Initiation a la vérification
Basics of Verification

http://mpri.master.univ-paris7.fr/C-1-22.html

Paul Gastin

Paul.Gastin@lsv.ens-cachan.fr

http://www.lsv.ens-cachan.fr/~gastin/

M1 du MPRI
2009-2010

QOutline

0 Introduction
o Bibliography

Need for formal verifications methods

Critical systems
Transport
Energy
Medicine
Communication
Finance
Embedded systems

Disastrous software bugs

Mariner 1 probe, 1962
Seehttp://en.wikipedia.org/wiki/Mariner_1

Destroyed 293 seconds after launch
Missing hyphen in the data or program? No!
Period instead of comma in FORTRAN? No!

Overbar missing in the mathematical
specification:

R, nth smoothed value of the time
derivative of a radius.

Without the smoothing function indicated by
the bar, the program treated normal minor
variations of velocity as if they were serious,
causing spurious corrections that sent the
rocket off course.

Disastrous software bugs

Ariane 5 flight 501, 1996
See http://en.wikipedia.org/wiki/Ariane_5_Flight_501

Destroyed 37 seconds after launch (cost: 370 millions
dollars).

data conversion from a 64-bit floating point to 16-bit
signed integer value caused a hardware exception
(arithmetic overflow).

Efficiency considerations had led to the disabling of the
software handler (in Ada code) for this error trap.

The fault occured in the inertial reference system of Ariane
5. The software from Ariane 4 was re-used for Ariane 5
without re-testing.

On the basis of those calculations the main computer
commanded the booster nozzles, and somewhat later the
main engine nozzle also, to make a large correction for an
attitude deviation that had not occurred.

The error occurred in a realignment function which was not
useful for Ariane 5.

Disastrous software bugs

Other well-known bugs

Therac-25, at least 3 death by massive overdoses of radiation.
Race condition in accessing shared resources.
See http://en.wikipedia.org/wiki/Therac-25

Electricity blackout, USA and Canada, 2003, 55 millions people.
Race condition in accessing shared resources.
See http://en.wikipedia.org/wiki/Northeast_Blackout_of_2003

Pentium FDIV bug, 1994.
Flaw in the division algorithm, discovered by Thomas Nicely.
See http://en.wikipedia.org/wiki/Pentium_FDIV_bug

Needham-Schroeder, authentication protocol based on symmetric encryption.
Published in 1978 by Needham and Schroeder

Proved correct by Burrows, Abadi and Needham in 1989

Flaw found by Lowe in 1995 (man in the middle)

Automatically proved incorrect in 1996.

See http://en.wikipedia.org/wiki/Needham-Schroeder_protocol

Formal verifications methods

Complementary approaches
Theorem prover
Model checking
Static analysis
Test

Model Checking

» Purpose 1: automatically finding software or hardware bugs.

Purpose 2: prove correctness of abstract models.
Should be applied during design.
Real systems can be analysed with abstractions.

. Sifakis

Prix Turing 2007.

Model Checking

3 steps
Constructing the model M (transition systems)
Formalizing the specification ¢ (temporal logics)
Checking whether M = ¢ (algorithmics)

Main difficulties
Size of models (combinatorial explosion)
Expressivity of models or logics
Decidability and complexity of the model-checking problem
Efficiency of tools

Challenges

Extend models and algorithms to cope with more systems.
Infinite systems, parameterized systems, probabilistic systems, concurrent
systems, timed systems, hybrid systems, ...

Scale current tools to cope with real-size systems.
Needs for modularity, abstractions, symmetries, ...

References
Bibliography
[1] Christel Baier and Joost-Pieter Katoen.
Principles of Model Checking.
MIT Press, 2008.
B. Bérard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci, and
Ph. Schnoebelen.
Systems and Software Verification. Model-Checking Techniques and Tools.
Springer, 2001.
[3] E.M. Clarke, O. Grumberg, D.A. Peled.
Model Checking.
MIT Press, 1999.
[4] Z. Manna and A. Pnueli.
The Temporal Logic of Reactive and Concurrent Systems: Specification.
Springer, 1991.
[5] Z. Manna and A. Pnueli.

Temporal Verification of Reactive Systems: Safety.
Springer, 1995.

[2

Outline

© Models

@ Transition systems
@ ... with variables
@ Concurrent systems

@ Synchronization and communication

Constructing the model
Example: Men, Wolf, Goat, Cabbage

Model = Transition system
State = who is on which side of the river
Transition = crossing the river
Specification
Safety: Never leave WG or GC alone
Liveness: Take everyone to the other side of the river.

Transition system

Transition system or Kripke structure

Definition: TS M= (S,2,T,1,AP,?)

S: set of states (finite or infinite)
3 set of actions

T CS x X xS: set of transitions
I C S: set of initial states

AP: set of atomic propositions
¢: S — 2AP: Jabelling function.

Example: Digicode

Every discrete system may be described with a TS.

Description Languages

Pb: How can we easily describe big systems?

Description Languages (high level)
Programming languages
Boolean circuits

Modular description, e.g., parallel compositions

problems: concurrency, synchronization, communication, atomicity, fairness, ...

Petri nets (intermediate level)

Transition systems (intermediate level)
with variables, stacks, channels, ...
synchronized products

Logical formulae (low level)

Operational semantics

High level descriptions are translated (compiled) to low level (infinite) TS.

Transition systems with variables

Definition: TSV M= (S,2,V,(Dy)vev, T, I,AP,?)

V: set of (typed) variables, e.g., boolean, [0..4], ...
Each variable v € V has a domain D,, (finite or infinite)
Guard or Condition: unary predicate over D = [, ., Dy
Symbolic descriptions: = < 5, x +y = 10, ...

Instruction or Update: map f: D — D

Symbolic descriptions: x := 0, z := (y + 1)?, ...
TCSx (2P x2xDP)x S

Symbolic descriptions: s <50, Fcoln,z:=wtcoin, s

ICSx2P
Symbolic descriptions: (sg,x := 0)

Example: Vending machine

coffee: 50 cents, orange juice: 1 euro, ...
possible coins: 10, 20, 50 cents
we may shuffle coin insertions and drink selection

Transition systems with variables

Semantics: low level TS
S'=8xD
I'={(s,v) | 3(s,g9) € I with v |= g}
Transitions: 77 C (S x D) x ¥ x (S x D)
s 295 g Ay Eg

(5,v) = (s, f(v))

SOS: Structural Operational Semantics

AP’: we may use atomic propositions in AP or guards in 2° such as = > 0.

