p l q m)171

→ app a (len_fil a f p l) (fil a f p l)172

(len_fil a f q m) (fil a f q m)173

rule fil_aux false a f x p l → fil a f p l174

rule fil_aux true a f x p l175

→ cons a x (len_fil a f p l) (fil a f p l)176177

Assumptions: Throughout the paper, we assume that → is locally confluent (←→ ⊆ ↓)178

and preserves typing (for all Γ, A, t and u, if Γ ` t : A and t→ u, then Γ ` u : A).179

Note that local confluence implies that every t ∈ SN has a unique normal form t↓.180

These assumptions are used in the interpretation of types (Definition 2) and the adequacy181

lemma (Lemma 5). Both properties are undecidable in general. For confluence, Dedukti182

can call confluence checkers understanding the HRS format of the confluence competition.183

For preservation of typing by reduction, it implements an heuristic [31].184

3 Interpretation of types as reducibility candidates185

We aim at proving the termination of the union of two relations, →β and →R, on the set of186

well-typed terms (which depends on R). As is well known, termination is not modular in187

general. As a β step can generate an R step, and vice versa, we cannot expect to prove the188

termination of →β ∪→R from the termination of →β and →R. The termination of λΠ/R189

cannot be reduced to the termination of the simply-typed λ-calculus either (as done for λΠ190

alone in [16]) because of type-level rewriting rules like the ones defining El in Example 1.191

Indeed, type-level rules enables the encoding of functional PTS like Girard’s System F, whose192

termination cannot be reduced to the termination of the simply-typed λ-calculus [10].193

So, following Girard [15], to prove the termination of →β ∪ →R, we build a model of our194

calculus by interpreting types into sets of terminating terms. To this end, we need to find an195

interpretation J K having the following properties:196

Because types are identified modulo conversion, we need J K to be invariant by reduction:197

if T is typable and T → T ′, then we must have JT K = JT ′K.198

As usual, to handle β-reduction, we need a product type (x : A)B to be interpreted by the199

set of terms t such that, for all a in the interpretation of A, ta is in the interpretation of200

B[x 7→ a], that is, we must have J(x : A)BK = Πa∈ JAK. JB[x 7→ a]K where Πa∈P.Q(a) =201

{t | ∀a ∈ P, ta ∈ Q(a)}.202

First, we define the interpretation of types that are not kinds (except ?) as the least203

fixpoint of a monotone function in a directed-complete (= chain-complete) partial order [28].204

Second, we define the interpretation of kinds by induction on their size.205

I Definition 2 (Interpretation of types). Let I = Fp(T,P(T)) be the set of partial functions206

from T to the powerset of T. It is directed-complete wrt inclusion. Then, let I be the least207

fixpoint of the monotone function F : I→ I such that, if I ∈ I, then:208

The domain of F (I) is the set D(I) of all the terminating terms T such that, if T reduces209

to some product term (x : A)B (not necessarily in normal form), then A ∈ dom(I) and,210

for all a ∈ I(A), B[x 7→ a] ∈ dom(I).211

http://project-coco.uibk.ac.at/

XX:6 Dependency Pairs Termination in Dependent Type Theory Modulo Rewriting

If T ∈ D(I) and the normal form2 of T is not a product, then F (I)(T) = SN.212

If T ∈ D(I) and T↓ = (x : A)B, then F (I)(T) = Πa∈I(A). I(B[x 7→ a]).213

We now define the interpretation of a term T wrt to a substitution σ, JT Kσ (and simply JT K214

if σ is the identity), as follows:215

JsKσ = D if s ∈ S, where D = D(I),216

J(x : A)KKσ = Πa∈ JAKσ. JKK[x 7→a,σ] if K ∈ K and x /∈ dom(σ),217

JT Kσ = I(Tσ) if T /∈ K ∪ {�} and Tσ ∈ D,218

JT Kσ = SN otherwise.219

A substitution σ is adequate wrt an environment Γ, σ |= Γ, if, for all x : A ∈ Γ, xσ ∈ JAKσ.220

A typing map Θ is adequate if, for all f , f ∈ JΘf K whenever ` Θf : sf and Θf ∈ Jsf K.221

Let C be the set of terms of the form f~t such that |~t| = ar(Θf), ` Θf : sf , Θf ∈ Jsf K and,222

if Γf = ~x : ~A and σ = [~x 7→ ~t], then σ |= Γf . (Informally, C is the set of terms obtained by223

fully applying some function symbol to computable arguments).224

We can then prove that, for all terms T , JT K satisfies Girard’s conditions of reducibility225

candidates, called computability predicates here, adapted to rewriting by including in neutral226

terms every term of the form f~t when f is applied to enough arguments wrt R [5]:227

IDefinition 3 (Computability predicates). A term is neutral if it is of the form x~v, (λx : A.t)u~v228

or f~v with, for every rule f~l→ r ∈ R, |~l| ≤ |~v|.229

Let P be the set of all the sets of terms S (computability predicates) such that (a) S ⊆ SN,230

(b) →(S) ⊆ S, and (c) t ∈ S if t is neutral and →(t) ⊆ S.231

Note that neutral terms satisfy the following key property: if t is neutral then, for all u,232

tu is neutral and every reduct of tu is either of the form t′u with t′ a reduct of t, or of the233

form tu′ with u′ a reduct of u.234

One can easily check that SN is a computability predicate.235

Note also that a computability predicate is never empty: it contains every neutral term236

in normal form. In particular, it contains every variable.237

We then get the following results (the proofs are given in Annex A):238

I Lemma 4. (a) For all terms T and substitutions σ, JT Kσ ∈ P.239

(b) If T is typable, Tσ ∈ D and T → T ′, then JT Kσ = JT ′Kσ.240

(c) If T is typable, Tσ ∈ D and σ → σ′, then JT Kσ = JT Kσ′ .241

(d) If (x : A)B is typable and (x : Aσ)Bσ ∈ D,242

then J(x : A)BKσ = Πa∈ JAKσ. JBK[x 7→a,σ].243

(e) If ∆ ` U : s, Γ ` γ : ∆ and Uγσ ∈ D, then JUγKσ = JUKγσ.244

(f) Given P ∈ P and, for all a ∈ P , Q(a) ∈ P such that Q(a′) ⊆ Q(a) if a → a′. Then,245

λx : A.b ∈ Πa∈P.Q(a) if A ∈ SN and, for all a ∈ P , b[x 7→ a] ∈ Q(a).246

We can finally prove that our model is adequate, that is, every term of type T belongs to247

JT K, if the typing map Θ is itself adequate. This reduces the termination of well-typed terms248

to the computability of function symbols.249

I Lemma 5 (Adequacy). If Θ is adequate, Γ ` t : T and σ |= Γ, then tσ ∈ JT Kσ.250

Proof. First note that, if Γ ` t : T , then either T = � or Γ ` T : s [4, Lemma 28]. Moreover,251

if Γ ` a : A, A ↓ B and Γ ` B : s (the premises of the (conv) rule), then Γ ` A : s [4, Lemma252

42] (because → preserves typing). Hence, the relation ` is unchanged if one adds the premise253

2 Because we assume local confluence, every terminating term T has a unique normal form T↓.

F. Blanqui, G. Genestier and O. Hermant XX:7

Γ ` A : s in (conv), giving the rule (conv’). Similarly, we add the premise Γ ` (x : A)B : s254

in (app), giving the rule (app’). We now prove the lemma by induction on Γ ` t : T using255

(app’) and (conv’):256

(ax) It is immediate that ? ∈ J�Kσ = D.257

(var) By assumption on σ.258

(weak) If σ |= Γ, x : A, then σ |= Γ. So, the result follows by induction hypothesis.259

