
1/149

Initiation à la vérification
Basics of Verification

https://wikimpri.dptinfo.ens-cachan.fr/doku.php?id=cours:c-1-22

Paul Gastin

Paul.Gastin@lsv.ens-cachan.fr

http://www.lsv.ens-cachan.fr/~gastin/

MPRI – M1
2012 – 2013

2/149

Outline

1 Introduction

Models

Temporal Specifications

Satisfiability and Model Checking

More on Temporal Specifications

3/149

Need for formal verifications methods

Critical systems
I Transport

I Energy

I Medicine

I Communication

I Finance

I Embedded systems

I . . .

4/149

Disastrous software bugs

Mariner 1 probe, 1962
See http://en.wikipedia.org/wiki/Mariner_1

I Destroyed 293 seconds after launch

I Missing hyphen in the data or program? No!

I Overbar missing in the mathematical
specification:

Ṙ

n

: nth smoothed value of the time derivative
of a radius.
Without the smoothing function indicated by
the bar, the program treated normal minor
variations of velocity as if they were serious,
causing spurious corrections that sent the
rocket o↵ course.

5/149

Disastrous software bugs
Ariane 5 flight 501, 1996
See http://en.wikipedia.org/wiki/Ariane_5_Flight_501

I Destroyed 37 seconds after launch (cost: 370 millions
dollars).

I data conversion from a 64-bit floating point to 16-bit
signed integer value caused a hardware exception
(arithmetic overflow).

I E�ciency considerations had led to the disabling of the
software handler (in Ada code) for this error trap.

I The fault occured in the inertial reference system of Ariane
5. The software from Ariane 4 was re-used for Ariane 5
without re-testing.

I On the basis of those calculations the main computer
commanded the booster nozzles, and somewhat later the
main engine nozzle also, to make a large correction for an
attitude deviation that had not occurred.

I The error occurred in a realignment function which was not
useful for Ariane 5.

6/149

Disastrous software bugs
Spirit Rover (Mars Exploration), 2004

See http://en.wikipedia.org/wiki/Spirit_rover

I Landed on January 4, 2004.

I Ceased communicating on January 21.

I Flash memory management anomaly:
too many files on the file system

I Resumed to working condition on February 6.

7/149

Disastrous software bugs

Other well-known bugs
I Therac-25, at least 3 death by massive overdoses of radiation.

Race condition in accessing shared resources.
See http://en.wikipedia.org/wiki/Therac-25

I Electricity blackout, USA and Canada, 2003, 55 millions people.
Race condition in accessing shared resources.
See http://en.wikipedia.org/wiki/Northeast_Blackout_of_2003

I Pentium FDIV bug, 1994.
Flaw in the division algorithm, discovered by Thomas Nicely.
See http://en.wikipedia.org/wiki/Pentium_FDIV_bug

I Needham-Schroeder, authentication protocol based on symmetric encryption.
Published in 1978 by Needham and Schroeder
Proved correct by Burrows, Abadi and Needham in 1989
Flaw found by Lowe in 1995 (man in the middle)
Automatically proved incorrect in 1996.
See http://en.wikipedia.org/wiki/Needham-Schroeder_protocol

8/149

Formal verifications methods

Complementary approaches
I Theorem prover

I Model checking

I Static analysis

I Test

9/149

Model Checking

I Purpose 1: automatically finding software or hardware bugs.

I Purpose 2: prove correctness of abstract models.

I Should be applied during design.

I Real systems can be analysed with abstractions.

E.M. Clarke E.A. Emerson J. Sifakis

Prix Turing 2007.

10/149

Model Checking
3 steps

I Constructing the model M (transition systems)

I Formalizing the specification ' (temporal logics)

I Checking whether M |= ' (algorithmics)

Main di�culties
I Size of models (combinatorial explosion)

I Expressivity of models or logics

I Decidability and complexity of the model-checking problem

I E�ciency of tools

Challenges
I Extend models and algorithms to cope with more systems.

Infinite systems, parameterized systems, probabilistic systems, concurrent
systems, timed systems, hybrid systems, . . . See Modules 2.8 & 2.9

I Scale current tools to cope with real-size systems.
Needs for modularity, abstractions, symmetries, . . .