Programs = Kripke structures with variables
Program counter = states
Instructions = transitions

Variables = variables

Example: GCD

TS with variables ...

Example: Digicode

cpt <n cpt <n
3,0 A cpt <n
cpt++ cpt++ B.C

...and its semantics (n = 2)

Example: Digicode

Only variables
The state is nothing but a special variable: s € V with domain D, = S.

Definition: TSV M = (V,(Dy)vev, T, I,AP, ()

D:HUEVDU’
ICD,TCDxD

Symbolic representations with boolean functions
I given by a formula ()

T given by a formula ¢(v,)
v: values before the transition
v': values after the transition

Often we use boolean variables only: D, = {0,1}

Concise descriptions of boolean functions with Binary Decision Diagrams.

Example: Boolean circuit: modulo 8 counter
b, = -bo
by = bo@b
b/2 = (b() A bl) @ by

Symbolic representation

Example: Logical representation

cpt < n cpt < n
B,C A cpt < n
cpt++ cpt++ B.C

ERROR

0B s=1Acpt<nAs =1Acpt' =cpt+1
s=1Acpt=nAs =5Acpt' =cpt+1
s=2As =3 Acpt' =cpt

s=3Acpt<nAs =1Acpt' =cpt+1
s=3ANcpt=nAs =5Acpt' =cpt+1

<< <<

Modular description of concurrent systems

M =M || M| -

M,

Semantics
Various semantics for the parallel composition ||

Various communication mechanisms between components:
Shared variables, FIFO channels, Rendez-vous, ...

Various synchronization mechanisms

Example: Elevator with 1 cabin, 3 doors, 3 calling devices

Modular description of concurrent systems

Example: Elevator

Cabin: (o

Door for level i: _ Opened

— (=)

Call for level i: False o 1 True

The actual system is a synchronized product of all these automata.
It consists of (at most) 3 x 23 x 23 = 192 states.

Synchronized products

Definition: General product
Components: M; = (S;, %, Ty, I, APy, £;)
Product: M = (S,%,T, I, AP, £) with
S=I[L5S, Z=ILE:u{e}), and I=T[L

T:{(p17,,,7pn)M,

AP =, AP; and £(p1,...,pn) = U, ¢(pi)

(q1,---,qn) | forall i, (pi,ai,q;) €T; or
pi = ¢; and a; = €}

Synchronized products: restrictions of the general product.
Parallel compositions

Synchronous: Xeyne = Hz g

Asynchronous: Ygyne =), ¥ with ¥ = {e}71 x &; x {e}n~?
Synchronizations

By states: Sgync € S

By labels: gy € X2

By transitions: Tyyne €T

Example: Printer manager

Example: Asynchronous product
Synchronization by states: (P, P) is forbidden

Example: digicode

Example: Synchronous product
Synchronization by transitions

ERROR

Synchronization by Rendez-vous

Synchronization by transitions is universal but too low-level.

Definition: Rendez-vous
Im sending message m
7m receiving message m

SOS: Structural Operational Semantics

an / as p
Local actions S1 18 S9 —1 Sy
a a
(81782) = (3’1732) (31782) =2 (3173’2)
! ? ? |
Rendez-vous 51721 81 7/,\152 — 8 81 —>1 s} ,{I\ 53 —55 sh
(51,82) = (51, 83) (s1,52) 7 (54, 5%)

It is a kind of synchronization by actions.

Essential feature of process algebra.

Example: Elevator with 1 cabin, 3 doors, 3 calling devices
7up is uncontrollable for the cabin

?cally is uncontrollable for the system

Example: Elevator

Example: Synchronization by Rendez-vous

?down

?up

Cabin:

lleave; !reachy

?up

lleave; !reachg lleavey lreachy

?leave;

Door for level i:

We should design the controller

?reach;

Shared variables

Definition: Asynchronous product + shared variables

5= (s1,...,5yn) denotes a tuple of states
v € D =]],cy Dy is a valuation of variables.

7/>:gA.S,iM},g;/\(S;:lglj for j # i

(3,v) 2, (&, f(v))

Semantics (SOS)

Example: Mutual exclusion for 2 processes satisfying
Safety: never simultaneously in critical section (CS).
Liveness: if a process wants to enter its CS, it eventually does.
Fairness: if process 1 wants to enter its CS, then process 2 will enter its CS at
most once before process 1 does.
using shared variables but no synchronization mechanisms: the atomicity is
testing or reading or writing a single variable at a time

no test and set: z =0;x :=1

Peterson’s algorithm (1981)

Process i:
loop forever
req[i] := true; turn := 1-i
wait until (turn = i or req[1-i] = false)
Critical section
req[i] := false

if req[l-i]=false

s(T ——=(])

if turn=i

reqli] :=false turn:=1-i

NCS ‘ reqli] :=true

Exercise:

Is the algorithm still correct if we swape the first two assignments?

Draw the concrete TS assuming the first two assignments are atomic.

Atomicity

Example:

Intially x = 1Ay =2
Program P: z:=x+y|ly:=az+y

LoadR;,x LoadRs, x
Program Ps: AddR,,y I AddRs,y
StoreR;,x StoreRs,y

Assuming each instruction is atomic, what are the possible results of P; and Py?

Atomicity

Definition: Atomic statements

Elementary statements (no loops, no communications, no synchronizations)

ES ::=skip |awaitc |z :=e| ES;ES | ESTOES
| when ¢ do ES | if ¢ then ES else ES
Atomic statements: if the ES can be fully executed then it is executed in one step.
(5.0) 25 (3,v)

(?,]/) atomic(ES) (E’./l/)

Example: Atomic statements
atomic(z = 0;z:=1) (Test and set)
atomic(y := y — 1;await(y = 0);y := 1) is equivalent to await(y = 1)

Channels Channels
Definition: Channels
Declaration:
E le: Leader electi ¢ : channel [k] of bool size k
i sles Lgzeles cgtion ¢ : channel [00] of int unbounded
We have n processes on a directed ring, each having a unique id € {1,...,n}. ¢ : channel [0] of colors Rendez-vous
send(id) Primitives:
loop forever empty(c) .
e e) cle add the value of expression e to channel ¢
if (x = id) then STOP fi clr read a value from ¢ and assign it to z
if (x > id) then send(x) Domain: Let D,, be the domain for a single message.
D.= DF, size k
D.= Dy, unbounded
D.={e} Rendez-vous
Politics: FIFO, LIFO, BAG, ...
Channels High-level descriptions
Semantics: (lossy) FIFO
S S siAV(Q) = v(e) - v(e)
cle ,_
(5v) — (5,v)
Recaive | S siAv(e) = V() -V (a) Summary
(5,v) o, (5,0) Sequential programs = transition system with variables
o 2L of Concurrent programs with shared variables
Lossy send Lt .
(5,v) =5 (5, v) Concurrent programs with Rendez-vous

Implicit assumption: all variables that do not occur in the premise are not modified.

