Model checking for LTL

Definition: Model checking problem

Input: A Kripke structure M = (S, T,1, AP, ()
A formula ¢ € LTL(AP,Y,S, X, U)

Question: Does M = ¢ ?

Universal MC: M =y ¢ if £(0),0 = ¢ for all initial infinite run of M.

Existential MC: M =5 ¢ if £(0),0 |= ¢ for some initial infinite run of M.

Theorem [11, Sistla, Clarke 85], [12, Lichtenstein & Pnueli 85]
The Model checking problem for LTL is PSPACE-complete

Satisfiability for LTL

Let AP be the set of atomic propositions and ¥ = 24F.

Definition: Satisfiability problem
Input: A formula ¢ € LTL(AP,Y,S, X, U)

Question: Existence of w € ¥ and i € N such that w,i = ¢.

Definition: Initial Satisfiability problem
Input: A formula ¢ € LTL(AP,Y,S, X, U)
Question: Existence of w € 3¢ such that w,0 |= ¢.

Remark: ¢ is satisfiable iff F o is initially satisfiable.

Theorem (Sistla, Clarke 85, Lichtenstein et. al 85)
The satisfiability problem for LTL is PSPACE-complete

Definition: (Initial) validity
@ is valid iff =g is not satisfiable.

Decision procedure for LTL

Definition: The core
From a formula ¢ € LTL(AP,...), construct a Biichi automaton A, such that

L(A) = L(p) ={w € =¥ | w,0 | p}.

Satisfiability (initial)

Check the Biichi automaton A, for emptiness.

Model checking

Construct a synchronized product B = M ® A-, so that
the successful runs of B correspond to the initial runs of M satisfying —¢.

Then, check B for emptiness.

Theorem:
Checking Biichi automata for emptiness is NLOGSPACE-complete.

Buchi automata

Definition:
A= (Q,%,1,T, F) where
Q: finite set of states
> finite set of labels
I C @: set of initial states
T CQ x X x Q: transitions
F C @Q: set of accepting states (repeated, final)

Example:

L(A) ={w € {a,b}* | |w|, = w}

Buchi automata for some LTL formulae

Definition:

Buchi automata for some LTL formulae

Recall that ¥ = 24T For ¢ € B(AP) we let £y = {a € ¥ | a = 1} Examples:
For instance, for p,q € AP,
by X
S,={acS|pea) and T,=3\3, (3 5, €37 .
S =5, N, and Syug =5, US, F Gp: o @ no deterministic Biichi automaton.
Tpa-q = Tp \ Xg
S 5,
by
Examples: GFp: 86 deterministic Blichi automata
> ' ' 5 » ' ' 5 = 5 are not closed under complement.
-p -pP
) g ()
PA—q
) :
S O O O OBk sera =0 D)
q
o %
Buchi automata for some LTL formulae Buchi automata
Properties

Examples:

e TS el
(35, () ()
O——@ @

%, Yign-p ' %)
Ypaq
o

pRq

Blichi automata are closed under union, intersection, complement.
Union: trivial
Intersection: easy (exercice)

complement: hard

Let o = F((p AX" =p) V (=p A X" p))

Any non deterministic Biichi automaton for —¢ has at least 2" states.

Buchi automata

Exercise:
Given Biichi automata for ¢ and 1,
Construct a Biichi automaton for X ¢ (trivial)

Construct a Biichi automaton for ¢ U ¢

This gives an inductive construction of A, from ¢ € LTL(AP,X,U) ...

... but the size of A, might be non-elementary in the size of .

Generalized Buchi automata

Definition: acceptance on states
"4: (Q7EaI7T,F1,...,Fn) Wlth Fz g Q

An infinite run o is successful if it visits infinitely often each F;.

GFpA GFgq:

Definition: acceptance on transitions
’A = (Q7E717T7T17.”,Tn) with Tz g T.

An infinite run o is successful if it uses infinitely many transitions from each T;.

GFpA GFgq:

GBA to BA

t
t=s5 sy cANsy = sheB

Transitions: —
(817 52) - (517 32)

Accepting states: @ x {n}

Negative normal form

Definition: Syntax (p € AP)

pu=TI|L[pl-pleVel|lerp|Xe|pUp|pRyp

Proposition: Any formula can be transformed in NNF

(pVY)= (=) A (=) —(pAY) = (mp) V()
—(pUy¥)=(—p) R(=) —(pRY) = (=p) U (=)
~Xp=X-p =g

This does not increase the number of Temporal subformulae.