(prod) Is ((x : A)B)σ in JsKσ = D? Wlog we can assume x /∈ dom(σ)∪FV(σ). So, ((x : A)B)σ =260

(x : Aσ)Bσ. By induction hypothesis, Aσ ∈ J?Kσ = D. Let now a ∈ I(Aσ) and261

σ′ = [x 7→ a, σ]. Note that I(Aσ) = JAKσ. So, σ′ |= Γ, x : A and, by induction hypothesis,262

Bσ′ ∈ JsKσ = D. Since x /∈ dom(σ) ∪ FV(σ), we have Bσ′ = (Bσ)[x 7→ a]. Therefore,263

((x : A)B)σ ∈ JsKσ.264

(abs) Is (λx : A.b)σ in J(x : A)BKσ? Wlog we can assume that x /∈ dom(σ) ∪ FV(σ). So,265

(λx : A.b)σ = λx : Aσ.bσ. By Lemma 4d, J(x : A)BKσ = Πa ∈ JAKσ. JBK[x 7→a,σ]. By266

Lemma 4c, JBK[x 7→a,σ] is an JAKσ-indexed family of computability predicates such that267

JBK[x 7→a′,σ] = JBK[x7→a,σ] whenever a → a′. Hence, by Lemma 4f, λx : Aσ.bσ ∈268

J(x : A)BKσ if Aσ ∈ SN and, for all a ∈ JAKσ, (bσ)[x 7→ a] ∈ JBKσ′ where σ′ = [x 7→ a, σ].269

By induction hypothesis, ((x : A)B)σ ∈ JsKσ = D. Since x /∈ dom(σ) ∪ FV(σ),270

((x : A)B)σ = (x : Aσ)Bσ and (bσ)[x 7→ a] = bσ′. Since D ⊆ SN, we have Aσ ∈ SN.271

Moreover, since σ′ |= Γ, x : A, we have bσ′ ∈ JBKσ′ by induction hypothesis.272

(app’) Is (ta)σ = (tσ)(aσ) in JB[x 7→ a]Kσ? By induction hypothesis, tσ ∈ J(x : A)BKσ, aσ ∈273

JAKσ and ((x : A)B)σ ∈ JsK = D. By Lemma 4d, J(x : A)BKσ = Πα∈ JAKσ. JBK[x 7→α,σ].274

Hence, (tσ)(aσ) ∈ JBKσ′ where σ′ = [x 7→ aσ, σ]. Wlog we can assume x /∈ dom(σ) ∪275

FV(σ). So, σ′ = [x 7→ a]σ. Hence, by Lemma 4e, JBKσ′ = JB[x 7→ a]Kσ.276

(conv’) By induction hypothesis, aσ ∈ JAKσ, Aσ ∈ JsKσ = D and Bσ ∈ JsKσ = D. By Lemma 4b,277

JAKσ = JBKσ. So, aσ ∈ JBKσ.278

(fun) By induction hypothesis, Θf ∈ Jsf Kσ = D. Therefore, f ∈ JΘf Kσ = JΘf K since Θ is279

adequate. J280

4 Dependency pairs theorem281

Now, we prove that the adequacy of Θ can be reduced to the absence of infinite sequences of282

dependency pairs, as shown by Arts and Giesl for first-order rewriting [2].283

I Definition 6 (Dependency pairs). Let f~l > g ~m iff there is a rule f~l→ r ∈ R, g is defined284

and g ~m is a subterm of r such that ~m are all the arguments to which g is applied. The285

relation > is the set of dependency pairs.286

Let >̃ = →∗arg>s be the relation on the set C (Def. 2), where f~t →arg f~u iff ~t →prod ~u287

(reduction in one argument), and >s is the closure by substitution and left-application of >:288

ft1 . . . tp >̃ gu1 . . . uq iff there are a dependency pair fl1 . . . li > gm1 . . .mj with i ≤ p and289

j ≤ q and a substitution σ such that, for all k ≤ i, tk →∗ lkσ and, for all k ≤ j, mkσ = uk.290

In our setting, we have to close >s by left-application because function symbols are291

curryfied. When a function symbol f is not fully applied wrt ar(Θf), the missing arguments292

must be considered as potentially being anything. Indeed, the following rewriting system:293

294
app x y → x y f x y → app (f x) y295296

whose dependency pairs are f x y > app (f x) y and f x y > f x, does not terminate,297

but there is no way to construct an infinite sequence of dependency pairs without adding an298

argument to the right-hand side of the second dependency pair.299

XX:8 Dependency Pairs Termination in Dependent Type Theory Modulo Rewriting

I Example 7. The rules of Example 1 have the following dependency pairs (the pairs whose300

left-hand side is headed by fil or fil_aux can be found in appendix B):301

302
A: El (arrow a b) > El a303

B: El (arrow a b) > El b304

C: (s p) + q > p + q305

D: app a _ (cons _ x p l) q m > p + q306

E: app a _ (cons _ x p l) q m > app a p l q m307

F:len_fil a f _ (cons _ x p l) > len_fil_aux (f x) a f p l308

G:len_fil a f _ (app _ p l q m) >309

(len_fil a f p l) + (len_fil a f q m)310

H:len_fil a f _ (app _ p l q m) > len_fil a f p l311

I:len_fil a f _ (app _ p l q m) > len_fil a f q m312

J: len_fil_aux true a f p l > len_fil a f p l313

K: len_fil_aux false a f p l > len_fil a f p l314315

In [2], a sequence of dependency pairs interleaved with →arg steps is called a chain. Arts316

and Giesl proved that, in a first-order term algebra, →R terminates if and only if there are317

no infinite chains, that is, if and only if >̃ terminates. Moreover, in a first-order term algebra,318

>̃ terminates if and only if, for all f and ~t, f~t terminates wrt >̃ whenever ~t terminates wrt319

→. In our framework, this last condition is similar to saying that Θ is adequate.320

We now introduce the class of systems to which we will extend Arts and Giesl’s theorem.321

I Definition 8 (Well-structured system). Let � be the smallest quasi-order on F such that322

f � g if g occurs in Θf or if there is a rule f~l → r ∈ R with g (defined or undefined)323

occurring in r. Then, let � = � \ � be the strict part of �. A rewriting system R is324

well-structured if:325

(a) � is well-founded;326

(b) for every rule f~l→ r, |~l| ≤ ar(Θf);327

(c) for every dependency pair f~l > g~m, |~m| ≤ ar(Θg);328

(d) for every rule f~l→ r, there is an environment ∆f~l→r such that, if Θf = (~x : ~T)U and329

π = [~x 7→ ~l], then ∆f~l→r f̀~l r : Uπ, where f̀~l is the restriction of ` defined in Fig. 2.330

Condition (a) is always satisfied when F is finite. Condition (b) ensures that a term of331

the form f~t is neutral whenever |~t| = ar(Θf). Condition (c) ensures that > is included in >̃.332

The relation f̀~l corresponds to the notion of computability closure in [5], with the ordering333

on function calls replaced by the dependency pair relation. It is similar to ` except that it334

uses the variant of (conv) and (app) used in the proof of the adequacy lemma; (fun) is split335

in the rules (const) for undefined symbols and (dp) for dependency pairs whose left-hand side336

is f~l; every type occurring in an object term or every type of a function symbol occurring in337

a term is required to be typable by using symbols smaller than f only.338

The environment ∆f~l→r can be inferred by Dedukti when one restricts rule left hand-sides339

to some well-behaved class of terms like algebraic terms or Miller patterns (in λProlog).340

One can check that Example 1 is well-structured (the proof is given in Annex B).341

Finally, we need matching to be compatible with computability, that is, if f~l → r ∈ R342

and ~lσ are computable, then σ is computable, a condition called accessibility in [5]:343