Exercises:

1. Implement a FIFO channel using rendez-vous with an intermediary process.

2. Give the semantics of a LIFO channel.

3. Model the alternating bit protocol (ABP) using a lossy FIFO channel.
Fairness assumption: For each channel, if infinitely many messages are sent,

then infinitely many messages are delivered.

Concurrent programs with FIFO communication
Petri net

Models: expressivity versus decidability

Definition: (Un)decidability
Automata with 2 integer variables = Turing powerful
Restriction to variables taking values in finite sets

Asynchronous communication: unbounded fifo channels = Turing powerful
Restriction to bounded channels

Definition: Some infinite state models are decidable
Petri nets. Several unbounded integer variables but no zero-test.
Pushdown automata. Model for recursive procedure calls.

Timed automata.

QOutline

© Specifications

Static and dynamic properties

Definition: Static properties
Example: Mutual exclusion
Safety properties are often static.

They can be reduced to reachability.
Definition: Dynamic properties
Example: Every request should be eventually granted.

/\Vt, (Call;(t) — 3t’ > t, (atLevel;(t') A openDoor;(t)))

The elevator should not cross a level for which a call is pending without stopping.

J\Vivt', (Calli(t) At <t AatLevel;(t')) —

3t <t” <+, (atLevel;(t") A openDoor; ("))

First Order specifications

First order logic
These specifications can be written in FO(<).

FO(<) has a good expressive power.
... but FO(<)-formulae are not easy to write and to understand.

FO(<) is decidable.
... but satisfiability and model checking are non elementary.

Definition: Temporal logics
no variables: time is implicit.
quantifications and variables are replaced by modalities.
Usual specifications are easy to write and read.

Good complexity for satisfiability and model checking problems.

Linear versus Branching
Let M = (S,T,I,AP, () be a Kripke structure.

Definition: Linear specifications

Example: The printer manager is fair.
On each run, whenever some process requests the printer, it eventually gets it.

Execution sequences (runs): o = sy — s1 — o — -+ with s; = 5,41 € T

Two Kripke structures having the same execution sequences satisfy the same linear
specifications.

Actually, linear specifications only depend on the label of the execution sequence
Models are words in ¢ with ¥ = 24P,

Definition: Branching specifications
Example: Each process has the possibility to print first.

Such properties depend on the execution tree.

Execution tree = unfolding of the transition system

References

Bibliography

[6] S. Demri and P. Gastin.
Specification and Verification using Temporal Logics.

http://www.lsv.ens-cachan.fr/~gastin/mes-publis.php

A large list of references is given in this paper.

Outline

0 Linear Time Specifications
Definitions

©

Main results

From LTL to BA

°
@ Biichi automata
°
@ Hardness results

Linear Temporal Logic (Pnueli 1977)

Definition: Syntax: LTL(AP, X, U)
pu=L|p(PeEAP)|p|pVeo| XplpUep

Definition: Semantics: w = agajas - -- € ¥ with ¥ = 24P and i € N
w,i Ep if pe€a;
w,i = —p it w,iEoe
w,iE VY if wilEporwiEY
w,i =X if wit+tlEe
wyiiEeUy if Fki<kandw,kEvandVj (i<j<k)—wjEe

Example:

p 0 Pma P q 0 Proogr g

Linear Temporal Logic (Pnueli 1977)

Definition: Syntax: LTL(AP, X, U)
pu=LlpeAP)|[~pleVve| XelpUyp

Definition: Semantics: w = agaias - -- € £¥ with ¥ =24F and i € N

w,iEp if pea;

w,i = —p if w,il~Eop

wiEeVYy if wilE@orw,iEY

w,i =X if wit+lEe

wyiEeUy if Fki<kandw,kEvYandVj (i<j<k)—wjEe

Example:
X

©

Linear Temporal Logic (Pnueli 1977)

Definition: Syntax: LTL(AP, X, U)
pu=L[pPeEAP)|~¢|lpVe| Xp|pUp

Definition: Semantics: w = agajas - -- € £% with ¥ = 24P and i € N

w,iEp if pea;

w,i = —p it w,i e

w,iiEeVYy if wilE@orw,iEY

w,i =X if witlEe

w,ifE=pUy if Fki<kandw,kEvYandVj. i<j<k)—wjEg@

Example:
pUy
%) ¥ ¥ Y

Linear Temporal Logic (Pnueli 1977)

Definition: Macros
Eventually: Fo=TU¢p

Fe
Always: Go=-F-p
Ge

Weak until: ¢W¢Y=GpV Uy
(e Uy) =(GC) V(U (-pA~y)) =9 W (=g A)
Release: eRY=9pW (o A1) ==(=pU-)
Next until: ¢ XU ¢ = X(p U)
o XUy

© (s
Xp=1L XUy and pU =14V (oA pXU).

Linear Temporal Logic (Pnueli 1977)

Definition: Specifications:

Safety: G good

MutEx: = F(crity A critg)

Liveness: G F active

Response: G(request — F grant)

Response': G(request — X(—request U grant))
Release: reset R alarm

Strong fairness: G Frequest — GF grant
Weak fairness: F Grequest — GF grant

Linear Temporal Logic (Pnueli 1977)

Examples:

Every elevator request should be eventually satisfied.

/\ G(Call; — F(atLevel; A openDoor,))

3

The elevator should not cross a level for which a call is pending without stopping.

