Correctness of A,

Proposition: L(p) C L(A,)

Lemma:
Let p=Yy “% Y3 % Yo+ be an accepting run of A, on u = agajas - € T¥.

Then, for all ¢ € sub(p) and n > 0,
for all reduction path V,, = Y - Z with a,, € ¥z and Y;,;1 = next(Z2),

YyeY = unkEy

Corollary: L(A,) C L(p)

Proof:
Let u = agajaz - -+ € 3¢ be such that u,0 |= ¢. By induction, we build a run

p:yoa_%ylg)@...

We start with Yo = {¢}. Assume that u,n = A 'Y, for some n > 0. By Lemma
[Soundness], there is Z,, € Red(Y;,) such that u,n = A Z, and for all until subfor-
mulae @ = a; Uas € U(p), if u,n = as then Z,, € Red,(Ys,). Then we define
Y,+1 = next(Z,). Since u,n = A Z,, Lemma [Next Step] implies a,, € ¥z, and
u,n+ 1= AY,4+1. Therefore, pis a run for u in A,.

It remains to show that p is successful. By definition, it starts from the initial
state {p}. Now let & = a3 U ag € U(p). Assume there exists N > 0 such that
Y, = Yoo ¢ T, for all n > N. Then Z, ¢ Red,(Y,) for all n > N and we
deduce that u,n [~ as for all n > N. But, since Zy ¢ Red,(Yn), the formula
a has been reduced using an e-transition marked !« along the path from Yy to
Zn. Therefore, Xa € Zn and a € Yy41. By construction of the run we have
u, N +1} AYni1. Hence, u, N + 1 |= o, a contradiction with u,n [~ ay for all
n > N. Consequently, the run p is successful and u is accepted by A,.

Lemma:
Let p =Yy -5 Y3 *% Yo -+ be an accepting run of A, on u = agajas - € I¥.

Then, for all ¢ € sub(y) and n > 0,
for all reduction path V,, =+ Y - Z with a, € ¥z and Y;,;1 = next(2),

YveY = unkEy

Proof: by induction on %

e ¢ = T. The result is trivial.

e ) = p € AP(yp). Since p is reduced, we have p € Z and it follows £; C %,.
Therefore, p € a, and u,n = p. The proof is similar if ) = —p for some p € AP(y).
e 1) = X1);. Then ¢ € Z and 91 € Y,4+1. By induction we obtain u,n+ 1 = ¢,
and we deduce u,n = Xy = 4.

e ) = 11 Aths. Along the path Y -5 Z the formula 1) must be reduced so
Y = Y' = Z with ¢1,92 € Y’. By induction, we obtain u,n = ¢ and
u,n = 2. Hence, u,n = 1. The proof is similar for ¢ = 11 V 1)s.

L(A,) € L(p)

Proof:

e ) = 1b; U1)a. Along the path Y —» Z the formula 1) must be reduced so Y —=»
Y =Y = Z with either Y/ = Y/ \ {¢} U {¢po} or Y = Y’ \ {4} U {th1, X}
In the first case, we obtain by induction u,n |= w2 and therefore u,n = . In
the second case, we obtain by induction w,n = ;. Since X% is reduced we get
X1 € Z and ¢ € next(Z) = Yy 41.

Let & > n be minimal such that Y}, =% Yi41 € Ty (such a value k exists since
p is accepting). We first show by induction that u,7 |= ¢y and ¢ € Y;4; for all
n < i < k. Recall that u,n =1 and ¥ € Y,,11. So let n < ¢ < k be such that
Y €Y;. Let Z' € Red(Y;) be such that a; € ¥z and Y;;1 = next(Z’). Since k
is minimal we know that Z’ ¢ Red,(Y;). Hence, along any reduction path from
Y; to Z' we must use a step Y’ %) Y\ {4} U {¢1,X4}. By induction on the
formula we obtain u,i = ¢;. Also, since X1 is reduced, we have X1 € Z' and
P €next(Z') = Yiqq.

Second, we show that u,k | 1. Since Y} Lo Y41 € Ty, we find some Z' €
Redy,(Ys) such that a; € ¥z and Yi41 = next(Z’). Since ¢ € Y}, along some
reduction path from Y}, to Z’ we use a step Y/ = Y\ {1} U {¢)2}. By induction
we obtain u, k = 1. Finally, we have shown u,n = 1 U ¢)e = 9.




