Model checking for LTL

Definition: Model checking problem

A Kripke structure $M = (S, T, I, AP, \ell)$

A formula $\varphi \in LTL(AP, Y, S, X, U)$

Question: Does $M \models \varphi$?

Universal MC: $M \models_{\forall} \varphi$ if $\ell(\sigma), 0 \models \varphi$ for all initial infinite run of M. Existential MC: $M \models_{\exists} \varphi$ if $\ell(\sigma), 0 \models \varphi$ for some initial infinite run of M.

 $M \models_{\forall} \varphi$ iff $M \not\models_{\exists} \neg \varphi$

Theorem [11, Sistla, Clarke 85], [12, Lichtenstein & Pnueli 85]

The Model checking problem for LTL is PSPACE-complete

Decision procedure for LTL

Definition: The core

From a formula $\varphi \in LTL(AP,...)$, construct a Büchi automaton \mathcal{A}_{φ} such that

$$\mathcal{L}(\mathcal{A}) = \mathcal{L}(\varphi) = \{ w \in \Sigma^{\omega} \mid w, 0 \models \varphi \}.$$

Satisfiability (initial)

Check the Büchi automaton \mathcal{A}_{ω} for emptiness.

Model checking

Construct a synchronized product $\mathcal{B} = M \otimes \mathcal{A}_{\neg \omega}$ so that the successful runs of \mathcal{B} correspond to the initial runs of M satisfying $\neg \varphi$.

Then, check \mathcal{B} for emptiness.

Theorem:

Checking Büchi automata for emptiness is NLOGSPACE-complete.

Definition: Satisfiability problem

A formula $\varphi \in LTL(AP, Y, S, X, U)$

Question: Existence of $w \in \Sigma^{\omega}$ and $i \in \mathbb{N}$ such that $w, i \models \varphi$.

Definition: Initial Satisfiability problem

A formula $\varphi \in LTL(AP, Y, S, X, U)$ Input:

Question: Existence of $w \in \Sigma^{\omega}$ such that $w, 0 \models \varphi$.

Remark: φ is satisfiable iff $F \varphi$ is *initially* satisfiable.

Theorem (Sistla, Clarke 85, Lichtenstein et. al 85)

The satisfiability problem for LTL is PSPACE-complete

Definition: (Initial) validity

 φ is valid iff $\neg \varphi$ is **not** satisfiable.

Büchi automata

Definition:

 $\mathcal{A} = (Q, \Sigma, I, T, F)$ where

Q: finite set of states

 Σ : finite set of labels

 $I \subseteq Q$: set of initial states

 $T \subseteq Q \times \Sigma \times Q$: transitions

 $F \subseteq Q$: set of accepting states (repeated, final)

Example:

$$A = -1$$

$$a$$

$$b$$

$$b$$

$$a$$

$$2$$

$$\mathcal{L}(\mathcal{A}) = \{ w \in \{a, b\}^{\omega} \mid |w|_a = \omega \}$$

Büchi automata for some LTL formulae

Definition:

Recall that $\Sigma = 2^{AP}$. For $\psi \in \mathbb{B}(AP)$ we let $\Sigma_{\psi} = \{a \in \Sigma \mid a \models \psi\}$. For instance, for $p, q \in AP$,

- $\Sigma_p = \{a \in \Sigma \mid p \in a\} \quad \text{ and } \quad \Sigma_{\neg p} = \Sigma \setminus \Sigma_p$
- $\qquad \Sigma_{p \wedge q} = \Sigma_p \cap \Sigma_q \quad \text{ and } \quad \Sigma_{p \vee q} = \Sigma_p \cup \Sigma_q$
- $\sum_{p \wedge \neg q} = \sum_p \setminus \sum_q \dots$

Examples:

$$Gp$$
: Σ_p

Büchi automata for some LTL formulae

Examples:

Büchi automata for some LTL formulae

Examples:

no deterministic Büchi automaton.

deterministic Büchi automata are not closed under complement.

Büchi automata

Properties

Büchi automata are closed under union, intersection, complement.