I Definition 9 (Accessible system). A well-structured system R is accessible if, for all344

substitutions σ and rules f~l → r with Θf = (~x : ~T)U and |~x| = |~l|, we have σ |= ∆f~l→r345

whenever ` Θf : sf , Θf ∈ Jsf K and [~x 7→ ~l]σ |= ~x : ~T .346

F. Blanqui, G. Genestier and O. Hermant XX:9

Figure 2 Restricted type systems f̀~l and ≺̀f

(ax)
f̀~l ? : �

(var)
Γ ≺̀f A : s x /∈ dom(Γ)

Γ, x : A f̀~l x : A

(weak)
Γ ≺̀f A : s Γ f̀~l b : B x /∈ dom(Γ)

Γ, x : A f̀~l b : B

(prod)
Γ f̀~l A : ? Γ, x : A f̀~l B : s

Γ f̀~l (x : A)B : s

(abs)
Γ, x : A f̀~l b : B Γ ≺̀f (x : A)B : s

Γ f̀~l λx : A.b : (x : A)B

(conv’)
Γ f̀~l a : A A ↓ B Γ ≺̀f B : s Γ ≺̀f A : s

Γ f̀~l a : B

(app’)
Γ f̀~l t : (x : A)B Γ f̀~l a : A Γ ≺̀f (x : A)B : s

Γ f̀~l ta : B[x 7→ a]

(dp)
≺̀f Θg : sg Γ f̀~l γ : Σ

Γ f̀~l g~yγ : V γ (Θg = (Σ)V,Σ = ~y : ~U, g~yγ < f~l)

(const) ≺̀f Θg : sg

f̀~l g : Θg
(g undefined)

and ≺̀f is defined by the same rules as `, except (fun) replaced by:

(fun≺f)
≺̀f Θg : sg g ≺ f

≺̀f g : Θg

This property is not always satisfied because the subterm relation does not preserve347

computability in general. Indeed, if C is an undefined type constant, then JCK = SN.348

However, JC ⇒ CK 6= SN since ω = λx : C.xx ∈ SN and ωω /∈ SN. Hence, if c is an undefined349

function symbol of type Θc = (C ⇒ C)⇒ C, then cω ∈ JCK but ω /∈ JC ⇒ CK.350

We can now state the main lemma:351

I Lemma 10. Θ is adequate if >̃ terminates and R is well-structured and accessible.352

Proof. Since R is well-structured, � is well-founded by condition (a). We prove that,353

for all f ∈ F, f ∈ JΘf K, by induction on �. So, let f ∈ F with Θf = (Γf)U and354

Γf = x1 : T1, . . . , xn : Tn. By induction hypothesis, we have that, for all g ≺ f , g ∈ JΘgK.355

Since →arg and >̃ terminate on C and →arg >̃ ⊆ >̃, we have that →arg ∪ >̃ terminates.356

We now prove that, for all f~t ∈ C, we have f~t ∈ JUKθ where θ = [~x 7→ ~t], by induction on357

→arg ∪ >̃. By condition (b), f~t is neutral. Hence, by definition of computability, it suffices358

to prove that, for all u ∈ →(f~t), u ∈ JUKθ. There are 2 cases:359

u = f~v with ~t→prod ~v. Then, we can conclude by induction hypothesis.360

There are fl1 . . . lk → r ∈ R and σ such that u = (rσ)tk+1 . . . tn and, for all i ∈ {1, . . . , k},361

ti = liσ. Since f~t ∈ C, we have πσ |= Γf . Since R is accessible, we get that σ |= ∆f~l→r.362

By condition (d), we have ∆f~l→r f̀~l r : V π where V = (xk+1 : Tk+1) . . . (xn : Tn)U .363

Now, we prove that, for all Γ, t and T , if Γ f̀~l t : T (Γ ≺̀f t : T resp.) and σ |= Γ, then364

tσ ∈ JT Kσ, by induction on the structure of the derivation of Γ f̀~l t : T (Γ ≺̀f t : T resp.),365

as in the proof of Lemma 5 except for (fun) replaced by (fun≺f) in one case, and (const)366

and (dp) in the other case.367

(fun≺f) We have g ∈ JΘgK by the induction hypothesis on g.368

(const) Since g is undefined, it is neutral and normal. Therefore, it belongs to every comput-369

ability predicate and in particular to JΘgKσ.370

XX:10 Dependency Pairs Termination in Dependent Type Theory Modulo Rewriting

(dp) By induction hypothesis, yiγσ ∈ JUiγKσ. By Lemma 4e, JUiγKσ = JUiKγσ. So, γσ |= Σ371

and g~yγσ ∈ C. Now, by condition (c), g~yγσ<̃f~lσ since g~yγ < f~l. Therefore, by372

induction hypothesis, g~yγσ ∈ JV γKσ.373

So, rσ ∈ JV πKσ and, by Lemma 4d, u ∈ JUK[xn 7→tn,..,xk+1 7→tk+1,πσ] = JUKθ. J374

Note that the proof still works if one replaces the relation � of Definition 8 by any375

well-founded quasi-order such that f � g whenever f~l > g~m. The quasi-order of Definition376

8, defined syntactically, relieves the user of the burden of providing one and is sufficient in377

every practical case met by the authors. However it is possible to construct ad-hoc systems378

which require a quasi-order richer than the one presented here.379

By combining the previous lemma and the Adequacy lemma (the identity substitution is380

computable), we get the main result of the paper:381

I Theorem 11. The relation → =→β ∪→R terminates on terms typable in λΠ/R if → is382

locally confluent and preserves typing, R is well-structured and accessible, and >̃ terminates.383

For the sake of completeness, we are now going to give sufficient conditions for accessibility384

and termination of >̃ to hold, but one could imagine many other criteria.385

5 Checking accessibility386

In this section, we give a simple condition to ensure accessibility and some hints on how to387

prove accessibility when this condition is not satisfied.388

As seen with the definition of accessibility, the main problem is to deal with subterms389

of higher-order type. A simple condition is to require higher-order variables to be direct390

subterms of the left-hand side, a condition called plain function-passing (PFP) in [25], and391

satisfied by Example 1.392

I Definition 12 (PFP systems). A well-structured R is PFP if, for all f~l → r ∈ R with393

Θf = (~x : ~T)U and |~x| = |~l|, ~l /∈ K ∪ {�} and, for all x : T ∈ ∆f~l→r, there is i such that394

x = li and T = Ti[~x 7→ ~l], or else x ∈ FV(li) and T = D~t with D undefined and |~t| = ar(D).395

I Lemma 13. PFP systems are accessible.396

Proof. Let f~l → r be a PFP rule with Θf = (Γ)U , Γ = ~x : ~T , π = [~x 7→ ~l]. Following397

Definition 9, assume that ` Θf : sf , Θf ∈ D and πσ |= Γ. We have to prove that, for all398

(x : T) ∈ ∆f~l→r, xσ ∈ JT Kσ.399

If x = li and T = Tiπ. Then, xσ = liσ ∈ JTiKπσ. Since ` Θf : sf , Ti /∈ K ∪ {�}. Since400

Θf ∈ D and πσ |= Γ, we have Tiπσ ∈ D. So, JTiKπσ = I(Tiπσ). Since Ti /∈ K ∪ {�} and401

~l /∈ K ∪ {�}, Tiπ /∈ K ∪ {�}. Since Tiπσ ∈ D, JTiπKσ = I(Tiπσ). Thus, xσ ∈ JT Kσ.402

