Possibility is not expressible in LTL

Example:

@: Whenever p holds, it is possible to reach a state where ¢ holds.
(o cannot be expressed in LTL.

Consider the two models:

q
p,q p e.

CTL* (Emerson & Halpern 86)

Definition: Syntax of the Computation Tree Logic CTL*
pu=L|p(peAP)|wlpVe|Xo|pUp|Ep|Ayp

Definition: Semantics:
Let M = (S,T,1,AP,?) be a Kripke structure and o an infinte run of M.

M,o,i =Ep if M,o’,0 = ¢ for some infinite run ¢’ such that ¢’(0) = o(4)

M;: o e and Ma: M,o,i=Ap if M,o’,0 = ¢ for all infinite runs o’ such that ¢/(0) = o(4)
o. Example: Some specifications
Mibo but Mo EF p: ¢ |-s pos.5|b|e-
M and M, satisfy the same LTL formulae. AG@: ¢ is an invariant
We need quantifications on runs: ¢ = AG(p — EF q) AF p: ¢ is unavoidable
) EG ¢: ¢ holds globally along some path
E: for some infinite run
A: for all infinite runs Remark: Ap=-E-p
. *
State formulae and path formulae Model checking of CTL
Definition: State formulae o . . . .
. : — : : Definition: Existential and universal model checking
@ € CTL" is a state formula if VM, 0,0’,1,j such that o(i) = o’(j) we have i
Let M = (S,T,1,AP,?) be a Kripke structure and ¢ € CTL" a formula.
o ;7 .
M,oiFp <= M,0',jlE M =3¢ if M,0,0 |= ¢ for some initial infinite run o of M.
If ¢ is a state formula and M = (S, T, I, AP, £), define i |=y @ 07 2e0 = g i el Tukiell il iuw & eif i
[p]" ={s €S| M.s = ¢} Rletiaiic
— MEsg iff IN[EQ]#£0
xample: State formulae MEve iff IC[Ag]

Formulae of the form p or E ¢ or A ¢ are state formulae. )
State formulae are closed under boolean connectives. Misye iff M s -

P1={seSlpets)}l  [el=S\ld  [oved=ln]Vle] Definition: Model checking problems MCliyy - and MCiy, .
Definition: Alternative syntax Input: A Kripke structure M = (S, T, I, AP, ¢) and a formula ¢ € CTL"

State formulae @=L |p(p€AP) |- |V |EY | Ay
Path formulae Y u=@ | |V | XY [P U

Question: Does M =y p ? or Does M =3 ¢ ?




Complexity of CTL"

Definition: Syntax of the Computation Tree Logic CTL*
pu=Ll|p(PEAP)|~w|pVe|Xo|pUp|Ep|Ap

Theorem
The model checking problem for CTL* is PSPACE-complete

Proof:
PSPACE-hardness: follows from LTL C CTL*.

PSPACE-easiness: reduction to LTL-model checking by inductive eliminations of
path quantifications.

MCpy+ in PSPACE

Proof:
For Q € {3,V} and ¢ € LTL, let MC ., (M, t,4) be the function which computes
in polynomial space whether M.t =g v, i.e., if M,t = Q.

Let M = (S,T,1,AP,¢) be a Kripke structure, s € S and ¢ € CTL".

MClrpr (M, s, ©)
If E,A do not occur in ¢ then return MCY (M, s, ¢) fi
Let Q1 be a subformula of ¢ with ¢ € LTL and Q € {E,A}
Let poy be a new propositional variable
Define ¢/ : S — 2AF" with AP’ = AP & {pg,} by
¢(t) N AP = £(t) and poy € £/(t) iff MC2p (M, t, 1))
Let M’ = (S,T,I,AP, ¢
Let ¢ = ¢p[poy/ QY] be obtained from ¢ by replacing each Qi by pgy,
Return MC&rpp- (M, 5,¢')

Satisfiability for CTL"

Definition: SAT(CTL*)
Input: A formula ¢ € CTL*

Question: Existence of a model M and a run o such that M,0,0 = ¢ ?

Theorem
The satisfiability problem for CTL* is 2-EXPTIME-complete

CTL (Clarke & Emerson 81)

Definition: Computation Tree Logic (CTL)

Syntax:
pu=L1|p(PEAP)| ¢ |pVe|EXp|AXp[EpUp|[ApUgyp

The semantics is inherited from CTL".