/\ G(Call; — —atLevel; W (atLevel; A openDoor;)

3

Past LTL

Definition: Semantics: w = agajas--- € % with ¥ = 24P and i € N
w,i =Y if i>0andw,i—1F¢p
w,ifE= @Sy if Fk.k<iandw,kEvYandVj. (k<j<i)—>w,yEe

Example:
eSY
(1] ® %2 ©

Past LTL

Definition: Semantics: w = agajas - -- € ¥ with ¥ = 24P and i € N
w,i =Y if i>0andw,i—1F¢p
w,if=pSy if Fk.k<iandw,klEvYandVj. (k<j<i)—owyEe

Example:
T T r T
‘\g N ‘\g é ‘\g N ° ‘\g é ﬁg ‘é ‘\g

Example: LTL versus PLTL
G(grant — Y (—grant S request))

= (request R —grant) A G(grant — (request V X(request R —grant)))

Theorem (Laroussinie & Markey & Schnoebelen 2002)
PLTL may be exponentially more succinct than LTL.

Expressivity
Theorem (Kamp 68)

LTL(Y,S, X, U) = FOx(<)

Separation Theorem (Gabbay, Pnueli, Shelah & Stavi 80)

For all ¢ € LTL(Y,S, X, U) there exist ; € LTL(Y,S) and @; € LTL(X,U) such
that for all w € ¥¥ and £ > 0,

w ke < wkE\ &P

Corollary: LTL(Y, S, X,U) = LTL(X, U)
For all ¢ € LTL(Y, S, X, U) there exist ¢ € LTL(X, U) such that for all w € %¢,

w,O):(,D — w70|:$

Elegant algebraic proof of LTL(X,U) = FOx(<) due to Wilke 98.

Model checking for LTL

Definition: Model checking problem

Input: A Kripke structure M = (S, T,1,AP /)
A formula ¢ € LTL(AP,Y,S, X, U)

Question: Does M = ¢ 7

Universal MC: M =y ¢ if £(0),0 = ¢ for all initial infinite run of M.

Existential MC: M =5 ¢ if £(0),0 |= ¢ for some initial infinite run of M.

M ':v (%2 Iff M 1#3 'z

Theorem (Sistla & Clarke 85, Lichtenstein et. al 85)
The Model checking problem for LTL is PSPACE-complete

Satisfiability for LTL

Let AP be the set of atomic propositions and ¥ = 247,

Definition: Satisfiability problem
Input: A formula ¢ € LTL(AP,Y,S, X, U)
Question: Existence of w € ¥* and 7 € N such that w,i = ¢.

Definition: Initial Satisfiability problem
Input: A formula ¢ € LTL(AP,Y,S, X, U)

Question: Existence of w € £“ such that w,0 |= ¢.

Theorem (Sistla & Clarke 85, Lichtenstein et. al 85)
The satisfiability problem for LTL is PSPACE-complete

Definition: (Initial) validity
p is valid iff = is not satisfiable.

Decision procedure for LTL

Definition: The core
From a formula ¢ € LTL(AP,...), construct a Biichi automaton A, such that

L(A)=L(p) ={w e’ | w0k ¢}

Satisfiability (initial)

Check the Biichi automaton A, for emptiness.

Model checking

Construct a synchronized product B = M ® A, so that
the successful runs of B correspond to the initial runs of M satisfying —.

Then, check B for emptiness.

Theorem:
Checking Biichi automata for emptiness is NLOGSPACE-complete.

Buchi automata

Definition:
A=(Q,%,1,T, F) where
Q: finite set of states
> finite set of labels
I C Q: set of initial states
T CQ x X x Q: transitions
F C @Q: set of accepting states (repeated, final)

Example:

£(A) = {w € {a,0}* | [wla = w}

Buchi automata for some LTL formulae

Definition:

Biuichi automata for some LTL formulae

Recall that & = 24P, For ¢ € B(AP) we let Sy = {a € ¥ | a = ¥} Examples:
For instance, for p,q € AP,
by
Sy={a€T|pea} and E,=3\3, E < . ?
Song =ZpNT, and Sy, =5, US, FGp: 0 L @ no deterministic Biichi automaton.
Epa-q = Zp \ Xg
=) 5 (O
Examples: GFo: G@ deterministic Biichi automaton
> > S N - 5 are not closed under complement.
. 0. TR p
B 0 @ 0 @ E—\p\/q . E . E“q
PATq
I O O O O BE S
q
@O
Buchi automata for some LTL formulae Buchi automata
Properties

Examples:
) Ypa-
o p 5 E) PA q 5 E
YpAn . .
pW q: Ep g E or " q g Z
Xy DY Ygn-p D%
pRq: 5 ZpAq 6 or ,' Zpng ,'

Biichi automata are closed under union, intersection, complement.
Union: trivial
Intersection: easy (exercice)

complement: hard

Let o = F((p AX" =p) V (=p A X" p))

Any non deterministic Biichi automaton for = has at least 2" states.

Buchi automata

Exercise:
Given Biichi automata for ¢ and),
Construct a Biichi automaton for X ¢ (trivial)

Construct a Biichi automaton for ¢ U ¢

This gives an inductive construction of A, from ¢ € LTL(AP,X,U) ...

... but the size of A, might be non-elementary in the size of .

Generalized Buchi automata

Definition: acceptance on states
“’4: (Q727[7T,F1,--~,Fn) Wlth F,L g Q

An infinite run o is successful if it visits infinitely often each F;.

GFpA GFgq:

Definition: acceptance on transitions
A=(Q,%,I,T,Ty,...,T,) with T; C T.

An infinite run o is successful if it uses infinitely many transitions from each T;.

GFpA GFg:

GBA to BA

Proof: Synchronized product with B

t
t=s5 58 €ANsy > shEB

Transitions:

(s1,52) = (51, 55)

Accepting states: @ x {n}

Negative normal form

Definition: Syntax (p € AP)
pu=T|Llp[-plevelerp[Xe|lpUe|pRe

Proposition: Any formula can be transformed in NNF
(V)= () A () (pAY) = (mp) V()

~(eU¢) = (@) R(=) =(pRY) = (=) U ()
X =X-p T =@

This does not increase the number of Temporal subformulae.

Temporal formulae

Definition: Temoral formulae
literals

formulae with outermost connective X, U or R.

