Outline

@ Satisfiability and Model Checking
@ Satisfiability and Model Checking for CTL
@ Satisfiability and Model Checking for fair-CTL
@ Biichi automata and transducers
@ From LTL to BA
o Satisfiability and Model Checking for LTL
@ Satisfiability and Model Checking for CTL*

Model checking of CTL

Theorem: MC for CTL

Let M = (S,T,1,AP /) be a Kripke structure and ¢ € CTL a formula.
The model checking problem M =5 ¢ is decidable in time O(|M]| - |¢|)

Proof:
Compute [¢] = {s

€ S| M,s = ¢} by induction on the formula.

The set [¢] is represented by a boolean array: L{g][s] = T if s € [¢].
The labelling ¢ is encoded in L: for p € AP we have L[p|[s] = T if p € {(s).

Model checking of CTL

Definition: procedure semantics(y)

case o = -
semantics(p1)

[e] :== S\ [l

case o = 1 V2
semantics(ip1); semantics(ys2)
[e] := [r] U [po]

case p = EX
semantics(1)
[e] =0
for all (s,t) € T do if t € [¢1] then [¢] := [¢] U {s}

case p = AX
semantics(p1)
[e] =S

for all (s,t) € T do if t ¢ [¢1] then [¢] := [¢] \ {s}

Model checking of CTL

Definition: procedure semantics(y)

case ¢ = Fp1 U o

semantics(¢1); semantics(p2)

L:=[p2] //th
Z:=[p2] //th
while L #) do

Invariant: L C Z and

[02]
taket € L; L :

forall s e T1!

if s € [a] \
od

lel =2

O(IS|+1T1)
e "todo” set L is imlemented with a list o(|S])
e "result” is computed in the array Z O(|S))

|S| times
Ul lNT=H(Z\ L)) S Z S [Ep1 U o]
=L\ {t} O(1)
(t) do |T’| times
Z then L := LU {s}; Z:= ZU{s} O(1)

o(1S1)

Z is only used to make the invariant clear. It can be replaced by [¢].

Model checking of CTL

Definition: procedure semantics(y)

case 9 = Ay U o(IS| +T)
semantics(1); semantics(¢2)
L :=[p2] // the “todo” set L is imlemented with a list O(]S))
Z = [p2] // the “result” is computed in the array Z O(]S))
for all s € S do ¢[s] := |T'(s)] o(lS))
while L # 0 do |S| times

Invariant: L C Z and
Vs e S, c[s]=|T(s)\ (Z\ L)| and
2] U(fprl N{s € S |cls] =0}) € Z C [Ap1 U]

take t € L; L:= L\ {t} 0(1)
for all s € T=1(¢) do |T| times
cls] :i=cls] — 1 0(1)
if c[s] =0As€[p1]\Z then L:=LU{s}; Z:=ZU{s} O(1)
od
o =2 o(s)

Z is only used to make the invariant clear. It can be replaced by [¢].

Complexity of CTL

Definition: SAT(CTL)
Input: A formula ¢ € CTL

Question: Existence of a model M and a state s such that M,s = ¢ ?

Theorem: Complexity
The model checking problem for CTL is PTIME-complete.
The satisfiability problem for CTL is EXPTIME-complete.

Fairness

Example: Fairness

Only fair runs are of interest

Each process is enabled infinitely often: /\ G Frun;

3

No process stays ultimately in the critical section: /\ -FGCS; = /\ GF-=CS;
i i

Definition: Fair Kripke structure
M = (S,T,1,AP,(, Fy,...,F,) with F; C S.

An infinite run o is fair if it visits infinitely often each F;

fair-CTL

Definition: Syntax of fair-CTL
pu=L|p(PEAP)|-p|oVe|EXo|ArXp|EfoUp|[ArpUgp

Definition: Semantics as a fragment of CTL*
Let M = (S,T,I,AP, ¢, F, ..., F,) be a fair Kripke structure.

Then, Ef o = E(fair A @) and Ar o = A(fair — ¢)
where fair = \ GF F;
Remark: Arp=-E;f—p

Lemma: fair-CTL cannot be expressed in CTL

fair-CTL

Proof: fair-CTL cannot be expressed in CTL
Consider the Kripke structure M} defined by:

(9 (9
2%k 2k — 1 2k — 2 2k -3 e e 9 °
P P P

p P p P = -p

M, 2k EEGFp but My, 2k—2 £ EGFp

If ¢ € CTL and |¢| < m < k then
My, 2k |= @ iff Mg, 2m = ¢
My, 2k — 1 @ iff M,2m —1F ¢

If the fairness condition is £~1(p) then E; T cannot be expressed in CTL.

