Outline

e Temporal Specifications
@ General Definitions
@ (Linear) Temporal Specifications
@ Branching Temporal Specifications
e CTL"
o CTL

Static and dynamic properties

Example: Static properties

Mutual exclusion
Safety properties are often static.
They can be reduced to reachability.

Example: Dynamic properties

Every elevator request should be eventually granted.

The elevator should not cross a level for which a call is pending without stopping.

Temporal Structures

Definition: Flows of time

A flow of time is a strict order (T, <) where T is the nonempty set of time points
and < is an irreflexive transitive relation on T.

Example: Flows of time
({0,...,n},<): Finite runs of sequential systems.
(N, <): Infinite runs of sequential systems.
(R, <): runs of real-time sequential systems.
Trees: Finite or infinite run-trees of sequential systems.
Mazurkiewicz traces: runs of distributed systems (partial orders).
and also (Z, <) or (Q, <) or (w?,<), ...

Definition: Temporal Structures

Let AP be a set of atoms (atomic propositions).

A temporal structure over a class C of time flows and AP is a triple (T, <, h) where
(T, <) is a time flow in C and h : AP — 2T is an assignment.

If p € AP then h(p) C T gives the time points where p holds.

Linear behaviors and specifications

Let M = (S,T,1,AP,?) be a Kripke structure.

Definition: Runs as temporal structures

An infinite run o = sps182 -+ of M with (s;, s;41) € T for all i > 0 defines a linear
temporal structure ¢(0) = (N, <, h) where h(p) = {i e N | p € £(s;)}.

Such a temporal structure can be seen as an infinite word over ¥ = 24F:
(o) = L(s0)l(s1)l(s2) -+ = (N, <, w) with w(i) = £(s;) € X.

Linear specifications only depend on runs.
Example: The printer manager is fair.
On each run, whenever some process requests the printer, it eventually gets it.

Remark:

Two Kripke structures having the same linear temporal structures satisfy the same
linear specifications.

Branching behaviors and specifications

The system has an infinite active
run, but it may always reach an
inactive state.

Definition: Computation-tree or run-tree : unfolding of the TS

Let M = (S,T,I,AP,?) be a Kripke structure. Wlog. I = {s¢} is a singleton.
Let D be a finite set with |D| the outdegree of the transition relation 7.
The computation-tree of M is an unordered tree ¢ : D* — S (partial map) s.t.

t(E) = S0,
For every node u € dom(t) labelled s = t(u), if T(s) = {s1,..., sk} then u
has exactly £ children which are labelled sq,... sk

Associated temporal structure £(t) = (dom(t), <, h) where

< is the strict prefix relation over D*,
and h(p) = {u € dom(t) | p € £(t(u))}.

(Linear) runs of M are branches of the computation-tree ¢.

First-order Specifications
Definition: Syntax of FO(AP, <)
Let Var = {z,y,...} be first-order variables.
pu=L|p@)|z=ylz<y|-pleVe|Ize

where p € AP.

Definition: Semantics of FO(AP, <)

Let w = (T, <, h) be a temporal structure over AP.
Let v : Var — T be an assignment of first-order variables to time points.

w,vEp) if v(z)€h(p)

wywEz=y if viz)=uv(y)

wviEr<y if v(z)<v(y)

w,vEJre if w,v[x—t] = ¢ for somet € T
where v[z +— t] maps z to t and y # x to v(y).

Previous specifications can be written in FO(<) (except the branching one).

First-order vs Temporal

First-order logic

FO(<) has a good expressive power
... but FO(<)-formulae are not easy to write and to understand.

FO(<) is decidable
... but satisfiability and model checking are non elementary.

Temporal logics
no variables: time is implicit.
quantifications and variables are replaced by modalities.
Usual specifications are easy to write and read.
Good complexity for satisfiability and model checking problems.
Good expressive power.

Linear Temporal Logic (LTL) over (N, <) introduced by Pnueli (1977) as a conve-
nient specification language for verification of systems.

Temporal Specifications

Definition: Syntax of TL(AP, SU, SS)
pu=L|p(PEAP)|-p|pVe|pSUp|pSSy

Definition: Semantics: w = (T, <, h) temporal structure and i € T

w,i Ep if i€ h(p)
w,i = e if wifEe
w,i =@V if w,ifEporwikEy

wyiE@eSUY if Fki<kandw,kEvandVj (i<j<k—wjEe)
w,iE= @SSy if Fki>kandw,kEvYandVj (i>7>k—w,jlE@)

Previous specifications can be written in TL(AP, SU, SS)
(except the branching one).