11/149

References

[1] Christel Baier and Joost-Pieter Katoen.
Principles of Model Checking.
MIT Press, 2008.

[2] B. Bérard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci,
Ph. Schnoebelen.
Systems and Software Verification. Model-Checking Techniques and Tools.
Springer, 2001.

[3] E.M. Clarke, O. Grumberg, D.A. Peled.
Model Checking.
MIT Press, 1999.

[4] Z. Manna and A. Pnueli.
The Temporal Logic of Reactive and Concurrent Systems: Specification.
Springer, 1991.

[5] Z. Manna and A. Pnueli.
Temporal Verification of Reactive Systems: Safety.
Springer, 1995.

12/149

Outline

Introduction

2 Models

Transition Systems

. . . with Variables

Concurrent Systems

Synchronization and Communication

Temporal Specifications

Satisfiability and Model Checking

More on Temporal Specifications

14/149

Model and abstractions
Example: Golden face

Each coin has a golden face and a silver face.
At each step, we may flip simultaneously the 3 coins of a line, column or diagonal.
Is it possible to have all coins showing its golden face ?
If yes, what is the smallest number of steps.

Model = Transition system
I States: configurations of the board: 29 = 512 states

I Transitions: flipping a line/column/diagonal

I Problem: reachability

Abstraction 1: number of golden faces in a configuration.
Abstraction 2: parity of the number of golden faces in the corners.

15/149

Model and Specification
Example: Men, Wolf, Goat, Cabbage

Model = Transition system
I State = who is on which side of the river

I Transition = crossing the river

I Specification
Safety: Never leave WG or GC alone
Liveness: Take everyone to the other side of the river.

17/149

Transition system or Kripke structure

Definition: TS M = (S,⌃, T, I,AP, `)
I

S: set of states (finite or infinite)

I ⌃: set of actions

I
T ✓ S ⇥ ⌃⇥ S: set of transitions

I
I ✓ S: set of initial states

I AP: set of atomic propositions

I
` : S ! 2AP: labelling function.

Every discrete system may be described with a TS.

Example: Digicode ABA

18/149

Description Languages

Pb: How can we easily describe big systems?

Description Languages (high level)
I Programming languages

I Boolean circuits

I Modular description, e.g., parallel compositions
problems: concurrency, synchronization, communication, atomicity, fairness, ...

I Petri nets (intermediate level)

I Transition systems (intermediate level)
with variables, stacks, channels, ...
synchronized products

I Logical formulae (low level)

Operational semantics

High level descriptions are translated (compiled) to low level (infinite) TS.

20/149

Transition systems with variables

Definition: TSV M = (S,⌃,V , (Dv)v2V , T, I,AP, `)
I V: set of (typed) variables, e.g., boolean, [0..4], N, . . .
I Each variable v 2 V has a domain D

v

(finite or infinite). Let D =
Q

v2V D

v

.•
I Guard or Condition g with semantics [[g]] ✓ D (unary predicate)

Symbolic descriptions: x < 5, x+ y = 10, ...

I Instruction or Update f with semantics [[f]] : D ! D

Symbolic descriptions: x := 0, x := (y + 1)2, ...

I
T ✓ S ⇥ (Guard⇥ ⌃⇥ Update)⇥ S

Symbolic descriptions: s
x<50,?coin,x:=x+coin��������������! s

0

I
I ✓ S ⇥ Guard

Symbolic descriptions: (s
0

, x = 0)

Example: Vending machine
I co↵ee: 50 cents, orange juice: 1 euro, ...

I possible coins: 10, 20, 50 cents

I we may shu✏e coin insertions and drink selection

21/149

Transition systems with variables
Semantics: low level TS

I
S

0 = S ⇥D

I
I

0 = {(s, ⌫) | 9(s, g) 2 I with ⌫ |= g}
I Transitions: T 0 ✓ (S ⇥D)⇥ ⌃⇥ (S ⇥D)

s

g,a,f���! s

0 ^ ⌫ |= g

(s, ⌫)
a�! (s0, f(⌫))

SOS: Structural Operational Semantics

I AP0: we may use atomic propositions in AP or guards such as x > 0.