Model checking of fair-CTL

Theorem
The model checking problem for fair-CTL is decidable in time O(|M]| - |¢|)

Proof: Computation of FAIR = {s € S| M,s =E; T}
Compute the SCC of M with Tarjan’s algorithm (in time O(|M|)).
Let S’ be the union of the (non trivial) SCCs which intersect each F;.
Then, FAIR is the set of states that can reach S'.

Note that reachability can be computed in linear time.

Model checking of fair-CTL

Proof: Reductions

Er X¢ = EX(FAIR A ¢) and EroUy=EpU FAIR A)
It remains to deal with Ay U).

We have ArpoUt =-E;Gp A=Ep(— U (mp A —1))
Hence, we only need to compute the semantics of Ef G .

Proof: Computation of E; G

Let M., be the restriction of M to [¢].

Compute the SCC of M, with Tarjan’s algorithm (in linear time).

Let S’ be the union of the (non trivial) SCCs of M, which intersect each Fj.
Then, M,s =E; Gy iff M,s =EpU S’ iff M,,s |=EFS".

This is again a reachability problem which can be solved in linear time.

Buchi automata

Definition:
A Biichi automaton (BA) is a tuple A = (Q, X, 1,7, F) where
Q: finite set of states
3: finite set of labels
I C @: set of initial states
T C @ X X X Q: set of transitions (non-deterministic)
F C Q: set of accepting (repeated, final) states

Run: P = 4o, @0,41,01,92,02,43, - - . with (qiaai7qi+1) €T foralli > 0.

p is accepting if go € I and g; € F for infinitely many i's.

L(A) ={aparas--- € ¥ | Ip = qo,a0,q1,01,q2, 02,43, . .. accepting run}

A language L C X% is w-regular if it can be accepted by some Biichi automaton.

Buchi automata

Examples:

Infinitely many a's:

Finitely many a's:

Whenever a then later b:

Buchi automata

Properties

Biichi automata are closed under union, intersection, complement.
Union: trivial
Intersection: easy (exercise)

complement: difficult

Let L = £*(aX"1b U bEr—1a) 0w

Any non deterministic Blichi automaton for ¢ \ L has at least 2" states.

Biichi automata
Theorem: Biichi
Let L C X be a language. The following are equivalent:
L is w-regular

L is w-rational, i.e., L is a finite union of languages of the form L; - L% where
Ly,Ly C X1 are rational.

L is MSO-definable, i.e., there is a sentence ¢ € MSOx (<) such that
L=L(p)={weX’|wkp}

Exercises:
1. Construct a BA for L(¢) where ¢ is the FOx (<) sentence

(Vz, (Po(z) = Jy > z, Pa(y))) — (Y, (Po(z) = Jy > z, Pe(y)))
2. Given BA for L; C X¥ and Ly C ¢, construct BA for

next(Ly) =3 L
SUntil(Ly, L) = {fuv € B¥ |u € T Av € Ly A

uv € Ly for all o/, u” € £ with v = v/}

Generalized Buchi automata

Definition: acceptance on states or on transitions
A=(Q,%,1,T,Fy,...,F,) with F; C Q.
An infinite run o is successful if it visits infinitely often each F;.

A=(Q,%,1,T,T1,...,T,) with T; CT.
An infinite run o is successful if it uses infinitely many transitions from each T;.

Example: Infinitely many a's and infinitely many b's

Theorem:

1. GBA and BA have the same expressive power.
2. Checking whether a BA or GBA has an accepting run is NLOGSPACE-complete.

Buchi automata with output

Definition: SBT: Synchronous (letter to letter) Biichi transducer

Let A and B be two alphabets.

A synchronous Biichi transducer from A to B is a tuple A = (Q, A, I, T, F, 1) where
(Q,A,I,T,F) is a Biichi automaton (input) and x : T — B is the output function.
It computes the relation

[A] = {(u,v) € A“ x B* | 3p = qo, a0, q1, 01, 42, a2, q3, - - . accepting run
with u = agajaz - -+ and v = p(ro)p(m)p(m2) - -
where 7; = (g;, @i, gi+1)}

If (Q,A,I,T,F) is unambiguous then [A] : A — B“ is a (partial) function.

We will also use SGBT: synchronous transducers with generalized Blichi acceptance.

Example: Left shift with A = B = {a, b}
ala b/b

() a/b

Composition of Biichi transducers

Definition: Composition

Let A, B, C be alphabets.

Let A= (Q,A,I,T,(F;);,p) be an SGBT from A to B.

