Possibility is not expressible in LTL

Example:

 $\varphi :$ Whenever p holds, it is possible to reach a state where q holds. φ cannot be expressed in LTL.

- A: for all infinite runs

▲□▶▲圖▶▲콜▶▲콜▶ 콜 키억은 90/113

State formulae and path formulae

Definition: State formulae

 $\varphi\in {\rm CTL}^*$ is a state formula if $\forall M,\sigma,\sigma',i,j$ such that $\sigma(i)=\sigma'(j)$ we have

 $M, \sigma, i \models \varphi \iff M, \sigma', j \models \varphi$

If φ is a state formula and $M=(S,T,I,\mathrm{AP},\ell),$ define

 $\llbracket \varphi \rrbracket^M = \{s \in S \mid M, s \models \varphi\}$

Example: State formulae

Formulae of the form p or $\mathbf{E}\varphi$ or $\mathbf{A}\varphi$ are state formulae. State formulae are closed under boolean connectives.

 $\llbracket p \rrbracket = \{s \in S \mid p \in \ell(s)\} \qquad \llbracket \neg \varphi \rrbracket = S \setminus \llbracket \varphi \rrbracket \qquad \llbracket \varphi_1 \vee \varphi_2 \rrbracket = \llbracket \varphi_1 \rrbracket \cup \llbracket \varphi_2 \rrbracket$

Definition: Alternative syntax

 $\begin{array}{lll} \mbox{State formulae} & \varphi ::= \bot \mid p \ (p \in {\rm AP}) \mid \neg \varphi \mid \varphi \lor \varphi \mid {\sf E} \ \psi \mid {\sf A} \ \psi \\ \mbox{Path formulae} & \psi ::= \varphi \mid \neg \psi \mid \psi \lor \psi \mid {\sf X} \ \psi \mid \psi \ U \ \psi \end{array}$

CTL* (Emerson & Halpern 86)

Definition: Syntax of the Computation Tree Logic CTL^*

 $\varphi ::= \bot \mid p \ (p \in \operatorname{AP}) \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathsf{X} \varphi \mid \varphi \: \mathsf{U} \: \varphi \mid \mathsf{E} \: \varphi \mid \mathsf{A} \: \varphi$

Definition: Semantics:

Let $M = (S, T, I, AP, \ell)$ be a Kripke structure and σ an infinte run of M.

 $\begin{array}{ll} M,\sigma,i\models \mathsf{E}\varphi & \text{if} & M,\sigma',0\models\varphi \text{ for some infinite run }\sigma' \text{ such that }\sigma'(0)=\sigma(i)\\ M,\sigma,i\models \mathsf{A}\varphi & \text{if} & M,\sigma',0\models\varphi \text{ for all infinite runs }\sigma' \text{ such that }\sigma'(0)=\sigma(i) \end{array}$

Example: Some specifications

- EF φ : φ is possible
- AG φ : φ is an invariant
- AF φ : φ is unavoidable
- EG φ : φ holds globally along some path

Remark:

 $\mathsf{A}\,\varphi\equiv\neg\,\mathsf{E}\,\neg\varphi$

▲□▶ ▲圖▶ ▲ 国▶ ▲ 国▶ ■ 釣へで 91/113

Model checking of CTL^*

Definition: Existential and universal model checking
Let $M = (S, T, I, AP, \ell)$ be a Kripke structure and $\varphi \in CTL^*$ a formula.
$\begin{array}{ll} M \models_{\exists} \varphi & \text{if } M, \sigma, 0 \models \varphi \text{ for some initial infinite run } \sigma \text{ of } M. \\ M \models_{\forall} \varphi & \text{if } M, \sigma, 0 \models \varphi \text{ for all initial infinite run } \sigma \text{ of } M. \end{array}$

Remark:

$$\begin{split} M &\models_{\exists} \varphi \quad \text{iff} \quad I \cap \llbracket \mathsf{E} \varphi \rrbracket \neq \emptyset \\ M &\models_{\forall} \varphi \quad \text{iff} \quad I \subseteq \llbracket \mathsf{A} \varphi \rrbracket \\ M &\models_{\forall} \varphi \quad \text{iff} \quad M \not\models_{\exists} \neg \varphi \end{split}$$

Definition: Model checking problems $MC_{CTL^*}^{\forall}$ and $MC_{CTL^*}^{\exists}$ Input: A Kripke structure $M = (S, T, I, AP, \ell)$ and a formula $\varphi \in CTL^*$

or

Question: Does $M \models_{\forall} \varphi$?