Programs = Kripke structures with variables
I Program counter = states

I Instructions = transitions

I Variables = variables

Example: GCD

22/149

TS with variables . . .

Example: Digicode

1
cpt = 0

2 3 4

OPEN

A B A

cpt < n
B,C
cpt++

cpt < n
A
cpt++

cpt < n
C
cpt++

cpt < n
B,C
cpt++

5

ERROR

cpt = n
B,C
cpt++

cpt = n
A,C
cpt++

cpt = n
B,C
cpt++

24/149

Only variables
The state is nothing but a special variable: s 2 V with domain D

s

= S.

Definition: TSV M = (V , (Dv)v2V , T, I,AP, `)
I

D =
Q

v2V D

v

,

I
I ✓ D, T ✓ D ⇥D

Symbolic representations with logic formulae
I

I given by a formula (⌫)

I
T given by a formula '(⌫, ⌫0)
⌫: values before the transition
⌫

0: values after the transition

I Often we use boolean variables only: D
v

= {0, 1}
I Concise descriptions of boolean formulae with Binary Decision Diagrams.

Example: Boolean circuit: modulo 8 counter

b

0
0

= ¬b
0

b

0
1

= b

0

� b

1

b

0
2

= (b
0

^ b

1

)� b

2

27/149

Modular description of concurrent systems

M = M

1

kM
2

k · · · kM
n

Semantics
I Various semantics for the parallel composition k
I Various communication mechanisms between components:

Shared variables, FIFO channels, Rendez-vous, ...

I Various restrictions

Atomic propositions are inherited from the local systems.

Example: Elevator with 1 cabin, 3 doors, 3 calling devices

I Cabin:

I Door for level i:

I Call for level i:

The actual system is a synchronized product of all these automata.
It consists of (at most) 3⇥ 23 ⇥ 23 = 192 states.

28/149

Synchronized products
Definition: General product

I Components: M
i

= (S
i

,⌃
i

, T

i

, I

i

,AP
i

, `

i

)

I Product: M = (S,⌃, T, I,AP, `) with

S =
Q

i

S

i

, ⌃ =
Q

i

(⌃
i

[{"}), and I =
Q

i

I

i

T = {(p
1

, . . . , p

n

)
(a1,...,an)������! (q

1

, . . . , q

n

) | for all i, (p
i

, a

i

, q

i

) 2 T

i

or
a

i

= " and p

i

= q

i

}
AP =

U
i

AP
i

and `(p
1

, . . . , p

n

) =
S

i

`(p
i

)

Synchronized products: restrictions of the general product.
Parallel compositions: 2 special cases

I Synchronous: ⌃
sync

=
Q

i
⌃

i

I Asynchronous: ⌃
async

=
U

i
⌃0

i

with ⌃0
i

= {"}i�1 ⇥ ⌃
i

⇥ {"}n�i

Restrictions

I on states: S
restrict

✓ S

I on labels: ⌃
restrict

✓ ⌃

I on transitions: T
restrict

✓ T

32/149

Shared variables

Definition: Asynchronous product + shared variables

s̄ = (s
1

, . . . , s

n

) denotes a tuple of states
⌫ 2 D =

Q
v2V D

v

is a valuation of variables.

Semantics (SOS) ⌫ |= g ^ s

i

g,a,f���! s

0
i

^ s

0
j

= s

j

for j 6= i

(s̄, ⌫)
a�! (s̄0, f(⌫))

Example: Mutual exclusion for 2 processes satisfying
I Safety: never simultaneously in critical section (CS).

I Liveness: if a process wants to enter its CS, it eventually does.

I Fairness: if process 1 wants to enter its CS, then process 2 will enter its CS at
most once before process 1 does.

using shared variables but without further restrictions: the atomicity is

I testing or reading or writing a single variable at a time

I no test-and-set: {x = 0;x := 1}

33/149

Peterson’s algorithm (1981)
Process i: // i is not a variable

loop forever

req[i] := true; turn := 1-i

wait until (turn = i or req[1-i] = false)

Critical section

req[i] := false

Exercise:
I Draw the concrete TS assuming the first two assignments are atomic.

I Is the algorithm still correct if we swape the first two assignments?

