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Büchi automata with output
Definition: SBT: Synchronous (letter to letter) Büchi transducer

Let A and B be two alphabets.
A synchronous Büchi transducer from A to B is a tuple A = (Q,A, I, T, F, µ) where
(Q,A, I, T, F ) is a Büchi automaton (input) and µ : T ! B is the output function.
It computes the relation

[[A]] = {(u, v) 2 A

! ⇥B

! | 9 ⇢ = q

0

, a

0

, q

1

, a

1

, q

2

, a

2

, q

3

, . . . accepting run

with u = a

0

a

1

a

2

· · · and v = µ(⇢),

i.e., v = b

0

b

1

b

2

· · · with b

i

= µ(q
i

, a

i

, q

i+1

) for i � 0}

If (Q,A, I, T, F ) is unambiguous then [[A]] : A! ! B

! is a (partial) function,
in which case we also write [[A]](u) = v for (u, v) 2 [[A]].

We will also use SGBT: synchronous transducers with generalized Büchi acceptance.

Example: Left shift with A = B = {a, b}

a ba/a b/b
a/b

b/a
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Composition of Büchi transducers
Definition: Composition
Let A, B, C be alphabets.
Let A = (Q,A, I, T, (F

i

)
i

, µ) be an SGBT from A to B.
Let A0 = (Q0

, B, I

0
, T

0
, (F 0

j

)
j

, µ

0) be an SGBT from B to C.
Then A · A0 = (Q⇥Q

0
, A, I ⇥ I

0
, T

00
, (F

i

⇥Q

0)
i

, (Q⇥ F

0
j

)
j

, µ

00) defined by:

⌧

00 = (p, p0)
a�! (q, q0) 2 T

00 and µ

00(⌧ 00) = c

i↵

⌧ = p

a�! q 2 T and ⌧ 0 = p

0 µ(⌧)���! q

0 2 T

0 and c = µ

0(⌧ 0)

is an SGBT from A to C.
When the transducers define functions, we also denote the composition by A0 �A.

Proposition: Composition

1. We have [[A · A0]] = [[A]] · [[A0]].

2. If (Q,A, I, T, (F
i

)
i

) and (Q0
, B, I

0
, T

0
, (F 0

j

)
j

) are unambiguous (resp.
prophetic) then (Q⇥Q

0
, A, I ⇥ I

0
, T

00
, (F

i

⇥Q

0)
i

, (Q⇥ F

0
j

)
j

) is also
unambiguous (resp. prophetic), and
8u 2 A

! we have [[A0 �A]](u) = [[A0]]([[A]](u)).
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Product of Büchi transducers
Definition: Product
Let A, B, C be alphabets.
Let A = (Q,A, I, T, (F

i

)
i

, µ) be an SGBT from A to B.
Let A0 = (Q0

, A, I

0
, T

0
, (F 0

j

)
j

, µ

0) be an SGBT from A to C.
Then A⇥A0 = (Q⇥Q

0
, A, I ⇥ I

0
, T

00
, (F

i

⇥Q

0)
i

, (Q⇥ F

0
j

)
j

, µ

00) defined by:

⌧

00 = (p, p0)
a�! (q, q0) 2 T

00 and µ

00(⌧ 00) = (b, c)

i↵
⌧ = p

a�! q 2 T and b = µ(⌧) and ⌧ 0 = p

0 a�! q

0 2 T

0 and c = µ

0(⌧ 0)

is an SGBT from A to B ⇥ C.

Proposition: Product

We identify (B ⇥ C)! with B

! ⇥ C

!.

1. We have [[A⇥A0]] = {(u, v, v0) | (u, v) 2 [[A]] and (u, v0) 2 [[A0]]}.
2. If (Q,A, I, T, (F

i

)
i

) and (Q0
, A, I

0
, T

0
, (F 0

j

)
j

) are unambiguous (resp.
prophetic) then (Q⇥Q

0
, A, I ⇥ I

0
, T

00
, (F

i

⇥Q

0)
i

, (Q⇥ F

0
j

)
j

) is also
unambiguous (resp. prophetic), and
8u 2 A

! we have [[A⇥A0]](u) = ([[A]](u), [[A0]](u)).
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Subalphabets of ⌃ = 2AP

Definition:
For a propositional formula ⇠ over AP, we let ⌃

⇠

= {a 2 ⌃ | a |= ⇠}.
For instance, for p, q 2 AP,

I ⌃
p

= {a 2 ⌃ | p 2 a} and ⌃¬p

= ⌃ \ ⌃
p

I ⌃
p^q

= ⌃
p

\ ⌃
q

and ⌃
p_q

= ⌃
p

[ ⌃
q

I ⌃
p^¬q

= ⌃
p

\ ⌃
q

. . .