Let A" = (Q',B,I',T', (F});, ') be an SGBT from B to C.

Then A- A"=(Q x Q" A, I xI''T",(F; x Q")i, (Q x Fj);,u") is defined by:

= (p,p') = (¢,¢') € T" and p"(7") = ¢

iff

r=pSqeTandr =p “Ds ¢ €T and ¢ = /(7

A-A"is an SGBT from A to C.
When the transducers define functions, we also denote the composition by A’ o A.

Proposition: Composition
1. We have [A- A’ = [A] - [A].
2. 1f (Q,A,I,T,(F;);) and (Q', B, I', T

" (
(@xQ,AIxI' T (F; XQ)Z,(QX
Then, Yu € A we have [A o A](u) =

F);) are unambiguous then
/

J
)J) is also unambiguous.

[AT([Alw))-

Product of Buchi transducers

Definition: Product

Let A, B, C be alphabets.

Let A=(Q,A,I,T,(F;);,u) be an SGBT from A to B.

Let A" = (Q', A, I',T,(F});, 1) be an SGBT from A to C.

Then Ax A" =(Q x Q' , A, I x I'T", (F; x Q")i, (Q x F});, ") is defined by:

" = (p,p') = (¢,¢') € T" and p"(7") = (b, c)
iff
r=pSgeTandb=yp(r)and 7' =p' % ¢ € T’ and ¢ = i/ (7')
A x A" is an SGBT from A to B x C.

Proposition: Product
We identify (B x C')* with B* x C“’

1. We have [A x A'] = {(u,v,v") | (u,v) € [A] and (u,v") € [A']}.
I (Q,A1,T, (F;);) and (Q', A, I’ T', (Fj);) are unambiguous then
(Q X Q’ AT x I T (F; x Q')7,7(x I'[);) is also unambiguous.
Then, Vu € A“ we have [Ax A(u) = ([[1(w), [A](w)).

Subalphabets of ¥ = 247

Definition:
For a propositional formula £ over AP, we let ¥¢ = {a € ¥ | a = £}
For instance, for p,q € AP,

Y,={aeX|pea} and X ,=X\3,
Yprg =2pNEg and Z,vg =%,U%,
Ypa-q = EP\EQ

Notation:

3 "
In automata, p — ¢ stands for the set of transitions {p} x ¢ x {g}.

53]
To simplify the pictures, we use p & q instead of p —> q.

Example:
o
pA—q
o S—

Semantics of LTL with sequential functions

Definition: Semantics of ¢ € LTL(AP, SU, SS)
Let ¥ = 24P and B = {0,1}.

1 ifuibE=e

Define [¢] : £« — B“ by [¢](u) = bob1bs - - - with b; = { ,
0 otherwise.

Example:

[p SU q](0{a}{p}0{p}{rH{a}0{p}{p, ¢}0*) = 10011101100
Xpl(0{q}{p}0{p}{p}{a}0{p}{p, ¢}0*) = 01011001100
[Fol(0{g}{p}0{pH{pHa}0{p}{p, ¢}0*) = 11111111110*

The aim is to compute [¢] with Biichi transducers.

Synchronous Biichi transducer for p SU ¢
Example: An SBT for [p SU ¢]

Lemma: The input BA is prophetic

For all uw = apajas --- € X¥,
there is a unique accepting run p = qo, ag, q1, 01, q2, a2, qs, - .. of A on w.

1 ifuifE=gq
The run p satisfies for all i >0, ¢; =<2 ifu,i|=—-gA(pUgq)
3 ifui=-(pUq)

Special cases of Until: Future and Next

Example: Fg=T Ugand Xg= 1 SUgq

Exercise: Give SBT's for the following formulae:
pUq Gg, pRq, pSRq, pSq, pSSq, G(p — Fy).

From LTL to Buchi automata

Definition: SBT for LTL modalities

At from 3 to B = {0,1}: 2/1
A, from ¥ to B = {0,1}: ﬁg?é

A- from B to B: . (1)§(1)
0,0/0

Ay from B? to B: @ (1),%}
1,1/1
0,0/0

A, from B2 to B: . (1):(1)§8
1,1/1

From LTL to Buchi automata

Definition: SBT for LTL modalities (cont

)
0,1/1
1,1/1

9’ 1,0/1

Asy from B2 to B: ’

0,1/0
1,1/0 1,0/1
0,0/0 : R
Ass from B? to B: ’ = >(1 0,1/1

From LTL to Buchi automata

Definition: Translation from LTL to SGBT
For each £ € LTL(AP, SU, SS) we define inductively an SGBT A¢ as follows:

A+ and A, for p € AP are already defined

A, =A-0A,

Apvy = Ay o (Ap x Ay)

Agssy = Ass o (Ap x Ay)

Agsuy = Asu o (Ap X Ay)

Theorem: Correctness of the translation
For each £ € LTL(AP, SU, SS), we have [A¢] = [£].
Moreover, the number of states of A is at most 2/¢lss . 3l¢lsu

where |€]ss (resp. |€|su) is the number of SS (resp. SU) occurring in €.

