
5/53

Outline

Introduction

Models

Temporal Specifications

4 Satisfiability and Model Checking

Satisfiability and Model Checking for CTL

Satisfiability and Model Checking for fair-CTL

Büchi automata and transducers

From LTL to BA

Satisfiability and Model Checking for LTL

Satisfiability and Model Checking for CTL⇤

More on Temporal Specifications

7/53

Model checking of CTL

Theorem: MC for CTL

Let M = (S, T, I,AP, `) be a Kripke structure and ' 2 CTL a formula.

The model checking problem M |=9 ' is decidable in time O(|M | · |'|)

Proof:

Compute [[']] = {s 2 S | M, s |= '} by induction on the formula.

The set [[']] is represented by a boolean array: L['][s] = > if s 2 [[']].

The labelling ` is encoded in L: for p 2 AP we have L[p][s] = > if p 2 `(s).

8/53

Model checking of CTL

Definition: procedure semantics(')

case ' = ¬'1

semantics('1)
[[']] := S \ [['1]] O(|S|)

case ' = '1 _ '2

semantics('1); semantics('2)
[[']] := [['1]] [[['2]] O(|S|)

case ' = EX'1

semantics('1)
[[']] := ; O(|S|)
for all (s, t) 2 T do if t 2 [['1]] then [[']] := [[']] [{s} O(|T |)

case ' = AX'1

semantics('1)
[[']] := S O(|S|)
for all (s, t) 2 T do if t /2 [['1]] then [[']] := [[']] \ {s} O(|T |)

9/53

Model checking of CTL

Definition: procedure semantics(')

case ' = E'1 U '2 O(|S|+ |T |)
semantics('1); semantics('2)
L := [['2]] // the “todo” set L is imlemented with a list O(|S|)
Z := [['2]] // the “result” is computed in the array Z O(|S|)
while L 6= ; do |S| times
Invariant: L ✓ Z and

[['2]] [([['1]] \ T

�1(Z \ L)) ✓ Z ✓ [[E'1 U '2]]
take t 2 L; L := L \ {t} O(1)
for all s 2 T

�1(t) do |T | times
if s 2 [['1]] \ Z then L := L [{s}; Z := Z [{s} O(1)

od
[[']] := Z O(|S|)

Z is only used to make the invariant clear. It can be replaced by [[']].

10/53

Model checking of CTL
Definition: procedure semantics(')

case ' = A'1 U '2 O(|S|+ |T |)
semantics('1); semantics('2)
L := [['2]] // the “todo” set L is imlemented with a list O(|S|)
Z := [['2]] // the “result” is computed in the array Z O(|S|)
for all s 2 S do c[s] := |T (s)| O(|S|)
while L 6= ; do |S| times
Invariant: L ✓ Z and

8s 2 S, c[s] = |T (s) \ (Z \ L)| and
[['2]] [([['1]] \ {s 2 S | c[s] = 0}) ✓ Z ✓ [[A'1 U '2]]

take t 2 L; L := L \ {t} O(1)
for all s 2 T

�1(t) do |T | times
c[s] := c[s]� 1 O(1)
if c[s] = 0 ^ s 2 [['1]] \ Z then L := L [{s}; Z := Z [{s} O(1)

od
[[']] := Z O(|S|)

Z is only used to make the invariant clear. It can be replaced by [[']].

11/53

Complexity of CTL

Definition: SAT(CTL)

Input: A formula ' 2 CTL

Question: Existence of a model M and a state s such that M, s |= ' ?

Theorem: Complexity

I The model checking problem for CTL is PTIME-complete.

I The satisfiability problem for CTL is EXPTIME-complete.

13/53

Fairness

Example: Fairness

Only fair runs are of interest

I Each process is enabled infinitely often:
^

i

GF runi

I No process stays ultimately in the critical section:
^

i

¬FGCSi =
^

i

GF¬CSi

Definition: Fair Kripke structure

M = (S, T, I,AP, `, F1, . . . , Fn) with Fi ✓ S.

