Buchi automata with output

Definition: SBT: Synchronous (letter to letter) Biichi transducer

Let A and B be two alphabets.

A synchronous Biichi transducer from A to B is a tuple A = (Q, A, I, T, F, 1) where
(Q,A,I,T,F)is a Biichi automaton (input) and x : 7' — B is the output function.
It computes the relation

[A] = {(u,v) € A* x B* | 3p = qo, a0, q1,01, g2, a2,q3, - - . accepting run
with u = agajas - -+ and v = u(p),
e, v= b0b1b2 .-+ with bz = u(qhai,qzﬂ) for i > 0}

If (Q,A,I,T,F) is unambiguous then [A] : A“ — B“ is a (partial) function,
in which case we also write [A](u) = v for (u,v) € [A].

We will also use SGBT: synchronous transducers with generalized Blichi acceptance.

Example: Left shift with A = B = {a,b}

a/b
ala . oa ' b/b

Composition of Biichi transducers
Definition: Composition
Let A, B, C be alphabets.
Let A= (Q,A,I,T,(F;);,p) be an SGBT from A to B.
Let A" = (Q',B,I',T', (F});, ') be an SGBT from B to C.
Then A- A'=(QxQ,A IxI'T" (F; xQ); (Q x F]{)j,u”) defined by:

= (p,p') = (¢,¢') € T" and p"(7") = ¢

iff

T:pi>qETandT':p'—>u(T) ¢ €T and c = u/'(7')

is an SGBT from A to C.
When the transducers define functions, we also denote the composition by A’ o A.

Proposition: Composition
1. We have [A- A'] = [A] - [A].
2. If (Q,A, 1, T, (F;);) and (Q', B, I',T", (F});) are unambiguous (resp.
prophetic) then (Q x Q', A, I x I', T", (F; x Q")i, (Q x F});) is also
unambiguous (resp. prophetic), and

Vu € A¥ we have [A" o A](u) = [AT([A](u)).

Product of Buchi transducers
Definition: Product

Let A, B, C be alphabets.

Let A= (Q,A,I,T,(F;);,p) be an SGBT from A to B.

Let A" = (Q', A, I',T",(F});,pu') be an SGBT from A to C.

Then Ax A" =(Q x Q' , A, I x I'T", (F; x Q")i, (Q x F);, ") defined by:

" =(p,p) % (¢,¢") € T" and /' (7"") = (b, c)
iff
r=pSqeTandb=yp(r)and 7' =p' % ¢ € T and ¢ = 1/ (7')
is an SGBT from A to B x C.

Proposition: Product
We identify (B x C)“ with B¥ x C¥.
1. We have [A x A'] = {(u,v,v") | (u,v) € [A] and (u,v") € [A]}.
2. If (Q,A, I, T, (F;);) and (Q', A, I', T', (F);) are unambiguous (resp.
prophetic) then (Q x Q', A, I x I', T", (F; x Q");, (Q x F});) is also
unambiguous (resp. prophetic), and

Yu € A¥ we have [A x A'](u) = ([A](u), [A](u)).

Subalphabets of ¥ = 24F

Definition:
For a propositional formula £ over AP, we let ¥¢ = {a € ¥ | a = £}
For instance, for p,q € AP,

Y,={acX|pea} and X ,=X\3,
Yprng =2pNEg and Z,vg =3%,U3,
Ypa-q = Ep\zq

Notation:

5T "
In automata, s — s’ stands for the set of transitions {s} x ¥¢ x {s'}.

o)) b>
To simplify the pictures, we use s % & instead of 5 —% &

Example: G(p — Fq)

o
PA g
——=®

Semantics of LTL with sequential functions

Definition: Semantics of ¢ € LTL(AP, SU, SS)
Let ¥ = 24P and B = {0,1}.

1 ifuibE=e

Define [¢] : £« — B“ by [¢](u) = bob1bs - - - with b; = { ,
0 otherwise.

Example:

[p SU q)(0{g}{p}0{p}{r}{a}0{p}{p, ¢}0*) = 1001110110~
Xpl(0{g}H{p}0{pH{rH{a}0{p}{p, ¢}0~) = 0101100110
[Fpl(0{g}H{p}0{pHrHa}0{p}p, ¢}0~) = 1111111110

The aim is to compute [¢] with synchronous Biichi transducers (actually, SGBT).

Synchronous Biichi transducer for p SU ¢
Example: An SBT for [p SU ¢]

Lemma: The input BA is prophetic

For all uw = agpajas --- € X¢,
there is a unique final run p = sg, ag, $1, a1, S2, as, 83, ... of A on u.

1 ifu,if=q
The run p satisfies for all ¢ > 0, s; = {2 if u,i =—-gA(pUgq)
3 ifuiE=-(pUq)
Hence, the SBT computes [p SU ¢].

