Channels Channels
Definition: Channels
Declaration:
E le: Lead lecti ¢ : channel [k] of bool size k
xample: Leader election ¢ : channel [ocq] of int unbounded
We have n processes on a directed ring, each having a unique id € {1,...,n}. ¢ : channel [0] of colors Rendez-vous
send(id) Primitives:
loop forever empty(c) .
reecfive) cle add the value of expression e to channel ¢
if (x = id) then STOP fi clr read a value from ¢ and assign it to variable z
if (x > id) then send(x) Domain: Let D,, be the domain for a single message.
D.= DF, size k
D.= Dy, unbounded
D.={e} Rendez-vous
Politics: FIFO, LIFO, BAG, ...
Channels High-level descriptions

Semantics: (lossy) FIFO

Send r—
, (5,v) — (5,0
o _ /
Receive Si — Sh A 1/(5) V' (c) -V (z)

c’e ,_,

(5,v) — (5,
Ccle
Lossy send i 7 5

Implicit assumption: all variables that do not occur in the premise are not modified.

Exercises:
1. Implement a FIFO channel using rendez-vous with an intermediary process.
2. Give the semantics of a LIFO channel.

3. Model the alternating bit protocol (ABP) using a lossy FIFO channel.
Fairness assumption: For each channel, if infinitely many messages are sent,
then infinitely many messages are delivered.

Summary
Sequential program = transition system with variables
Concurrent program with shared variables
Concurrent program with Rendez-vous
Concurrent program with FIFO communication
Petri net

Models: expressivity versus decidability

Definition: (Un)decidability
Automata with 2 integer variables = Turing powerful
Restriction to variables taking values in finite sets

Asynchronous communication: unbounded fifo channels = Turing powerful
Restriction to bounded channels

Definition: Some infinite state models are decidable
Petri nets. Several unbounded integer variables but no zero-test.
Pushdown automata. Model for recursive procedure calls.

Timed automata.

QOutline

© Specifications

Static and dynamic properties

Definition: Static properties
Example: Mutual exclusion
Safety properties are often static.

They can be reduced to reachability.
Definition: Dynamic properties
Example: Every request should be eventually granted.

/\Vt, (Call;(t) — 3t' > t, (atLevel;(t') A openDoor;(t)))

The elevator should not cross a level for which a call is pending without stopping.

J\Vivt', (Calli(t) At <t AatLevel;(t')) —

3t <t” <+, (atLevel;(t") A openDoor;(t")))

First Order specifications

First order logic
These specifications can be written in FO(<).

FO(<) has a good expressive power.
... but FO(<)-formulae are not easy to write and to understand.

FO(<) is decidable.
... but satisfiability and model checking are non elementary.

Definition: Temporal logics
no variables: time is implicit.
quantifications and variables are replaced by modalities.
Usual specifications are easy to write and read.

Good complexity for satisfiability and model checking problems.

Linear versus Branching
Let M = (S,T,I,AP, () be a Kripke structure.

Definition: Linear specifications

Example: The printer manager is fair.
On each run, whenever some process requests the printer, it eventually gets it.

Execution sequences (runs): o = sg — 1 — S — -+ with s; = s;41 € T

Two Kripke structures having the same execution sequences satisfy the same linear
specifications.

Actually, linear specifications only depend on the label of the execution sequence
(o) = L(sg) = L(s1) = L(s2) — -

Models are words in ¢ with ¥ = 24P

Definition: Branching specifications

Example: Each process has the possibility to print first.

Such properties depend on the execution tree.

Execution tree = unfolding of the transition system

References

Bibliography

[6] S. Demri and P. Gastin.
Specification and Verification using Temporal Logics.
In Modern applications of automata theory, |ISc Research Monographs 2.
World Scientific, To appear.
http://www.lsv.ens-cachan.fr/~gastin/mes-publis.php

A large list of references is given in this paper.

Bibliography

[7] V. Diekert and P. Gastin.
First-order definable languages.
In Logic and Automata: History and Perspectives, vol. 2, Texts in Logic and
Games, pp. 261-306. Amsterdam University Press, (2008).
http://www.lsv.ens-cachan.fr/~gastin/mes-publis.php

A large overview of formalisms expressively equivalent to First-Order.

Some original References

[8] J. Kamp.
Tense Logic and the Theory of Linear Order.
PhD thesis, UCLA, USA, (1968).

[10] P. Gastin and D. Oddoux.
Fast LTL to Biichi automata translation.
In CAV'01, vol. 2102, Lecture Notes in Computer Science, pp. 53—65.
Springer, (2001).
http://www.lsv.ens-cachan.fr/~gastin/mes-publis.php

[9] P. Wolper.

The tableau method for temporal logic: An overview,
Logique et Analyse. 110-111, 119-136, (1985).

[11] A. Sistla and E. Clarke.
The complexity of propositional linear temporal logic.
Journal of the Association for Computing Machinery. 32 (3), 733-749, (1985).