Does $M \models_\exists \varphi$?

Complexity of CTL*

 $\begin{array}{l} \text{Definition: Syntax of the Computation Tree Logic CTL}^* \\ \varphi ::= \bot \mid p \ (p \in \operatorname{AP}) \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathsf{X} \ \varphi \mid \varphi \ \mathsf{U} \ \varphi \mid \mathsf{E} \ \varphi \mid \mathsf{A} \ \varphi \end{array}$

Theorem

The model checking problem for CTL^* is PSPACE-complete

Proof:

 $\mathsf{PSPACE}\text{-hardness: follows from } \mathrm{LTL} \subseteq \mathrm{CTL}^*.$

PSPACE-easiness: reduction to LTL-model checking by inductive eliminations of path quantifications.

Satisfiability for $\operatorname{CTL}\nolimits^*$

Definition: $SAT(CTL^*)$

Input: A formula $\varphi \in CTL^*$

Question: Existence of a model M and a run σ such that $M, \sigma, 0 \models \varphi$?

Theorem

The satisfiability problem for CTL^* is 2-EXPTIME-complete

$\mathrm{MC}_{\mathrm{CTL}^*}^\forall$ in PSPACE

Proof:

For $Q \in \{\exists, \forall\}$ and $\psi \in \text{LTL}$, let $\text{MC}^{Q}_{\text{LTL}}(M, t, \psi)$ be the function which computes in polynomial space whether $M, t \models_{Q} \psi$, i.e., if $M, t \models Q\psi$.

Let $M = (S, T, I, AP, \ell)$ be a Kripke structure, $s \in S$ and $\varphi \in CTL^*$.

$\mathrm{MC}^{orall_{\mathrm{CTL}^*}}(M,s,\varphi)$

If *E*, A do not occur in φ then return $\mathrm{MC}_{\mathrm{LTL}}^{\forall}(M, s, \varphi)$ fi Let $\mathcal{Q}\psi$ be a subformula of φ with $\psi \in \mathrm{LTL}$ and $\mathcal{Q} \in \{\mathsf{E}, \mathsf{A}\}$ Let $p_{\mathcal{Q}\psi}$ be a new propositional variable Define $\ell' : S \to 2^{\mathrm{AP}'}$ with $\mathrm{AP}' = \mathrm{AP} \uplus \{p_{\mathcal{Q}\psi}\}$ by $\ell'(t) \cap \mathrm{AP} = \ell(t)$ and $p_{\mathcal{Q}\psi} \in \ell'(t)$ iff $\mathrm{MC}_{\mathrm{LTL}}^{\mathcal{Q}}(M, t, \psi)$ Let $M' = (S, T, I, \mathrm{AP}', \ell')$ Let $\varphi' = \varphi[p_{\mathcal{Q}\psi}/\mathcal{Q}\psi]$ be obtained from φ by replacing each $\mathcal{Q}\psi$ by $p_{\mathcal{Q}\psi}$ Return $\mathrm{MC}_{\mathrm{CTL}}^{\forall}(M', s, \varphi')$

< □ → < 部 → < 注 → < 注 → < 注 → ○ < ♡ < 05/113</p>

CTL (Clarke & Emerson 81)

Definition: Computation Tree Logic (CTL)

Syntax:

 $\varphi ::= \bot \mid p \ (p \in AP) \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathsf{EX} \varphi \mid \mathsf{AX} \varphi \mid \mathsf{E} \varphi \, \mathsf{U} \varphi \mid \mathsf{A} \varphi \, \mathsf{U} \varphi$

The semantics is inherited from CTL*.