Synchronous Biichi transducer for p U ¢

Example: An SBT for [p U ¢]

The automaton is prophetic (same input BA as for p SU ¢).
This SBT computes [p U g].

Special cases of Until: Future and Next

Example: Fg=T Ugand Xg= 1 SUgq

Exercise: Give SBT's for the following formulae:
SFq, SGq, pSRq, pSSq,Yq, Gq, pRq, pSq, G(p — Fq).

From LTL to Buchi automata

Definition: SBT for LTL modalities

At from X to B = {0,1}: 2/1

From LTL to Buchi automata

Definition: SBT for LTL modalities (cont.)

p/l Asy from B? to B:
A, from ¥ to B = {0,1} . -p/0 Prophetic
0/1
A_ from B to B: . 1/0
0,0/0
1,0/1
Ay from B2 to B: . 01/1
1,1/1
0,0/0 0’1§0 10/1
i 1,1/0 :
A, from B2 to B: . 0’??8 Ass from B? to B: ?’8?8 @A =<@>D 0,1/1
17 1/1 Deterministic ’ 0,0/1 1,1/1
’ Not prophetic
From LTL to Biichi automata Useful simplifications
Definition: Translation from LTL to SGBT
For each £ € LTL(AP, SU, SS) we define inductively an SGBT A¢ as follows: Reducing the number of temporal subformulae
A+ and A, for p € AP are already defined
A, =A0A, (Xp) A(Xy) =X(p AY) (X¢) SU (X9) = X(p SU 9)
Agvy = Ay o (A, x Ay) (G) A (GY) =Glp nY) GFyVGFy =GF(p V)

Agssy = Ass o (Ap x Ay)
Agsuyp = Asy o (Ap X Ay)

Theorem: Correctness of the translation

For each ¢ € LTL(AP, SU, SS), we have [A¢] = [£] and A¢ is unambiguous.

Moreover, the number of states of A is at most 2/¢lss . 3l¢lsv
the number of acceptance conditions is ||sy

where |€|ss (resp. |€|su) is the number of SS (resp. SU) occurring in &.

Remark:

If a subformula ¢ occurs serveral time in £, we only need one copy of A,,.

We may also use automata for other modalities: Ax (2 states), Ay, ...

(01 SUP) A (02 SUD) = (01 Aw2)SUY (0SU 1) V (¢ SU) = @ SU (1 V 9o,

Merging equivalent states

Let A= (Q,%,I,T, (F;);,) be an SGBT and s1, 52 € Q.
We can merge s; and s, if they satisfy the same final conditions:

s1 €EF, < sy € F; for all 4

and they have the same outgoing transitions: Va € ¥, Vs € @,

71 =(s1,a,8) €T <= 75 = (s9,a,5) €T and w(m) = p(m2)

Other constructions

» Tableau construction. See for instance [15, Wolper 85]
+ : Easy definition, easy proof of correctness
+ : Works both for future and past modalities
— : Inefficient without strong optimizations

» Using Very Weak Alternating Automata [16, Gastin & Oddoux 01].
+ : Very efficient
— : Only for future modalities
Online tool: http://www.lsv.ens-cachan.fr/~gastin/1t12ba/

» Using reduction rules [6, Demri & Gastin 10].
+ : Efficient and produces small automata
+ : Can be used by hand on real examples
— : Only for future modalities

» The domain is still very active.

Some References
[9] O. Lichtenstein and A. Pnueli.
Checking that finite state concurrent programs satisfy their linear specification.
In ACM Symposium PoPL'85, 97-107.

[15] P. Wolper.
The tableau method for temporal logic: An overview,
Logique et Analyse. 110-111, 119-136, (1985).

[10] A. Sistla and E. Clarke.
The complexity of propositional linear temporal logic.
Journal of the Association for Computing Machinery. 32 (3), 733-749, (1985).

[16] P. Gastin and D. Oddoux.
Fast LTL to Biichi automata translation.
In CAV'01, vol. 2102, Lecture Notes in Computer Science, pp. 53-65.
Springer, (2001).
http://www.lsv.ens-cachan.fr/~gastin/mes-publis.php

[6] S. Demri and P. Gastin.
Specification and Verification using Temporal Logics.
In Modern applications of automata theory, |1ISc Research Monographs 2.
World Scientific, 2012.
http://www.lsv.ens-cachan.fr/~gastin/mes-publis.php

Satisfiability for LTL over (N, <)

Let AP be the set of atomic propositions and ¥ = 247,

Definition: Satisfiability problem

Input: A formula ¢ € LTL(AP, SU, SS)

Question: Existence of w € ¥ and ¢ € N such that w,i = ¢.
Definition: Initial Satisfiability problem

Input: A formula ¢ € LTL(AP, SU, SS)

Question: Existence of w € ¥ such that w,0 = ¢.

