Outline Model checking of CTL
Theorem
Let M = (S,T,1,AP, /) be a Kripke structure and ¢ € CTL a formula.
The model checking problem M 3 ¢ is decidable in time O(|M| - |¢])
Proof:
@ Satisfiability and Model Checking
e CTL Compute [¢] = {s € S| M, s = ¢} by induction on the formula.
o Fair CTL The set [¢] is represented by a boolean array: L[s|[¢] = T if s € [¢].
@ Biichi automata
o From LTL to BA The labelling ¢ is encoded in L: for p € AP we have L[s|[p] = T if p € {(s).
o LTL For each t € S, the set T—1(¢) is represented as a list.
e CTL”
for all t €S do for all s€ T () do ... od takestime O(|T)).
Model checking of CTL Model checking of CTL
Definition: procedure semantics(y) Definition: procedure semantics(y)
case p = =y case o = Ep1 U o o(|S| + |T))
semantics(p1) semantics(¢1); semantics(p2)
le] == S\ [e1] o(|S]) := 2] // the “todo” set is imlemented with a list  O(|S])
rm = o Y 5 Go.od := 2] // the “result” is computed in the array Good O(\S\)
. : . while # () do |S| times
semantics(ip1); semantics(ys2) .
[e] = [1] U [s] o(5)) Invariant 1: [p2] U C Good C [Ep1 U gs] and
Invariant 2: 1] N T~ (Good \ ) C Good
case p = EX ¢ take t € ; = \ {t} o(1)
semantics(1) for all s € T71(t) do IT| times
le] :=0 O(]S)) if s € 1] \ Good then
for all t € [1] do for all s € T=1(¢) do [¢] := [¢] U {s} o(1)) = U {s}; Good := Good U {s} 0(1)
od
case = Ao lie] := Good o(s))
semantics(p1)
[o] = o(s)
for all t ¢ 1] do for all s € T=1(¢) do [¢] := [¢] \ {s} o(|T)) Good is only used to make the invariant clear. It can be replaced by [¢].




Model checking of CTL

Definition: procedure semantics(y)

case o = Ay U gy O(|S| + |T))
semantics(p1); semantics(ys2)
:= [p2] // the “todo” set is imlemented with a list  O(][S])
Good := [ps] // the “result” is computed in the array Good O(]S))
for all s € S do c[s] := |T'(s)| O(]S))
while # () do |S| times
Invariant 1: [p2] U C Good C [A ¢y U gs] and

Invariant 2: Vs e S, ¢[s] = |T'(s) \ (Good \ )| and
Invariant 3:  [p1] N {s € S| ¢[s] = 0} C Good

take ¢ € ; : \ {t} o)
for all s € T=1(¢) do |T| times
cls] :==c[s] — 1 o)
if c[s] =0A s € 1] \ Good then
= U {s}; Good := Good U {s} o)
od
[¢] := Good O(|S))

100d is only used to make the invariant clear. It can be replaced by [¢].

Complexity of CTL

Definition: SAT(CTL)
Input: A formula ¢ € CTL

Question: Existence of a model M and a state s such that M,s = ¢ ?

Theorem: Complexity
The model checking problem for CTL is PTIME-complete.
The satisfiability problem for CTL is EXPTIME-complete.

fairness

Example: Fairness

Only fair runs are of interest

Each process is enabled infinitely often: /\ G Frun;

3

No process stays ultimately in the critical section: /\ -FGCS; = /\ GF-=CS;
i i

Definition: Fair Kripke structure
M = (S,T,1,AP,(, Fy,...,F,) with F; C S.

An infinite run o is fair if it visits infinitely often each F;

fair CTL

Definition: Syntax of fair-CTL
pu=L|p(PEAP) |0 Ve |ErXo|[ArXp|ErpUp|ArpUep

Definition: Semantics as a fragment of CTL*
Let M = (S,T,I,AP ¢, F,...,F,) be a fair Kripke structure.

Then, Ef o = E(fair A @) and Ar o = A(fair — @)
where fair = A, GF F;

Lemma: CTL; cannot be expressed in CTL




fair CTL

Proof: CTL¢ cannot be expressed in CTL
Consider the Kripke structure M}, defined by:

2% W —1 % — 2 %W—3) - @ 8 @
p -p p -p p -p p

M, 2k =EGFp but M, 2k—2KEGFp

If ¢ € CTL and |p| < m < k then
My, 2k |= @ iff My, 2m | ¢
My, 2k — 1 @ iff M,2m —1FE ¢

If the fairness condition is £~ (p) then E; T cannot be expressed in CTL.