Reducing the number of temporal subformulae

(Xp) A (X)) = X(p A1) (Xp) U (X)) =X(p U)
(eRY1) A (@ RY2) =0 R (W1 Atha) (w1 RY)V (w2 RY) = (p1 Vo) R
(Gp) A (GY) =G(p A1) GFpVGFy =GF(p V1)

From LTL to BA (See [6])

Definition:
Z C NNF is consistent if L ¢ Z and {p,—p} € Z for all p € AP.
For Z C NNF, we define A Z = A\ ;. -
Note that A @ = T and if Z is inconsistent then \ Z = L.

Intuition for the BA A, = (Q, %, I, T, (1T4)acu(y))
Let ¢ € NNF be a formula.

sub(¢p) is the set of sub-formulae of ¢.

U(p) the set of until sub-formulae of (.

We construct a BA A, with @ = 25""(¥) and I = {¢}.
A state Z C sub(yp) is a set of obligations.

If Z C sub(y), we want L(AZ) = {ue X |u,0= \Z}
where Af is A, using Z as unique initial state.

Reduced formulae
Definition: Reduced formulae
A formula is reduced if it is a literal (p or =p) or a next-formula (X 3).
Z C NNF is reduced if all formulae in Z are reduced,
For Z C NNF consistent and reduced, we define
next(Z) ={a | Xa € Z}

Sz=1Z% N () Z

peEZ -pEZ

Lemma: Next step

Let Z C NNF be consistent and reduced.
Let u = agajas--- € X% and n > 0. Then

u,n = /\Z iff u,n+1E /\next(Z) and a, € ¥z
» A, will have transitions Z =% next(Z).

Note that) = 0.

» Problem: next(Z) is not reduced in general (it may even be inconsistent).

Reduction rules

Definition: Reduction of obligations to literals and next-formulae
Let Y C NNF and let ¥ € Y maximal not reduced.

fp=v1 At ¥V = Y\{$}U{dr, ¥}
reesve 5 AEREY
reewee 5 RRRT,
If 4 = G Y = Y\ {$}U{go, Xy}
reeswer 5 B
v 32 AR

Note the mark !/ on the second transitions for U and F.

Reduction rules

Example: ¢ = G(p — Fq)

¢ = G(-pVFq) L, X
1 \\-:—/
€l si
'ﬁp\/Fq,Xga/‘,— —————— > Fg, X
LT B
€ eilFq
Lo, X P XFg, X

State = set of obligations.
Reduce obligations to literals and next-formulae.

Note again the mark !F ¢ on the last edge

Reduction

Lemma: Soundness
if there is only one rule Y = Y then AV = A\ V)
if there are two rules Y = Y; and Y 5 Y5 then AY =AY1VAY,

Definition:
For Y C NNF and a € U(p), let

Red(Y) = {Z consistent and reduced | 3Y — Z}
Red,(Y) = {Z consistent and reduced | 3Y = Z
without using an edge marked with la}

Lemma: Soundness
Let Y C NNF, then \Y =V cpoqiy) A2
Let u = agajaz--- € X* and n > 0 with u,n = AY.

Then, 3Z € Red(Y) such that u,n = A Z
and Z € Red, (Y) for all & = a3 U aia € U() such that u,n = as.

Automaton A,

Definition: Automaton A,
States: @ = 25uP(¥), I={p}
Transitions: T = {Y % next(Z) | Y € Q,a € £z and Z € Red(Y)}

Acceptance: T, = {Y S next(Z) | Y € Q,a € ¥z and Z € Red,(Y)}
for each a € U(yp).

Automaton A,
Example: ¢ = G(p — Fq)

cmmmmmms Yopvq D
Vg X ? % g %
N {\\ >
e S
g, X v Fa,p, X)
e BN
gu &0 \\\
: : & Vg
/'---1---‘\ /’--L"\ ST b----- :A """"" ~
S| (pVFgXp -5l Fg X m-={ Fg,pVFq, X | XFg,-pXe)

_____ NE— [— R

Transition = check literals and move forward.

Simplification

Correctness of A,

Proposition: L(¢) C L(A,)

Lemma:

Let p=Yy 2% Yy % Ys--- be an accepting run of A, on u = agajaz--- € X¥.

Then, Vi) € sub(y), Vn >0, VY,, — Y - Z with a,, € ¥z, Y41 = next(2)

YpeY = unkEy

Corollary: L(A,) € L(y)

Example with two until sub-formulae

Example: Nested until: ¢ = p U ¢ with v =g Ur

Red({¢}) = {{p, X ¢}, {q, X ¥}, {r}} Red({¢}) = {{g, X9}, {r}}
Redy, ({¢}) = {{g, X9}, {r}} Red,({¢}) = {{g, X9}, {r}}
Redy ({¢}) = {{p, X}, {r}} Redy ({¢}) = {{r}}

Satisfiability and Model Checking

Corollary: PSPACE upper bound for satisfiability and model checking
Let ¢ € LTL, we can check whether ¢ is satisfiable (or valid)
in space polynomial in |¢|.
Let ¢ € LTL and M = (S,T,1,AP,¢) be a Kripke structure.

We can check whether M =y ¢ (or M =3 ¢)
in space polynomial in || + log |M].

Proof:
For M =y ¢ we construct a synchronized product M ® A-:

sSseM A Y@»Y’GAWD

Transitions: =
(5,Y) = (s,Y)

Acceptance conditions: inherited from A-,.

Check M ® A-, for emptiness.

On the fly simplifications A,

Built-in: reduction of a maximal formula.

Definition: Additional reduction rules
If AY = AY’ then we may use Y 5 Y.

Remark: checking equivalence is as hard as building the automaton.
Hence we only use syntactic equivalences.

If vy =11 Vg and 1 €Y orips € Y: Yy = Y\{¢}
If » =11 Utpp and ¢y € Y Y Y\ {¢}
If b =11 Repy and ¢y € YV Y Y\ {¢} U {2}

[Lo

On the fly simplifications A,

Definition: Merging equivalent states

Let A = (Q,E,I7T,T1,...7Tn) and s1, 82 € Q.
We can merge s; and so if they have the same outgoing transitions:
Va € 3, Vs € Q,

(s1,a,8) €T < (s2,a,8) €T
and (s1,a,8) € T; < (s2,a,s) € T; foralll1 <i<n.

