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Expressivity

Definition: Equivalence

Let C be a class of time flows.

Two formulae ¢, 1) € TL(AP,SU,SS) are equivalent over C if
for all temporal structures w = (T, <, h) over C and all time points ¢t € T we have

w,itEe iff witEY

Two formulae ¢ € TL(AP,SU, SS) and ¢(z) € FOap(<) are equivalent over C if
for all temporal structures w = (T, <, h) over C and all time points ¢t € T we have

w,itE=e iff warz—tEY

We also write w = 1(t).

Remark: TL(AP,SU,SS) C FO3p(<) € FOp(<)
Vo € TL(AP,SU,SS), Ji(z) € FOLp(<) such that ¢ and ¢(z) are equivalent.

Expressivity
Definition: complete linear time flows

A time flow (T, <) is linear if < is a total strict order.

A linear time flow (T, <) is complete if every nonempty and bounded subset of T
has a least upper bound and a greatest lower bound.

(N, <), (Z,<) and (R, <) are complete.

(Q,<) and (R \ {0}, <) are not complete.

Theorem: Expressive completeness [11, Kamp 68]

TL(AP,SU,SS) = FOap(<)

Elegant algebraic proof of TL(AP,SU) = FOAp(<) over (N, <) due to Wilke 98.
See also Diekert-Gastin [17]: TL = FO = SF = AP = CFBA = VWAA.

For complete linear time flows,

Example:
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Stavi connectives: Time flows with gaps

Definition: Stavi Until: U
Let w = (T, <,h) be a temporal structure and i € T. Then, w,i = @ U4 if
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Similar definition for the Stavi Since S.

Example:
Let w = (R\ {0}, <, h) with h(p) =R_ and h(q) = R;.
Then, w, —1 [~ pSU ¢ but w,—1=pUgq.

Theorem: [13, Gabbay, Hodkinson, Reynolds]

TL(AP,SU,SS,S,U) is expressively complete for FOsp(<) over the class of all
linear time flows.




Stavi connectives: Time flows with gaps

Exercise: Isolated gaps

Let ¢, = pSUp ASF=p A =(pSU—p) A =(pSU=(pSUT)).

Let w = (T, <,h) with TC R and t € T.

Show that if w,t = ¢, then T has a gap.

Let ¢y = wp A (qV @p) SU (g A —p).

Show that v, , is equivalent to p U g over the time flow (R \ {0}, <).

Show that TL(AP,SU,SS) is FOsp(<)-complete over the time flow (R \ Z, <).

Temporal depth

Definition: Temporal depth of ¢ € TL(AP,SU, SS)

td(p) =0 if pe AP
td(=p) = td(ep)
td(p V ¢) = max(td(), td(¢))
td(p SS ¥) = max(td(y), td(¢0)) + 1
td(p SU ) = max(td(p), td(¥)) + 1

Lemma:

Let B C AP be finite and k € N.
There are (up to equivalence) finitely many formulae in TL(B, SU, SS) of temporal
depth at most k.

k-equivalence

Definition:
Let wo = (T, <, ho) and wy = (T4, <, h;) be two temporal structures.
Let ig € Tg and iy € T;. Let £ € N.

We say that (wg,i9) and (wy,i1) are k-equivalent, denoted (wo, i) =g (w1,141), if
they satisfy the same formulae in TL(AP, SU, SS) of temporal depth at most k.

Lemma: = is an equivalence relation of finite index.

Example:
Let a = {p} and b = {¢}. Let wy = babaababaa and w; = baababaaba.

Here, To =T; = {0,1,2,...,9}.

EF-games for TL(AP,SU,SS)

The EF-game has two players: Spoiler (Player 1) and Duplicator (Player I1).
The game board consists of 2 temporal structures:

wo = (T07 <,ho) and w; = (T17<,h1).

There are two tokens, one on each structure: ig € T and 71 € T;.

A configuration is a tuple (wo, 79, w1, 1)

or simply (ig, 1) if the game board is understood.

Let £ € N.

The k-round EF-game from a configuration proceeds with (at most) & moves.

There are 2 available moves for TL(AP, SU, SS): SU-move or SS-move (see
below).

Spoiler chooses which move is played in each round.