Some original References

[12] O. Lichtenstein and A. Pnueli.
Checking that finite state concurrent programs satisfy their linear specification.
In ACM Symposium PoPL’85, 97-107.

[13] D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi.
On the temporal analysis of fairness.
In 7th Annual ACM Symposium PoPL’'80, 163-173. ACM Press.
[14] D. Gabbay.
The declarative past and imperative future: Executable temporal logics for

interactive systems.
In Temporal Logics in Specifications, April 87. LNCS 398, 409-448, 1989.

Outline

© Linear Time Specifications
Definitions

©

Main results

From LTL to BA

°
@ Biichi automata
°

@ Hardness results

Linear Temporal Logic (Pnueli 1977)

Definition: Syntax: LTL(AP, X, U)
pu=Llp(eAP)|[=pleVe| XolpUgp

Definition: Semantics: w = agaias - -- € £¥ with ¥ = 24P and i € N

w,i = p if pea;

w,i = —p if w,ilEep

w,iiEeVYy if wilE@orw,iEY

w,i =X if witlEe

wyiiEeUy if Fk.i<kandw,kEvYandVj (i<j<k)—wjEoe

Example:

Linear Temporal Logic (Pnueli 1977)

Definition: Syntax: LTL(AP, X, U)
pu=L|p(PEAP)|-p|pVe| XplpUep

Definition: Semantics: w = agajas - -- € ¥ with ¥ = 24P and i € N

w,i = p if pea

w,i = —p if w,ibEp

w,ilE VY if wikEporwikEY

w,i =X if wi+lEp

wyiiEeUy if Fki<kandw,kEvandVj ((i<j<k)—=wjEe

Example:

X
©

Linear Temporal Logic (Pnueli 1977)

Definition: Syntax: LTL(AP, X, U)
pu=L|p(@PEAP)|-p|lpVeo| XplpUp

Definition: Semantics: w = agajas - -- € ¥ with ¥ = 24P and i ¢ N

w,i = p if pea;

w,i = —p it w,iEoe

w,iEeVy if wilEporwiEY

w,i =X if wit+tlEe

w,i=eUy if Fki<kandwklEvYandVj (i<j<k)—=wjEe

Example:

U

Linear Temporal Logic (Pnueli 1977)

Definition: Macros
Eventually: Fpo=TUgp

Fo

*—>0—>0 >0 >0 > —>0—>0—>0 -
¥
Always: Gp=-F-p
Gy
%) P ¥ P P

Weak until: ¢ WY =GpVeoUy
~(pU) =(G) V(U (oA) =9 W (- A)
Release: ORY =9 W (A1) =—(-pU-)
Next until: @ XU = X(p U)
@ XU 9
P 14)

Xp=L XUy and p U =19V (oA pXU).

Linear Temporal Logic (Pnueli 1977)

Definition: Specifications:

Safety: G good

MutEx: — F(crity A crits)

Liveness: G F active

Response: G(request — F grant)

Response’: G(request — X(—request U grant))
Release: reset R alarm

Strong fairness: G Frequest — GF grant
Weak fairness: F Grequest — GF grant

Linear Temporal Logic (Pnueli 1977)

Examples:

Every elevator request should be eventually satisfied.

/\ G(Call; — F(atLevel; A openDoor;,))

3

The elevator should not cross a level for which a call is pending without stopping.

/\ G(Call; — —atLevel; W (atLevel; A openDoor;)

3

Past LTL

Definition: Semantics: w = agaias - -- € £¥ with ¥ = 24P and i € N
w,iEYe if i>0andw,i—1F¢
wyiE @Sy if Jk.k<iandw,kEvYandVj. (k<j<i)—=wykEep

Example:
pSY
P ¥ P %)

Past LTL

Definition: Semantics: w = agaias - -- € £¥ with ¥ =24F and i € N
w,iE Y if i>0andw,i—1F¢
w,i =Sy if Jk.k<iandw,kEvYandVj. (k<j<i)—owykEep

Example:
T T T r

Example: LTL versus PLTL
G(grant — Y (—grant S request))
= (request R —grant) A G(grant — (request V X(request R —grant)))

Theorem (Laroussinie & Markey & Schnoebelen 2002)
PLTL may be exponentially more succinct than LTL.

Expressivity
Theorem [8, Kamp 68]

LTL(Y,S, X, U) = FOx(<)

Separation Theorem [13, Gabbay, Pnueli, Shelah & Stavi 80]

For all ¢ € LTL(Y,S, X, U) there exist $; € LTL(Y,S) and &} € LTL(X, U) such
that for all w € ¢ and k > 0,

wke < wkE\&Ag

3

Corollary: LTL(Y, S, X,U) = LTL(X, U)
For all ¢ € LTL(Y, S, X, U) there exist g_ﬁ € LTL(X, U) such that for all w € 3¥,

w0Ep < w0E=g

Elegant algebraic proof of LTL(X, U) = FOx(<) due to Wilke 98.