Remark: ¢ is satisfiable iff F ¢ is initially satisfiable.
Definition: (Initial) validity

w is valid iff ¢ is not satisfiable.

Theorem [10, Sistla, Clarke 85], [9, Lichtenstein & Pnueli 85]
The satisfiability problem for LTL is PSPACE-complete.

Model checking for LTL

Definition: Model checking problem

Input: A Kripke structure M = (S, T, I, AP /)
A formula ¢ € LTL(AP, SU, SS)

Question: Does M = ¢ ?

Universal MC: M =y ¢ if £(0),0 |= ¢ for all initial infinite runs of M.
Existential MC: M =5 ¢ if £(0),0 |= ¢ for some initial infinite run of M.

My iff M s —p

Theorem [10, Sistla, Clarke 85], [9, Lichtenstein & Pnueli 85]
The Model checking problem for LTL is PSPACE-complete

MC?(SU) <p SAT(SU)
[10, Sistla & Clarke 85]
Let M = (S,T,1,AP,{) be a Kripke structure and ¢ € LTL(AP, SU)

Introduce new atomic propositions: APg = {at, | s € S}
Define AP’ = AP W APg ¥ = 2AP 7 X% = %¢ by w(a) = a N AP.

Let w € . We have w = ¢ iff 7(w) | ¢

Define 5 € LTL(AP’, X, F) of size O(|M|?) b

1/)M—<\/ats>/\G(\/ (at AN\-ateA N\ oon N oen Xatt)>

sel ses t#s peL(s) pEL(s) teT(s)

Let w = agajag --- € X'*. Then, w |= 1y iff there exists an initial infinite run

o = 80,51, 82, ... of M such that 7(w) = (o) and a; N APg = {ats,} for all i > 0.

Therefore, M =3¢ iff war A is initially satisfiable
M =y ¢ iff 1y A - is not initially satisfiable

Remark: we also have MC?(X, F) <p SAT(X, F).

QBF Quantified Boolean Formulae

Definition: QBF
Input: A formula v = Q171 - - - Quwypy with v/ = /\ \/ a;; (CNF)

1<i<m 1<j<k;
Qi S {V7E|} and aij € {wl,—'xl, ...733n,_‘1’n}.

Question: Is ~y valid?

Definition:

An assignment of the variables {z1,...,z,} is a word v = vy - - - v, € {0,1}".
We write v[i] for the prefix of length 4.
Let V' C {0,1}" be a set of assignments.

V is valid (for v) if v =/ for all v € V,
V is closed (for v) if Vo € V, V1 <i<nst. Q; =V,
I eVstoi—1]=v[i—1] and v, =1 — v;.

Proposition:
~visvalid iff 3V C {0,1}" s.t. V is nonempty valid and closed

QBF <p MC?(U) [10, Sistla & Clarke 85]

Letv=Quz1- Quzn [\ \/ aij with Q; € {¥,3} and a;; literals.
1<i<m 1<5<k;

Consider the KS M:

t xh xt)
*eo_.s{/' 1\61_”{/ L s{/ N,
. 7 ~ 7 |
xy Ty T
{ ail az1 am1
fol:ausﬁfll:am&b - /amQ\‘

NN NG

A1k, a2k, Amk,,

Let ¢;; = G(a] — sk R—ay) if ayj = xy

—

G(L'i — sk R ﬁ(/LVL']') if Qij = T
Let o; = G(ej—1 — (msi—1 Uzt) A (—s;_1 U Lf)) and o= /\ i
Then, ~ is valid iff M =3¢ A .

Complexity of LTL

Theorem: Complexity of LTL

The following problems are PSPACE-complete:
SAT(LTL(SU,SS)), MCY(LTL(SU, SS)), MC?(LTL(SU, SS))
SAT(LTL(X, F)), MCY(LTL(X, F)), MC?(LTL(X, F))
SAT(LTL(U)), MC¥(LTL(U)), MC?(LTL(U))

The restriction of the above problems to a unique propositional variable

The following problems are NP-complete:
SAT(LTL(F)), MC?(LTL(F))

Complexity of CTL" Satisfiability for CTL"

Definition: Syntax of the Computation Tree Logic CTL*

pu=L1|p(PEAP)|—p|loVe|Xp|lpUp|Ep|Ap Definition: SAT(CTL")
Theorem Input: A formula ¢ € CTL*
The model checking problem for CTL* is PSPACE-complete Question: Existence of a model M and a run o such that M,0,0 = ¢ ?
Proof: Theorem
PSPACE-hardness: follows from LTL C CTL". The satisfiability problem for CTL* is 2-EXPTIME-complete

PSPACE-easiness: reduction to LTL-model checking by inductive eliminations of
path quantifications.