If x ∈ FV(li) and T is of the form C~t with |~t| = ar(C). Then, JT Kσ = SN and xσ ∈ SN403

since liσ ∈ JTiKσ ⊆ SN. J404

But many accessible systems are not PFP. They can be proved accessible by changing405

the interpretation of type constants (a complete development is left for future work).406

I Example 14 (Recursor on Brouwer ordinals).407

408
symbol O:TYPE409

symbol zero:O symbol suc:O⇒O symbol lim:(N⇒O)⇒O410

411

symbol ordrec:A⇒(O⇒A⇒A)⇒((N⇒O)⇒(N⇒A)⇒A)⇒O⇒A412

rule ordrec u v w zero → u413

F. Blanqui, G. Genestier and O. Hermant XX:11

rule ordrec u v w (suc x) → v x (ordrec u v w x)414

rule ordrec u v w (lim f) → w f (λn, ordrec u v w (f n))415416

The above example is not PFP because f:N ⇒ O is not argument of ordrec. Yet,417

it is accessible if one takes for JOK the least fixpoint of the monotone function F (S) =418

{t ∈ SN |if t→∗ lim f then f ∈ JNK⇒ S, and if t→∗ sucu then u ∈ S} [5], where A⇒ B419

is a shorthand for Πa ∈ A.B.420

Similarly, the following encoding of the simply-typed λ-calculus is not PFP but can be421

proved accessible by taking422

JTcK = if c↓ = arrow a b then {t ∈ SN | if t→∗ lamf then f ∈ JTaK⇒ JTbK} else SN.423

I Example 15 (Simply-typed λ-calculus).424

425
symbol S : TYPE symbol arrow : S ⇒ S ⇒ S426

427

symbol T : S ⇒ TYPE428

symbol lam : ∀ a b, (T a ⇒ T b) ⇒ T (arrow a b)429

symbol app : ∀ a b, T (arrow a b) ⇒ T a ⇒ T b430

rule app a b (lam _ _ f) x → f x431432

6 Size-change termination433

In this section, we give a sufficient condition for >̃ to terminate. For first-order rewriting,434

many techniques have been developed for that purpose. To cite just a few, see for instance435

[17, 14]. Many of them can probably be extended to λΠ/R, either because the structure of436

terms in which they are expressed can be abstracted away, or because they can be extended437

to deal also with variable applications, λ-abstractions and β-reductions.438

As an example, following Wahlstedt [38], we are going to use Lee, Jones and Ben-Amram’s439

size-change termination criterion (SCT) [26]. It consists in following arguments along function440

calls and checking that, in every potential loop, one of them decreases. First introduced for441

first-order functional languages, it has then been extended to many other settings: untyped442

λ-calculus [21], a subset of OCaml [32], Martin-Löf’s type theory [38], System F [27].443

We first recall Hyvernat and Raffalli’s matrix-based presentation of SCT [20]:444

I Definition 16 (Size-change termination). Let B be the smallest transitive relation such that445

ft1 . . . tn B ti when f ∈ F. The call graph G(R) associated to R is the directed labeled graph446

on the defined symbols of F such that there is an edge between f and g iff there is a dependency447

pair fl1 . . . lp > gm1 . . .mq. This edge is labeled with the matrix (ai,j)i≤ar(Θf),j≤ar(Θg) where:448

if li Bmj, then ai,j = −1;449

if li = mj, then ai,j = 0;450

otherwise ai,j =∞ (in particular if i > p or j > q).451

R is size-change terminating (SCT) if, in the transitive closure of G(R) (using the min-plus452

semi-ring to multiply the matrices labeling the edges), all idempotent matrices labeling a loop453

have some −1 on the diagonal.454

We add lines and columns of ∞’s in matrices associated to dependency pairs containing455

partially applied symbols (cases i > p or j > q) because missing arguments cannot be456

compared with any other argument since they are arbitrary.457

The matrix associated to the dependency pair C: (s p) + q > p + q and the call graph458

associated to the dependency pairs of Example 7 are depicted in Figure 3. The full list of459

matrices and the extensive call graph of Example 1 can be found in Annex B.460

XX:12 Dependency Pairs Termination in Dependent Type Theory Modulo Rewriting

Figure 3 Matrix of dependency pair C and call graph of the dependency pairs of Example 7

C +
p q

+

s p −1 ∞
q ∞ 0

len_fillen_fil_aux

El app

+

A,B

C

D

E

F
G

H,I

J,K

TC1 TC2

I Lemma 17. >̃ terminates if F is finite and R is SCT.461

Proof. Suppose that there is an infinite sequence χ = f1~t1>̃f2~t2>̃ . . . Then, there is an462

infinite path in the call graph going through nodes labeled by f1, f2, . . . Since F is finite,463

there is a symbol g occurring infinitely often in this path. So, there is an infinite sequence464

g~u1, g~u2, . . . extracted from χ. Hence, for every i, j ∈ N∗, there is a matrix in the transitive465

closure of the graph which labels the loops of g corresponding to the relation between ~ui and466

~ui+j . By Ramsey’s theorem, there is an infinite sequence (φi) and a matrix M such that M467

corresponds to all the transitions g~uφi
, g~uφj

with i 6= j. M is idempotent, indeed g~uφi
, g~uφi+2468

is labeled by M2 by definition of the transitive closure and by M due to Ramsey’s theorem,469

so M = M2. Since, by hypothesis, R satisfies SCT, there is j such that Mj,j is −1. So, for470

all i, u(j)
φi

(→∗ B)+u
(j)
φi+1

. Since (B→) ⊆ (→ B) and →arg is well-founded on C, the existence471

of an infinite sequence contradicts the fact that B is well-founded. J472

By combining all the previous results, we get:473

I Theorem 18. The relation → =→β ∪→R terminates on terms typable in λΠ/R if → is474

locally confluent and preserves typing, F is finite and R is well-structured, plain-function475

passing and size-change terminating.476

The rewriting system of Example 1 verifies all these conditions (proof in the annex).477

7 Implementation and comparison with other criteria and tools478

We implemented our criterion in a tool called SizeChangeTool [12]. As far as we know,479

there are no other termination checker for λΠ/R.480

If we restrict ourselves to simply-typed rewriting systems, then we can compare it with481

the termination checkers participating to the category “higher-order rewriting union beta” of482

the termination competition: Wanda uses dependency pairs, polynomial interpretations,483

HORPO and many transformation techniques [24]; SOL uses the General Schema [6] and other484

techniques. As these tools implement various techniques and SizeChangeTool only one, it is485

difficult to compete with them. Still, there are examples that are solved by SizeChangeTool486

and not by one of the other tools, demonstrating that these tools would benefit from487

implementing our new technique. For instance, the problem Hamana_Kikuchi_18/h17 is488

proved terminating by SizeChangeTool but not by Wanda because of the rule:489

http://termination-portal.org/wiki/Termination_Competition
http://wandahot.sourceforge.net/

F. Blanqui, G. Genestier and O. Hermant XX:13

490
rule map f (map g l) → map (comp f g) l491492

And the problem Kop13/kop12thesis_ex7.23 is proved terminating by SizeChangeTool493

but not by Sol because of the rules:3494

495
rule f h x (s y) → g (c x (h y)) y rule g x y → f (λ_,s 0) x y496497

One could also imagine to translate a termination problem in λΠ/R into a simply-typed498

termination problem. Indeed, the termination of λΠ alone (without rewriting) can be reduced499

to the termination of the simply-typed λ-calculus [16]. This has been extended to λΠ/R when500

there are no type-level rewrite rules like the ones defining El in Example 1 [22]. However,501

this translation does not preserve termination as shown by the Example 15 which is not502

terminating if all the types Tx are mapped to the same type constant.503

In [30], Roux also uses dependency pairs for the termination of simply-typed higher-order504

rewriting systems, as well as a restricted form of dependent types where a type constant C is505

annotated by a pattern l representing the set of terms matching l. This extends to patterns506

the notion of indexed or sized types [18]. Then, for proving the absence of infinite chains, he507

uses simple projections [17], which can be seen as a particular case of SCT where strictly508

decreasing arguments are fixed (SCT can also handle permutations in arguments).509