Remark: All CTL formulae are state formulae

[l ={se€S|M,s | o}

Examples: Macros
EFp=ETU¢ and AFp=ATUp
EGp=—-AF—-¢p and AGy=-EF—¢p
AG(req — EF grant)
AG(req — AF grant)




CTL (Clarke & Emerson 81)

Definition: Semantics

All CTL-formulae are state formulae. Hence, we have a simpler semantics.
Let M = (S,T,I,AP,¥) be a Kripke structure without deadlocks and let s € S.

sEp if pel(s)
s EEXp if ds— s withs' Eo
s EAXp if Vs— s wehaves Eo

sEEeUY if Js=s9g— s1 — s2 — ---s; finite path, with
sjlEEvYand sp = forall 0 <k <j

sEApUY if Vs=sy— s — sy — - infinite path, 35 > 0 with
sjilEvYand sp = forall 0 <k <j

CTL (Clarke & Emerson 81)

ce‘ ®

[EXp] = {1,2,3,5,6}

[AXp] = {3,6}

[EFp] = {1,2,3,4,5,6,7,8}

[AFp] = {2,3,5,6,7}
[EqUr] = {1,2,3,4,5,6}
[AqUr] = {2,3,4,5,6}

Example:

CTL (Clarke & Emerson 81)

Remark: Equivalent formulae
AXp = 2 EX =,

“(pU) =GV (= U (mp A=)
AUt =-EG—h A~E— U (~p A )

AG(req — F grant) = AG(req — AF grant)

AGFyo =AGAFp infinitely often
EFGy =EFEGyp ultimately
EGEFp #EGFop
AFAGp #AFGop
EGEXp #EGXp P i P

Model checking of CTL

Definition: Existential and universal model checking
Let M = (S,T,1,AP,¢) be a Kripke structure and ¢ € CTL a formula.

MEse if M,s|= ¢ for some s € I.
MEvy ifM,skE@forallsel.
Remark:

MEse iff INfp] #0
MEve iff IC[¢]

MEy e iff Mg

Definition: Model checking problems MCY; and MCZ,
Input: A Kripke structure M = (S, T, I, AP, ¢) and a formula ¢ € CTL
Question: Does M =y ¢ ? or Does M =3 ¢ ?




Model checking of CTL

Model checking of CTL

Definition: procedure semantics(y)

case ¢ = —p

Theorem semantics(p1)
Let M = (S, T,I,AP, /) be a Kripke structure and ¢ € CTL a formula. [e] == S\ el O(1S1)
The model checking problem M 3 ¢ is decidable in time O(|M| - |¢]) case ¢ = o1 V g

semantics(p1); semantics(y2)
i [] = [e1] U [2] o(Is))
Compute [¢] ={s € S| M,s |= ¢} by induction on the formula. caZana:tifs)((j])

1

The set [¢] is represented by a boolean array: L[s][p] = T if s € [¢]. lo] =0 o(l5])

for all (s,t) € T do if t € [1] then [¢] = [¢] U {s} o(T)
The labelling ¢ is encoded in L: for p € AP we have L[s|[p] = T if p € {(s).

case p = AX

semantics(1)

[e] =S o(151)

for all (s,t) € T do if t ¢ [1] then [¢] := [¢] \ {s} o1

Model checking of CTL Model checking of CTL

Definition: procedure semantics(y)
case p = Ep; U iy O(IS| + |T) Definition: procedure semantics(y)

semantics(i1); semantics(y2) .

L :=[p2] // the set L is the “todo” list o(S)) Replacing ZU L by [¢]

Z = 0 // the set Z is the “done” list O(\S|) case ¢ = Epy U gy o(|S| + |T])

Wh'le_ L #0 do . |S| times semantics(ip1); semantics(p2)

Invariant: [2] U ([pr] NT71(Z)) S ZUL C [E¢r U o] L :=[p2] // the set L is imlemented with a list O(|S])
take t € L; L1:= L\{t}; Z:=ZU{t} (9(1). le] := [e2] o(|8))
for all s € T(t) do |T| times while L # () do |S| times

if s € [pa] \ (ZU L) then L := LU {s} take t € L; L := L\ {t} o(1)
lo] =2 for all s € T=1(¢) do |T'| times
if s € [pa] \ [] then L:= LU {s}; [o] := [o] U{s} o(1)

Z is only used to make the invariant clear.
Z U L can be replaced by [¢].