Remark: All CTL formulae are state formulae

 $\llbracket \varphi \rrbracket^M = \{ s \in S \mid M, s \models \varphi \}$

Examples: Macros

 $\begin{array}{l} \mathsf{EF}\,\varphi = \mathsf{E} \top \,\mathsf{U}\,\varphi \quad \text{and} \quad \mathsf{AF}\,\varphi = \mathsf{A} \top \,\mathsf{U}\,\varphi \\ \mathsf{EG}\,\varphi = \neg \,\mathsf{AF}\,\neg\varphi \quad \text{and} \quad \mathsf{AG}\,\varphi = \neg \,\mathsf{EF}\,\neg\varphi \\ \mathsf{AG}(\mathrm{req} \rightarrow \mathsf{EF}\,\mathrm{grant}) \\ \mathsf{AG}(\mathrm{req} \rightarrow \mathsf{AF}\,\mathrm{grant}) \end{array}$

◆□ → ◆□ → ◆ ■ → ▲ ■ → ● ◆ ○ へ ○ 97/113

CTL (Clarke & Emerson 81)

Definition: Semantics

All CTL-formulae are state formulae. Hence, we have a simpler semantics. Let $M = (S, T, I, AP, \ell)$ be a Kripke structure without deadlocks and let $s \in S$.

$s \models p$	if	$p \in \ell(s)$
$s \models EX$	arphi if	$\exists s \rightarrow s' \text{ with } s' \models \varphi$
$s \models AX$	arphi if	$orall s ightarrow s' \models arphi$
$s \models E \varphi$	$U\psi$ if	$\exists s = s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow \cdots s_j$ finite path, with
		$s_j \models \psi$ and $s_k \models \varphi$ for all $0 \le k < j$
$s \models A \varphi$	$U\psi$ if	$\forall s = s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow \cdots$ infinite path, $\exists j \ge 0$ with
		$s_j \models \psi$ and $s_k \models \varphi$ for all $0 \le k < j$

CTL (Clarke & Emerson 81)

CTL (Clarke & Emerson 81)

Example:

$$\begin{split} & \llbracket \mathsf{EX} \, p \rrbracket = \{1, 2, 3, 5, 6\} \\ & \llbracket \mathsf{AX} \, p \rrbracket = \{3, 6\} \\ & \llbracket \mathsf{EF} \, p \rrbracket = \{1, 2, 3, 4, 5, 6, 7, 8\} \\ & \llbracket \mathsf{AF} \, p \rrbracket = \{2, 3, 5, 6, 7\} \\ & \llbracket \mathsf{E} \, q \, \mathsf{U} \, r \rrbracket = \{1, 2, 3, 4, 5, 6\} \\ & \llbracket \mathsf{A} \, q \, \mathsf{U} \, r \rrbracket = \{2, 3, 4, 5, 6\} \end{split}$$

▲□▶▲圖▶▲필▶▲필▶ 필 ∽9
99/113

Model checking of CTL

Definition: Existential and universal model checking Let $M = (S, T, I, AP, \ell)$ be a Kripke structure and $\varphi \in CTL$ a formula. $M \models_{\exists} \varphi$ if $M, s \models \varphi$ for some $s \in I$. $M \models_{\forall} \varphi$ if $M, s \models \varphi$ for all $s \in I$.

Remark:

$$\begin{split} M &\models_{\exists} \varphi \quad \text{iff} \quad I \cap \llbracket \varphi \rrbracket \neq \emptyset \\ M &\models_{\forall} \varphi \quad \text{iff} \quad I \subseteq \llbracket \varphi \rrbracket \\ M &\models_{\forall} \varphi \quad \text{iff} \quad M \not\models_{\exists} \neg \varphi \end{split}$$

Definition: Model checking problems $\mathrm{MC}_{\mathrm{CTL}}^\forall$ and $\mathrm{MC}_{\mathrm{CTL}}^\exists$			
Input:	A Kripke structure M	$I = (S, T, I, \mathrm{AP}, \ell)$	and a formula $arphi \in \mathrm{CTL}$
Question:	Does $M \models_\forall \varphi$?	or	Does $M \models_\exists \varphi$?