Notation:

In automata, s
⌃⇠��! s

0 stands for the set of transitions {s}⇥ ⌃
⇠

⇥ {s0}.
To simplify the pictures, we use s

⇠�! s

0 instead of s
⌃⇠��! s

0.

Example: G(p ! F q)

1 2

¬p ∨ q ¬q

p ∧ ¬q

q
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Semantics of LTL with sequential functions

Definition: Semantics of ' 2 LTL(AP, SU, SS)

Let ⌃ = 2AP and B = {0, 1}.
Define [[']] : ⌃! ! B! by [[']](u) = b

0

b

1

b

2

· · · with b

i

=

(
1 if u, i |= '

0 otherwise.

Example:

[[p SU q]](;{q}{p};{p}{p}{q};{p}{p, q};!) = 1001110110!

[[X p]](;{q}{p};{p}{p}{q};{p}{p, q};!) = 0101100110!

[[F p]](;{q}{p};{p}{p}{q};{p}{p, q};!) = 1111111110!

The aim is to compute [[']] with synchronous Büchi transducers (actually, SGBT).
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Synchronous Büchi transducer for p SU q
Example: An SBT for [[p SU q]]

1 2

3

q/1 p ∧ ¬q/1

¬q/0

q/1

p ∧ ¬q/1

q/0
¬p ∧ ¬q/1

¬p ∧ ¬q/1

Lemma: The input BA is prophetic

For all u = a

0

a

1

a

2

· · · 2 ⌃!,
there is a unique final run ⇢ = s

0

, a

0

, s

1

, a

1

, s

2

, a

2

, s

3

, . . . of A on u.

The run ⇢ satisfies for all i � 0, s
i

=

8
><

>:

1 if u, i |= q

2 if u, i |= ¬q ^ (p U q)

3 if u, i |= ¬(p U q)

Hence, the SBT computes [[p SU q]].
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Synchronous Büchi transducer for p U q

Example: An SBT for [[p U q]]

1 2

3

q/1 p ∧ ¬q/1

¬q/0

q/1

p ∧ ¬q/1

q/1
¬p ∧ ¬q/0

¬p ∧ ¬q/0

The automaton is prophetic (same input BA as for p SU q).
This SBT computes [[p U q]].
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Special cases of Until: Future and Next

Example: F q = > U q and X q = ? SU q

1 2

3

q/1 ¬q/1

¬q/0

q/1

¬q/1

q/1

1

3

q/1

¬q/0

q/0¬q/1

Exercise: Give SBT’s for the following formulae:

SF q, SG q, p SR q, p SS q, Y q, G q, p R q, p S q, G(p ! F q).
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From LTL to Büchi automata

Definition: SBT for LTL modalities

I A> from ⌃ to B = {0, 1}: 0 Σ/1

I A
p

from ⌃ to B = {0, 1}: 0
p / 1

¬p / 0

I A¬ from B to B: 0
0 / 1
1 / 0

I A_ from B2 to B: 0

0, 0 / 0
1, 0 / 1
0, 1 / 1
1, 1 / 1

I A^ from B2 to B: 0

0, 0 / 0
1, 0 / 0
0, 1 / 0
1, 1 / 1
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From LTL to Büchi automata

Definition: SBT for LTL modalities (cont.)

I A
SU

from B2 to B:
Prophetic

1 2

3

0, 1 / 1
1, 1 / 1

1, 0/1

0, 0 / 0
1, 0 / 0

0, 1 / 1
1, 1 / 1

1, 0/1

0, 1 / 0
1, 1 / 0

0, 0/1
0, 0/1

I A
SS

from B2 to B:
Deterministic
Not prophetic

0 1
0, 0 / 0
1, 0 / 0

0, 1 / 0
1, 1 / 0 1, 0 / 1

0, 1 / 1
1, 1 / 10, 0/1
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From LTL to Büchi automata
Definition: Translation from LTL to SGBT
For each ⇠ 2 LTL(AP, SU, SS) we define inductively an SGBT A

⇠

as follows:

I A> and A
p

for p 2 AP are already defined

I A¬' = A¬ �A
'

I A
'_ = A_ � (A

'

⇥A
 

)

I A
'SS 

= A
SS

� (A
'

⇥A
 

)

I A
'SU 

= A
SU

� (A
'

⇥A
 

)

Theorem: Correctness of the translation

For each ⇠ 2 LTL(AP, SU, SS), we have [[A
⇠

]] = [[⇠]] and A
⇠

is unambiguous.