An infinite run � is fair if it visits infinitely often each Fi

14/53

fair-CTL

Definition: Syntax of fair-CTL

' ::= ? | p (p 2 AP) | ¬' | ' _ ' | Ef X' | Af X' | Ef ' U ' | Af ' U '

Definition: Semantics as a fragment of CTL⇤

Let M = (S, T, I,AP, `, F1, . . . , Fn) be a fair Kripke structure.

Then, Ef ' = E(fair ^ ') and Af ' = A(fair ! ')

where fair =
^

i

GFFi

Remark: Af ' = ¬Ef ¬'

Lemma: fair-CTL cannot be expressed in CTL

15/53

fair-CTL

Proof: fair-CTL cannot be expressed in CTL
Consider the Kripke structure Mk defined by:

2k 2k − 1 2k − 2 2k − 3 · · · 4 3 2 1

p p p p¬p ¬p ¬p ¬p

I
Mk, 2k |= EGF p but Mk, 2k � 2 6|= EGF p

I If ' 2 CTL and |'|  m  k then

Mk, 2k |= ' i↵ Mk, 2m |= '

Mk, 2k � 1 |= ' i↵ Mk, 2m� 1 |= '

If the fairness condition is `�1(p) then Ef > cannot be expressed in CTL.

16/53

Model checking of fair-CTL

Theorem

The model checking problem for fair-CTL is decidable in time O(|M | · |'|)

Proof: Computation of FAIR = {s 2 S | M, s |= Ef >}
Compute the SCC of M with Tarjan’s algorithm (in time O(|M |)).
Let S0 be the union of the (non trivial) SCCs which intersect each Fi.

Then, FAIR is the set of states that can reach S

0.

Note that reachability can be computed in linear time.

17/53

Model checking of fair-CTL

Proof: Reductions

Ef X' = EX(FAIR ^ ') and Ef ' U = E' U (FAIR ^)
It remains to deal with Af ' U .

We have Af ' U = ¬Ef G¬ ^ ¬Ef (¬ U (¬' ^ ¬))
Hence, we only need to compute the semantics of Ef G'.

Proof: Computation of Ef G'

Let M' be the restriction of M to [[']]f .

Compute the SCC of M' with Tarjan’s algorithm (in linear time).

Let S0 be the union of the (non trivial) SCCs of M' which intersect each Fi.

Then, M, s |= Ef G' i↵ M, s |= E' U S

0 i↵ M', s |= EFS0.

This is again a reachability problem which can be solved in linear time.

19/53

Büchi automata

Definition:

A Büchi automaton (BA) is a tuple A = (Q,⌃, I, T, F) where

I
Q: finite set of states

I ⌃: finite set of labels

I
I ✓ Q: set of initial states

I
T ✓ Q⇥ ⌃⇥Q: set of transitions (non-deterministic)

I
F ✓ Q: set of accepting (repeated, final) states

Run: ⇢ = q0, a0, q1, a1, q2, a2, q3, . . . with (qi, ai, qi+1) 2 T for all i � 0.

⇢ is accepting if q0 2 I and qi 2 F for infinitely many i’s.

L(A) = {a0a1a2 · · · 2 ⌃! | 9 ⇢ = q0, a0, q1, a1, q2, a2, q3, . . . accepting run}

A language L ✓ ⌃! is !-regular if it can be accepted by some Büchi automaton.

20/53

Büchi automata

Examples:

Infinitely many a’s:

Finitely many a’s:

No deterministic Büchi automaton for this language.

Whenever a then later b:

21/53

Büchi automata

Properties

Büchi automata are closed under union, intersection, complement.

I Union: trivial

I Intersection: easy (exercise)

I complement: di�cult

Let L = ⌃⇤(a⌃n�1
b [b⌃n�1

a)⌃!

0

Σ 1
a

2
Σ · · · nΣ

0′

b
Σ

1’
b

2’
Σ

· · · n′

Σ

a

Any non deterministic Büchi automaton for ⌃! \ L has at least 2n states.