Model checking of CTL

Definition: procedure semantics(y)

Model checking of CTL

case p = Ap; U @y O(IS| + |T)) Definition: procedure semantics(y)
semantics((p1); semantics(p2 .
L:= [[gpg]]w/} the set L i(s(pth)e “todo” list o(S)) Replacing ZU L by [¢]
Z =0 // the set Z is the “done” list o(S)) case o = Ap; U o o(S| + 7))
for all s € S do c[s] := |T'(s)| o(lS]) semantics(p1); semantics(p2)
while L # () do S| times L :=[p2] // the set L is imlemented with a list O(1S))
Invariant: Vs € S, ¢[s] =|T(s) \ Z| and [¢] = [2] o(lS])
2] U([pr]N{s € S|T(s) S Z}) CZULC[Agp1U o] for all s € S do ¢[s] := |T(s)| o(|S))
take t € L; L:= L\ {t}; Z := ZU{t} o(1) while L # () do S| times
for all s € T=1(t) do |T'| times take t € L; L= L\ {t} 0(1)
cls] :=cls] - 1 o(1) for all s € T=1(¢) do |T| times
if c[s] =0As€[p]\(ZUL) then L:= LU {s} c[s] == c[s] — 1 o(1)
lo] =2 if ¢[s] =0A s € [p1] \ [¢] then o(1)
L:=Lu{s} [¢] = [p] U{s} o)
Z is only used to make the invariant clear.
Z U L can be replaced by [¢].
Complexity of CTL fairness

Definition: SAT(CTL)
Input: A formula ¢ € CTL

Question: Existence of a model M and a state s such that M, s = ¢ ?

Theorem: Complexity
The model checking problem for CTL is PTIME-complete.
The satisfiability problem for CTL is EXPTIME-complete.

Example: Fairness

Only fair runs are of interest

Each process is enabled infinitely often: /\ GF run;

3

No process stays ultimately in the critical section: /\ -FGCS; = /\ GF-CS;

3 K3

Definition: Fair Kripke structure
M = (S,T,I,AP,(,Fy, ..., F,) with F; C S.

An infinite run o is fair if it visits infinitely often each F;




fair CTL

Definition: Syntax of fair-CTL
pu=L|p(P€AP) ||V |EsXp|AsXp|EroUp|ArpUyp

Definition: Semantics as a fragment of CTL*
Let M = (S,T,I,AP,¢, Fy,...,F,) be a fair Kripke structure.

Then, E; ¢ = E(fair A ) and As p = A(fair — o)
where fair = \, GF F;

Lemma: CTL; cannot be expressed in CTL

fair CTL

Proof: CTL; cannot be expressed in CTL
Consider the Kripke structure M}, defined by:

() ()
2k 2k —1 2k —2 2k —3 o e e °
p p

p -p p P P P

M, 2k =EGFp but M, 2k—2EGFp

If ¢ € CTL and |p| < m < k then
My, 2k |= @ iff My, 2m = ¢
M, 2k — 1= @ iff Mg,2m—1F ¢

If the fairness condition is £~ (p) then E; T cannot be expressed in CTL.

Model checking of CTL;

Theorem
The model checking problem for CTL; is decidable in time O(|M| - |¢|)

Proof: Computation of Fair = {s € S| M,s =E; T}
Compute the SCC of M with Tarjan's algorithm (in time O(|M]|)).
Let S’ be the union of the (non trivial) SCCs which intersect each F;.
Then, Fair is the set of states that can reach S’.

Note that reachability can be computed in linear time.

Model checking of CTL;

Proof: Reductions

Ef X = EX(Fair A ) and Er Uy =EpU (Fair Ay)
It remains to deal with Ay o U ).

Recall that ApUtyp=-EGyp A-E—U (=p A1)

This formula also holds for fair quantifications Ay and E;.
Hence, we only need to compute the semantics of E; G .

Proof: Computation of E; G

Let M., be the restriction of M to [¢].

Compute the SCC of M, with Tarjan’s algorithm (in linear time).

Let S’ be the union of the (non trivial) SCCs of M, which intersect each Fj.
Then, M,s =EE; Gy iff M,s |=E@U S’ iff M,,s =EFS’.

This is again a reachability problem which can be solved in linear time.