Remark: Sufficient condition

Two states Y, Y’ of A, have the same outgoing transition if

Red(Y) = Red(Y”)
and Red,(Y) = Red(Y") for all & € U(yp).

Example: Let ¢ = GFp A GFgq.
Without merging states A, has 4 states.

These 4 states have the same outgoing transitions.
The simplified automaton has only one state.

Other constructions

» Tableau construction. See for instance [8]
+ : Easy definition, easy proof of correctness
+ : Works both for future and past modalities
— : Inefficient without optimizations

» Using Very Weak Alternating Automata [7].
+ : Very efficient
— : Only for future modalities

» The domain is still very active.

» See other references in [6].

[7] P. Gastin and D. Oddoux.
Fast LTL to Biichi automata translation.
In CAV'01, vol. 2102, Lecture Notes in Computer Science, pp. 53-65.
Springer, (2001).
http://www.lsv.ens-cachan.fr/~gastin/mes-publis.php

[8] P. Wolper.

The tableau method for temporal logic: An overview,
Logique et Analyse. 110-111, 119-136, (1985).

MC?(X,U) <p SAT(X,U) (Sistla & Clarke 85)

Let M = (S,T,I,AP, /) be a Kripke structure and ¢ € LTL(X, U)

Introduce new atomic propositions: APg = {at, | s € S}
Define AP’ = AP & APg 3 = 2AF 7Y% — ¥ by 7(a) = a N AP.

Let w € ¥, We have w = ¢ iff m(w) = ¢

Define

= <\/ats> NG \/ atg A /\wmtt/\ /\ pA /\ -p A \/ Xaty
sel s€S t#s peL(s) pEL(s) teT(s)

We have w |= ¢y iff m(w) = ¢(o) for some initial infinite run o of M.

Therefore, M =3¢ iff ¢ A @ is satisfiable
My ¢ iff tp A - is not satisfiable

Remark: we also have MC?(X, F) <p SAT(X, F).

QBF Quantified Boolean Formulae

Definition: QBF

Input: A formula v = Q171 - - - Qnrpy with o' = /\ \/ (i
1<i<m 1<5<k;
Qi E {V, 3} and a;; € {1’1, Xy, Ty, —m:n}.

Question: Is «y valid?

Definition:

An assignment of the variables {z1,...,z,} isa word v = vy - - - v, € {0,1}*.
We write v[i] for the prefix of length i.
Let V C {0,1}* be a set of assignments.

V is valid (for v) if v =4/ for all v € V,
V is closed (forv) if Vv e V, V1 <i<mst Q; =V,
' e Vst ooli —1] =v'[i — 1] and {v;,v}} = {0,1}.

Proposition:
visvalid iff 3V C{0,1}" s.t. V is nonempty valid and closed

QBF <p MC(U) (Sistla & Clarke 85) QBF <p MC(U) (Sistla & Clarke 85)

Let v = Q121+ Qunap /\ \/ a;; with Q; € {V,3} and a;; literals.
1<i<m 1<j<k;

Consider the KS M:

I 2t I ot { ot) Proof: If M =31 A ¢ then 7 is valid
1 2 n
—>60—>81/ el _,52/ \62 5"/ \e" Each finite path 7 = ey = f,, in M defines a valuation v by:
o] \zf/ \xf/ : ¢
1 2 n o 1 if 7, |7| |= sk Sz,
I ary as1 Am1 ' 0 if7rl I —seSai
p z:amséf 4a22§§f ;)amg\f) Claim: if 7 =4 then v™ = /.
0 . 1) 2 m—1 _ m
\ : / \ : / \ : / Let o be an initial infin*ite path of M s.t. 0,0 =¥ A .
01k, G2k, Amkm Let V={v" | T =eg — fm is a prefix of o}.
Let o — G(x{ — sk R-ag) if a; = 2y, and b = /\b Claim: V' is nonempty, valid and closed.
Pij G(l’i: — s R ﬁaij) if a;j =~y / 5 Pij -

Let pj = G(ej—1 — (msj-1 Uah) A (=sj-1 U Lf) and o= /\ ©;.

.‘QJZV
Then, ~ is valid iff M =5 A . !

QBF <p MC?(U) (Sistla & Clarke 85) Complexity of LTL

Proof: If is valid then M =3¢ A ¢
Let V' C {0,1}* be nonempty, valid and closed.

First ingredient: extension of a run. Theorem: Complexity of LTL
Assume T = ey = f,, satisfies v” € V and 7,0 = ¢.

. . The following problems are PSPACE-complete:
Let 1 <i<nwith Q; =V.

v 3
Let v’ € V s.t. v'[i — 1] = v[i — 1] and {v;, v}} = {0, 1}. SAT(LTL(X,U,Y,S)), MC"(LTL(X,U,Y,S)), MC*(LTL(X, U, Y,S))

We can extend 7 in 7/ = T — €; = €5 — fo — fm with v™ =’ and 7,0 E . SAT(LTL(X, F)), MCV(LTL(X7 F)), MCH(LTL(X7 F))
We say that 7' is the extension of T wrt. i SAT(LTL(U)), MCY(LTL(U)), MC?(LTL(U))

Second step: the sequence of indices for the extensions. The restriction of the above problems to a unique propositional variable

Let 1 <ip < --- <4y < n be the indices of universal quantifications (Q;, = V).
Define by induction w1 = iy and if k < ¢, w41 = wiigriwg. Let w = (wel)¥. The following problems are NP-complete:

3
Final step: the infinite run. SAT(LTL(F)), MC>(LTL(F))
Letv eV #0andlet 7 =ey = fn, withv™ € V and 7,0 = 1.
We build an infinite run o by extending 7 inductively wrt. the sequence of indices

defined by w.
Claim: 0,0 E ¥ A .

Some original References

[9] A. Sistla and E. Clarke.
The complexity of propositional linear temporal logic.

Journal of the Association for Computing Machinery. 32 (3), 733-749, (1985).

[10] O. Lichtenstein and A. Pnueli.
Checking that finite state concurrent programs satisfy their linear specification.
In ACM Symposium PoPL’85, 97-107.

[11] D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi.

On the temporal analysis of fairness.
In 7th Annual ACM Symposium PoPL’'80, 163-173. ACM Press.

[12] D. Gabbay.
The declarative past and imperative future: Executable temporal logics for
interactive systems.
In Temporal Logics in Specifications, April 87. LNCS 398, 409-448, 1989.