Spoiler wins if
» Either duplicator cannot answer during a move (see below).

» Or a configuration such that (wy,ig) %o (w1,1) is reached.

Otherwise, duplicator wins.




Strict Until and Since moves

Definition: SU-move
Spoiler chooses € € {0,1} and k. € T, such that i, < k..

Duplicator chooses k1. € T1_. such that i3 < k1_¢.

Spoiler wins if there is no such k;_..

Either spoiler chooses (kg, k1) as next configuration of the EF-game,
or the move continues as follows

Spoiler chooses j;_. € Ty_. with i1 < j1—c < k1—¢-
Duplicator chooses j. € T, with i. < j. < k.

Spoiler wins if there is no such j..

The next configuration is (jo, j1)-

Similar definition for the SS-move.

Winning strategy

Definition: Winning strategy

Duplicator has a winning strategy in the k-round EF-game starting from
(wo, 0, w1,%1) if he can win all plays starting from this configuration.

This is denoted by (wo,ig) ~k (w1,171).

Spoiler has a winning strategy in the k-round EF-game starting from (wy, ig, w1, 1)
if she can win all plays starting from this configuration.

Example:
Let a = {p}, b= {q}, ¢ ={r}. Let wg = aaabbc and w; = aababc.

(w()7 0) ~1 (wl, O)
(w07 0) 7[’2 (wh O)

Here, To =T; = {0,1,2,...,5}.

EF-games for TL(AP,SU,SS)

Lemma: Determinacy

The k-round EF-game for TL(AP,SU,SS) is determined:
For each initial configuration, either spoiler or duplicator has a winning strategy.

Theorem: Soundness and completeness of EF-games

For all k € N and all configurations (wy, ig, w1, 1), we have
(wo, i) ~k (w1,i1) iff (wo,d0) =g (w1,41)

Example:

Let a ={p}, b={q}, c={r}.

Then, aaabbe,0 = p SU (¢ SU r) but aababe, 0 = p SU (¢ SU r).

p SU (g SU ) cannot be expressed with a formula of temporal depth at most 1.
pSU (g A X¢q) cannot be expressed with a formula of temporal depth at most 1.

Exercise:

On finite linear time flows, “even length” cannot be expressed in TL(AP,SU,SS).

Moves for Strict Future and Past modalities

Definition: SF-move
Spoiler chooses € € {0,1} and j. € T, such that i. < je.
Duplicator chooses j1_. € T1_. such that i1, < j1—¢.
Spoiler wins if there is no such j;_..
The new configuration is (jo, j1)-

Similar definition for the SP-move.
Example:

p SU ¢ is not expressible in TL(AP, SP, SF) over linear flows of time.

Let a =0, b= {p} and c = {¢}.

Let wg = (abe)"a(abc)™ and w1 = (abc)™(abe)™.

If n > k then, starting from (wo, 3n,ws,3n), duplicator has a winning strategy in
the k-round EF-game using SF-moves and SP-moves.




Moves for Next and Yesterday modalities

Notation: i < j £ i < jA=3k(i <k < j).

Definition: X-move
Spoiler chooses € € {0,1} and j. € T, such that i. < j..

Duplicator chooses j;_. € T1_. such that i;_. < j1_.
Spoiler wins if there is no such j;_..
The new configuration is (jo, j1)-

Similar definition for the Y-move.

Exercise:
Show that p SU ¢ is not expressible in TL(AP, Y, SP, X, SF) over linear time flows.

Non-strict Until and Since moves
Definition: U-move
Spoiler chooses € € {0,1} and k. € T, such that i, < k..

Duplicator chooses k1. € Ti_. such that 1. < ky_..
Either spoiler chooses (ko, k1) as new configuration of the EF-game,
or the move continues as follows

Spoiler chooses j;_. € Ty with i1 < j1_c < k1.
Duplicator chooses j. € T, with i, < j. < k..

Spoiler wins if there is no such j..

The new configuration is (jo, j1)-

» If duplicator chooses kj_. = i1_. then the new configuration must be (ko, k1).

» |If spoiler chooses k. = i. then duplicator must choose k1_. = i1_.,
otherwise he loses.

Similar definition for the S-move.