Remark:
If a subformula ¢ occurs serveral times in &, we only need one copy of A,.
We may also use automata for other modalities: Ax, Ay, Af, ...

Useful simplifications

Reducing the number of temporal subformulae

(Xp) A (X)) =X(p Ap) Xp) U (Xy) =X(pUy) =9 SUy
(Gp) A (GY) =G(pAY) GFoVGFy=GF(p V)
(prUY)A(p2 Uy) = (1 Apa) Uy (U) V(e Uhe) = U (Y1 V1ha)

Merging equivalent states

Let A= (Q,%,I,T,T1,...,Ty,, 1) be an SGBT and sy, s2 € Q.
We can merge s; and sy if they have the same outgoing transitions:
Va € ¥, Vs € Q,

(s1,a,8) €T <= (sg,a,8) €T
and (s1,a,8) €T; <= (s2,a,8)€T; foralll<i<n

and plsias) = plsaas)

Other constructions

v

Tableau construction. See for instance [15, Wolper 85]
+ : Easy definition, easy proof of correctness
+ : Works both for future and past modalities
— : Inefficient without strong optimizations

» Using Very Weak Alternating Automata [16, Gastin & Oddoux 01].
+ : Very efficient
— : Only for future modalities
Online tool: http://www.lsv.ens-cachan.fr/~gastin/1t12ba/
Using reduction rules [6, Demri & Gastin 10].
+ : Efficient and produces small automata
+ : Can be used by hand on real examples
— : Only for future modalities

v

v

The domain is still very active.

Satisfiability for LTL over (N, <)

Let AP be the set of atomic propositions and ¥ = 24F.

Definition: Satisfiability problem
Input: A formula ¢ € LTL(AP,SU, SS)

Question: Existence of w € ¥* and ¢ € N such that w,i |= ¢.

Definition: Initial Satisfiability problem

Input: A formula ¢ € LTL(AP, SU, SS)
Question: Existence of w € ¥ such that w,0 = ¢.
Remark: ¢ is satisfiable iff F o is initially satisfiable.
Definition: (Initial) validity

@ is valid iff ¢ is not satisfiable.

Theorem [10, Sistla, Clarke 85], [9, Lichtenstein & Pnueli 85]
The satisfiability problem for LTL is PSPACE-complete.

Model checking for LTL

Definition: Model checking problem

Input: A Kripke structure M = (S, T,I,AP,0)
A formula ¢ € LTL(AP,SU,SS)

Question: Does M = ¢ ?

Universal MC: M =y ¢ if £(0),0 = ¢ for all initial infinite runs of M.
Existential MC: M =5 ¢ if £(0),0 = ¢ for some initial infinite run of M.

M):v (%) iff M l?éa "

Theorem [10, Sistla, Clarke 85], [9, Lichtenstein & Pnueli 85]
The Model checking problem for LTL is PSPACE-complete

MC?(SU) <p SAT(SU) [10, Sistla & Clarke 85]

Let M = (S,T,1,AP,¥) be a Kripke structure and ¢ € LTL(AP, SU)

Introduce new atomic propositions: APg = {at, | s € S}
Define AP’ = AP W APg ¥ = AP 7Y% = B¢ by m(a) = a N AP.

Let w € ¥, We have w = ¢ iff 7(w) = ¢
Define 15 € LTL(AP’, X, F) of size O(|M|?) b

wM—<\/)/\G(\/ (at AN\-ateA N\ oon N oen Xatt))

sel seSs t#s peL(s) pEL(s) teT(s)

Let w = agajas -+ € X', Then, w |= 1y iff there exists an initial infinite run
0 = 808152+ of M such that ¢(0) = m(w) and a; N APg = {aty, } for all i > 0.

Therefore, M 3¢ iff p A is satisfiable
My ¢ iff)y A - is not satisfiable

Remark: we also have MC? (X, F) <p SAT(X, F).

QBF Quantified Boolean Formulae

Definition: QBF

Input: A formula v = Q121 - - - Quypy with v/ = /\ \/ aij
1<i<m 1<j<k;
Qi € {V,3} and a;; € {z1,~21,..., 20, 7T}

Question: s v valid?