Model checking of CTL

Theorem

Let $M = (S, T, I, AP, \ell)$ be a Kripke structure and $\varphi \in CTL$ a formula. The model checking problem $M \models_\exists \varphi$ is decidable in time $\mathcal{O}(|M| \cdot |\varphi|)$

Proof:

 $\mathsf{Compute}\;[\![\varphi]\!]=\{s\in S\mid M,s\models\varphi\} \text{ by induction on the formula}.$

The set $[\![\varphi]\!]$ is represented by a boolean array: $L[s][\varphi] = \top$ if $s \in [\![\varphi]\!].$

The labelling ℓ is encoded in L: for $p \in AP$ we have $L[s][p] = \top$ if $p \in \ell(s)$.

▲□▶▲書▶▲書▶▲書▶ 書 釣みで 102/113

Model checking of CTL

Definition: procedure semantics(φ)	
case $arphi = E arphi_1 {\sf U} arphi_2$	$\mathcal{O}(S + T)$
$semantics(arphi_1)$; $semantics(arphi_2)$	
$L := \llbracket arphi_2 rbracket / /$ the set L is the "todo" list	$\mathcal{O}(S)$
$Z := \emptyset$ // the set Z is the "done" list	$\mathcal{O}(S)$
while $L eq \emptyset$ do	S times
Invariant: $\llbracket \varphi_2 \rrbracket \cup (\llbracket \varphi_1 \rrbracket \cap T^{-1}(Z)) \subseteq Z \cup L \subseteq \llbracket E \varphi_1 U \varphi_2 \rrbracket$	
take $t \in L$; $L := L \setminus \{t\}$; $Z := Z \cup \{t\}$	$\mathcal{O}(1)$
for all $s \in T^{-1}(t)$ do	T times
if $s \in \llbracket \varphi_1 \rrbracket \setminus (Z \cup L)$ then $L := L \cup \{s\}$	
$\llbracket \varphi \rrbracket := Z$	

Z is only used to make the invariant clear. $Z \cup L$ can be replaced by $[\![\varphi]\!]$.

Model checking of CTL

$\begin{aligned} & case \ \varphi = \neg \varphi_1 \\ & semantics(\varphi_1) \\ & \llbracket \varphi \rrbracket := S \setminus \llbracket \varphi_1 \rrbracket \\ & case \ \varphi = \varphi_1 \lor \varphi_2 \\ & semantics(\varphi_1); \ semantics(\varphi_2) \\ & \llbracket \varphi \rrbracket := \llbracket \varphi_1 \rrbracket \cup \llbracket \varphi_2 \rrbracket \\ & case \ \varphi = EX\varphi_1 \\ & semantics(\varphi_1) \\ & \llbracket \varphi \rrbracket := \emptyset \\ & for all \ (s,t) \in T \ do \ if \ t \in \llbracket \varphi_1 \rrbracket \ then \ \llbracket \varphi \rrbracket := \llbracket \varphi \rrbracket \cup \{s\} \end{aligned}$	
semantics(φ_1); semantics(φ_2) $\llbracket \varphi \rrbracket := \llbracket \varphi_1 \rrbracket \cup \llbracket \varphi_2 \rrbracket$ case $\varphi = EX\varphi_1$ semantics(φ_1) $\llbracket \varphi \rrbracket := \emptyset$	$\mathcal{O}(S)$
semantics $(arphi_1)$ $\llbracket arphi rbracket := \emptyset$	$\mathcal{O}(S)$
	$\mathcal{O}(S) \ \mathcal{O}(T)$
$\begin{array}{l} case \ \varphi = A X \varphi_1 \\ semantics(\varphi_1) \\ \llbracket \varphi \rrbracket := S \\ for all \ (s,t) \in T \ do \ if \ t \notin \llbracket \varphi_1 \rrbracket \ then \ \llbracket \varphi \rrbracket := \llbracket \varphi \rrbracket \setminus \{s\} \end{array}$	$\mathcal{O}(S) \ \mathcal{O}(T)$