Temporal Specifications

Definition: non-strict versions of until and since

def

eUp = 9V(pApSUY) 9SSy = PV (pApSSY)
wyiiEeUy if Fki<kandw,kEvYandVj (i <j<k—w,jEp)
w,iE @Sy if Fki>kandw,kEvYandVji (i >ji>k—w,jE @)
Definition: Derived modalities

X & 1 SUp Next Yo & 1SS Yesterday

w,iEXe if Jki<kandw,klEeand -35 (i <j<k)
w,iiEYe if Jki>kandw,klEeand =35 (i >j > k)

Fop d:: TUegp Py ::e: TS
Gp = —F-p Hpy = —=P-p
oWy = (Gp)V (pU) Weak Until

¢Ry = (G¥)V (U (pAY)) Release

Temporal Specifications

Example: Specifications on the time flow (N, <)

Safety: G good

MutEx: — F(crity A crits)

Liveness: G F active

Response: G(request — F grant)

Response': G(request — (—request SU grant))
Release: reset R alarm

Strong fairness: (G Frequest) — (G F grant)
Weak fairness: (F Grequest) — (GF grant)

Discrete linear time flows

Definition: discrete linear time flows (T, <)

A linear time flow is discrete if SF T — X T and SPT — Y T are valid formulae.
(N, <) and (Z, <) are discrete.

(Q, <) and (R, <) are not discrete.

Exercise: For discrete linear time flows (T, <)

eSUy = X(pUy)
0SSy = Y(pSv)

~(pU¥) (G-) Vv (= U (= A 1))

YW (= A)
= R =1

Model checking for linear behaviors

Definition: Model checking problem

Input: A Kripke structure M = (S, T, I, AP /)
A formula ¢ € LTL(AP, SU, SS)

Question: Does M = ¢ ?

Universal MC: M =y ¢ if £(0),0 = ¢ for all initial infinite runs o of M.
Existential MC: M =5 ¢ if £(0),0 = ¢ for some initial infinite run o of M.

My iff M s —p

Theorem [10, Sistla, Clarke 85], [9, Lichtenstein & Pnueli 85]
The Model checking problem for LTL is PSPACE-complete. Proof later

Weaknesses of linear behaviors

Example:

©: Whenever p holds, it is possible to reach a state where ¢ holds.
(o cannot be checked on linear behaviors.
We need to consider the computation-trees.

Weaknesses of FO specifications

Example:

1: The system has an infinite active run, but it may always reach an inactive state.

1) cannot be expressed in FO.

We need quantifications on runs: ¢ = EG(Active A EF —Active)

E: for some infinite run

A: for all infinite runs

MSO Specifications

Definition: Syntax of MSO(AP, <)

pu=L|p)[z=yle<ylreX|-p|loVe|lre|IXe

where p € AP, x,y are first-order variables and X is a second-order variable.

Definition: Semantics of MSO(AP, <)

Let w = (T, <,h) be a temporal structure over AP.
An assignment v maps first-order variables to time points in T
and second-order variables to sets of time points.

The semantics of first-order constructs is unchanged.

wrvErzeX if v(z)evX)
wvEIXe if wv[X—T]kEpforsomeT CT

where v[X +— T maps X to T and keeps unchanged the other assignments.

MSO vs Temporal

MSO logic

MSO(<) has a good expressive power
... but MSO(<)-formulae are not easy to write and to understand.

MSO(<) is decidable on computation trees
... but satisfiability and model checking are non elementary.

We need a temporal logic
with no explicit variables,
allowing quantifications over runs,
usual specifications should be easy to write and read,
with good complexity for satisfiability and model checking problems,

with good expressive power.

Computation Tree Logic CTL" introduced by Emerson & Halpern (1986).

CTL* (Emerson & Halpern 86)
Definition: Syntax of the Computation Tree Logic CTL*(AP, SU)

pu=L|p(PEAP)|[-p|pVe|pSUp|Ep|Ap
We may also add the past modality SS

Definition: Semantics of CTL*(AP, SU)

Let M = (S,T,I,AP,¥) be a Kripke structure.
Let 0 = s9s182 - -+ be an infinte run of M.

M,o,ik=p if pel(s;)

M,o,il=@SUy if 3k>i, Mo,kEvYandVi<j<k, M,o,jE¢
M,o,i = Ep if M,o’,i = ¢ for some infinite run o’ such that o’[i] = o[i]
M,o,i = Ap if M,o’,i k= o for all infinite runs o’ such that o'[i] = oi]

where o[i] = sg - - - s;.

Remark:

o'[i] = o[i] means that future is branching but past is not.

CTL* (Emerson & Halpern 86)

Example: Some specifications
EF : ¢ is possible
AG ¢: @ is an invariant
AF p: ¢ is unavoidable
EG ¢: ¢ holds globally along some path

Remark: Some equivalences
Ap=-E-p
E(pVy)=EpVEY
Alp Ap)=Ap AAY

Model checking of CTL"

Definition: Existential and universal model checking
Let M = (S,T,I,AP,¢) be a Kripke structure and ¢ € CTL* a formula.

M E3 ¢ if M,0,0 = ¢ for some initial infinite run o of M.
M=y ¢ if M,0,0 |= ¢ for all initial infinite runs o of M.