Finally, if we restrict ourselves to orthogonal systems, it is also possible to compare our510

technique to the ones implemented in the proof assistants Coq and Agda. Coq essentially511

implements a higher-order version of primitive recursion. Agda on the other hand uses SCT.512

Because Example 1 uses matching on defined symbols, it is not orthogonal and can be513

written neither in Coq nor in Agda. Agda recently added the possibility of adding rewrite514

rules but this feature is highly experimental and comes with no guaranty. In particular,515

Agda termination checker does not handle rewrite rules.516

Coq cannot handle inductive-recursive definitions [11] nor function definitions with517

permuted arguments in function calls while it is no problem for Agda and us.518

8 Conclusion and future work519

We proved a general modularity result extending Arts and Giesl’s theorem that a rewriting520

relation terminates if there are no infinite sequences of dependency pairs [2] from first-order521

rewriting to dependently-typed higher-order rewriting. Then, following [38], we showed how522

to use Lee, Jones and Ben-Amram’s size-change termination criterion to prove the absence523

of such infinite sequences [26].524

This extends Wahlstedt’s work [38] from weak to strong normalization, and from ortho-525

gonal to locally confluent rewriting systems. This extends the first author’s work [5] from526

orthogonal to locally confluent systems, and from systems having a decreasing argument in527

each recursive call to systems with non-increasing arguments in recursive calls. Finally, this528

also extends previous works on static dependency pairs [25] from simply-typed λ-calculus to529

dependent types modulo rewriting.530

To get this result, we assumed local confluence. However, one often uses termination to531

check (local) confluence. Fortunately, there are confluence criteria not based on termination.532

The most famous one is (weak) orthogonality, that is, when the system is left-linear and533

has no critical pairs (or only trivial ones) [36], as it is the case in functional programming534

languages. A more general one is when critical pairs are “development-closed” [37].535

3 We renamed the function symbols for the sake of readability.

XX:14 Dependency Pairs Termination in Dependent Type Theory Modulo Rewriting

This work can be extended in various directions.536

First, our tool is currently limited to PFP rules, that is, to rules where higher-order537

variables are direct subterms of the left-hand side. To have higher-order variables in deeper538

subterms like in Example 14, we need to define a more complex interpretation of types,539

following [5].540

Second, to handle recursive calls in such systems, we also need to use an ordering more541

complex than the subterm ordering when computing the matrices labeling the SCT call542

graph. The ordering needed for handling Example 14 is the “structural ordering” of Coq543

and Agda [9, 6]. Relations other than subterm have already been considered in SCT but in544

a first-order setting only [35].545

But we may want to go further because the structural ordering is not enough to handle546

the following system which is not accepted by Agda:547

I Example 19 (Division). m/n computes dmn e.548

549
symbol infix - : N⇒ N⇒ N550

rule 0 - n → 0 rule m - 0 → m rule (s m) - (s n) → m - n551

symbol infix / : N⇒ N⇒ N552

rule 0 / (s n) → 0 rule (s m) / (s n) → s ((m - n) / (s n))553554

A solution to handle this system is to use arguments filterings (remove the second555

argument of -) or simple projections [17]. Another one is to extend the type system with556

size annotations as in Agda and compute the SCT matrices by comparing the size of terms557

instead of their structure [1, 7]. In our example, the size of m - n is smaller than or equal558

to the size of m. One can deduce this by using user annotations like in Agda, or by using559

heuristics [8].560

Another interesting extension would be to handle function calls with locally size-increasing561

arguments like in the following example:562

563
rule f x → g (s x) rule g (s (s x)) → f x564565

where the number of s’s strictly decreases between two calls to f although the first rule566

makes the number of s’s increase. Hyvernat enriched SCT to handle such systems [19].567

References568

1 A. Abel. MiniAgda: integrating sized and dependent types. PAR’10.569

2 T. Arts, J. Giesl. Termination of term rewriting using dependency pairs. TCS 236:133–178,570

2000.571

3 H. Barendregt. Lambda calculi with types. In S. Abramsky, D. M. Gabbay, T. S. E. Maibaum,572

editors, Handbook of logic in computer science. Volume 2. Background: computational573

structures, p. 117–309. Oxford University Press, 1992.574

4 F. Blanqui. Théorie des types et récriture. PhD thesis, Université Paris-Sud, France, 2001.575

5 F. Blanqui. Definitions by rewriting in the calculus of constructions. MSCS 15(1):37–92, 2005.576

6 F. Blanqui. Termination of rewrite relations on λ-terms based on Girard’s notion of reducibility.577

TCS 611:50–86, 2016.578

7 F. Blanqui. Size-based termination of higher-order rewriting. JFP 28(e11), 2018. 75 pages.579

8 W. N. Chin, S. C. Khoo. Calculating sized types. Higher-Order and Symbolic Computation,580

14(2-3):261–300, 2001.581

9 T. Coquand. Pattern matching with dependent types. TYPES’92.582

10 D. Cousineau, G. Dowek. Embedding pure type systems in the λΠ-calculus modulo. TLCA’07.583

http://doi.org/10.4204/EPTCS.43.2
http://doi.org/10.1016/S0304-3975(99)00207-8
http://tel.archives-ouvertes.fr/tel-00105522
http://doi.org/10.1017/S0960129504004426
http://doi.org/10.1016/j.tcs.2015.07.045
http://doi.org/10.1017/S0956796818000072
http://doi.org/10.1023/A:1012996816178
http://www.lfcs.inf.ed.ac.uk/research/types-bra/proc/proc92.ps.gz
http://doi.org/10.1007/978-3-540-73228-0_9

