
77/127

Outline

Introduction

Models

Temporal Specifications

4 Satisfiability and Model Checking

CTL

Fair CTL

Büchi automata

From LTL to BA

LTL

CTL⇤

More on Temporal Specifications

79/127

Model checking of CTL

Theorem
Let M = (S, T, I,AP, `) be a Kripke structure and ' 2 CTL a formula.
The model checking problem M |=9 ' is decidable in time O(|M | · |'|)

Proof:

Compute [[']] = {s 2 S | M, s |= '} by induction on the formula.

The set [[']] is represented by a boolean array: L[s]['] = > if s 2 [[']].

The labelling ` is encoded in L: for p 2 AP we have L[s][p] = > if p 2 `(s).

For each t 2 S, the set T�1(t) is represented as a list.

for all t 2 S do for all s 2 T

�1(t) do ... od takes time O(|T |).

80/127

Model checking of CTL

Definition: procedure semantics(')

case ' = ¬'
1

semantics('
1

)
[[']] := S \ [['

1

]] O(|S|)
case ' = '

1

_ '
2

semantics('
1

); semantics('
2

)
[[']] := [['

1

]] [[['
2

]] O(|S|)
case ' = EX'

1

semantics('
1

)
[[']] := ; O(|S|)
for all t 2 [['

1

]] do for all s 2 T

�1(t) do [[']] := [[']] [{s} O(|T |)
case ' = AX'

1

semantics('
1

)
[[']] := S O(|S|)
for all t /2 [['

1

]] do for all s 2 T

�1(t) do [[']] := [[']] \ {s} O(|T |)

81/127

Model checking of CTL

Definition: procedure semantics(')

case ' = E'
1

U '
2

O(|S|+ |T |)
semantics('

1

); semantics('
2

)
Todo := [['

2

]] // the “todo” set Todo is imlemented with a list O(|S|)
Good := [['

2

]] // the “result” is computed in the array Good O(|S|)
while Todo 6= ; do |S| times
Invariant 1: [['

2

]] [Todo ✓ Good ✓ [[E'
1

U '
2

]] and
Invariant 2: [['

1

]] \ T

�1(Good \ Todo) ✓ Good
take t 2 Todo; Todo := Todo \ {t} O(1)
for all s 2 T

�1(t) do |T | times
if s 2 [['

1

]] \Good then
Todo := Todo [{s}; Good := Good [{s} O(1)

od
[[']] := Good O(|S|)

Good is only used to make the invariant clear. It can be replaced by [[']].

83/127

Model checking of CTL
Definition: procedure semantics(')

case ' = A'
1

U '
2

O(|S|+ |T |)
semantics('

1

); semantics('
2

)
Todo := [['

2

]] // the “todo” set Todo is imlemented with a list O(|S|)
Good := [['

2

]] // the “result” is computed in the array Good O(|S|)
for all s 2 S do c[s] := |T (s)| O(|S|)
while Todo 6= ; do |S| times
Invariant 1: [['

2

]] [Todo ✓ Good ✓ [[A'
1

U '
2

]] and
Invariant 2: 8s 2 S, c[s] = |T (s) \ (Good \ Todo)| and
Invariant 3: [['

1

]] \ {s 2 S | c[s] = 0} ✓ Good
take t 2 Todo; Todo := Todo \ {t} O(1)
for all s 2 T

�1(t) do |T | times
c[s] := c[s]� 1 O(1)
if c[s] = 0 ^ s 2 [['

1

]] \Good then
Todo := Todo [{s}; Good := Good [{s} O(1)

od
[[']] := Good O(|S|)

Good is only used to make the invariant clear. It can be replaced by [[']].
84/127

Complexity of CTL

Definition: SAT(CTL)

Input: A formula ' 2 CTL

Question: Existence of a model M and a state s such that M, s |= ' ?

Theorem: Complexity
I The model checking problem for CTL is PTIME-complete.

I The satisfiability problem for CTL is EXPTIME-complete.

86/127

fairness

Example: Fairness
Only fair runs are of interest

I Each process is enabled infinitely often:
^

i

GF run
i

I No process stays ultimately in the critical section:
^

i

¬FGCS
i

=
^

i

GF¬CS
i

Definition: Fair Kripke structure

M = (S, T, I,AP, `, F
1

, . . . , F

n

) with F

i

✓ S.

An infinite run � is fair if it visits infinitely often each F

i

87/127

fair CTL

Definition: Syntax of fair-CTL

' ::= ? | p (p 2 AP) | ¬' | ' _ ' | E
f

X' | A
f

X' | E
f

' U ' | A
f

' U '

Definition: Semantics as a fragment of CTL⇤

Let M = (S, T, I,AP, `, F
1

, . . . , F

n

) be a fair Kripke structure.

Then, E
f

' = E(fair ^ ') and A
f

' = A(fair ! ')

where fair =
V

i

GFF
i

Lemma: CTLf cannot be expressed in CTL

88/127

fair CTL

Proof: CTLf cannot be expressed in CTL

Consider the Kripke structure M

k

defined by:

2k 2k − 1 2k − 2 2k − 3 · · · 4 3 2 1

p p p p¬p ¬p ¬p ¬p

I
M

k

, 2k |= EGF p but M

k

, 2k � 2 6|= EGF p

I If ' 2 CTL and |'|  m  k then

M

k

, 2k |= ' i↵ M

k

, 2m |= '

M

k

, 2k � 1 |= ' i↵ M

k

, 2m� 1 |= '

If the fairness condition is `�1(p) then E
f

> cannot be expressed in CTL.