Remark: M vy ¢ iff M [£3 —p

Definition: Model checking problems MCYyy - and MCZpy -

Input: A Kripke structure M = (S,T,I,AP,¢) and a formula ¢ € CTL"
Question: Does M =y ¢ 7 or Does M =3¢ ?
Theorem:

The model checking problem for CTL* is PSPACE-complete. Proof later

State formulae and path formulae
Definition: State formulae
o € CTL" is a state formula if VM, 0, 0’,4,j such that a(i) = o/(j) we have
M,o,ilEp < M,o',jlEp
If ¢ is a state formula and M = (S, T, I, AP, ¢), define
M,s = ¢ if M,0,0}= ¢ for some infinite run o of M with o(0) = s
and [e]M ={s €S| M,s k= ¢}

Example: State formulae

Atomic propositions are state formulae: [pl ={s€S|pelis)}
State formulae are closed under boolean connectives.

[=#] = S\ ¢l [o1 V ol = [p1] U [0]
Formulae of the form E ¢ or A ¢ are state formulae, provided ¢ is future.

Remark: ME3piff IN[Ep] #0 M Ev @ iff M 3 -

Definition: Alternative syntax

State formulae @ := 1 |p (p € AP) | -p |0V |EY | Ay
Path formulae v = | = | Vb | SU P

CTL (Clarke & Emerson 81)

Definition: Computation Tree Logic CTL(AP, X, U)

Syntax:
pu=L|p(PEAP)|—p|pVp|EXp|AXp|[EpUp|ApUyp

The semantics is inherited from CTL".

Remark: All CTL formulae are state formulae

[e]" ={s €S| M,s = ¢}

Examples: Macros
EFp=ETU¢ and AGyp=-EF-p
AFp=ATU¢ and EGp=-AF-p
AG(req — EF grant)
AG(req — AF grant)

CTL (Clarke & Emerson 81)

Definition: Semantics

All CTL-formulae are state formulae. Hence, we have a simpler semantics.
Let M = (S,T,I,AP, /) be a Kripke structure without deadlocks and let s € S.

M,sE=p if pel(s)
M,s = EXp if ds— s with M,s" =
M, s = AXp if Vs— s wehave M,s" ¢

M,sEEpUy if ds=sg— s — $3 — --- s finite path, with
M,sp =1 and M sj=pforall 0 <j<k

M,sEApUY if Vs=sy— s — sy —--- infinite paths, 3k > 0 with
M,s =1 and M,sj=pforall 0 <j <k

CTL (Clarke & Emerson 81)

Example:

CTL (Clarke & Emerson 81)

Remark: Equivalent formulae
AXQO =-EX —Q,
(pUP) =69V (= U (mp A =))
ApUyp=-EGy A-E(-y U (-p A)
AG(req — F grant) = AG(req — AF grant)

AGF o =AGAFy
EFGy =EFEGy

EGEFo ZEGFp ZEGAF ¢
AFAGp #AF Gy % AFEG
EGEXy # EGXy # EGAXp

Model checking of CTL

Definition: Existential and universal model checking

Let M = (S,T,1,AP, /) be a Kripke structure and ¢ € CTL a formula.
M&E=35¢ if M,s | ¢ for some s € I.

MEvye ifM,skEqforallsel.

Remark:

MEse iff IN[e] #0
MEve iff IC][y]
MEye iff Mg

Definition: Model checking problems MCY; and MCZ,

Input: A Kripke structure M = (S, T, I, AP, ¢) and a formula ¢ € CTL
Question: Does M =y ¢ ? or Does M =3¢ ?
Theorem:

Let M = (S,T,1,AP,/) be a Kripke structure and ¢ € CTL a formula.
The model checking problem M =5 ¢ is decidable in time O(|M]| - |¢|)

References

[1] Christel Baier and Joost-Pieter Katoen.
Principles of Model Checking.
MIT Press, 2008.

[2] B. Bérard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci,
Ph. Schnoebelen.
Systems and Software Verification. Model-Checking Techniques and Tools.
Springer, 2001.

[3] E.M. Clarke, O. Grumberg, D.A. Peled.
Model Checking.
MIT Press, 1999.

[4] Z. Manna and A. Pnueli.
The Temporal Logic of Reactive and Concurrent Systems: Specification.
Springer, 1991.

[5] Z. Manna and A. Pnueli.

Temporal Verification of Reactive Systems: Safety.
Springer, 1995.

References

[6] S. Demri and P. Gastin.
Specification and Verification using Temporal Logics.
In Modern applications of automata theory, 11Sc Research Monographs 2.
World Scientific, 2012.
http://www.lsv.ens-cachan.fr/~gastin/mes-publis.php

[7] D. Gabbay, I. Hodkinson and M. Reynolds.

Temporal logic: mathematical foundations and computational aspects.
Vol 1, Clarendon Press, Oxford, 1994.

[8] D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi.
On the temporal analysis of fairness.
In 7th Annual ACM Symposium PoPL'80, 163-173. ACM Press.
[9] O. Lichtenstein and A. Pnueli.
Checking that finite state concurrent programs satisfy their linear specification.
In ACM Symposium PoPL’'85, 97-107.
[10] A. Sistla and E. Clarke.
The complexity of propositional linear temporal logic.
Journal of the Association for Computing Machinery. 32 (3), 733-749, (1985).