22/53

Büchi automata
Theorem: Büchi

Let L ✓ ⌃! be a language. The following are equivalent:

I
L is !-regular

I
L is !-rational, i.e., L is a finite union of languages of the form L1 · L!2 where
L1, L2 ✓ ⌃+ are rational.

I
L is MSO-definable, i.e., there is a sentence ' 2 MSO⌃(<) such that
L = L(') = {w 2 ⌃! | w |= '}.

Exercises:

1. Construct a BA for L(') where ' is the FO⌃(<) sentence

(8x, (Pa(x) ! 9y > x, Pa(y))) ! (8x, (Pb(x) ! 9y > x, Pc(y)))

2. Given BA for L1 ✓ ⌃! and L2 ✓ ⌃!, construct BA for

next(L1) = ⌃ · L1

SUntil(L1, L2) = {uv 2 ⌃! | u 2 ⌃+ ^ v 2 L2 ^
u

00
v 2 L1 for all u0

, u

00 2 ⌃+ with u = u

0
u

00}
23/53

Generalized Büchi automata

Definition: acceptance on states or on transitions

A = (Q,⌃, I, T, F1, . . . , Fn) with Fi ✓ Q.
An infinite run � is successful if it visits infinitely often each Fi.

A = (Q,⌃, I, T, T1, . . . , Tn) with Ti ✓ T .
An infinite run � is successful if it uses infinitely many transitions from each Ti.

Example: Infinitely many a’s and infinitely many b’s

0

Σ
a

Σb

Σ

0

Σ

ab

Theorem:

1. GBA and BA have the same expressive power.
2. Checking whether a BA or GBA has an accepting run is NLOGSPACE-complete.

25/53

Büchi automata with output
Definition: SBT: Synchronous (letter to letter) Büchi transducer

Let A and B be two alphabets.
A synchronous Büchi transducer from A to B is a tuple A = (Q,A, I, T, F, µ) where
(Q,A, I, T, F) is a Büchi automaton (input) and µ : T ! B is the output function.
It computes the relation

[[A]] = {(u, v) 2 A

! ⇥B

! | 9 ⇢ = q0, a0, q1, a1, q2, a2, q3, . . . accepting run

with u = a0a1a2 · · · and v = µ(⌧0)µ(⌧1)µ(⌧2) · · ·
where ⌧i = (qi, ai, qi+1)}

If (Q,A, I, T, F) is unambiguous then [[A]] : A! ! B

! is a (partial) function.

We will also use SGBT: synchronous transducers with generalized Büchi acceptance.

Example: Left shift with A = B = {a, b}

1 2

a/a b/b

a/b

b/a

26/53

Composition of Büchi transducers
Definition: Composition

Let A, B, C be alphabets.
Let A = (Q,A, I, T, (Fi)i, µ) be an SGBT from A to B.
Let A0 = (Q0

, B, I

0
, T

0
, (F 0

j)j , µ
0) be an SGBT from B to C.

Then A · A0 = (Q⇥Q

0
, A, I ⇥ I

0
, T

00
, (Fi ⇥Q

0)i, (Q⇥ F

0
j)j , µ

00) is defined by:

⌧

00 = (p, p0)
a�! (q, q0) 2 T

00 and µ

00(⌧ 00) = c

i↵

⌧ = p

a�! q 2 T and ⌧ 0 = p

0 µ(⌧)���! q

0 2 T

0 and c = µ

0(⌧ 0)

A · A0 is an SGBT from A to C.
When the transducers define functions, we also denote the composition by A0 �A.

Proposition: Composition

1. We have [[A · A0]] = [[A]] · [[A0]].

2. If (Q,A, I, T, (Fi)i) and (Q0
, B, I

0
, T

0
, (F 0

j)j) are unambiguous then
(Q⇥Q

0
, A, I ⇥ I

0
, T

00
, (Fi ⇥Q

0)i, (Q⇥ F

0
j)j) is also unambiguous.