- Union: trivial
- Intersection: easy (exercice)
- complement: hard

Let
$$\varphi = \mathsf{F}((p \wedge \mathsf{X}^n \neg p) \vee (\neg p \wedge \mathsf{X}^n p))$$

Any non deterministic Büchi automaton for $\neg \varphi$ has at least 2^n states.

Büchi automata

Exercise:

Given Büchi automata for φ and ψ ,

- Construct a Büchi automaton for $X \varphi$ (trivial)
- ightharpoonup Construct a Büchi automaton for φ U ψ

This gives an inductive construction of \mathcal{A}_{φ} from $\varphi \in \mathrm{LTL}(\mathrm{AP},\mathsf{X},\mathsf{U})$. . .

 \dots but the size of \mathcal{A}_{φ} might be non-elementary in the size of φ .

GBA to **BA**

Proof: Synchronized product with ${\cal B}$

Transitions: $\frac{t = s_1 \xrightarrow{a} s_1' \in \mathcal{A} \land s_2 \xrightarrow{t} s_2' \in \mathcal{B}}{(s_1, s_2) \xrightarrow{a} (s_1', s_2')}$

Accepting states: $Q \times \{n\}$

4□▶4♬▶4분▶4분▶ 분 49 63/89

Generalized Büchi automata

Definition: acceptance on states

$$\mathcal{A} = (Q, \Sigma, I, T, F_1, \dots, F_n)$$
 with $F_i \subseteq Q$.

An infinite run σ is successful if it visits infinitely often each F_i .

 $\mathsf{GF}\,p \wedge \; \mathsf{GF}\,q$:

Definition: acceptance on transitions

$$\mathcal{A} = (Q, \Sigma, I, T, T_1, \dots, T_n)$$
 with $T_i \subseteq T$.

An infinite run σ is successful if it uses infinitely many transitions from each T_i .

 $\mathsf{GF}\,p \wedge \mathsf{GF}\,q$:

Negative normal form

Definition: Syntax $(p \in AP)$

$$\varphi ::= \top \mid \bot \mid p \mid \neg p \mid \varphi \vee \varphi \mid \varphi \wedge \varphi \mid \mathsf{X} \, \varphi \mid \varphi \, \mathsf{U} \, \varphi \mid \varphi \, \mathsf{R} \, \varphi$$

Proposition: Any formula can be transformed in NNF

$$\begin{split} \neg(\varphi \lor \psi) &\equiv (\neg \varphi) \land (\neg \psi) & \neg(\varphi \land \psi) \equiv (\neg \varphi) \lor (\neg \psi) \\ \neg(\varphi \lor \psi) &\equiv (\neg \varphi) \lor (\neg \psi) & \neg(\varphi \lor \psi) \equiv (\neg \varphi) \lor (\neg \psi) \\ \neg \lor \varphi \equiv \lor \lor \neg \varphi \equiv \varphi \end{split}$$

This does not increase the number of Temporal subformulae.

Temporal formulae

Definition: Temporal formulae

- literals
- formulae with outermost connective X. U or R.

Reducing the number of temporal subformulae

$$\begin{split} (\mathsf{X}\,\varphi) \wedge (\mathsf{X}\,\psi) &\equiv \mathsf{X}(\varphi \wedge \psi) \\ (\varphi \,\mathsf{R}\,\psi_1) \wedge (\varphi \,\mathsf{R}\,\psi_2) &\equiv \varphi \,\mathsf{R}\,(\psi_1 \wedge \psi_2) \\ (\mathsf{G}\,\varphi) \wedge (\mathsf{G}\,\psi) &\equiv \mathsf{G}(\varphi \wedge \psi) \end{split} \qquad \begin{aligned} (\mathsf{X}\,\varphi) \,\mathsf{U}\,(\mathsf{X}\,\psi) &\equiv \mathsf{X}(\varphi \,\mathsf{U}\,\psi) \\ (\varphi_1 \,\mathsf{R}\,\psi) \vee (\varphi_2 \,\mathsf{R}\,\psi) &\equiv (\varphi_1 \vee \varphi_2) \,\mathsf{R}\,\psi \\ \mathsf{G}\,\mathsf{F}\,\varphi \vee \mathsf{G}\,\mathsf{F}\,\psi &\equiv \mathsf{G}\,\mathsf{F}(\varphi \vee \psi) \end{aligned}$$