F. Blanqui, G. Genestier and O. Hermant XX:15

11 P. Dybjer. A general formulation of simultaneous inductive-recursive definitions in type theory.584

JSL 65(2):525–549, 2000.585

12 G. Genestier. SizeChangeTool. https://github.com/Deducteam/SizeChangeTool, 2018.586

13 J. Giesl, R. Thiemann, P. Schneider-Kamp. The dependency pair framework: combining587

techniques for automated termination proofs. LPAR’04.588

14 J. Giesl, R. Thiemann, P. Schneider-Kamp, S. Falke. Mechanizing and improving dependency589

pairs. JAR 37(3):155–203, 2006.590

15 J.-Y. Girard, Y. Lafont, P. Taylor. Proofs and types. Cambridge University Press, 1988.591

16 R. Harper, F. Honsell, G. Plotkin. A framework for defining logics. JACM 40(1):143–184,592

1993.593

17 N. Hirokawa, A. Middeldorp. Tyrolean Termination Tool: techniques and features. IC594

205(4):474–511, 2007.595

18 J. Hughes, L. Pareto, A. Sabry. Proving the correctness of reactive systems using sized types.596

POPL’96.597

19 P. Hyvernat. The size-change termination principle for constructor based languages. LMCS598

10(1):1–30, 2014.599

20 P. Hyvernat, C. Raffalli. Improvements on the "size change termination principle" in a600

functional language. WST’10.601

21 N. D. Jones, N. Bohr. Termination analysis of the untyped lambda-calculus. RTA’04.602

22 J.-P. Jouannaud, J. Li. Termination of Dependently Typed Rewrite Rules. TLCA’15.603

23 J. W. Klop, V. van Oostrom, F. van Raamsdonk. Combinatory reduction systems: introduction604

and survey. TCS 121:279–308, 1993.605

24 C. Kop. Higher order termination. PhD thesis, VU University Amsterdam, 2012.606

25 K. Kusakari, M. Sakai. Enhancing dependency pair method using strong computability in607

simply-typed term rewriting systems. AAECC 18(5):407–431, 2007.608

26 C. S. Lee, N. D. Jones, A. M. Ben-Amram. The size-change principle for program termination.609

POPL’01.610

27 R. Lepigre, C. Raffalli. Practical subtyping for System F with sized (co-)induction. 2017.611

28 G. Markowsky. Chain-complete posets and directed sets with applications. Algebra Universalis,612

6:53–68, 1976.613

29 R. Mayr, T. Nipkow. Higher-order rewrite systems and their confluence. TCS 192(2):3–29,614

1998.615

30 C. Roux. Refinement Types as Higher-Order Dependency Pairs. RTA’11.616

31 R. Saillard. Type checking in the Lambda-Pi-calculus modulo: theory and practice. PhD617

thesis, Mines ParisTech, France, 2015.618

32 D. Sereni, N. D. Jones. Termination analysis of higher-order functional programs. APLAS’05.619

33 TeReSe. Term rewriting systems, volume 55 of Cambridge Tracts in Theoretical Computer620

Science. Cambridge University Press, 2003.621

34 R. Thiemann. The DP framework for proving termination of term rewriting. PhD thesis,622

RWTH Aachen University, 2007. Technical Report AIB-2007-17.623

35 R. Thiemann, J. Giesl. The size-change principle and dependency pairs for termination of624

term rewriting. AAECC 16(4):229–270, 2005.625

36 V. van Oostrom. Confluence for abstract and higher-order rewriting. PhD thesis, Vrije626

Universiteit Amsterdam, 1994.627

37 V. van Oostrom. Developing developments. TCS 175(1):159–181, 1997.628

38 D. Wahlstedt. Dependent type theory with first-order parameterized data types and well-629

founded recursion. PhD thesis, Chalmers University of Technology, 2007.630

http://www.jstor.org/stable/2586554
https://github.com/Deducteam/SizeChangeTool
http://doi.org/10.1007/978-3-540-32275-7_21
http://doi.org/10.1007/978-3-540-32275-7_21
http://doi.org/10.1007/978-3-540-32275-7_21
http://doi.org/10.1007/s10817-006-9057-7
http://doi.org/10.1007/s10817-006-9057-7
http://doi.org/10.1007/s10817-006-9057-7
http://www.paultaylor.eu/stable/prot.pdf
http://doi.org/10.1145/138027.138060
http://doi.org/10.1016/j.ic.2006.08.010
http://doi.org/10.1145/237721.240882
http://doi.org/10.2168/LMCS-10(1:11)2014
https://lama.univ-savoie.fr/~raffalli/pdfs/wst.pdf
https://lama.univ-savoie.fr/~raffalli/pdfs/wst.pdf
https://lama.univ-savoie.fr/~raffalli/pdfs/wst.pdf
http://doi.org/10.1007/978-3-540-25979-4_1
http://doi.org/10.4230/LIPIcs.TLCA.2015.257
http://doi.org/10.1016/0304-3975(93)90091-7
http://doi.org/10.1016/0304-3975(93)90091-7
http://doi.org/10.1016/0304-3975(93)90091-7
http://hdl.handle.net/1871/39346
http://doi.org/10.1007/s00200-007-0046-9
http://doi.org/10.1007/s00200-007-0046-9
http://doi.org/10.1007/s00200-007-0046-9
http://doi.org/10.1145/360204.360210
https://arxiv.org/abs/1604.01990
http://doi.org/10.1016/S0304-3975(97)00143-6
http://doi.org/10.4230/LIPIcs.RTA.2011.299
https://pastel.archives-ouvertes.fr/tel-01299180
http://doi.org/10.1007/11575467_19
http://aib.informatik.rwth-aachen.de/2007/2007-17.pdf
http://doi.org/10.1007/s00200-005-0179-7
http://doi.org/10.1007/s00200-005-0179-7
http://doi.org/10.1007/s00200-005-0179-7
http://www.phil.uu.nl/~oostrom/publication/ps/phdthesis.ps
http://doi.org/10.1016/S0304-3975(96)00173-9
http://www.cse.chalmers.se/alumni/davidw/wdt_phd_printed_version.pdf
http://www.cse.chalmers.se/alumni/davidw/wdt_phd_printed_version.pdf
http://www.cse.chalmers.se/alumni/davidw/wdt_phd_printed_version.pdf

XX:16 Dependency Pairs Termination in Dependent Type Theory Modulo Rewriting

A Proofs of lemmas on the interpretation631

A.1 Definition of the interpretation632

I Lemma 20. F is monotone wrt inclusion.633

Proof. We first prove that D is monotone. Let I ⊆ J and T ∈ D(I). We have to show634

that T ∈ D(J). To this end, we have to prove (1) T ∈ SN and (2) if T →∗ (x : A)B then635

A ∈ dom(J) and, for all a ∈ J(A), B[x 7→ a] ∈ dom(J):636

1. Since T ∈ D(I), we have T ∈ SN.637

2. Since T ∈ D(I) and T →∗ (x : A)B, we have A ∈ dom(I) and, for all a ∈ I(A),638

B[x 7→ a] ∈ dom(I). Since I ⊆ J , we have dom(I) ⊆ dom(J) and J(A) = I(A)639

since I and J are functional relations. Therefore, A ∈ dom(J) and, for all a ∈ I(A),640

B[x 7→ a] ∈ dom(J).641

We now prove that F is monotone. Let I ⊆ J and T ∈ D(I). We have to show that642

F (I)(T) = F (J)(T). First, T ∈ D(J) since D is monotone.643

If T↓ = (x : A)B, then F (I)(T) = Πa ∈ I(A). I(B[x 7→ a]) and F (J)(T) = Πa ∈644

J(A). J(B[x 7→ a]). Since T ∈ D(I), we have A ∈ dom(I) and, for all a ∈ I(A), B[x 7→645

a] ∈ dom(I). Since dom(I) ⊆ dom(J), we have J(A) = I(A) and, for all a ∈ I(A),646

J(B[x 7→ a]) = I(B[x 7→ a]). Therefore, F (I)(T) = F (J)(T).647

Now, if T↓ is not a product, then F (I)(T) = F (J)(T) = SN. J648

A.2 Computability predicates649

I Lemma 21. D is a computability predicate.650

Proof. Note that D = D(I).651

1. D ⊆ SN by definition of D.652

2. Let T ∈ D and T ′ such that T → T ′. We have T ′ ∈ SN since T ∈ SN. Assume now that653

T ′ →∗ (x : A)B. Then, T →∗ (x : A)B, A ∈ D and, for all a ∈ I(A), B[x 7→ a] ∈ D.654

Therefore, T ′ ∈ D.655

3. Let T be a neutral term such that →(T) ⊆ D. Since D ⊆ SN, T ∈ SN. Assume now656

that T →∗ (x : A)B. Since T is neutral, there is U ∈ →(T) such that U →∗ (x : A)B.657

Therefore, A ∈ D and, for all a ∈ I(A), B[x 7→ a] ∈ D. J658

I Lemma 22. If P ∈ P and, for all a ∈ P , Q(a) ∈ P, then Πa∈P.Q(a) ∈ P.659

Proof. Let R = Πa∈P.Q(a).660

1. Let t ∈ R. We have to prove that t ∈ SN. Let x ∈ V. Since P ∈ P, x ∈ P . So, tx ∈ Q(x).661

Since Q(x) ∈ P, Q(x) ⊆ SN. Therefore, tx ∈ SN, and t ∈ SN.662

2. Let t ∈ R and t′ such that t→ t′. We have to prove that t′ ∈ R. Let a ∈ P . We have to663

prove that t′a ∈ Q(a). By definition, ta ∈ Q(a) and ta→ t′a. Since Q(a) ∈ P, t′a ∈ Q(a).664