89/127

Model checking of CTLf

Theorem
The model checking problem for CTL

f

is decidable in time O(|M | · |'|)

Proof: Computation of Fair = {s 2 S | M, s |= Ef >}
Compute the SCC of M with Tarjan’s algorithm (in time O(|M |)).
Let S0 be the union of the (non trivial) SCCs which intersect each F

i

.

Then, Fair is the set of states that can reach S

0.

Note that reachability can be computed in linear time.

90/127

Model checking of CTLf

Proof: Reductions
E
f

X' = EX(Fair ^ ') and E
f

' U = E' U (Fair ^)
It remains to deal with A

f

' U .

We have A
f

' U = ¬E
f

G¬ ^ ¬E
f

(¬ U (¬' ^ ¬))
Hence, we only need to compute the semantics of E

f

G'.

Proof: Computation of Ef G'

Let M
'

be the restriction of M to [[']]
f

.

Compute the SCC of M
'

with Tarjan’s algorithm (in linear time).

Let S0 be the union of the (non trivial) SCCs of M
'

which intersect each F

i

.

Then, M, s |= E
f

G' i↵ M, s |= E' U S

0 i↵ M

'

, s |= EFS0.

This is again a reachability problem which can be solved in linear time.

92/127

Büchi automata
Definition:
A Büchi automaton (BA) is a tuple A = (Q,⌃, I, T, F) where

I
Q: finite set of states

I ⌃: finite set of labels

I
I ✓ Q: set of initial states

I
T ✓ Q⇥ ⌃⇥Q: set of transitions (non-deterministic)

I
F ✓ Q: set of final (repeated) states

Run: ⇢ = q

0

, a

0

, q

1

, a

1

, q

2

, a

2

, q

3

, . . . with (q
i

, a

i

, q

i+1

) 2 T for all i � 0.

⇢ is initial if q
0

2 I.

⇢ is final (successful) if q
i

2 F for infinitely many i’s.

⇢ is accepting if it is both initial and final.

L(A) = {a
0

a

1

a

2

· · · 2 ⌃! | 9 ⇢ = q

0

, a

0

, q

1

, a

1

, q

2

, a

2

, q

3

, . . . accepting run}

A language L ✓ ⌃! is !-regular if it can be accepted by some Büchi automaton.

93/127

Büchi automata

Examples:

Infinitely many a’s:

Finitely many a’s:

No deterministic Büchi automaton for this language.

Whenever a then later b:

94/127

Büchi automata

Properties
Büchi automata are closed under union, intersection, complement.

I Union: trivial

I Intersection: easy (exercise)

I complement: di�cult

Let L = ⌃⇤(a⌃n�1

b [b⌃n�1

a)⌃!

0

Σ 1
a

2
Σ · · · nΣ

0′

b
Σ

1’
b

2’
Σ

· · · n′

Σ

a

Any non deterministic Büchi automaton for ⌃! \ L has at least 2n states.

95/127

Büchi automata
Theorem: Büchi
Let L ✓ ⌃! be a language. The following are equivalent:

I
L is !-regular

I
L is !-rational, i.e., L is a finite union of languages of the form L

1

· L!

2

where
L

1

, L

2

✓ ⌃+ are rational.

I
L is MSO-definable, i.e., there is a sentence ' 2 MSO

⌃

(<) such that
L = L(') = {w 2 ⌃! | w |= '}.

Exercises:
1. Construct a BA for L(') where ' is the FO

⌃

(<) sentence

(8x, (P
a

(x) ! 9y > x, P

a

(y))) ! (8x, (P
b

(x) ! 9y > x, P

c

(y)))

2. Given BA for L
1

✓ ⌃! and L

2

✓ ⌃!, construct BA for

next(L
1

) = ⌃ · L
1

until(L
1

, L

2

) = {uv 2 ⌃! | u 2 ⌃+ ^ v 2 L

2

^
u

00
v 2 L

1

for all u0
, u

00 2 ⌃+ with u = u

0
u

00}
96/127

Generalized Büchi automata

Definition: final condition on states or on transitions
A = (Q,⌃, I, T, F

1

, . . . , F

n

) with F

i

✓ Q.
An infinite run � is final (successful) if it visits infinitely often each F

i

.

A = (Q,⌃, I, T, T
1

, . . . , T

n

) with T

i

✓ T .
An infinite run � is final if it uses infinitely many transitions from each T

i

.

Example: Infinitely many a’s and infinitely many b’s

0

Σ
a

Σb

Σ

0

Σ

ab

Theorem:
1. GBA and BA have the same expressive power.
2. Checking whether a BA or GBA has an accepting run is NLOGSPACE-complete.

98/127

Unambiguous or prophetic Büchi automata

Definition: Unambiguous Büchi automata
A BA or GBA A is unambiguous if every word has at most one accepting run in A.

Definition: Prophetic Büchi automata
A BA or GBA A is prophetic if every word has exactly one final run in A.

Examples: UBA and PBA
I Finitely many a’s.

I G(a ! F b) with ⌃ = {a, b, c}.

Theorem: Prophetic Büchi automata (Carton-Michel 2003)

Every !-regular language can be accepted by a prophetic BA.