Temporal formulae

Definition: Temporal formulae
literals

formulae with outermost connective X, U or R.

Reducing the number of temporal subformulae

(Xp) A (Xeh) = X(p A) (Xp) U (Xep) = X(p U y)
(e R1) A (p Rep2) = o R (Y1 Aha) (p1 RY)V (p2 RY) = (01 V 02) Ry
(Gp) A (GY) =G(pAY) GFpVGFyY=GF(p V)

From LTL to BA [6, Demri & Gastin 10]

Definition:
Z C NNF is consistent if L ¢ Z and {p,—p} € Z for all p € AP.
For Z C NNF, we define A\ Z = /\wezd"
Note that A = T and if Z is inconsistent then A Z = L.

Intuition for the BA A, = (Q, %, I, T, (T,)acu(y))

Let ¢ € NNF be a formula.
sub(y) is the set of sub-formulae of ¢.
U(¢) the set of until sub-formulae of .
We construct a BA A, with Q = 25">(¥) and T = {¢}.
A state Z C sub(yp) is a set of obligations.
If Z C sub(p), we want L(AZ) ={uec¥¥|u,0E A\Z}
where AZ is A, using Z as unique initial state.

Reduced formulae
Definition: Reduced formulae
A formula is reduced if it is a literal (p or —p) or a next-formula (X 3).
Z C NNF is reduced if all formulae in Z are reduced,
For Z C NNF consistent and reduced, we define
next(Z) = {a | Xa € Z}

Sz=1Z% N () Z-

PEZ —pEZ

Lemma: Next step

Let Z C NNF be consistent and reduced.
Let u = agaias--- € X* and n > 0. Then

u,n}:/\Z iff u,n+1|:/\next(Z) and a, € Xz
» A, will have transitions Z 22, next(Z).

Note that () = 0.

» Problem: next(Z) is not reduced in general (it may even be inconsistent).

Reduction rules

Definition: Reduction of obligations to literals and next-formulae
Let Y C NNF and let ¢ € Y maximal not reduced.

™

fp =i ngpr ¥V = (VY \{$}) U{¢n, 92}
roeses 5 B
re-wne 2 B,
If ¢ = Gy Y =S (VA {gh) U {, Xy}
roesver Y 5 BRI
roers Y5 BRI,

Note the mark !4 on the second transitions for U and F.

Reduction rules

Example: ¢ = G(p — Fq)

¢ = G(-pVFq) L, X
1 _K-/
€ si
' —\p\/Fq,Xgo/\.- —————— > Fq,Xgp/\.
Seeaeet “ea-e-
€l eilFq
LD, X ' XFg, X)

State = set of obligations.
Reduce obligations to literals and next-formulae.
Note again the mark !F ¢ on the last edge

Reduction

Lemma: Soundness
if there is only one rule Y < Y7 then A Y = AV,
if there are two rules Y = Y and Y 5 Y, then AY = AV VA Y2

Definition:
For Y C NNF and a € U(p), let

Red(Y) = {Z consistent and reduced | there is a path Y —=» Z}
Red,(Y) = {Z consistent and reduced | there is a path Y — Z
without using an edge marked with !a}

Lemma: Soundness
Let Y C NNF, then AY =\ ycpoaiyy A Z
Let u = aparaz--- € ¥ and n > 0 with u,n = A Y.

Then, 37 € Red(Y) such that u,n = A\ Z
and Z € Red,(Y) for all @« = a3 U aa € U(y) such that u,n = as.

Automaton A,

Definition: Automaton A,
States: Q = 25"P(®), T ={yp}
Transitions: T = {Y % next(Z) | Y € Q,a € ¥z and Z € Red(Y)}

Acceptance: Tp, = {Y % next(Z) | Y € Q,a € £z and Z € Red,(Y)}
for each a € U(p).

Automaton A,
Example: ¢ = G(p — Fq)

it Ypva Y
VP X
_____ gg b %E%
A S
BN Z
Eq /’-__\\ /"\-------\\
g, Xp v Fg,—p, X}
Y Tt
q q ~._Fgq
e e DS
1 ! E <
_____ \ S S PP AL
S| {pVFgXp r-5-a{ FgXp a=1 Fg,pVFq Xp) | XFq,-pXg)
N oy e R , N |

Transition = check literals and move forward.

Simplification

