
90/113

Possibility is not expressible in LTL

Example:
ϕ: Whenever p holds, it is possible to reach a state where q holds.
ϕ cannot be expressed in LTL.

Consider the two models:

M1: 1

p, q

2

p
3

q

4

and M2: 1

p, q
2

p

2’

p

3

q

4

M1 |= ϕ but M2 !|= ϕ
M1 and M2 satisfy the same LTL formulae.

We need quantifications on runs: ϕ = AG(p → EF q)

! E: for some infinite run

! A: for all infinite runs

91/113

CTL∗ (Emerson & Halpern 86)

Definition: Syntax of the Computation Tree Logic CTL∗

ϕ ::= ⊥ | p (p ∈ AP) | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕ U ϕ | Eϕ | Aϕ

Definition: Semantics:
Let M = (S, T, I,AP, ") be a Kripke structure and σ an infinte run of M .

M,σ, i |= Eϕ if M,σ′, 0 |= ϕ for some infinite run σ′ such that σ′(0) = σ(i)

M,σ, i |= Aϕ if M,σ′, 0 |= ϕ for all infinite runs σ′ such that σ′(0) = σ(i)

Example: Some specifications
! EFϕ: ϕ is possible

! AGϕ: ϕ is an invariant

! AFϕ: ϕ is unavoidable

! EGϕ: ϕ holds globally along some path

Remark: Aϕ ≡ ¬E¬ϕ

92/113

State formulae and path formulae

Definition: State formulae
ϕ ∈ CTL∗ is a state formula if ∀M,σ,σ′, i, j such that σ(i) = σ′(j) we have

M,σ, i |= ϕ ⇐⇒ M,σ′, j |= ϕ

If ϕ is a state formula and M = (S, T, I,AP, "), define

[[ϕ]]M = {s ∈ S | M, s |= ϕ}

Example: State formulae
Formulae of the form p or Eϕ or Aϕ are state formulae.
State formulae are closed under boolean connectives.

[[p]] = {s ∈ S | p ∈ "(s)} [[¬ϕ]] = S \ [[ϕ]] [[ϕ1 ∨ ϕ2]] = [[ϕ1]] ∪ [[ϕ2]]

Definition: Alternative syntax

State formulae ϕ ::= ⊥ | p (p ∈ AP) | ¬ϕ | ϕ ∨ ϕ | Eψ | Aψ
Path formulae ψ ::= ϕ | ¬ψ | ψ ∨ ψ | Xψ | ψ U ψ

93/113

Model checking of CTL∗

Definition: Existential and universal model checking

Let M = (S, T, I,AP, ") be a Kripke structure and ϕ ∈ CTL∗ a formula.

M |=∃ ϕ if M,σ, 0 |= ϕ for some initial infinite run σ of M .
M |=∀ ϕ if M,σ, 0 |= ϕ for all initial infinite run σ of M .

Remark:

M |=∃ ϕ iff I ∩ [[Eϕ]] != ∅

M |=∀ ϕ iff I ⊆ [[Aϕ]]

M |=∀ ϕ iff M !|=∃ ¬ϕ

Definition: Model checking problems MC∀
CTL∗ and MC∃

CTL∗

Input: A Kripke structure M = (S, T, I,AP, ") and a formula ϕ ∈ CTL∗

Question: Does M |=∀ ϕ ? or Does M |=∃ ϕ ?

94/113

Complexity of CTL∗

Definition: Syntax of the Computation Tree Logic CTL∗

ϕ ::= ⊥ | p (p ∈ AP) | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕ U ϕ | Eϕ | Aϕ

Theorem
The model checking problem for CTL∗ is PSPACE-complete

Proof:
PSPACE-hardness: follows from LTL ⊆ CTL∗.

PSPACE-easiness: reduction to LTL-model checking by inductive eliminations of
path quantifications.

95/113

MC∀
CTL∗ in PSPACE

Proof:

For Q ∈ {∃, ∀} and ψ ∈ LTL, let MCQ
LTL(M, t,ψ) be the function which computes

in polynomial space whether M, t |=Q ψ, i.e., if M, t |= Qψ.

Let M = (S, T, I,AP, ") be a Kripke structure, s ∈ S and ϕ ∈ CTL∗.