34/149

Atomicity

Example:
Intially x = 1 ^ y = 2
Program P

1

: x := x+ y k y := x+ y

Program P

2

:

0

@
LoadR

1

, x

AddR

1

, y

StoreR

1

, x

1

A k
0

@
LoadR

2

, x

AddR

2

, y

StoreR

2

, y

1

A

Assuming each instruction is atomic, what are the possible results of P
1

and P

2

?

35/149

Atomicity

Definition: Atomic statements: atomic(ES)

Elementary statements (no loops, no communications, no synchronizations)

ES ::= skip | await c | x := e | ES ; ES | ES 2 ES

| when c do ES | if c then ES else ES

Atomic statements: if the ES can be fully executed then it is executed in one step.

(s̄, ⌫) ES���!⇤ (s̄0, ⌫0)

(s̄, ⌫)
atomic(ES)�������! (s̄0, ⌫0)

Example: Atomic statements
I atomic(x = 0;x := 1) (Test and set)

I atomic(y := y � 1; await(y = 0); y := 1) is equivalent to await(y = 1)

36/149

Communication by Rendez-vous
Restriction on transitions is universal but too low-level.

Definition: Rendez-vous
I !m sending message m

I ?m receiving message m

I SOS: Structural Operational Semantics

Local actions
s

1

a1�!
1

s

0
1

(s
1

, s

2

)
a1�! (s0

1

, s

2

)

s

2

a2�!
1

s

0
2

(s
1

, s

2

)
a2�! (s

1

, s

0
2

)

Rendez-vous
s

1

!m��!
1

s

0
1

^ s

2

?m��!
2

s

0
2

(s
1

, s

2

)
m�! (s0

1

, s

0
2

)

s

1

?m��!
1

s

0
1

^ s

2

!m��!
2

s

0
2

(s
1

, s

2

)
m�! (s0

1

, s

0
2

)

I It is a restriction on actions.

I Essential feature of process algebra.

Example: Elevator with 1 cabin, 3 doors, 3 calling devices
I ?up is uncontrollable for the cabin

I ?leave
i

is uncontrollable for door i

I ?call
0

is uncontrollable for the system
38/149

Channels

Example: Leader election

We have n processes on a directed ring, each having a unique id 2 {1, . . . , n}.
send(id)

loop forever

receive(x)

if (x = id) then STOP fi

if (x > id) then send(x)

39/149

Channels

Definition: Channels
I Declaration:

c : channel [k] of bool size k

c : channel [1] of int unbounded
c : channel [0] of colors Rendez-vous

I Primitives:
empty(c)
c!e add the value of expression e to channel c
c?x read a value from c and assign it to variable x

I Domain: Let D
m

be the domain for a single message.

D

c

= D

k

m

size k

D

c

= D

⇤
m

unbounded
D

c

= {"} Rendez-vous
I Politics: FIFO, LIFO, BAG, . . .

40/149

Channels

Semantics: (lossy) FIFO

Send
s

i

c!e��! s

0
i

^ ⌫0(c) = ⌫(e) · ⌫(c)
(s̄, ⌫)

c!e��! (s̄0, ⌫0)

Receive
s

i

c?x��! s

0
i

^ ⌫(c) = ⌫

0(c) · ⌫0(x)
(s̄, ⌫)

c?e��! (s̄0, ⌫0)

Lossy send
s

i

c!e��! s

0
i

(s̄, ⌫)
c!e��! (s̄0, ⌫)

Implicit assumption: all variables that do not occur in the premise are not modified.

Exercises:
1. Implement a FIFO channel using rendez-vous with an intermediary process.

2. Give the semantics of a LIFO channel.

3. Model the alternating bit protocol (ABP) using a lossy FIFO channel.
Fairness assumption: For each channel, if infinitely many messages are sent,
then infinitely many messages are delivered.

41/149

High-level descriptions

Summary
I Sequential program = transition system with variables

I Concurrent program with shared variables

I Concurrent program with Rendez-vous

I Concurrent program with FIFO communication

I Petri net

I . . .