◆□ → ◆● → ◆ ■ → ◆ ■ → ○ へ ○ 103/113

Model checking of CTL

Definition: procedure semantics($arphi$)	
Replacing $Z\cup L$ by $\llbracket arphi rbracket$	
case $\varphi = E\varphi_1 \cup \varphi_2$ semantics(φ_1); semantics(φ_2)	$\mathcal{O}(S + T)$
$L := \llbracket \varphi_2 \rrbracket //$ the set L is imlemented with a list	$\mathcal{O}(S)$
$\llbracket \varphi \rrbracket := \llbracket \varphi_2 \rrbracket$	$\mathcal{O}(S)$
while $L \neq \emptyset$ do	S times
take $t\in L;L:=L\setminus\{t\}$ for all $s\in T^{-1}(t)$ do	$\mathcal{O}(1)$ T times
if $s \in \llbracket \varphi_1 \rrbracket \setminus \llbracket \varphi \rrbracket$ then $L := L \cup \{s\}; \llbracket \varphi \rrbracket := \llbracket \varphi \rrbracket \cup \{s\}$	$\mathcal{O}(1)$

◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● □ • ○ Q ○ 104/113

Model checking of CTL

Definition: procedure semantics(φ)	
$case\; \varphi = A \varphi_1 U \varphi_2$	$\mathcal{O}(S + T)$
semantics(φ_1); semantics(φ_2)	
$L := \llbracket arphi_2 rbracket //$ the set L is the "todo" list	$\mathcal{O}(S)$
$Z := \emptyset$ // the set Z is the "done" list	$\mathcal{O}(S)$
for all $s \in S$ do $c[s] := T(s) $	$\mathcal{O}(S)$
while $L eq \emptyset$ do	S times
Invariant: $\forall s \in S, c[s] = T(s) \setminus Z $ and	
$\llbracket \varphi_2 \rrbracket \cup (\llbracket \varphi_1 \rrbracket \cap \{s \in S \mid T(s) \subseteq Z\}) \subseteq Z \cup L \subseteq \llbracket A \varphi_1$	$U \varphi_2$
take $t \in L; L := L \setminus \{t\}; Z := Z \cup \{t\}$	$\mathcal{O}(1)$
for all $s \in T^{-1}(t)$ do	T times
c[s] := c[s] - 1	$\mathcal{O}(1)$
if $c[s] = 0 \land s \in \llbracket \varphi_1 \rrbracket \setminus (Z \cup L)$ then $L := L \cup \{s\}$	
$\llbracket \varphi \rrbracket := Z$	

Z is only used to make the invariant clear. $Z \cup L$ can be replaced by $[\![\varphi]\!]$.

◆□ ▶ ◆ ● ▶ ◆ ■ ▶ ◆ ■ ▶ ● ● ⑦ Q @ 106/113

$\textbf{Complexity of } \mathrm{CTL}$

Definition: SAT(CTL)

Input: A formula $\varphi \in CTL$

Question: Existence of a model M and a state s such that $M, s \models \varphi$?

Theorem: Complexity

- The model checking problem for CTL is PTIME-complete.
- The satisfiability problem for $\ensuremath{\mathrm{CTL}}$ is EXPTIME-complete.

Model checking of CTL

Definition: procedure semantics($arphi$)	
Replacing $Z\cup L$ by $\llbracket arphi rbracket$	
$case\; \varphi = A \varphi_1 U \varphi_2$	$\mathcal{O}(S + T)$
semantics(φ_1); semantics(φ_2)	
$L := \llbracket \varphi_2 \rrbracket / /$ the set L is imlemented with a list	$\mathcal{O}(S)$
$\llbracket \varphi \rrbracket := \llbracket \varphi_2 \rrbracket$	$\mathcal{O}(S)$
for all $s \in S$ do $c[s] := T(s) $	$\mathcal{O}(S)$
while $L eq \emptyset$ do	S times
take $t\in L;L:=L\setminus\{t\}$	$\mathcal{O}(1)$
for all $s \in T^{-1}(t)$ do	T times
c[s] := c[s] - 1	$\mathcal{O}(1)$
if $c[s] = 0 \land s \in \llbracket arphi_1 rbracket \setminus \llbracket arphi_1 rbracket$ then	$\mathcal{O}(1)$
$L := L \cup \{s\}; \llbracket \varphi \rrbracket := \llbracket \varphi \rrbracket \cup \{s\}$	$\mathcal{O}(1)$

