
4/44

Outline

Introduction

Models

3 Temporal Specifications

General Definitions

(Linear) Temporal Specifications

Branching Temporal Specifications

CTL⇤

CTL

Satisfiability and Model Checking

More on Temporal Specifications

6/44

Static and dynamic properties

Example: Static properties

Mutual exclusion

Safety properties are often static.

They can be reduced to reachability.

Example: Dynamic properties

Every elevator request should be eventually granted.

^

i

8t, (Calli(t) �! 9t0 � t, (atLeveli(t
0) ^ openDoori(t

0)))

The elevator should not cross a level for which a call is pending without stopping.

^

i

8t8t0, (Calli(t) ^ t  t

0 ^ atLeveli(t
0)) �!

9t  t

00  t

0
, (atLeveli(t

00) ^ openDoori(t
00)))

7/44

Temporal Structures
Definition: Flows of time

A flow of time is a strict order (T, <) where T is the nonempty set of time points

and < is an irreflexive transitive relation on T.

Example: Flows of time
I ({0, . . . , n}, <): Finite runs of sequential systems.

I (N, <): Infinite runs of sequential systems.

I (R, <): runs of real-time sequential systems.

I Trees: Finite or infinite run-trees of sequential systems.

I Mazurkiewicz traces: runs of distributed systems (partial orders).

I and also (Z, <) or (Q, <) or (!2
, <), . . .

Definition: Temporal Structures

Let AP be a set of atoms (atomic propositions).

A temporal structure over a class C of time flows and AP is a triple (T, <, h) where
(T, <) is a time flow in C and h : AP ! 2T is an assignment.

If p 2 AP then h(p) ✓ T gives the time points where p holds.
8/44

Linear behaviors and specifications

Let M = (S, T, I,AP, `) be a Kripke structure.

Definition: Runs as temporal structures

An infinite run � = s0s1s2 · · · of M with (si, si+1) 2 T for all i � 0 defines a linear

temporal structure `(�) = (N, <, h) where h(p) = {i 2 N | p 2 `(si)}.
Such a temporal structure can be seen as an infinite word over ⌃ = 2AP:
`(�) = `(s0)`(s1)`(s2) · · · = (N, <,w) with w(i) = `(si) 2 ⌃.

Linear specifications only depend on runs.

Example: The printer manager is fair.

On each run, whenever some process requests the printer, it eventually gets it.

Remark:
Two Kripke structures having the same linear temporal structures satisfy the same
linear specifications.

9/44

Branching behaviors and specifications

The system has an infinite active
run, but it may always reach an
inactive state.

Definition: Computation-tree or run-tree : unfolding of the TS

Let M = (S, T, I,AP, `) be a Kripke structure. Wlog. I = {s0} is a singleton.

Let D be a finite set with |D| the outdegree of the transition relation T .

The computation-tree of M is an unordered tree t : D⇤ ! S (partial map) s.t.

I
t(") = s0,

I For every node u 2 dom(t) labelled s = t(u), if T (s) = {s1, . . . , sk} then u

has exactly k children which are labelled s1,. . . ,sk

Associated temporal structure `(t) = (dom(t), <, h) where

I
< is the strict prefix relation over D⇤,

I and h(p) = {u 2 dom(t) | p 2 `(t(u))}.
(Linear) runs of M are branches of the computation-tree t.

10/44

First-order Specifications
Definition: Syntax of FO(<)

Let P,Q, . . . be unary predicates twinned with atoms p, q, . . . in AP.
Let Var = {x, y, . . .} be first-order variables.

' ::= ? | P (x) | x = y | x < y | ¬' | ' _ ' | 9x'

Definition: Semantics of FO(<)

Let w = (T, <, h) be a temporal structure.
Precidates P,Q, . . . twinned with p, q, . . . are interpreded as h(p), h(q), . . .
Let ⌫ : Var ! T be an assignment of first-order variables to time points.

w, ⌫ |= P (x) if ⌫(x) 2 h(p)

w, ⌫ |= x = y if ⌫(x) = ⌫(y)

w, ⌫ |= x < y if ⌫(x) < ⌫(y)

w, ⌫ |= 9x' if w, ⌫[x 7! t] |= ' for some t 2 T

where ⌫[x 7! t] maps x to t and y 6= x to ⌫(y).

Previous specifications can be written in FO(<) (except the branching one).

11/44

First-order vs Temporal

First-order logic
I FO(<) has a good expressive power

. . . but FO(<)-formulae are not easy to write and to understand.