QOutline

© Branching Time Specifications
o CTL”
e CTL
@ Fair CTL

Possibility is not expressible in LTL

Example:

: Whenever p holds, it is possible to reach a state where ¢ holds.
(cannot be expressed in LTL.

Consider the two models:

Myl but Mslp
My and Ms satisfy the same LTL formulae.

We need quantifications on runs: ¢ = AG(p — EF q)

E: for some infinite run

A: for all infinite runs

CTL* (Emerson & Halpern 86)

Definition: Syntax of the Computation Tree Logic CTL*
pu=L|p(peAP)|~¢|loVe|Xp|pUp|Ep|Ap

Definition: Semantics:
Let M = (S,T,1,AP,?) be a Kripke structure and o an infinte run of M.

M,o,i EEp if M,o’,0 = ¢ for some infinite run o’ such that o/(0) = o(4)
M,o,i =EAp if M,o’,0 = ¢ for all infinite runs o’ such that ¢’/ (0) = o (%)

Example: Some specifications
EF ¢: ¢ is possible
AG p: ¢ is an invariant
AF : ¢ is unavoidable
EG ¢: ¢ holds globally along some path

Remark: Ap=-E-p

State formulae and path formulae

Definition: State formulae

¢ € CTL" is a state formula if VM, o,0’,,j such that (i) = o’(j) we have
M,o,ifE @ < M,d,jE¢

If © is a state formula and M = (S,T,I,AP,?), define

[e]M ={s€ S| M,skE ¢}

Example: State formulae

Formulae of the form p or E ¢ or A ¢ are state formulae.
State formulae are closed under boolean connectives.

[pl ={s€ S|pels)} [=¢l = S\ [¢] l1 V 2] = [p1] U [p2]

Definition: Alternative syntax

State formulae @ =1 |p (p€AP) |~ |V |EY|AY

Path formulae ¢ =@ | | YV | XL | LU

Model checking of CTL"

Definition: Existential and universal model checking
Let M = (S,T,1,AP,{) be a Kripke structure and p € CTL" a formula.

M 3¢ if M,0,0 | ¢ for some initial infinite run o of M.
M Ev ¢ if M,0,0 |= ¢ for all initial infinite run o of M.
Remark:

MEsp iff IN[E@]#0

MEyve iff TC[AY]

MEye iff MWKz

Definition: Model checking problems MC{,p - and MCZp -
Input: A Kripke structure M = (S,T,I,AP, /) and a formula ¢ € CTL"
Question: Does M =y ¢ ? or Does M =3 ¢ ?

Complexity of CTL"

Theorem
The model checking problem for CTL* is PSPACE-complete

Proof:
PSPACE-hardness: follows from LTL C CTL".

PSPACE-easiness: reduction to LTL-model checking by inductive eliminations of
path quantifications.

MCYp« in PSPACE

Proof:

For Q € {3,V}, let MC%TL(M, s,) be the function which computes in polynomial
space whether M, s =9 .

Let M = (S,T,I,AP,?) be a Kripke structure, s € S and ¢ € CTL".

MCrr+ (M, 5,9)
If E,A do not occur in ¢ then return MCY .y (M, 5, ¢) fi
Let Q1 be a subformula of ¢ with ¢» € LTL and Q € {E,A}
Let poy be a new propositional variable
Define ¢/ : S — 247" with AP’ = AP W {pgy} by
¢(t) N AP = £(t) and poy € £/(t) iff MCEpp (M, t,9)
Let M’ = (S,T,I,AP',¢)
Let ¢ = p[poy/ QY] be obtained from ¢ by replacing each Qv by pgy,
Return MCrpp.. (M, 5,¢")

Satisfiability for CTL"

Definition: SAT(CTL")
Input: A formula ¢ € CTL"
Question: Existence of a model M and a run o such that M,0,0 = ¢ ?

Theorem
The satisfiability problem for CTL* is 2-EXPTIME-complete

CTL (Clarke & Emerson 81)

Definition: Computation Tree Logic (CTL)

Syntax:
pu=L1|p(PEAP)| ¢ |pVe|EXp|AXp[EpUp|[ApUgp

The semantics is inherited from CTL"*.

Remark: All CTL formulae are state formulae

Examples: Macros
EFp=ETU¢ and AFp=ATUp
EGp=—-AF—-p and AGyp=-EF—p
AG(req — EF grant)
AG(req — AF grant)

CTL (Clarke & Emerson 81)

Definition: Semantics

All CTL-formulae are state formulae. Hence, we have a simpler semantics.

Let M = (S,T,I,AP,¢) be a Kripke structure without deadlocks and let s € S.

skEp if pel(s)

s EEXp if ds— s withs Eo

s EAXp if Vs— s wehaves o

sEEeUY if ds=s9— s1 — s2 — ---s; finite path, with

sjiEvand sy =@ forall 0 <k <j
sEApUY if Vs=sy— s3 — sg — - infinite path, 35 > 0 with
sjEvand sy =@ forall 0 <k <j

CTL (Clarke & Emerson 81)

Example:
]17 r [)' r [1‘ (1

q b,q q r

[EXp] = {1,2,3,5,6}

[AXp] = {3,6}

[EF p] = {1,2,3,4,5,6,7,8}

[AFp] = {2,3,5,6,7}
[EqUr] ={1,2,3,4,5,6}
[AqU+] = {2,3,4,5,6}

CTL (Clarke & Emerson 81)

Remark: Equivalent formulae
AXp = EX =,

“(pUt) =GV (= U (= A)
ApUtp =—EG-th A —E-1p U (=g A)

AG(req — F grant) = AG(req — AF grant)

AGFyp =AGAFp infinitely often
EFGy =EFEGyp ultimately

EGEFp # EGF ¢
AFAGy #AFGyp

EGEXp #EGXp g

Model checking of CTL

Definition: Existential and universal model checking

Let M = (S,T,1,AP,¥) be a Kripke structure and ¢ € CTL a formula.
MEs¢ if M,s = ¢ for some s € 1.

MEvy ifM,sE@forallsel.

Remark:

MEse iff In[e]#0
My e iff IC[4]
MEye iff MKz

Definition: Model checking problems MCYp; and MCZy,
Input: A Kripke structure M = (S,T,I,AP, /) and a formula ¢ € CTL
Question: Does M =y ¢ ? or Does M =3 ¢ ?