Then, 8u 2 A

! we have [[A0 �A]](u) = [[A0]]([[A]](u)).

27/53

Product of Büchi transducers
Definition: Product

Let A, B, C be alphabets.
Let A = (Q,A, I, T, (Fi)i, µ) be an SGBT from A to B.
Let A0 = (Q0

, A, I

0
, T

0
, (F 0

j)j , µ
0) be an SGBT from A to C.

Then A⇥A0 = (Q⇥Q

0
, A, I ⇥ I

0
, T

00
, (Fi ⇥Q

0)i, (Q⇥ F

0
j)j , µ

00) is defined by:

⌧

00 = (p, p0)
a�! (q, q0) 2 T

00 and µ

00(⌧ 00) = (b, c)

i↵
⌧ = p

a�! q 2 T and b = µ(⌧) and ⌧ 0 = p

0 a�! q

0 2 T

0 and c = µ

0(⌧ 0)

A⇥A0 is an SGBT from A to B ⇥ C.

Proposition: Product

We identify (B ⇥ C)! with B

! ⇥ C

!.

1. We have [[A⇥A0]] = {(u, v, v0) | (u, v) 2 [[A]] and (u, v0) 2 [[A0]]}.
2. If (Q,A, I, T, (Fi)i) and (Q0

, A, I

0
, T

0
, (F 0

j)j) are unambiguous then
(Q⇥Q

0
, A, I ⇥ I

0
, T

00
, (Fi ⇥Q

0)i, (Q⇥ F

0
j)j) is also unambiguous.

Then, 8u 2 A

! we have [[A⇥A0]](u) = ([[A]](u), [[A0]](u)).

29/53

Subalphabets of ⌃ = 2AP

Definition:

For a propositional formula ⇠ over AP, we let ⌃⇠ = {a 2 ⌃ | a |= ⇠}.
For instance, for p, q 2 AP,

I ⌃p = {a 2 ⌃ | p 2 a} and ⌃¬p = ⌃ \ ⌃p

I ⌃p^q = ⌃p \ ⌃q and ⌃p_q = ⌃p [⌃q

I ⌃p^¬q = ⌃p \ ⌃q . . .

Notation:

In automata, p
⌃⇠��! q stands for the set of transitions {p}⇥ ⌃⇠ ⇥ {q}.

To simplify the pictures, we use p

⇠�! q instead of p
⌃⇠��! q.

Example:

1 2

¬p ∨ q ¬q

p ∧ ¬q

q

30/53

Semantics of LTL with sequential functions

Definition: Semantics of ' 2 LTL(AP, SU, SS)

Let ⌃ = 2AP and B = {0, 1}.
Define [[']] : ⌃! ! B! by [[']](u) = b0b1b2 · · · with bi =

(
1 if u, i |= '

0 otherwise.

Example:

[[p SU q]](;{q}{p};{p}{p}{q};{p}{p, q};!) = 10011101100!

[[X p]](;{q}{p};{p}{p}{q};{p}{p, q};!) = 01011001100!

[[F p]](;{q}{p};{p}{p}{q};{p}{p, q};!) = 11111111110!

The aim is to compute [[']] with Büchi transducers.

31/53

Synchronous Büchi transducer for p SU q

Example: An SBT for [[p SU q]]

1 2

3

q/1 p ∧ ¬q/1

¬q/0

q/1

p ∧ ¬q/1

q/0¬p ∧ ¬q/1

¬p ∧ ¬q/1

Lemma: The input BA is prophetic

For all u = a0a1a2 · · · 2 ⌃!,
there is a unique accepting run ⇢ = q0, a0, q1, a1, q2, a2, q3, . . . of A on u.