Model checking of CTL;

Theorem
The model checking problem for CTL; is decidable in time O(|M| - |¢])

Proof: Computation of Fair = {s € S| M,s =E; T}
Compute the SCC of M with Tarjan’s algorithm (in time O(|M])).
Let S’ be the union of the (non trivial) SCCs which intersect each F;.
Then, Fair is the set of states that can reach S’.

Note that reachability can be computed in linear time.

Model checking of CTL¢

Proof: Reductions

Er X¢ = EX(Fair A ¢) and Ero Uy =EpU (Fair A)

It remains to deal with Ay @ U ).

We have ArpUyp =-E; Gy A=Ef(—p U (mp A =)
Hence, we only need to compute the semantics of E; G .

Proof: Computation of E; G ¢

Let M, be the restriction of M to [¢];.
Compute the SCC of M, with Tarjan’s algorithm (in linear time).

Let S’ be the union of the (non trivial) SCCs of M, which intersect each F;.

Then, M,s = Ef Gy iff M,s = Ep U S"iff M, s = EFS".
This is again a reachability problem which can be solved in linear time.

Biichi automata

Definition:
A Biichi automaton (BA) is a tuple A = (Q, X, 1,7, F) where

Q: finite set of states

33 finite set of labels

I C Q: set of initial states

T CQ x X x Q: set of transitions (non-deterministic)

F C Q: set of final (repeated) states

Run: p = qo,a0,q1,01,92,a2, 43, - - - with (¢, ai,gi+1) € T for all i > 0.
p is initial if go € 1.
p is final (successful) if ¢; € F for infinitely many 4's.

p is accepting if it is both initial and final.

L(A) = {aoaﬂlz - € X |dp=qo,a,q1,0a1,q2,0a2,qs3, ... accepting run}

A language L C X¥ is w-regular if it can be accepted by some Biichi automaton.




Buchi automata

Examples:

Infinitely many a's:

Finitely many a's:

Whenever a then later b:

Buchi automata

Properties

Biichi automata are closed under union, intersection, complement.
Union: trivial
Intersection: easy (exercise)

complement: difficult

Let L = £*(aX"1b U bEr—1a) 0w

Any non deterministic Blichi automaton for ¢ \ L has at least 2" states.

Biichi automata
Theorem: Biichi
Let L C X be a language. The following are equivalent:
L is w-regular

L is w-rational, i.e., L is a finite union of languages of the form L; - L% where
Ly,Ly C X1 are rational.

L is MSO-definable, i.e., there is a sentence ¢ € MSOx (<) such that
L=L(p)={weX’|wkp}

Exercises:
1. Construct a BA for L(¢) where ¢ is the FOx (<) sentence

(Vz, (Po(z) = Jy > z, Pa(y))) — (Y, (Po(z) = Jy > z, Pe(y)))
2. Given BA for L; C X¥ and Ly C ¢, construct BA for

next(Ll) =3. Ll
until(Ly, Lo) = {uv € 2¥ |[u € St Av € Ly A

uw'v e Ly forall v/, v € &1 with u = u'u”}

Generalized Buchi automata

Definition: final condition on states or on transitions
A=(Q,3,I,T,F,...,F,) with F; C Q.
An infinite run o is final (successful) if it visits infinitely often each F;.

A=(Q,%,I,T,T1,...,T,) with T; CT.
An infinite run o is final if it uses infinitely many transitions from each 7;.

Example: Infinitely many a's and infinitely many b's

Theorem:

1. GBA and BA have the same expressive power.
2. Checking whether a BA or GBA has an accepting run is NLOGSPACE-complete.




Unambiguous or prophetic Buchi automata

Definition: Unambiguous Blichi automata

A BA or GBA A is unambiguous if every word has at most one accepting run in A.

Definition: Prophetic Biichi automata
A BA or GBA A is prophetic if every word has exactly one final run in A.

Examples: UBA and PBA
Finitely many a's.
G(a — Fb) with ¥ = {a, b, c}.

Theorem: Prophetic Biichi automata (Carton-Michel 2003)
Every w-regular language can be accepted by a prophetic BA.