Model checking of CTL

Theorem
The model checking problem for CTL is decidable in time O(|M]| - |¢]|)

Proof:

Compute [¢] by induction on the formula.
The set [¢] is represented by a boolean array.

Definition: procedure semantics(y)

case p = p € AP

[el :=={s e S[petls)} o(lsl)
case p =~

semantics(1)

[e] := 5\ [e1] o(lsl)
case p = 1 V P2

semantics(ip1); semantics(y2)

[¢] == [p1] U [2] o(l51)

Model checking of CTL

Definition: procedure semantics(y)

case ¢ = EX
semantics(ip1)
[l = 0 o(s))
for all (s,t) € T do if t € [p1] then [¢] := [¢] U {s} o(T])

case p = AX
semantics(1)
[e] =5 o
for all (s,t) € T do if t ¢ [1] then [¢] := [¢] \ {s} o(|T))

Model checking of CTL

Definition: procedure semantics(y)

case o = Fp1 U @y o(S|+ 1)

semantics(ip1); semantics(y2)
L :=[p2] // the set L is the “todo” list o(S))
Z:=0 // the set Z is the “done” list o(|S))
while L # () do |S| times
Invariant: [o2] U ([e1] NT~1(Z)) € ZUL C [Ep; U s

take t € L; L:= L\ {t}; Z := ZU{t} o(1)

for all s € T=%(¢) do |T| times

if s€p1] \(ZUL) then L:=LU{s}
[¢l :=Z // Zis only used to make the invariant clear

Model checking of CTL

Definition: procedure semantics(y)
Replacing Z U L by [¢]

case p = Eip1 U gy O(|S|+1T)
semantics(ip1); semantics(y2)
L :=[p2] // the set L is imlemented with a list O(|S])
[¢] := 2] O(|s])
while L # 0 do |S| times
taket € L; L := L\ {t} O(1)
for all s € T=1(¢) do |T'| times
if s € o] \ [¢e] then L:= LU {s}; [¢] =[] U {s} o(1)

Model checking of CTL

Definition: procedure semantics(y)

case o = Ay U o o(S|+ 1)
semantics(ip1); semantics(y2)
L:=[p2] // the set L is the “todo” list o(|S))
Z =0 // the set Z is the “done” list o(S))
for all s € S do ¢[s] := |T'(s)| o(S))
while L # () do |S| times

Invariant: Vs € S, ¢[s] = |T'(s) \ Z| and
[e2] U] N{s € S| T(s) € Z}) S ZUL C[Ap1U o]

takete L; L= L\ {t}; Z = ZU {t} 0(1)
for all s € T=%(t) do || times
cls]:==c[s] — 1 o(1)

if c[s] =0As€[p]\(ZUL) then L:= LU {s}
[¢]l :==Z // Zis only used to make the invariant clear

Model checking of CTL

Definition: procedure semantics(y)
Replacing Z U L by [¢]

case 9 = Ay U 3 o(ls| + 1)
semantics(p1); semantics(y2)

L :=[p2] // the set L is imlemented with a list o(S))
[e] := 2] o(|51)
for all s € S do c[s] := |T'(s)] o(S))
while L # () do |S| times
taket € L; L := L\ {t} O(1)
for all s € T=1(¢) do |T| times
cls] :=c[s] — 1 o(1)
if ¢[s] =0As €[] \ [¢] then o(1)
L:=LU{s} [¢] := [e] U{s} o)

Complexity of CTL

Definition: SAT(CTL)
Input: A formula ¢ € CTL
Question: Existence of a model M and a state s such that M, s = ¢ ?

Theorem: Complexity
The model checking problem for CTL is PTIME-complete.
The satisfiability problem for CTL is EXPTIME-complete.

fairness

Example: Fairness

Only fair runs are of interest

Each process is enabled infinitely often: /\ GFrun;

3

No process stays ultimately in the critical section: /\ -FGCS; = /\ GF-CS;

Definition: Fair Kripke structure
M = (S,T,1,AP,(, Fy, ..., F,) with F; C S.

An infinite run o is fair if it visits infinitely often each F;

fair CTL

Definition: Syntax of fair-CTL
pu=L|p(PeAP) |~ |oVe|EXp|[ArXp|[EroUp|ArpUgp

Definition: Semantics as a fragment of CTL*
Let M = (S,T,1,AP, ¢, Fy,...,F),) be a fair Kripke structure.

Then, Ef ¢ = E(fair A @) and Ar o = A(fair —)
where fair = A, GF F;

Lemma: CTL; cannot be expressed in CTL

fair CTL

Proof: CTL; cannot be expressed in CTL
Consider the Kripke structure M}, defined by:

(3 (9
2% 2% — 1 2% — 2 2% —3) -
p

p P p -p P p P

My, 2k =EGFp but M, 2k—2F#EGFp

If ¢ € CTL and || < m < k then
My, 2k = @ iff My, 2m = ¢
My, 2k =1 |= @ iff My, 2m — 1= ¢

If the fairness condition is £=1(p) then E; T cannot be expressed in CTL.

Model checking of CTL;

Theorem
The model checking problem for CTL;y is decidable in time O(|M| - |¢]|)

Proof: Computation of Fair ={s € S| M,s =E; T}
Compute the SCC of M with Tarjan’s algorithm (in time O(|M])).
Let S” be the union of the (non trivial) SCCs which intersect each F;.
Then, Fair is the set of states that can reach S’.

Note that reachability can be computed in linear time.

Model checking of CTL;

Proof: Reductions

Er X¢ = EX(Fair A ¢) and Ero Uy =EpU (Fair A)
It remains to deal with Ay p U .

Recall that ApUy=—-EG—p A—=E-¢ U (- A)

This formula also holds for fair quantifications Ay and Ey.
Hence, we only need to compute the semantics of E; G .

Proof: Computation of E; G

Let M., be the restriction of M to [¢].

Compute the SCC of M, with Tarjan’s algorithm (in linear time).

Let S’ be the union of the (non trivial) SCCs of M, which intersect each F;.
Then, M,s = Ef Gy iff M,s =EpUS"iff M,,s =EFS".

This is again a reachability problem which can be solved in linear time.