I FO(<) is decidable
. . . but satisfiability and model checking are non elementary.

Temporal logics
I no variables: time is implicit.

I quantifications and variables are replaced by modalities.

I Usual specifications are easy to write and read.

I Good complexity for satisfiability and model checking problems.

I Good expressive power.

Linear Temporal Logic (LTL) over (N, <) introduced by Pnueli (1977) as a conve-
nient specification language for verification of systems.

13/44

Temporal Specifications

Definition: Syntax of TL(AP, SU, SS)

' ::= ? | p (p 2 AP) | ¬' | ' _ ' | ' SU ' | ' SS '

Definition: Semantics: w = (T, <, h) temporal structure and i 2 T
w, i |= p if i 2 h(p)

w, i |= ¬' if w, i 6|= '

w, i |= ' _ if w, i |= ' or w, i |=

w, i |= ' SU if 9k i < k and w, k |= and 8j (i < j < k ! w, j |= ')

w, i |= ' SS if 9k i > k and w, k |= and 8j (i > j > k ! w, j |= ')

Previous specifications can be written in TL(AP, SU, SS)
(except the branching one).

14/44

Temporal Specifications
Definition: non-strict versions of until and since

' U
def
= _ (' ^ ' SU) ' S

def
= _ (' ^ ' SS)

w, i |= ' U if 9k i  k and w, k |= and 8j (i  j < k ! w, j |= ')

w, i |= ' S if 9k i � k and w, k |= and 8j (i � j > k ! w, j |= ')

Definition: Derived modalities

X'
def
= ? SU ' Next Y'

def
= ? SS ' Yesterday

w, i |= X' if 9k i < k and w, k |= ' and ¬9j (i < j < k)

w, i |= Y' if 9k i > k and w, k |= ' and ¬9j (i > j > k)

F'
def
= > U ' P'

def
= > S '

G'
def
= ¬F¬' H'

def
= ¬P¬'

'W

def
= (G') _ (' U) Weak Until

' R
def
= (G) _ (U (' ^)) Release

16/44

Temporal Specifications

Example: Specifications on the time flow (N, <)
I Safety: G good

I MutEx: ¬F(crit1 ^ crit2)

I Liveness: G F active

I Response: G(request ! F grant)

I Response’: G(request ! (¬request SU grant))

I Release: reset R alarm

I Strong fairness: (GF request) ! (GF grant)

I Weak fairness: (FG request) ! (GF grant)

17/44

Discrete linear time flows

Definition: discrete linear time flows (T, <)

A linear time flow is discrete if SF> ! X> and SP> ! Y> are valid formulae.

(N, <) and (Z, <) are discrete.

(Q, <) and (R, <) are not discrete.

Exercise: For discrete linear time flows (T, <)

' SU ⌘ X(' U)

' SS ⌘ Y(' S)

¬X' ⌘ ¬X> _ X¬'
¬Y' ⌘ ¬Y> _ Y¬'

¬(' U) ⌘ (G¬) _ (¬ U (¬' ^ ¬))
⌘ ¬ W (¬' ^ ¬)
⌘ ¬' R ¬

18/44

Model checking for linear behaviors

Definition: Model checking problem

Input: A Kripke structure M = (S, T, I,AP, `)
A formula ' 2 LTL(AP, SU, SS)

Question: Does M |= ' ?

I Universal MC: M |=8 ' if `(�), 0 |= ' for all initial infinite runs � of M .

I Existential MC: M |=9 ' if `(�), 0 |= ' for some initial infinite run � of M .

M |=8 ' i↵ M 6|=9 ¬'

Theorem [10, Sistla, Clarke 85], [9, Lichtenstein & Pnueli 85]

The Model checking problem for LTL is PSPACE-complete. Proof later

20/44

Weaknesses of linear behaviors

Example:

': Whenever p holds, it is possible to reach a state where q holds.

' cannot be checked on linear runs.

We need to consider the computation-trees.

Consider the two models:

M1: and M2:

M1 |= ' but M2 6|= '

M1 and M2 have the same linear runs.

21/44

Weaknesses of FO specifications

Example:

 : The system has an infinite active run, but it may always reach an inactive state.

 cannot be expressed in FO.

We need quantifications on runs: = EG(Active ^ EF¬Active)

I E: for some infinite run

I A: for all infinite runs

22/44

MSO Specifications

Definition: Syntax of MSO(<)

Let P,Q, . . . be unary predicates twinned with atoms p, q, . . . in AP.