MC∀
CTL∗(M, s,ϕ)

If E,A do not occur in ϕ then return MC∀
LTL(M, s,ϕ) fi

Let Qψ be a subformula of ϕ with ψ ∈ LTL and Q ∈ {E,A}

Let pQψ be a new propositional variable

Define "′ : S → 2AP′

with AP′ = AP 0 {pQψ} by

"′(t) ∩ AP = "(t) and pQψ ∈ "′(t) iff MCQ
LTL(M, t,ψ)

Let M ′ = (S, T, I,AP′, "′)

Let ϕ′ = ϕ[pQψ/Qψ] be obtained from ϕ by replacing each Qψ by pQψ

Return MC∀
CTL∗(M ′, s,ϕ′)

96/113

Satisfiability for CTL∗

Definition: SAT(CTL∗)

Input: A formula ϕ ∈ CTL∗

Question: Existence of a model M and a run σ such that M,σ, 0 |= ϕ ?

Theorem
The satisfiability problem for CTL∗ is 2-EXPTIME-complete

97/113

CTL (Clarke & Emerson 81)

Definition: Computation Tree Logic (CTL)

Syntax:

ϕ ::= ⊥ | p (p ∈ AP) | ¬ϕ | ϕ ∨ ϕ | EXϕ | AXϕ | Eϕ U ϕ | Aϕ U ϕ

The semantics is inherited from CTL∗.

Remark: All CTL formulae are state formulae

[[ϕ]]M = {s ∈ S | M, s |= ϕ}

Examples: Macros
! EFϕ = E1 U ϕ and AFϕ = A1 U ϕ

! EGϕ = ¬AF¬ϕ and AGϕ = ¬EF¬ϕ
! AG(req → EF grant)

! AG(req → AF grant)

98/113

CTL (Clarke & Emerson 81)

Definition: Semantics
All CTL-formulae are state formulae. Hence, we have a simpler semantics.
Let M = (S, T, I,AP, ") be a Kripke structure without deadlocks and let s ∈ S.

s |= p if p ∈ "(s)

s |= EXϕ if ∃s → s′ with s′ |= ϕ

s |= AXϕ if ∀s → s′ we have s′ |= ϕ

s |= Eϕ U ψ if ∃s = s0 → s1 → s2 → · · · sj finite path, with
sj |= ψ and sk |= ϕ for all 0 ≤ k < j

s |= Aϕ U ψ if ∀s = s0 → s1 → s2 → · · · infinite path, ∃j ≥ 0 with
sj |= ψ and sk |= ϕ for all 0 ≤ k < j

99/113

CTL (Clarke & Emerson 81)

Example:

1 2 3 4

5 6 7 8

q p, q q r

p, r p, r p, q

[[EX p]] = {1, 2, 3, 5, 6}

[[AX p]] = {3, 6}

[[EF p]] = {1, 2, 3, 4, 5, 6, 7, 8}

[[AF p]] = {2, 3, 5, 6, 7}

[[E q U r]] = {1, 2, 3, 4, 5, 6}

[[A q U r]] = {2, 3, 4, 5, 6}

100/113

CTL (Clarke & Emerson 81)

Remark: Equivalent formulae
! AXϕ = ¬EX¬ϕ,

! ¬(ϕ U ψ) = G¬ψ ∨ (¬ψ U (¬ϕ ∧ ¬ψ))
! Aϕ U ψ = ¬EG¬ψ ∧ ¬E¬ψ U (¬ϕ ∧ ¬ψ)

! AG(req → F grant) = AG(req → AF grant)

! AGFϕ = AGAFϕ infinitely often

! EFGϕ = EFEGϕ ultimately

! EGEFϕ != EGFϕ

! AFAGϕ != AFGϕ 1 2 3
¬ϕ ϕ ¬ϕ

! EGEXϕ != EGXϕ

101/113

Model checking of CTL

Definition: Existential and universal model checking

Let M = (S, T, I,AP, ") be a Kripke structure and ϕ ∈ CTL a formula.

M |=∃ ϕ if M, s |= ϕ for some s ∈ I.
M |=∀ ϕ if M, s |= ϕ for all s ∈ I.

Remark:

M |=∃ ϕ iff I ∩ [[ϕ]] != ∅

M |=∀ ϕ iff I ⊆ [[ϕ]]

M |=∀ ϕ iff M !|=∃ ¬ϕ

Definition: Model checking problems MC∀
CTL and MC∃

CTL

Input: A Kripke structure M = (S, T, I,AP, ") and a formula ϕ ∈ CTL

Question: Does M |=∀ ϕ ? or Does M |=∃ ϕ ?