The run ⇢ satisfies for all i � 0, qi =

8
><

>:

1 if u, i |= q

2 if u, i |= ¬q ^ (p U q)

3 if u, i |= ¬(p U q)

32/53

Special cases of Until: Future and Next

Example: F q = > U q and X q = ? SU q

1 2

3

q/1 ¬q/1

¬q/0

q/1

¬q/1

q/1

1

3

q/1

¬q/0

q/0
¬q/1

Exercise: Give SBT’s for the following formulae:

p U q, G q, p R q, p SR q, p S q, p SS q, G(p ! F q).

33/53

From LTL to Büchi automata

Definition: SBT for LTL modalities

I A> from ⌃ to B = {0, 1}: 0 Σ/1

I Ap from ⌃ to B = {0, 1}: 0
p / 1

¬p / 0

I A¬ from B to B: 0
0 / 1
1 / 0

I A_ from B2 to B: 0

0, 0 / 0
1, 0 / 1
0, 1 / 1
1, 1 / 1

I A^ from B2 to B: 0

0, 0 / 0
1, 0 / 0
0, 1 / 0
1, 1 / 1

34/53

From LTL to Büchi automata

Definition: SBT for LTL modalities (cont.)

I ASU from B2 to B:
1 2

3

0, 1 / 1
1, 1 / 1

1, 0/1

0, 0 / 0
1, 0 / 0

0, 1 / 1
1, 1 / 1

1, 0/1

0, 1 / 0
1, 1 / 0

0, 0/1

0, 0/1

I ASS from B2 to B: 0 1
0, 0 / 0
1, 0 / 0

0, 1 / 0
1, 1 / 0 1, 0 / 1

0, 1 / 1
1, 1 / 10, 0/1

35/53

From LTL to Büchi automata
Definition: Translation from LTL to SGBT

For each ⇠ 2 LTL(AP, SU, SS) we define inductively an SGBT A⇠ as follows:

I A> and Ap for p 2 AP are already defined

I A¬' = A¬ �A'

I A'_ = A_ � (A' ⇥A)

I A'SS = ASS � (A' ⇥A)

I A'SU = ASU � (A' ⇥A)

Theorem: Correctness of the translation

For each ⇠ 2 LTL(AP, SU, SS), we have [[A⇠]] = [[⇠]].

Moreover, the number of states of A⇠ is at most 2|⇠|SS · 3|⇠|SU
where |⇠|SS (resp. |⇠|SU) is the number of SS (resp. SU) occurring in ⇠.

Remark:

I If a subformula ' occurs serveral times in ⇠, we only need one copy of A'.

I We may also use automata for other modalities: AX, AU, AF, . . .

36/53

Useful simplifications

Reducing the number of temporal subformulae

(X') ^ (X) ⌘ X(' ^) (X') U (X) ⌘ X(' U) ⌘ ' SU

(G') ^ (G) ⌘ G(' ^) GF' _ GF ⌘ GF(' _)
('1 U) ^ ('2 U) ⌘ ('1 ^ '2) U (' U 1) _ (' U 2) ⌘ ' U (1 _ 2)

Merging equivalent states

Let A = (Q,⌃, I, T, T1, . . . , Tn, µ) be an SGBT and s1, s2 2 Q.
We can merge s1 and s2 if they have the same outgoing transitions:
8a 2 ⌃, 8s 2 Q,

(s1, a, s) 2 T () (s2, a, s) 2 T

and (s1, a, s) 2 Ti () (s2, a, s) 2 Ti for all 1  i  n

and µ(s1, a, s) = µ(s2, a, s)

37/53

Other constructions

I Tableau construction. See for instance [15, Wolper 85]
+ : Easy definition, easy proof of correctness
+ : Works both for future and past modalities
– : Ine�cient without strong optimizations

I Using Very Weak Alternating Automata [16, Gastin & Oddoux 01].
+ : Very e�cient
– : Only for future modalities

Online tool: http://www.lsv.ens-cachan.fr/~gastin/ltl2ba/

I Using reduction rules [6, Demri & Gastin 10].
+ : E�cient and produces small automata
+ : Can be used by hand on real examples
– : Only for future modalities

I The domain is still very active.