◆□ → < 畳 → < 差 → < 差 → 差 の & ② + 107/113</p>

fairness

Example: Fairness

Only fair runs are of interest

- Each process is enabled infinitely often: $\bigwedge \mathsf{GFrun}_i$
- No process stays ultimately in the critical section: $\bigwedge \neg \mathsf{F} \mathsf{G} \operatorname{CS}_i = \bigwedge \mathsf{G} \mathsf{F} \neg \operatorname{CS}_i$

Definition: Fair Kripke structure

 $M = (S, T, I, AP, \ell, F_1, \dots, F_n)$ with $F_i \subseteq S$.

An infinite run σ is fair if it visits infinitely often each F_i

▲□▶ ▲□▶ ▲ 필▶ ▲ 필▶ ▲ 필 · 키 ۹ (℃ 108/113)

fair CTL

Definition: Syntax of fair-CTL

 $\varphi ::= \bot \mid p \ (p \in \operatorname{AP}) \mid \neg \varphi \mid \varphi \lor \varphi \mid \mathsf{E}_{f} \mathsf{X} \varphi \mid \mathsf{A}_{f} \mathsf{X} \varphi \mid \mathsf{E}_{f} \varphi \mathsf{U} \varphi \mid \mathsf{A}_{f} \varphi \mathsf{U} \varphi$

Definition: Semantics as a fragment of CTL*

Let $M = (S, T, I, AP, \ell, F_1, \dots, F_n)$ be a fair Kripke structure.

Then,

 $\mathsf{E}_{\mathbf{f}}\varphi = \mathsf{E}(\operatorname{fair} \wedge \varphi)$ and $\mathsf{A}_{\mathbf{f}}\varphi = \mathsf{A}(\operatorname{fair} \rightarrow \varphi)$

where

fair = $\bigwedge_i \mathsf{G} \mathsf{F} F_i$

Lemma: CTL_f cannot be expressed in CTL

◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶</

Model checking of CTL_f

Theorem The model checking problem for CTL_f is decidable in time $\mathcal{O}(|M| \cdot |\varphi|)$

Proof: Computation of Fair = $\{s \in S \mid M, s \models \mathsf{E}_f \top\}$

Compute the SCC of M with Tarjan's algorithm (in time $\mathcal{O}(|M|)$). Let S' be the union of the (non trivial) SCCs which intersect each F_i . Then, Fair is the set of states that can reach S'. Note that reachability can be computed in linear time.

fair CTL

▲□▶<週▶<≧▶<≧▶<≧▶<≧</p>
● 2000 111/113

Model checking of CTL_f

Proof: Reductions			
$E_f X \varphi = E X(\operatorname{Fair} \land \varphi)$	and	$E_f \varphi U \psi = E \varphi U (\mathrm{Fair} \wedge \psi)$	
It remains to deal with $A_f arphi U \psi.$			
Recall that	$A\varphiU\psi=$	$= \neg EG \neg \psi \land \neg E \neg \psi U (\neg \varphi \land \neg \psi)$	
This formula also holds for fair quantifications A_f and E_f .			
Hence, we only need to c	ompute the	e semantics of $E_f G \varphi$.	

Proof: Computation of $E_f G \varphi$

Let M_{φ} be the restriction of M to $\llbracket \varphi \rrbracket_f$. Compute the SCC of M_{φ} with Tarjan's algorithm (in linear time). Let S' be the union of the (non trivial) SCCs of M_{φ} which intersect each F_i . Then, $M, s \models \mathsf{E}_f \mathsf{G} \varphi$ iff $M, s \models \mathsf{E} \varphi \cup S'$ iff $M_{\varphi}, s \models \mathsf{EF} S'$. This is again a reachability problem which can be solved in linear time.