' ::= ? | P (x) | x = y | x < y | x 2 X | ¬' | ' _ ' | 9x' | 9X '

where x, y are first-order variables and X is a second-order variable.

Definition: Semantics of MSO(<)

Let w = (T, <, h) be a temporal structure.
An assignment ⌫ maps first-order variables to time points in T
and second-order variables to sets of time points.

The semantics of first-order constructs is unchanged.

w, ⌫ |= x 2 X if ⌫(x) 2 ⌫(X)

w, ⌫ |= 9X ' if w, ⌫[X 7! T] |= ' for some T ✓ T

where ⌫[X 7! T] maps X to T and keeps unchanged the other assignments.

24/44

MSO vs Temporal

MSO logic
I MSO(<) has a good expressive power

. . . but MSO(<)-formulae are not easy to write and to understand.

I MSO(<) is decidable on computation trees
. . . but satisfiability and model checking are non elementary.

We need a temporal logic
I with no explicit variables,

I allowing quantifications over runs,

I usual specifications should be easy to write and read,

I with good complexity for satisfiability and model checking problems,

I with good expressive power.

Computation Tree Logic CTL⇤ introduced by Emerson & Halpern (1986).

26/44

CTL⇤ (Emerson & Halpern 86)
Definition: Syntax of the Computation Tree Logic CTL⇤

' ::= ? | p (p 2 AP) | ¬' | ' _ ' | ' SU ' | E' | A'
We may also add the past modality SS

Definition: Semantics of CTL⇤

Let M = (S, T, I,AP, `) be a Kripke structure.
Let � = s0s1s2 · · · be an infinte run of M .

M,�, i |= p if p 2 `(si)

M,�, i |= ' SU if 9k > i, M,�, k |= and 8i < j < k, M,�, j |= '

M,�, i |= E' if M,�

0
, i |= ' for some infinite run �0 such that �0[i] = �[i]

M,�, i |= A' if M,�

0
, i |= ' for all infinite runs �0 such that �0[i] = �[i]

where �[i] = s0 · · · si.

Remark:
I A' ⌘ ¬E¬'
I
�

0[i] = �[i] means that future is branching but past is not.
27/44

CTL⇤ (Emerson & Halpern 86)

Example: Some specifications
I EF': ' is possible

I AG': ' is an invariant

I AF': ' is unavoidable

I EG': ' holds globally along some path

28/44

State formulae and path formulae
Definition: State formulae

' 2 CTL⇤ is a state formula if 8M,�,�

0
, i, j such that �(i) = �

0(j) we have

M,�, i |= ' () M,�

0
, j |= '

If ' is a state formula and M = (S, T, I,AP, `), define

[[']]M = {s 2 S | M, s |= '}

Example: State formulae

Atomic propositions are state formulae: [[p]] = {s 2 S | p 2 `(s)}
State formulae are closed under boolean connectives.

[[¬']] = S \ [[']] [['1 _ '2]] = [['1]] [[['2]]

Formulae of the form E' or A' are state formulae, provided ' is future.

Definition: Alternative syntax

State formulae ' ::= ? | p (p 2 AP) | ¬' | ' _ ' | E | A
Path formulae ::= ' | ¬ | _ | SU

29/44

Model checking of CTL⇤
Definition: Existential and universal model checking

Let M = (S, T, I,AP, `) be a Kripke structure and ' 2 CTL⇤ a formula.

M |=9 ' if M,�, 0 |= ' for some initial infinite run � of M .
M |=8 ' if M,�, 0 |= ' for all initial infinite runs � of M .

Remark:

M |=9 ' i↵ I \ [[E']] 6= ;
M |=8 ' i↵ I ✓ [[A']]

M |=8 ' i↵ M 6|=9 ¬'

Definition: Model checking problems MC8
CTL⇤ and MC9

CTL⇤

Input: A Kripke structure M = (S, T, I,AP, `) and a formula ' 2 CTL⇤

Question: Does M |=8 ' ? or Does M |=9 ' ?

Theorem:

The model checking problem for CTL⇤ is PSPACE-complete. Proof later

31/44

CTL (Clarke & Emerson 81)

Definition: Computation Tree Logic (CTL)

Syntax:

' ::= ? | p (p 2 AP) | ¬' | ' _ ' | EX' | AX' | E' U ' | A' U '

The semantics is inherited from CTL⇤.