42/149

Models: expressivity versus decidability

Remark: (Un)decidability
I Automata with 2 integer variables = Turing powerful

Restriction to variables taking values in finite sets

I Asynchronous communication: unbounded fifo channels = Turing powerful
Restriction to bounded channels or lossy channels

Remark: Some infinite state models are decidable
I Petri nets. Several unbounded integer variables but no zero-test.

I Pushdown automata. Model for recursive procedure calls.

I Timed automata.

I . . .

43/149

Outline

Introduction

Models

3 Temporal Specifications

General Definitions

(Linear) Temporal Specifications

Branching Temporal Specifications

CTL⇤

CTL

Satisfiability and Model Checking

More on Temporal Specifications

45/149

Static and dynamic properties

Example: Static properties

Mutual exclusion

Safety properties are often static.

They can be reduced to reachability.

Example: Dynamic properties
Every elevator request should be eventually granted.

^

i

8t, (Call
i

(t) �! 9t0 � t, (atLevel
i

(t0) ^ openDoor
i

(t0)))

The elevator should not cross a level for which a call is pending without stopping.

^

i

8t8t0, (Call
i

(t) ^ t  t

0 ^ atLevel
i

(t0)) �!
9t  t

00  t

0
, (atLevel

i

(t00) ^ openDoor
i

(t00)))

46/149

Temporal Structures
Definition: Flows of time
A flow of time is a strict order (T, <) where T is the nonempty set of time points
and < is an irreflexive transitive relation on T.

Example: Flows of time
I ({0, . . . , n}, <): Finite runs of sequential systems.

I (N, <): Infinite runs of sequential systems.

I (R, <): runs of real-time sequential systems.

I Trees: Finite or infinite run-trees of sequential systems.

I Mazurkiewicz traces: runs of distributed systems (partial orders).

I and also (Z, <) or (Q, <) or (!2

, <), . . .

Definition: Temporal Structures

Let AP be a set of atoms (atomic propositions).

A temporal structure over a class C of time flows and AP is a triple (T, <, h) where
(T, <) is a time flow in C and h : AP ! 2T is an assignment.

If p 2 AP then h(p) ✓ T gives the time points where p holds.
47/149

Linear behaviors and specifications

Let M = (S, T, I,AP, `) be a Kripke structure.

Definition: Runs as temporal structures

An infinite run � = s

0

s

1

s

2

· · · of M with (s
i

, s

i+1

) 2 T for all i � 0 defines a linear
temporal structure `(�) = (N, <, h) where h(p) = {i 2 N | p 2 `(s

i

)}.
Such a temporal structure can be seen as an infinite word over ⌃ = 2AP:
`(�) = `(s

0

)`(s
1

)`(s
2

) · · · = (N, <,w) with w(i) = `(s
i

) 2 ⌃.

Linear specifications only depend on runs.

Example: The printer manager is fair.

On each run, whenever some process requests the printer, it eventually gets it.

Remark:
Two Kripke structures having the same linear temporal structures satisfy the same
linear specifications.

48/149

Branching behaviors and specifications

The system has an infinite active
run, but it may always reach an
inactive state.

Definition: Computation-tree or run-tree : unfolding of the TS

Let M = (S, T, I,AP, `) be a Kripke structure. Wlog. I = {s
0

} is a singleton.

Let D be a finite set with |D| the outdegree of the transition relation T .

The computation-tree of M is an unordered tree t : D⇤ ! S (partial map) s.t.

I
t(") = s

0

,

I For every node u 2 dom(t) labelled s = t(u), if T (s) = {s
1

, . . . , s

k

} then u

has exactly k children which are labelled s

1

,. . . ,s
k

Associated temporal structure `(t) = (dom(t), <, h) where

I
< is the strict prefix relation over D⇤,

I and h(p) = {u 2 dom(t) | p 2 `(t(u))}.
(Linear) runs of M are branches of the computation-tree t.

49/149

First-order Specifications
Definition: Syntax of FO(<)

Let P,Q, . . . be unary predicates twinned with atoms p, q, . . . in AP.
Let Var = {x, y, . . .} be first-order variables.