Proof:

e ) =11 Raby. Along the path Y —» Z the formula ¢ must be reduced so ¥ —»
Y =5 Y" =5 Z with either Y = Y'\{}U{tp1, 92} or Y = Y'\ {tp}U{aba, X}
In the first case, we obtain by induction u,n = ¥ and u,n |= 2. Hence, u,n = ¢
and we are done. In the second case, we obtain by induction u,n = 12 and we get
also ¢ € Y,,11. Continuing with the same reasoning, we deduce easily that either

U, n ':G¢2 oru,n 'Z’l/}QU (d}l A¢2)

Example with two until sub-formulae

Example: Nested until: ¢ =p U ¢ with v =qUr

Red({¢}) = {{p. X}, {a, X ¥}, {r}} Red({v}) = {{g. X}, {r}}
Red, ({¢}) = {{a: X ¥}, {r}} Red, ({¢}) = {{g, X}, {r}}
Redy ({}) = {{p, X}, {r}} Red, ({¥}) = {{r}}

Satisfiability and Model Checking

Corollary: PSPACE upper bound for satisfiability and model checking
Let ¢ € LTL, we can check whether ¢ is satisfiable (or valid)
in space polynomial in |¢|.
Let p € LTL and M = (S,T, I, AP, ¢) be a Kripke structure.

We can check whether M =y ¢ (or M =3 ¢)
in space polynomial in || + log |M].

Proof:
For M =y ¢ we construct a synchronized product M ® A-:

soseM A Y yiea,

Transitions: 176)
(s,Y) —= (s, Y")

Initial states: I x {{—p}}.
Acceptance conditions: inherited from A-,.

Check M ® A, for emptiness.

On the fly simplifications A,

Built-in: reduction of a maximal formula.

Definition: Additional reduction rules
If AY = AY’ then we may use Y 5 Y.

Remark: checking equivalence is as hard as building the automaton.
Hence we only use syntactic equivalences.

If vy =11 Vg and 1 €Y or s € Y: y % Y\{¢}
If 4 = 11 U 3 and o3 € Y- Y = v\ {¢}
If ¢ =11 Reps and h1 € Y Y = Y\ {y}U{ye}




On the fly simplifications A,

Definition: Merging equivalent states

Let A = (Q,E,LT,Tl,... 7Tn) and s1, 82 € Q.
We can merge s; and s» if they have the same outgoing transitions:
Va € 3, Vs € Q,

(s1,a,8) €T < (s2,a,8) €T
and (s1,a,8) € T; < (s2,a,s) € T; forall1 <i<n.

Remark: Sufficient condition

Two states Y, Y’ of A, have the same outgoing transition if

Red(Y) = Red(Y”)
and Red,(Y) = Red,(Y") for all & € U(yp).

Example: Let ¢ = GFp A GFgq.

Without merging states A, has 4 states.
These 4 states have the same outgoing transitions.
The simplified automaton has only one state.

Other constructions

v

Tableau construction. See for instance [9, Wolper 85]
+ : Easy definition, easy proof of correctness
+ : Works both for future and past modalities
— : Inefficient without optimizations
Using Very Weak Alternating Automata [10, Gastin & Oddoux 01].
+ : Very efficient
— : Only for future modalities
Online tool: http://www.lsv.ens-cachan.fr/~gastin/1t1l2ba/

v

v

The domain is still very active.

v

See other references in [6, Demri & Gastin 10].

MC?(X,U) <p SAT(X, U)
[11, Sistla & Clarke 85]
Let M = (S,T,I,AP, /) be a Kripke structure and ¢ € LTL(AP, X, U)

Introduce new atomic propositions: APg = {at, | s € S}
Define AP’ = AP W APg ¥/ = AP T X% 5 3% by m(a) = a N AP.