102/113

Model checking of CTL

Theorem
Let M = (S, T, I,AP, ") be a Kripke structure and ϕ ∈ CTL a formula.
The model checking problem M |=∃ ϕ is decidable in time O(|M | · |ϕ|)

Proof:

Compute [[ϕ]] = {s ∈ S | M, s |= ϕ} by induction on the formula.

The set [[ϕ]] is represented by a boolean array: L[s][ϕ] = 1 if s ∈ [[ϕ]].

The labelling " is encoded in L: for p ∈ AP we have L[s][p] = 1 if p ∈ "(s).

103/113

Model checking of CTL

Definition: procedure semantics(ϕ)

case ϕ = ¬ϕ1

semantics(ϕ1)
[[ϕ]] := S \ [[ϕ1]] O(|S|)

case ϕ = ϕ1 ∨ ϕ2

semantics(ϕ1); semantics(ϕ2)
[[ϕ]] := [[ϕ1]] ∪ [[ϕ2]] O(|S|)

case ϕ = EXϕ1

semantics(ϕ1)
[[ϕ]] := ∅ O(|S|)
for all (s, t) ∈ T do if t ∈ [[ϕ1]] then [[ϕ]] := [[ϕ]] ∪ {s} O(|T |)

case ϕ = AXϕ1

semantics(ϕ1)
[[ϕ]] := S O(|S|)
for all (s, t) ∈ T do if t /∈ [[ϕ1]] then [[ϕ]] := [[ϕ]] \ {s} O(|T |)

104/113

Model checking of CTL

Definition: procedure semantics(ϕ)

case ϕ = Eϕ1 U ϕ2 O(|S|+ |T |)
semantics(ϕ1); semantics(ϕ2)
L := [[ϕ2]] // the set L is the “todo” list O(|S|)
Z := ∅ // the set Z is the “done” list O(|S|)
while L != ∅ do |S| times
Invariant: [[ϕ2]] ∪ ([[ϕ1]] ∩ T−1(Z)) ⊆ Z ∪ L ⊆ [[Eϕ1 U ϕ2]]
take t ∈ L; L := L \ {t}; Z := Z ∪ {t} O(1)
for all s ∈ T−1(t) do |T | times
if s ∈ [[ϕ1]] \ (Z ∪ L) then L := L ∪ {s}

[[ϕ]] := Z

Z is only used to make the invariant clear.
Z ∪ L can be replaced by [[ϕ]].

105/113

Model checking of CTL

Definition: procedure semantics(ϕ)

Replacing Z ∪ L by [[ϕ]]

case ϕ = Eϕ1 U ϕ2 O(|S|+ |T |)
semantics(ϕ1); semantics(ϕ2)
L := [[ϕ2]] // the set L is imlemented with a list O(|S|)
[[ϕ]] := [[ϕ2]] O(|S|)
while L != ∅ do |S| times
take t ∈ L; L := L \ {t} O(1)
for all s ∈ T−1(t) do |T | times
if s ∈ [[ϕ1]] \ [[ϕ]] then L := L ∪ {s}; [[ϕ]] := [[ϕ]] ∪ {s} O(1)

106/113

Model checking of CTL

Definition: procedure semantics(ϕ)

case ϕ = Aϕ1 U ϕ2 O(|S|+ |T |)
semantics(ϕ1); semantics(ϕ2)
L := [[ϕ2]] // the set L is the “todo” list O(|S|)
Z := ∅ // the set Z is the “done” list O(|S|)
for all s ∈ S do c[s] := |T (s)| O(|S|)
while L != ∅ do |S| times
Invariant: ∀s ∈ S, c[s] = |T (s) \ Z| and

[[ϕ2]] ∪ ([[ϕ1]] ∩ {s ∈ S | T (s) ⊆ Z}) ⊆ Z ∪ L ⊆ [[Aϕ1 U ϕ2]]
take t ∈ L; L := L \ {t}; Z := Z ∪ {t} O(1)
for all s ∈ T−1(t) do |T | times
c[s] := c[s]− 1 O(1)
if c[s] = 0 ∧ s ∈ [[ϕ1]] \ (Z ∪ L) then L := L ∪ {s}

[[ϕ]] := Z

Z is only used to make the invariant clear.
Z ∪ L can be replaced by [[ϕ]].