Reduced formulae

Definition: Reduced formulae

- A formula is reduced if it is a literal $(p \text{ or } \neg p)$ or a next-formula $(X \beta)$.
- $Z \subseteq NNF$ is reduced if all formulae in Z are reduced,

For $Z \subseteq NNF$ consistent and reduced, we define

$$\operatorname{next}(Z) = \{ \alpha \mid \mathsf{X} \, \alpha \in Z \}$$

$$\Sigma_Z = \bigcap_{p \in Z} \Sigma_p \quad \cap \quad \bigcap_{\neg p \in Z} \Sigma_{\neg p}$$

Lemma: Next step

Let $Z \subseteq \text{NNF}$ be consistent and reduced. Let $u = a_0 a_1 a_2 \cdots \in \Sigma^{\omega}$ and $n \geq 0$. Then

$$u, n \models \bigwedge Z$$
 iff $u, n + 1 \models \bigwedge \operatorname{next}(Z)$ and $a_n \in \Sigma_Z$

- $ightharpoonup \mathcal{A}_{\varphi}$ will have transitions $Z \xrightarrow{\Sigma_Z} \operatorname{next}(Z)$. Note that $\emptyset \xrightarrow{\Sigma} \emptyset$.
- ▶ Problem: next(Z) is not reduced in general (it may even be inconsistent).

From LTL to BA [6, Demri & Gastin 10]

Definition:

- $Z \subseteq NNF$ is consistent if $\bot \notin Z$ and $\{p, \neg p\} \not\subseteq Z$ for all $p \in AP$.
- For $Z\subseteq {
 m NNF}$, we define $\bigwedge Z=\bigwedge_{\psi\in Z}\psi$. Note that $\bigwedge\emptyset=\top$ and if Z is inconsistent then $\bigwedge Z\equiv\bot$.

Intuition for the BA $\mathcal{A}_{\varphi}=(Q,\Sigma,I,T,(T_{\alpha})_{\alpha\in\mathsf{U}(\varphi)})$

Let $\varphi \in \mathrm{NNF}$ be a formula.

- $\operatorname{sub}(\varphi)$ is the set of sub-formulae of φ .
- $\operatorname{U}(\varphi)$ the set of until sub-formulae of φ .
- ightharpoonup We construct a BA \mathcal{A}_{φ} with $Q=2^{\mathrm{sub}(\varphi)}$ and $I=\{\varphi\}$.
- A state $Z \subseteq \operatorname{sub}(\varphi)$ is a set of obligations.
- If $Z \subseteq \operatorname{sub}(\varphi)$, we want $\mathcal{L}(\mathcal{A}_{\varphi}^{Z}) = \{u \in \Sigma^{\omega} \mid u, 0 \models \bigwedge Z\}$ where $\mathcal{A}_{\varphi}^{Z}$ is \mathcal{A}_{φ} using Z as unique initial state.

◆□ ▶ ◆□ ▶ ◆ 豊 ▶ ◆ 豊 → りへで 66/89

Reduction rules

Definition: Reduction of obligations to literals and next-formulae

Let $Y \subseteq NNF$ and let $\psi \in Y$ maximal not reduced.

If
$$\psi = \psi_1 \wedge \psi_2$$
: $Y \xrightarrow{\varepsilon} (Y \setminus \{\psi\}) \cup \{\psi_1, \psi_2\}$

If
$$\psi = \psi_1 \lor \psi_2$$
:
$$\begin{array}{ccc}
Y & \xrightarrow{\varepsilon} & (Y \setminus \{\psi\}) \cup \{\psi_1\} \\
Y & \xrightarrow{\varepsilon} & (Y \setminus \{\psi\}) \cup \{\psi_2\}
\end{array}$$

$$\text{If } \psi = \psi_1 \ \mathsf{R} \ \psi_2 \colon \qquad \begin{matrix} Y & \xrightarrow{\varepsilon} & (Y \setminus \{\psi\}) \cup \{\psi_1, \psi_2\} \\ Y & \xrightarrow{\varepsilon} & (Y \setminus \{\psi\}) \cup \{\psi_2, \mathsf{X} \ \psi\} \end{matrix}$$