Remark: All CTL formulae are state formulae

[[']]M = {s 2 S | M, s |= '}

Examples: Macros
I EF' = E> U ' and AG' = ¬EF¬'
I AF' = A> U ' and EG' = ¬AF¬'
I AG(req ! EF grant)

I AG(req ! AF grant)

32/44

CTL (Clarke & Emerson 81)

Definition: Semantics
All CTL-formulae are state formulae. Hence, we have a simpler semantics.
Let M = (S, T, I,AP, `) be a Kripke structure without deadlocks and let s 2 S.

s |= p if p 2 `(s)

s |= EX' if 9s ! s

0 with s

0 |= '

s |= AX' if 8s ! s

0 we have s

0 |= '

s |= E' U if 9s = s0 ! s1 ! s2 ! · · · sk finite path, with
sk |= and sj |= ' for all 0  j < k

s |= A' U if 8s = s0 ! s1 ! s2 ! · · · infinite path, 9k � 0 with
sk |= and sj |= ' for all 0  j < k

33/44

CTL (Clarke & Emerson 81)

Example:

1 2 3 4

5 6 7 8

q p, q q r

p, r p, r p, q

[[EX p]] =

{1, 2, 3, 5, 6}

[[AX p]] =

{3, 6}

[[EF p]] =

{1, 2, 3, 4, 5, 6, 7, 8}

[[AF p]] =

{2, 3, 5, 6, 7}

[[E q U r]] =

{1, 2, 3, 4, 5, 6}

[[A q U r]] =

{2, 3, 4, 5, 6}

34/44

CTL (Clarke & Emerson 81)

Remark: Equivalent formulae
I AX' = ¬EX¬',
I ¬(' U) = G¬ _ (¬ U (¬' ^ ¬))
I A' U = ¬EG¬ ^ ¬E(¬ U (¬' ^ ¬))
I AG(req ! F grant) = AG(req ! AF grant)

I AGF' = AGAF'

infinitely often

I EFG' = EFEG'

ultimately

I EGEF' 6= EGF'

I AFAG' 6= AFG'

I EGEX' 6= EGX'

35/44

Model checking of CTL
Definition: Existential and universal model checking

Let M = (S, T, I,AP, `) be a Kripke structure and ' 2 CTL a formula.

M |=9 ' if M, s |= ' for some s 2 I.
M |=8 ' if M, s |= ' for all s 2 I.

Remark:

M |=9 ' i↵ I \ [[']] 6= ;
M |=8 ' i↵ I ✓ [[']]

M |=8 ' i↵ M 6|=9 ¬'

Definition: Model checking problems MC8
CTL and MC9

CTL

Input: A Kripke structure M = (S, T, I,AP, `) and a formula ' 2 CTL

Question: Does M |=8 ' ? or Does M |=9 ' ?

Theorem:

Let M = (S, T, I,AP, `) be a Kripke structure and ' 2 CTL a formula.
The model checking problem M |=9 ' is decidable in time O(|M | · |'|)

36/44

References

[1] Christel Baier and Joost-Pieter Katoen.
Principles of Model Checking.
MIT Press, 2008.

[2] B. Bérard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci,
Ph. Schnoebelen.
Systems and Software Verification. Model-Checking Techniques and Tools.
Springer, 2001.

[3] E.M. Clarke, O. Grumberg, D.A. Peled.
Model Checking.
MIT Press, 1999.

[4] Z. Manna and A. Pnueli.
The Temporal Logic of Reactive and Concurrent Systems: Specification.
Springer, 1991.

[5] Z. Manna and A. Pnueli.
Temporal Verification of Reactive Systems: Safety.
Springer, 1995.

37/44

References
[6] S. Demri and P. Gastin.

Specification and Verification using Temporal Logics.
In Modern applications of automata theory, IISc Research Monographs 2.
World Scientific, 2012.
http://www.lsv.ens-cachan.fr/

~

gastin/mes-publis.php

[7] D. Gabbay, I. Hodkinson and M. Reynolds.
Temporal logic: mathematical foundations and computational aspects.
Vol 1, Clarendon Press, Oxford, 1994.

[8] D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi.
On the temporal analysis of fairness.
In 7th Annual ACM Symposium PoPL’80, 163–173. ACM Press.

[9] O. Lichtenstein and A. Pnueli.
Checking that finite state concurrent programs satisfy their linear specification.
In ACM Symposium PoPL’85, 97–107.

[10] A. Sistla and E. Clarke.
The complexity of propositional linear temporal logic.
Journal of the Association for Computing Machinery. 32 (3), 733–749, (1985).