Definition:
An assignment of the variables {z1,...,z,} is a word v = vy - - - v, € {0,1}".

We write v[i] for the prefix of length i.
Let V' C {0,1}"™ be a set of assignments.

V is valid (for v') if v =4/ for allv € V,
V is closed (for) if Vo € V, V1 <i<mnst Q; =V,
' € Vst oofi — 1] ='[i — 1] and {w;,v;} = {0,1}.

Proposition:
visvalid iff 3V C {0,1}" s.t. V' is nonempty valid and closed

QBF <p MC?(U) [10, Sistla & Clarke 85]
Letv=Quz1- Quzn [\ \/ ai; with Q; € {V,3} and a; literals.

1<i<m 1<5<k;

Consider the KS M:

[| m b
NN TN PN
—»-C) —» S1 €] —» 52 €2 Sn €n
T ~ 7 N7
Ty X3 Ty J

Am1

am2

NS,
\%/ N

Let 1y — { xk — s R—ay;) ifaj =y and »= /\wij.

zk — sp R—aij) if aij = —ay,
Let i = G(ejfl — (ﬁSj,l U x;r) N (ﬁijl U Ij‘) and Y = /\ ©j-
Then, ~ is valid iff M =3 ¢ A .

Complexity of LTL

Theorem: Complexity of LTL

The following problems are PSPACE-complete:
SAT(LTL(SU,SS)), MCY(LTL(SU,SS)), MC?(LTL(SU, SS))
SAT(LTL(X, F)), MC"(LTL(X, F)), MC?(LTL(X, F))
SAT(LTL(U)), MC¥(LTL(U)), MC?(LTL(U))

The restriction of the above problems to a unique propositional variable

The following problems are NP-complete:
SAT(LTL(F)), MC?(LTL(F))

Complexity of CTL"

Theorem
The model checking problem for CTL" is PSPACE-complete

Proof:
PSPACE-hardness: follows from LTL C CTL*.

PSPACE-easiness: reduction to LTL-model checking by inductive eliminations of
path quantifications.

MCgpp+ in PSPACE

Proof:

For ¢ € LTL, let MCipy, (M, t,1)) be the function which computes in polynomial
space whether M, t =3 1, i.e., if M,t = E.

Let M = (S,T,I,AP, /) be a Kripke structure, s € S and ¢ € CTL".
Replacing A1) by = E =) we assume ¢ only contains the existential path quantifier.

MCZr- (M, s,)
If E does not occur in ¢ then return MCipp (M, s, @) fi
Let E1) be a subformula of ¢ with ¢ € LTL
Let ey be a new propositional variable
Define ¢/ : § — 2P with AP’ = AP & {e,} by
2(t) N AP = £(t) and ey € £(t) iff MCipp (M, t,4))
Let M’ = (S,T,I,AP’, ')
Let ' = pley/ E4)] be obtained from ¢ by replacing each E1) by ey,
Return MC2rpp- (M, 5,¢")

Satisfiability for CTL"

Definition: Satisfiability problem for CTL*
Input: A formula ¢ € CTL"

Question: Existence of a model M, a run o, a position ¢ such that M, o,i = ¢ 7

Definition: Initial Satisfiability problem for CTL*
Input: A formula ¢ € CTL"

Question: Existence of a model M and a run o such that M,0,0 = ¢ ?

Theorem
The (initial) satisfiability problem for CTL* is 2-EXPTIME-complete

Some References
[9] O. Lichtenstein and A. Pnueli.
Checking that finite state concurrent programs satisfy their linear specification.
In ACM Symposium PoPL’'85, 97-107.

[15] P. Wolper.
The tableau method for temporal logic: An overview,
Logique et Analyse. 110-111, 119-136, (1985).

[10] A. Sistla and E. Clarke.
The complexity of propositional linear temporal logic.
Journal of the Association for Computing Machinery. 32 (3), 733-749, (1985).

[16] P. Gastin and D. Oddoux.
Fast LTL to Biichi automata translation.
In CAV'01, vol. 2102, Lecture Notes in Computer Science, pp. 53-65.
Springer, (2001).
http://www.lsv.ens-cachan.fr/~gastin/mes-publis.php

[6] S. Demri and P. Gastin.
Specification and Verification using Temporal Logics.
In Modern applications of automata theory, |1ISc Research Monographs 2.
World Scientific, 2012.
http://www.lsv.ens-cachan.fr/~gastin/mes-publis.php