Exercise:
1. Show that SU is not expressible in TL(AP, S, U) over (R, <).
2. Show that SU is not expressible in TL(AP,S,U) over (N, <).

Semantic Separation

Definition:
Let w = (T, <,h) and w’ = (T, <,h’) be temporal structures over the same time
flow, and let £ € T be a time point.

w,w’ agree on t if £(t) = ¢'(t)

w,w' agree on the past of ¢ if ¢(s) = ¢'(s) for all s <t

w,w' agree on the future of ¢ if £(s) = ¢'(s) for all s > ¢
Recall: h: AP — 2T and we let £(t) = {p € AP | t € h(p)}.

Definition: Pure formulae and separation

Let C be a class of time flows. A formula ¢ over some logic £ is pure past
(resp. pure present, pure future) over C if

witEe iff W tEe
for all temporal structures w = (T, <, h) and w’ = (T, <, h’) over C
and all time points ¢ € T such that

w,w’ agree on the past of ¢ (resp. on ¢, on the future of ¢).

A logic L is separable over a class C of time flows if each formula ¢ € L is equivalent
to some (finite) boolean combination of pure formulae.

Syntactic Separation

Definition: Syntactically pure formulae and separation
A formula ¢ € TL(AP,SU,SS) is
syntactically pure present if it is a boolean combinations of formulae in AP,

syntactically pure future if it is a boolean combinations of formulae of the
form « SU 8 where o, 8 € TL(AP, SU),

syntactically pure past if it is a boolean combinations of formulae of the form
a'SS 8 where a, 3 € TL(AP,SS).

syntactically separated if it is a boolean combinations of syntactically pure
formulae.
Example:
The formulae ¢; = SF(¢ A SPp) and @2 = SF(q A = SP —p) are not separated but
there are equivalent syntactically separated formulae.
Remark: Syntax versus semantic

Every formula ¢ € TL(AP, SU, SS) which is syntactically pure present (resp. future,
past) is also semantically pure present (resp. future, past).




Separation

Theorem: [8, Gabbay, Pnueli, Shelah & Stavi 80]
TL(AP,SU, SS) is syntactically separable over discrete and complete linear orders.

Definition: Discrete linear order

A linear time flow (T, <) is discrete if every non-maximal element has an immediate
successor and every non-minimal element has an immediate predecessor.

» (N, <) is the unique (up to isomorphism) discrete and complete linear order
with a first point and no last point.

» (Z,<) is the unique (up to isomorphism) discrete and complete linear order
with no first point and no last point.

» Any discrete and complete linear order is isomorphic to a sub-flow of (Z, <).

Theorem: Gabbay, Reynolds, see [7]
TL(AP, SU, SS) is syntactically separable over (R, <).

Initial equivalence

Definition: Initial Equivalence

Let C be a class of time flows having a least element (denoted 0).
Two formulae ¢, 1) € TL(AP,SU,SS) are initially equivalent over C if
for all temporal structures w = (T, <, h) over C we have

w,0E=p iff w,0EY
Two formulae ¢ € TL(AP,SU,SS) and ¢(z) € FOxp(<) are initially equivalent
over C if for all temporal structures w = (T, <, h) over C we have

w,0E=¢ iff wkE=1(0)

Corollary: of the separation theorem

For each ¢ € TL(AP,SU,SS) there exists ) € TL(AP, SU) such that ¢ and ¢ are
initially equivalent over (N, <).

Initial equivalence

Example: TL(AP,SU,SS) versus TL(AP, SU)

G(grant — (—grant SS request))

is initially equivalent to

(request R —grant) A G(grant — (request V (request SR —grant)))

Theorem: (Laroussinie & Markey & Schnoebelen 2002)
TL(AP, SU, SS) may be exponentially more succinct than TL(AP, SU) over (N, <).

Separation and Expressivity

Theorem: [12, Gabbay 89] (already stated by Gabbay in 81)

Let C be a class of linear time flows.
Let £ be a temporal logic able to express SF and SP.

Then, L is separable over C iff it is expressively complete for FOap(<) over C.

Exercise: Checking semantically pure

Is the following problem decidable? If yes, what is his complexity?
Input: A formula ¢ € TL(AP,SU, SS)

Question: Is the formula ¢ semantically pure future?
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