Moreover, the number of states of A
⇠

is at most 2|⇠|SS · 3|⇠|SU
the number of acceptance conditions is |⇠|

SU

where |⇠|
SS

(resp. |⇠|
SU

) is the number of SS (resp. SU) occurring in ⇠.

Remark:
I If a subformula ' occurs serveral time in ⇠, we only need one copy of A

'

.

I We may also use automata for other modalities: A
X

(2 states), A
U

, . . .
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Useful simplifications

Reducing the number of temporal subformulae

(X') ^ (X ) ⌘ X(' ^  ) (X') SU (X ) ⌘ X(' SU  )

(G') ^ (G ) ⌘ G(' ^  ) GF' _ GF ⌘ GF(' _  )
('

1

SU  ) ^ ('
2

SU  ) ⌘ ('
1

^ '
2

) SU  (' SU  
1

) _ (' SU  
2

) ⌘ ' SU ( 
1

_  
2

)

Merging equivalent states

Let A = (Q,⌃, I, T, (F
i

)
i

, µ) be an SGBT and s

1

, s

2

2 Q.

We can merge s

1

and s

2

if they satisfy the same final conditions:

s

1

2 F

i

() s

2

2 F

i

for all i

and they have the same outgoing transitions: 8a 2 ⌃, 8s 2 Q,

⌧

1

= (s
1

, a, s) 2 T () ⌧

2

= (s
2

, a, s) 2 T and µ(⌧
1

) = µ(⌧
2

)



114/130

Other constructions

I Tableau construction. See for instance [15, Wolper 85]
+ : Easy definition, easy proof of correctness
+ : Works both for future and past modalities
– : Ine�cient without strong optimizations

I Using Very Weak Alternating Automata [16, Gastin & Oddoux 01].
+ : Very e�cient
– : Only for future modalities

Online tool: http://www.lsv.ens-cachan.fr/
~

gastin/ltl2ba/

I Using reduction rules [6, Demri & Gastin 10].
+ : E�cient and produces small automata
+ : Can be used by hand on real examples
– : Only for future modalities

I The domain is still very active.

115/130

Some References
[9] O. Lichtenstein and A. Pnueli.

Checking that finite state concurrent programs satisfy their linear specification.
In ACM Symposium PoPL’85, 97–107.

[15] P. Wolper.
The tableau method for temporal logic: An overview,
Logique et Analyse. 110–111, 119–136, (1985).

[10] A. Sistla and E. Clarke.
The complexity of propositional linear temporal logic.
Journal of the Association for Computing Machinery. 32 (3), 733–749, (1985).

[16] P. Gastin and D. Oddoux.
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Satisfiability for LTL over (N, <)
Let AP be the set of atomic propositions and ⌃ = 2AP.

Definition: Satisfiability problem

Input: A formula ' 2 LTL(AP, SU, SS)

Question: Existence of w 2 ⌃! and i 2 N such that w, i |= '.

Definition: Initial Satisfiability problem

Input: A formula ' 2 LTL(AP, SU, SS)

Question: Existence of w 2 ⌃! such that w, 0 |= '.

Remark: ' is satisfiable i↵ F' is initially satisfiable.

Definition: (Initial) validity

' is valid i↵ ¬' is not satisfiable.

Theorem [10, Sistla, Clarke 85], [9, Lichtenstein & Pnueli 85]

The satisfiability problem for LTL is PSPACE-complete.
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Model checking for LTL

Definition: Model checking problem

Input: A Kripke structure M = (S, T, I,AP, `)
A formula ' 2 LTL(AP, SU, SS)

Question: Does M |= ' ?

I Universal MC: M |=8 ' if `(�), 0 |= ' for all initial infinite runs of M .

I Existential MC: M |=9 ' if `(�), 0 |= ' for some initial infinite run of M .

M |=8 ' i↵ M 6|=9 ¬'

Theorem [10, Sistla, Clarke 85], [9, Lichtenstein & Pnueli 85]

The Model checking problem for LTL is PSPACE-complete
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MC9(SU) P SAT(SU)
[10, Sistla & Clarke 85]

Let M = (S, T, I,AP, `) be a Kripke structure and ' 2 LTL(AP, SU)

Introduce new atomic propositions: AP
S

= {at
s

| s 2 S}
Define AP0 = AP ]AP

S

⌃0 = 2AP

0
⇡ : ⌃0! ! ⌃! by ⇡(a) = a \AP.