3. Let t be a neutral term such that→(t) ⊆ R. We have to prove that t ∈ R. Hence, we take665

a ∈ P and prove that ta ∈ Q(a). Since P ∈ P, we have a ∈ SN and →∗(a) ⊆ P . We now666

prove that, for all b ∈ →∗(a), tb ∈ Q(a), by induction on→. Since t is neutral, tb is neutral667

too and it suffices to prove that→(tb) ⊆ Q(a). Since t is neutral,→(tb) =→(t)b ∪ t→(b).668

By induction hypothesis, t→(b) ⊆ Q(a). By assumption, →(t) ⊆ R. So, →(t)a ⊆ Q(a).669

Since Q(a) ∈ P, →(t)b ⊆ Q(a) too. Therefore, ta ∈ Q(a) and t ∈ R. J670

I Lemma 23. For all T ∈ D, I(T) is a computability predicate.671

F. Blanqui, G. Genestier and O. Hermant XX:17

Proof. Since Fp(T,P) is a chain-complete poset, it suffices to prove that Fp(T,P) is closed672

by F . Assume that I ∈ Fp(T,P). We have to prove that F (I) ∈ Fp(T,P), that is, for all673

T ∈ D(I), F (I)(T) ∈ P. There are two cases:674

If T↓ = (x : A)B, then F (I)(T) = Πa∈I(A). I(B[x 7→ a]). By assumption, I(A) ∈ P and,675

for a ∈ I(A), I(B[x 7→ a]) ∈ P. Hence, by Lemma 22, F (I)(T) ∈ P.676

Otherwise, F (I)(T) = SN ∈ P. J677

I Lemma 4a. For all terms T and substitutions σ, JT Kσ ∈ P.678

Proof. By induction on T . If T = s, then JT Kσ = D ∈ P by Lemma 21. If T = (x : A)K ∈ K,679

then JT Kσ = Πa∈ JAKσ. JKK[x 7→a,σ]. By induction hypothesis, JAKσ ∈ P and, for all a ∈ JAKσ,680

JKK[x7→a,σ] ∈ P. Hence, by Lemma 22, JT Kσ ∈ P. If T /∈ K ∪ {�} and Tσ ∈ D, then681

JT Kσ = I(Tσ) ∈ P by Lemma 23. Otherwise, JT Kσ = SN ∈ P. J682

A.3 Invariance by reduction683

We now prove that the interpretation is invariant by reduction.684

I Lemma 24. If T ∈ D and T → T ′, then I(T) = I(T ′).685

Proof. First note that T ′ ∈ D since D ∈ P. Hence, I(T ′) is well defined. Now, we have686

T ∈ SN since D ⊆ SN. So, T ′ ∈ SN and, by local confluence and Newman’s lemma,687

T↓ = T ′↓. If T↓ = (x : A)B then I(T) = Πa ∈ I(A). I(B[x 7→ a]) = I(T ′). Otherwise,688

I(T) = SN = I(T ′). J689

I Lemma 4b. If T is typable, Tσ ∈ D and T → T ′, then JT Kσ = JT ′Kσ.690

Proof. By assumption, there are Γ and U such that Γ ` T : U . Since → preserves typing, we691

also have Γ ` T ′ : U . So, T 6= �, and T ′ 6= �. Moreover, T ∈ K iff T ′ ∈ K since Γ ` T : � iff692

T ∈ K and T is typable. In addition, we have T ′σ ∈ D since Tσ ∈ D and D ∈ P.693

We now prove the result, with T →= T ′ instead of T → T ′, by induction on T . If694

T /∈ K, then T ′ /∈ K and, since Tσ, T ′σ ∈ D, JT Kσ = I(Tσ) = I(T ′σ) = JT ′Kσ by Lemma695

24. If T = ?, then JT Kσ = D = JT ′Kσ. Otherwise, T = (x : A)K and T ′ = (x : A′)K ′ with696

A →= A′ and K →= K ′. By inversion, we have Γ ` A : ?, Γ ` A′ : ?, Γ, x : A ` K : �697

and Γ, x : A′ ` K ′ : �. So, by induction hypothesis, JAKσ = JA′Kσ and, for all a ∈ JAKσ,698

JKKσ′ = JK ′Kσ′ , where σ′ = [x 7→ a, σ]. Therefore, JT Kσ = JT ′Kσ. J699

I Lemma 4c. If T is typable, Tσ ∈ D and σ → σ′, then JT Kσ = JT Kσ′ .700

Proof. By induction on T .701

If T ∈ S, then JT Kσ = D = JT Kσ′ .702

If T = (x : A)K and K ∈ K, then JT Kσ = Πa ∈ JAKσ. JKK[x 7→a,σ] and JT Kσ′ = Πa ∈703

JAKσ′ . JKK[x7→a,σ′]. By induction hypothesis, JAKσ = JAKσ′ and, for all a ∈ JAKσ,704

JKK[x7→a,σ] = JKK[x 7→a,σ′]. Therefore, JT Kσ = JT Kσ′ .705

If Tσ ∈ D, then JT Kσ = I(Tσ) and JT Kσ′ = I(Tσ′). Since Tσ →∗ Tσ′, by Lemma 4b,706

I(Tσ) = I(Tσ′).707

Otherwise, JT Kσ = SN = JT Kσ′ . J708

XX:18 Dependency Pairs Termination in Dependent Type Theory Modulo Rewriting

A.4 Adequacy of the interpretation709

I Lemma 4d. If (x : A)B is typable, ((x : A)B)σ ∈ D and x /∈ dom(σ) ∪ FV(σ), then710

J(x : A)BKσ = Πa∈ JAKσ. JBK[x 7→a,σ].711

Proof. If B is a kind, this is immediate. Otherwise, since ((x : A)B)σ ∈ D, J(x : A)BKσ =712

I(((x : A)B)σ). Since x /∈ dom(σ) ∪ FV(σ), we have ((x : A)B)σ = (x : Aσ)Bσ. Since713

(x : Aσ)Bσ ∈ D and D ⊆ SN, we have J(x : A)BKσ = Πa∈I(Aσ↓). I((Bσ↓)[x 7→ a]).714

Since (x : A)B is typable, A is of type ? and A /∈ K ∪ {�}. Hence, JAKσ = I(Aσ) and,715

by Lemma 24, I(Aσ) = I(Aσ↓).716

Since (x : A)B is typable and not a kind, B is of type ? and B /∈ K ∪ {�}. Hence,717

JBK[x 7→a,σ] = I(B[x 7→ a, σ]). Since x /∈ dom(σ)∪FV(σ), B[x 7→ a, σ] = (Bσ)[x 7→ a]. Hence,718

JBK[x 7→a,σ] = I((Bσ)[x 7→ a]) and, by Lemma 24, I((Bσ)[x 7→ a]) = I((Bσ↓)[x 7→ a]).719

Therefore, J(x : A)BKσ = Πa∈ JAKσ. JBK[x 7→a,σ]. J720

Note that, by iterating this lemma, we get that v ∈ J(~x : ~T)UK iff, for all ~t such that721

[~x 7→ ~t] |= ~x : ~T , v~t ∈ JUK[~x7→~t].722

I Lemma 4e. If ∆ ` U : s, Γ ` γ : ∆ and Uγσ ∈ D, then JUγKσ = JUKγσ.723

Proof. We proceed by induction on U . Since ∆ ` U : s and Γ ` γ : ∆, we have Γ ` Uγ : s.724