If
$$\psi = \mathsf{G}\,\psi_2$$
: $Y \stackrel{\varepsilon}{\longrightarrow} (Y \setminus \{\psi\}) \cup \{\psi_2, \mathsf{X}\,\psi\}$

If
$$\psi = \psi_1 \cup \psi_2$$
:
$$\begin{array}{ccc} Y & \xrightarrow{\varepsilon} & (Y \setminus \{\psi\}) \cup \{\psi_2\} \\ Y & \xrightarrow{\varepsilon} & (Y \setminus \{\psi\}) \cup \{\psi_1, \mathsf{X}\,\psi\} \end{array}$$

If
$$\psi = \mathsf{F}\,\psi_2$$
:
$$\begin{array}{ccc} Y & \xrightarrow{\varepsilon} & (Y\setminus\{\psi\})\cup\{\psi_2\} \\ Y & \xrightarrow{\varepsilon} & (Y\setminus\{\psi\})\cup\{\mathsf{X}\,\psi\} \end{array}$$

Note the mark $!\psi$ on the second transitions for U and F.

Reduction rules

State = set of obligations.

Reduce obligations to literals and next-formulae.

Note again the mark ${\operatorname{!F}}\, q$ on the last edge

Automaton \mathcal{A}_{φ}

Definition: Automaton \mathcal{A}_{arphi}

- States: $Q=2^{\mathrm{sub}(\varphi)}$, $I=\{\varphi\}$
- ► Transitions: $T = \{Y \xrightarrow{a} \operatorname{next}(Z) \mid Y \in Q, a \in \Sigma_Z \text{ and } Z \in \operatorname{Red}(Y)\}$
- Acceptance: $T_{\alpha} = \{Y \xrightarrow{a} \operatorname{next}(Z) \mid Y \in Q, a \in \Sigma_Z \text{ and } Z \in \operatorname{Red}_{\alpha}(Y)\}$ for each $\alpha \in \mathsf{U}(\varphi)$.

Reduction

Lemma: Soundness

- if there is only one rule $Y \xrightarrow{\varepsilon} Y_1$ then $\bigwedge Y \equiv \bigwedge Y_1$
- if there are two rules $Y \xrightarrow{\varepsilon} Y_1$ and $Y \xrightarrow{\varepsilon} Y_2$ then $\bigwedge Y \equiv \bigwedge Y_1 \vee \bigwedge Y_2$

Definition:

For $Y \subseteq NNF$ and $\alpha \in U(\varphi)$, let

$$\begin{split} \operatorname{Red}(Y) &= \{ Z \text{ consistent and reduced} \mid \text{there is a path } Y \xrightarrow{\varepsilon} Z \} \\ \operatorname{Red}_{\alpha}(Y) &= \{ Z \text{ consistent and reduced} \mid \text{there is a path } Y \xrightarrow{\varepsilon} Z \\ & \text{without using an edge marked with } \underline{!\alpha} \} \end{split}$$

Lemma: Soundness

- Let $Y \subseteq NNF$, then $\bigwedge Y \equiv \bigvee_{Z \in Red(Y)} \bigwedge Z$
- Let $u = a_0 a_1 a_2 \cdots \in \Sigma^{\omega}$ and $n \ge 0$ with $u, n \models \bigwedge Y$. Then, $\exists Z \in \operatorname{Red}(Y)$ such that $u, n \models \bigwedge Z$ and $Z \in \operatorname{Red}_{\alpha}(Y)$ for all $\alpha = \alpha_1 \cup \alpha_2 \in U(\varphi)$ such that $u, n \models \alpha_2$.

Automaton \mathcal{A}_{arphi}

Transition = check literals and move forward. Simplification