39/53

Satisfiability for LTL over (N, <)
Let AP be the set of atomic propositions and ⌃ = 2AP.

Definition: Satisfiability problem

Input: A formula ' 2 LTL(AP, SU, SS)

Question: Existence of w 2 ⌃! and i 2 N such that w, i |= '.

Definition: Initial Satisfiability problem

Input: A formula ' 2 LTL(AP, SU, SS)

Question: Existence of w 2 ⌃! such that w, 0 |= '.

Remark: ' is satisfiable i↵ F' is initially satisfiable.

Definition: (Initial) validity

' is valid i↵ ¬' is not satisfiable.

Theorem [10, Sistla, Clarke 85], [9, Lichtenstein & Pnueli 85]

The satisfiability problem for LTL is PSPACE-complete.

40/53

Model checking for LTL

Definition: Model checking problem

Input: A Kripke structure M = (S, T, I,AP, `)
A formula ' 2 LTL(AP, SU, SS)

Question: Does M |= ' ?

I Universal MC: M |=8 ' if `(�), 0 |= ' for all initial infinite runs of M .

I Existential MC: M |=9 ' if `(�), 0 |= ' for some initial infinite run of M .

M |=8 ' i↵ M 6|=9 ¬'

Theorem [10, Sistla, Clarke 85], [9, Lichtenstein & Pnueli 85]

The Model checking problem for LTL is PSPACE-complete

42/53

MC9(SU) P SAT(SU) [10, Sistla & Clarke 85]

Let M = (S, T, I,AP, `) be a Kripke structure and ' 2 LTL(AP, SU)

Introduce new atomic propositions: APS = {ats | s 2 S}
Define AP0 = AP]APS ⌃0 = 2AP0

⇡ : ⌃0! ! ⌃! by ⇡(a) = a \AP.

Let w 2 ⌃0!. We have w |= ' i↵ ⇡(w) |= '

Define M 2 LTL(AP0
,X,F) of size O(|M |2) by

 M =

_

s2I

ats

!
^ G

0

@
_

s2S

0

@ats ^
^

t 6=s

¬att ^
^

p2`(s)

p ^
^

p/2`(s)

¬p ^
_

t2T (s)

X att

1

A

1

A

Let w = a0a1a2 · · · 2 ⌃0!. Then, w |= M i↵ there exists an initial infinite run
� = s0s1s2 · · · of M such that `(�) = ⇡(w) and ai \APS = {atsi} for all i � 0.

Therefore, M |=9 ' i↵ M ^ ' is satisfiable
M |=8 ' i↵ M ^ ¬' is not satisfiable

Remark: we also have MC9(X,F) P SAT(X,F).

43/53

QBF Quantified Boolean Formulae

Definition: QBF

Input: A formula � = Q1x1 · · ·Qnxn�
0 with �0 =

^

1im

_

1jki

aij

Qi 2 {8, 9} and aij 2 {x1,¬x1, . . . , xn,¬xn}.
Question: Is � valid?

Definition:

An assignment of the variables {x1, . . . , xn} is a word v = v1 · · · vn 2 {0, 1}n.
We write v[i] for the prefix of length i.
Let V ✓ {0, 1}n be a set of assignments.

I
V is valid (for �0) if v |= �

0 for all v 2 V ,

I
V is closed (for �) if 8v 2 V , 81  i  n s.t. Qi = 8,

9v0 2 V s.t. v[i� 1] = v

0[i� 1] and {vi, v0i} = {0, 1}.

Proposition:

� is valid i↵ 9V ✓ {0, 1}n s.t. V is nonempty valid and closed

44/53

QBF P MC9(U) [10, Sistla & Clarke 85]
Let � = Q1x1 · · ·Qnxn

^

1im

_

1jki

aij with Qi 2 {8, 9} and aij literals.