If s = ?, then U,Uγ /∈ K ∪ {�} and JUγKσ = I(Uγσ) = JUKγσ since Uγσ ∈ D.725

Otherwise, s = � and U ∈ K.726

If U = ?, then JUγKσ = D = JUKγσ.727

Otherwise, U = (x : A)K and, by Lemma 4d, JUγKσ = Πa∈ JAγKσ. JKγK[x 7→a,σ] and728

JUKγσ = Πa∈ JAKγσ. JKK[x 7→a,γσ]. By induction hypothesis, JAγKσ = JAKγσ and, for729

all a ∈ JAγKσ, JKγK[x7→a,σ] = JKKγ[x 7→a,σ]. Wlog we can assume x /∈ dom(γ) ∪ FV(γ).730

So, JKKγ[x 7→a,σ] = JKK[x7→a,γσ]. J731

I Lemma 4f. Let P be a computability predicate and Q a P -indexed family of computability732

predicates such that Q(a′) ⊆ Q(a) whenever a→ a′. Then, λx : A.b ∈ Πa∈P.Q(a) whenever733

A ∈ SN and, for all a ∈ P , b[x 7→ a] ∈ Q(a).734

Proof. Let a0 ∈ P . Since P ∈ P, we have a0 ∈ SN and x ∈ P . Since Q(x) ∈ P and b = b[x 7→735

x] ∈ Q(x), we have b ∈ SN. Let a ∈ →∗ (a0). We can prove that (λx : A.b)a ∈ Q(a0) by736

induction on (A, b, a) ordered by (→,→,→)prod. Since Q(a0) ∈ P and (λx : A.b)a is neutral, it737

suffices to prove that→((λx : A.b)a) ⊆ Q(a0). If the reduction takes place in A, b or a, we can738

conclude by induction hypothesis. Otherwise, (λx : A.b)a→ b[x 7→ a] ∈ Q(a) by assumption.739

Since a0 →∗ a and Q(a′) ⊆ Q(a) whenever a→ a′, we have b[x 7→ a] ∈ Q(a0). J740

B Termination proof of Example 1741

Here is the comprehensive list of dependency pairs in the example:742

743
A: El (arrow a b) > El a744

B: El (arrow a b) > El b745

C: (s p) + q > p + q746

D: app a _ (cons _ x p l) q m > p + q747

E: app a _ (cons _ x p l) q m > app a p l q m748

F:len_fil a f _ (cons _ x p l) > len_fil_aux (f x) a f p l749

G:len_fil a f _ (app _ p l q m) >750

F. Blanqui, G. Genestier and O. Hermant XX:19

(len_fil a f p l) + (len_fil a f q m)751

H:len_fil a f _ (app _ p l q m) > len_fil a f p l752

I:len_fil a f _ (app _ p l q m) > len_fil a f q m753

J: len_fil_aux true a f p l > len_fil a f p l754

K: len_fil_aux false a f p l > len_fil a f p l755

L: fil a f _ (cons _ x p l) > fil_aux (f x) a f x p l756

M: fil a f _ (app _ p l q m) >757

app a (len_fil a f p l) (fil a f p l)758

(len_fil a f q m) (fil a f q m)759

N: fil a f _ (app _ p l q m) > len_fil a f p l760

O: fil a f _ (app _ p l q m) > fil a f p l761

P: fil a f _ (app _ p l q m) > len_fil a f q m762

Q: fil a f _ (app _ p l q m) > fil a f q m763

R: fil_aux true a f x p l > len_fil a f p l764

S: fil_aux true a f x p l > fil a f p l765

T: fil_aux false a f x p l > fil a f p l766767

The whole callgraph is depicted below. The letter associated to each matrix corresponds768

to the dependency pair presented above and in example 7, except for TC ’s which comes769

from the computation of the transitive closure and labels dotted edges.770

filfil_aux

len_fillen_fil_aux

El app

+

A,B

C

D

E

F
G

H,I

J,K

L

R

S,T M

N,P

O,QTC4 TC3

TC1 TC2
771

The argument a is omitted everywhere on the matrices presented below:772

A,B=(−1), C=(−1 ∞
∞ 0), D=

(∞ ∞
−1 ∞
∞ 0
∞ ∞

)
, E=

(∞ ∞ ∞ ∞
−1 −1 ∞ ∞
∞ ∞ 0 ∞
∞ ∞ ∞ 0

)
, F=

(
∞ 0 ∞ ∞
∞ ∞ ∞ ∞
∞ ∞ −1 −1

)
, J=K=

(∞ ∞ ∞
0 ∞ ∞
∞ 0 ∞
∞ ∞ 0

)
,773

G=
(
∞ ∞
∞ ∞
∞ ∞

)
, H=I=N=O=P=Q=

(
0 ∞ ∞
∞ ∞ ∞
∞ −1 −1

)
, L=

(
∞ 0 ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞
∞ ∞ −1 −1 −1

)
, M=

(
∞ ∞ ∞ ∞
∞ ∞ ∞ ∞
∞ ∞ ∞ ∞

)
,774

R=S=T=
(∞ ∞ ∞

0 ∞ ∞
∞ ∞ ∞
∞ 0 ∞
∞ ∞ 0

)
.775

Which leads to the matrices labeling a loop in the transitive closure:776

TC1=J×F=
(∞ ∞ ∞ ∞
∞ 0 ∞ ∞
∞ ∞ ∞ ∞
∞ ∞ −1 −1

)
, TC4=S×L=

(∞ ∞ ∞ ∞ ∞
∞ 0 ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞
∞ ∞ −1 −1 −1

)
,777

TC3=L×S=TC2=F×J=
(0 ∞ ∞
∞ ∞ ∞
∞ −1 −1

)
=O=H.778

It would be useless to compute matrices labeling edges which are not in a strongly connected779

component of the call-graph (like S×R), but it is necessary to compute all the products which780

could label a loop, especially to verify that all loop-labeling matrices are idempotent, which781

is indeed the case here.782

We now check that this system is well-structured. For each rule f~l → r, we take the783

environment ∆f~l→r made of all the variables of r with the following types: a:Set, b:Set,784

p:N, q:N, x:El a, l:L a p, m:L a q, f:El a⇒ B.785

XX:20 Dependency Pairs Termination in Dependent Type Theory Modulo Rewriting

The precedence infered for this example is the smallest containing:786

comparisons linked to the typing of symbols:787

Set � arrow Set,L,0 � nil
Set � El Set,El,N,L,s � cons
B � true Set,N,L,+ � app
B � false Set,El,B,N,L � len_fil
N � 0 B,Set,El,N,L � len_fil_aux
N � s Set,El,B,N,L,len_fil � fil
N � + B,Set,El,N,L,len_fil_aux � fil_aux

Set,N � L

788

and comparisons related to calls:789

s � + s,len_fil � len_fil_aux
cons,+ � app nil,fil_aux,app,len_fil � fil

0,len_fil_aux,+ � len_fil fil,cons,len_fil � fil_aux
790

This precedence can be sum up in the following diagram, where symbols in the same box791

are equivalent:792

fil,fil_aux

len_fil,len_fil_auxapp

true false

B

cons nil +

Larrow El 0 s

Set N
793

	Introduction
	Terms and types
	Interpretation of types as reducibility candidates
	Dependency pairs theorem
	Checking accessibility
	Size-change termination
	Implementation and comparison with other criteria and tools
	Conclusion and future work
	Proofs of lemmas on the interpretation
	Definition of the interpretation
	Computability predicates
	Invariance by reduction
	Adequacy of the interpretation

	Termination proof of Example 1