Let w € . We have w = ¢ iff 7(w) = ¢
Define 95 € LTL(AP’, X, F) of size O(|M|?) by

1/1M—<\/ats>/\G V latan A-aten N\ oA N\ —pn \/ Xaty

sel sesS t#s peL(s) pEL(s) teT(s)

Let w = agajaz --- € ™. Then, w |= vy iff there exists an initial infinite run o
of M such that m(w) = £(0) and a; N APg = {ats, } for all i > 0.

Therefore, M 3¢ iff 4 A g is satisfiable
My ¢ iff 4bar A g is not satisfiable

Remark: we also have MC? (X, F) <p SAT(X, F).

QBF Quantified Boolean Formulae

Definition: QBF
Input: A formula v = Q171 - - - Qnrpy with ' = /\ \/ a;j

1<i<m 1<j<k;
Qi & {V, 3} and a;; € {1’1,—|I1, 000 ,.Z’n,—@n}.

Question: Is v valid?

Definition:

An assignment of the variables {z1,...,z,} is a word v = vy - - - v, € {0,1}".
We write v[i] for the prefix of length i.
Let V C {0,1}™ be a set of assignments.

V is valid (for 7") if v =4/ forall v € V,
V is closed (for y) if Vv € V, V1 <i<mst Q; =V,
' € Vst v[i — 1] = o'[i — 1] and {v;,v}} = {0, 1}.

Proposition:
visvalid iff 3V C {0,1}" s.t. V' is nonempty valid and closed




QBF <p MC?(U) [11, Sistla & Clarke 85]

Let v = Q121+ Qnin /\ \/ a;; with @; € {V,3} and a;; literals.
1<i<m 1<j<k;
Consider the KS M:

N
I @i I h £ at
_>60—>31/ \61 —>82/ \62 - S,,,/ \EH
! N7 N7
1 xy ! J
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A1k, a2k, B
G(af — sy R—ay) if aij = 4
Let ¥;; = k ’ ) ij : q _ ’
) w“/ {G(ZL’Z — Sk R _‘aij) if A5 = 7T an w 2/}1[) J

Let ¢; = G(ej—1 — (ms;—1 U 12) A(=sj—1 U xf) and = /\ ©;.
Then, ~ is valid iff M =3¢ A .

QBF <p MC?(U) [11, Sistla & Clarke 85]

Proof: If M |=3 1 A ¢ then 7 is valid

Each finite path 7 = eg = fm in M defines a valuation v” by:

- {1 if 7,|7| & —si S .

vl =
k 0 ifT,|T||:—‘Sk-S$£

Let o be an initial infinite path of M s.t. 0,0 =¥ A ¢.
Let V = {v7 | T = eg = fp, is a prefix of o}.

Claim: V' is nonempty, valid and closed.

QBF <p MC?(U) [11, Sistla & Clarke 85]

Proof: If  is valid then M =3¢ A ¢
Let V' C {0,1}" be nonempty, valid and closed.

First ingredient: extension of a run.

Assume T = ey = f,, satisfies v” € V and 7,0 = 9.

Let 1 <i<nwith Q; =V.

Let v/ € V sit. v'[i — 1] = v[i — 1] and {v;,v}} = {0,1}.

We can extend 7 in 7/ = T — 5; — €y, — fo — fm with v™ = and 7,0 E .
We say that 7/ is an extension of 7 wrt. i

Second step: the sequence of indices for the extensions.
Let 1 <ip < --- <4y < n be the indices of universal quantifications (Q;, = V).
Define by induction w1 = i1 and if k < ¢, w41 = wiigriwg. Let w = (wel)¥.

Final step: the infinite run.

Letv eV #0andlet 7=ey = f, withv™ € V and 7,0 = 1.

We build an infinite run o by extending 7 inductively wrt. the sequence of indices
defined by w.

Claim: 0,0 =¥ A .

Complexity of LTL

Theorem: Complexity of LTL
The following problems are PSPACE-complete:
SAT(LTL(X, U, Y,S)), MC"(LTL(X, U,Y,S)), MC?(LTL(X, U, Y, S))
SAT(LTL(X, F)), MC"(LTL(X, F)), MC?(LTL(X, F))
SAT(LTL(U)), MCY(LTL(U)), MC?(LTL(U))
The restriction of the above problems to a unique propositional variable

The following problems are NP-complete:
SAT(LTL(F)), MC?(LTL(F))