Consider the KS M :

e0 s1

x!
1

x⊥
1

e1 s2

x!
2

x⊥
2

e2 · · · sn

x!
n

x⊥
n

en

f0

a11

a12
.
.
.

a1k1

f1

a21

a22
.
.
.

a2k2

f2 · · · fm−1

am1

am2

.

.

.

amkm

fm

Let ij =

(
G(x?

k ! sk R ¬aij) if aij = xk

G(x>
k ! sk R ¬aij) if aij = ¬xk

and =
^

i,j

 ij .

Let 'j = G(ej�1 ! (¬sj�1 U x

>
j) ^ (¬sj�1 U x

?
j) and ' =

^

j|Qj=8

'j .

Then, � is valid i↵ M |=9 ^ '.
47/53

Complexity of LTL

Theorem: Complexity of LTL

The following problems are PSPACE-complete:

I SAT(LTL(SU, SS)), MC8(LTL(SU, SS)), MC9(LTL(SU, SS))

I SAT(LTL(X,F)), MC8(LTL(X,F)), MC9(LTL(X,F))

I SAT(LTL(U)), MC8(LTL(U)), MC9(LTL(U))

I The restriction of the above problems to a unique propositional variable

The following problems are NP-complete:

I SAT(LTL(F)), MC9(LTL(F))

49/53

Complexity of CTL⇤

Theorem

The model checking problem for CTL⇤ is PSPACE-complete

Proof:

PSPACE-hardness: follows from LTL ✓ CTL⇤.

PSPACE-easiness: reduction to LTL-model checking by inductive eliminations of
path quantifications.

50/53

MC9
CTL⇤ in PSPACE

Proof:

For 2 LTL, let MC9
LTL(M, t,) be the function which computes in polynomial

space whether M, t |=9 , i.e., if M, t |= E .

Let M = (S, T, I,AP, `) be a Kripke structure, s 2 S and ' 2 CTL⇤.
Replacing A by ¬E¬ we assume ' only contains the existential path quantifier.

MC9
CTL⇤(M, s,')

If E does not occur in ' then return MC9
LTL(M, s,') fi

Let E be a subformula of ' with 2 LTL

Let e be a new propositional variable

Define `0 : S ! 2AP0
with AP0 = AP] {e } by

`

0(t) \AP = `(t) and e 2 `

0(t) i↵ MC9
LTL(M, t,)

Let M 0 = (S, T, I,AP0
, `

0)

Let '0 = '[e /E] be obtained from ' by replacing each E by e

Return MC9
CTL⇤(M 0

, s,'

0)

51/53

Satisfiability for CTL⇤

Definition: Satisfiability problem for CTL⇤

Input: A formula ' 2 CTL⇤

Question: Existence of a model M , a run �, a position i such that M,�, i |= ' ?

Definition: Initial Satisfiability problem for CTL⇤

Input: A formula ' 2 CTL⇤

Question: Existence of a model M and a run � such that M,�, 0 |= ' ?

Theorem

The (initial) satisfiability problem for CTL⇤ is 2-EXPTIME-complete

52/53

Some References
[9] O. Lichtenstein and A. Pnueli.

Checking that finite state concurrent programs satisfy their linear specification.
In ACM Symposium PoPL’85, 97–107.

[15] P. Wolper.
The tableau method for temporal logic: An overview,
Logique et Analyse. 110–111, 119–136, (1985).

[10] A. Sistla and E. Clarke.
The complexity of propositional linear temporal logic.
Journal of the Association for Computing Machinery. 32 (3), 733–749, (1985).

[16] P. Gastin and D. Oddoux.
Fast LTL to Büchi automata translation.
In CAV’01, vol. 2102, Lecture Notes in Computer Science, pp. 53–65.
Springer, (2001).
http://www.lsv.ens-cachan.fr/

~

gastin/mes-publis.php

[6] S. Demri and P. Gastin.
Specification and Verification using Temporal Logics.
In Modern applications of automata theory, IISc Research Monographs 2.
World Scientific, 2012.
http://www.lsv.ens-cachan.fr/

~

gastin/mes-publis.php