107/113

Model checking of CTL

Definition: procedure semantics(ϕ)

Replacing Z ∪ L by [[ϕ]]

case ϕ = Aϕ1 U ϕ2 O(|S|+ |T |)
semantics(ϕ1); semantics(ϕ2)
L := [[ϕ2]] // the set L is imlemented with a list O(|S|)
[[ϕ]] := [[ϕ2]] O(|S|)
for all s ∈ S do c[s] := |T (s)| O(|S|)
while L != ∅ do |S| times
take t ∈ L; L := L \ {t} O(1)
for all s ∈ T−1(t) do |T | times
c[s] := c[s]− 1 O(1)
if c[s] = 0 ∧ s ∈ [[ϕ1]] \ [[ϕ]] then O(1)

L := L ∪ {s}; [[ϕ]] := [[ϕ]] ∪ {s} O(1)

108/113

Complexity of CTL

Definition: SAT(CTL)

Input: A formula ϕ ∈ CTL

Question: Existence of a model M and a state s such that M, s |= ϕ ?

Theorem: Complexity
! The model checking problem for CTL is PTIME-complete.

! The satisfiability problem for CTL is EXPTIME-complete.

109/113

fairness

Example: Fairness
Only fair runs are of interest

! Each process is enabled infinitely often:
∧

i

GF runi

! No process stays ultimately in the critical section:
∧

i

¬FGCSi =
∧

i

GF¬CSi

Definition: Fair Kripke structure

M = (S, T, I,AP, ", F1, . . . , Fn) with Fi ⊆ S.

An infinite run σ is fair if it visits infinitely often each Fi

110/113

fair CTL

Definition: Syntax of fair-CTL

ϕ ::= ⊥ | p (p ∈ AP) | ¬ϕ | ϕ ∨ ϕ | Ef Xϕ | Af Xϕ | Ef ϕ U ϕ | Af ϕ U ϕ

Definition: Semantics as a fragment of CTL∗

Let M = (S, T, I,AP, ", F1, . . . , Fn) be a fair Kripke structure.

Then, Ef ϕ = E(fair ∧ ϕ) and Af ϕ = A(fair → ϕ)

where fair =
∧

i GFFi

Lemma: CTLf cannot be expressed in CTL

111/113

fair CTL

Proof: CTLf cannot be expressed in CTL

Consider the Kripke structure Mk defined by:

2k 2k − 1 2k − 2 2k − 3 · · · 4 3 2 1
p p p p¬p ¬p ¬p ¬p

! Mk, 2k |= EGF p but Mk, 2k − 2 !|= EGF p

! If ϕ ∈ CTL and |ϕ| ≤ m ≤ k then

Mk, 2k |= ϕ iff Mk, 2m |= ϕ

Mk, 2k − 1 |= ϕ iff Mk, 2m− 1 |= ϕ

If the fairness condition is "−1(p) then Ef 1 cannot be expressed in CTL.

112/113

Model checking of CTLf

Theorem
The model checking problem for CTLf is decidable in time O(|M | · |ϕ|)

Proof: Computation of Fair = {s ∈ S | M, s |= Ef 1}

Compute the SCC of M with Tarjan’s algorithm (in time O(|M |)).

Let S′ be the union of the (non trivial) SCCs which intersect each Fi.

Then, Fair is the set of states that can reach S′.

Note that reachability can be computed in linear time.

113/113

Model checking of CTLf

Proof: Reductions
Ef Xϕ = EX(Fair ∧ ϕ) and Ef ϕ U ψ = Eϕ U (Fair ∧ ψ)

It remains to deal with Af ϕ U ψ.

Recall that Aϕ U ψ = ¬EG¬ψ ∧ ¬E¬ψ U (¬ϕ ∧ ¬ψ)

This formula also holds for fair quantifications Af and Ef .
Hence, we only need to compute the semantics of Ef Gϕ.

Proof: Computation of Ef Gϕ

Let Mϕ be the restriction of M to [[ϕ]]f .

Compute the SCC of Mϕ with Tarjan’s algorithm (in linear time).

Let S′ be the union of the (non trivial) SCCs of Mϕ which intersect each Fi.

Then, M, s |= Ef Gϕ iff M, s |= Eϕ U S′ iff Mϕ, s |= EFS′.

This is again a reachability problem which can be solved in linear time.