Let w 2 ⌃0!. We have w |= ' i↵ ⇡(w) |= '

Define  
M

2 LTL(AP0
,X,F) of size O(|M |2) by

 

M

=

 
_

s2I

at
s

!
^ G

0

@
_

s2S

0

@at
s

^
^

t 6=s

¬at
t

^
^

p2`(s)

p ^
^

p/2`(s)

¬p ^
_

t2T (s)

X at
t

1

A

1

A

Let w = a

0

a

1

a

2

· · · 2 ⌃0!. Then, w |=  

M

i↵ there exists an initial infinite run
� = s

0

, s

1

, s

2

, . . . of M such that ⇡(w) = `(�) and a

i

\AP
S

= {at
si} for all i � 0.

Therefore, M |=9 ' i↵  

M

^ ' is initially satisfiable
M |=8 ' i↵  

M

^ ¬' is not initially satisfiable

Remark: we also have MC9(X,F) 
P

SAT(X,F).
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QBF Quantified Boolean Formulae

Definition: QBF

Input: A formula � = Q

1

x

1

· · ·Q
n

x

n

�

0 with �0 =
^

1im

_

1jki

a

ij

(CNF)

Q

i

2 {8, 9} and a

ij

2 {x
1

,¬x
1

, . . . , x

n

,¬x
n

}.
Question: Is � valid?

Definition:
An assignment of the variables {x

1

, . . . , x

n

} is a word v = v

1

· · · v
n

2 {0, 1}n.
We write v[i] for the prefix of length i.
Let V ✓ {0, 1}n be a set of assignments.

I
V is valid (for �0) if v |= �

0 for all v 2 V ,

I
V is closed (for �) if 8v 2 V , 81  i  n s.t. Q

i

= 8,
9v0 2 V s.t. v[i� 1] = v

0[i� 1] and v

0
i

= 1� v

i

.

Proposition:

� is valid i↵ 9V ✓ {0, 1}n s.t. V is nonempty valid and closed
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QBF P MC9(U) [10, Sistla & Clarke 85]
Let � = Q

1

x

1

· · ·Q
n

x

n

^

1im

_

1jki

a

ij

with Q

i

2 {8, 9} and a

ij

literals.

Consider the KS M :

e0 s1

xt
1

xf
1

e1 s2

xt
2

xf
2

e2 · · · sn

xt
n

xf
n

en

f0

a11

a12
...

a1k1

f1

a21

a22
...

a2k2

f2 · · · fm−1

am1

am2

...

amkm

fm

Let  
ij

=

(
G(xf

k

! s

k

R ¬a
ij

) if a
ij

= x

k

G(xt

k

! s

k

R ¬a
ij

) if a
ij

= ¬x
k

and  =
^

i,j

 

ij

.

Let '
i

= G(e
i�1

! (¬s
i�1

U x

t

i

) ^ (¬s
i�1

U x

f

i

)) and ' =
^

i|Qi=8

'

i

.

Then, � is valid i↵ M |=9  ^ '.
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Complexity of LTL

Theorem: Complexity of LTL
The following problems are PSPACE-complete:

I SAT(LTL(SU, SS)), MC8(LTL(SU, SS)), MC9(LTL(SU, SS))

I SAT(LTL(X,F)), MC8(LTL(X,F)), MC9(LTL(X,F))

I SAT(LTL(U)), MC8(LTL(U)), MC9(LTL(U))

I The restriction of the above problems to a unique propositional variable

The following problems are NP-complete:

I SAT(LTL(F)), MC9(LTL(F))
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Complexity of CTL⇤

Definition: Syntax of the Computation Tree Logic CTL⇤

' ::= ? | p (p 2 AP) | ¬' | ' _ ' | X' | ' U ' | E' | A'

Theorem
The model checking problem for CTL⇤ is PSPACE-complete

Proof:
PSPACE-hardness: follows from LTL ✓ CTL⇤.

PSPACE-easiness: reduction to LTL-model checking by inductive eliminations of
path quantifications.
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Satisfiability for CTL⇤

Definition: SAT(CTL⇤)

Input: A formula ' 2 CTL⇤

Question: Existence of a model M and a run � such that M,�, 0 |= ' ?

Theorem
The satisfiability problem for CTL⇤ is 2-EXPTIME-complete