' ::= ? | P (x) | x = y | x < y | ¬' | ' _ ' | 9x'

Definition: Semantics of FO(<)

Let w = (T, <, h) be a temporal structure.
Precidates P,Q, . . . twinned with p, q, . . . are interpreded as h(p), h(q), . . .
Let ⌫ : Var ! T be an assignment of first-order variables to time points.

w, ⌫ |= P (x) if ⌫(x) 2 h(p)

w, ⌫ |= x = y if ⌫(x) = ⌫(y)

w, ⌫ |= x < y if ⌫(x) < ⌫(y)

w, ⌫ |= 9x' if w, ⌫[x 7! t] |= ' for some t 2 T

where ⌫[x 7! t] maps x to t and y 6= x to ⌫(y).

Previous specifications can be written in FO(<) (except the branching one).

50/149

First-order vs Temporal

First-order logic
I FO(<) has a good expressive power

. . . but FO(<)-formulae are not easy to write and to understand.

I FO(<) is decidable
. . . but satisfiability and model checking are non elementary.

Temporal logics
I no variables: time is implicit.

I quantifications and variables are replaced by modalities.

I Usual specifications are easy to write and read.

I Good complexity for satisfiability and model checking problems.

I Good expressive power.

Linear Temporal Logic (LTL) over (N, <) introduced by Pnueli (1977) as a conve-
nient specification language for verification of systems.

52/149

Temporal Specifications

Definition: Syntax of TL(AP, SU, SS)

' ::= ? | p (p 2 AP) | ¬' | ' _ ' | ' SU ' | ' SS '

Definition: Semantics: w = (T, <, h) temporal structure and i 2 T
w, i |= p if i 2 h(p)

w, i |= ¬' if w, i 6|= '

w, i |= ' _ if w, i |= ' or w, i |=

w, i |= ' SU if 9k i < k and w, k |= and 8j (i < j < k ! w, j |= ')

w, i |= ' SS if 9k i > k and w, k |= and 8j (i > j > k ! w, j |= ')

Previous specifications can be written in TL(AP, SU, SS)
(except the branching one).

53/149

Temporal Specifications

Definition: non-strict versions of until and since

' U
def

= _ (' ^ ' SU) ' S
def

= _ (' ^ ' SS)

w, i |= ' U if 9k i  k and w, k |= and 8j (i  j < k ! w, j |= ')

w, i |= ' S if 9k i � k and w, k |= and 8j (i � j > k ! w, j |= ')

Definition: Derived modalities

X'
def

= ? SU ' Next Y'
def

= ? SS ' Yesterday

w, i |= X' if 9k i < k and w, k |= ' and ¬9j (i < j < k)

w, i |= Y' if 9k i > k and w, k |= ' and ¬9j (i > j > k)

F'
def

= > U ' P'
def

= > S '
G'

def

= ¬F¬' H'
def

= ¬P¬'

'W

def

= (G') _ (' U) Weak Until

' R
def

= (G) _ (U (' ^)) Release

55/149

Temporal Specifications

Example: Specifications on the time flow (N, <)
I Safety: G good

I MutEx: ¬F(crit
1

^ crit
2

)

I Liveness: G F active

I Response: G(request ! F grant)

I Response’: G(request ! (¬request SU grant))

I Release: reset R alarm

I Strong fairness: (GF request) ! (GF grant)

I Weak fairness: (FG request) ! (GF grant)

56/149

Discrete linear time flows

Definition: discrete linear time flows (T, <)

A linear time flow is discrete if SF> ! X> and SP> ! Y> are valid formulae.

(N, <) and (Z, <) are discrete.

(Q, <) and (R, <) are not discrete.

Exercise: For discrete linear time flows (T, <)

' SU ⌘ X(' U)

' SS ⌘ Y(' S)

¬X' ⌘ ¬X> _ X¬'
¬Y' ⌘ ¬Y> _ Y¬'

¬(' U) ⌘ (G¬) _ (¬ U (¬' ^ ¬))
⌘ ¬ W (¬' ^ ¬)
⌘ ¬' R ¬

57/149

Model checking for linear behaviors

Definition: Model checking problem

Input: A Kripke structure M = (S, T, I,AP, `)
A formula ' 2 LTL(AP, SU, SS)

Question: Does M |= ' ?

I Universal MC: M |=8 ' if `(�), 0 |= ' for all initial infinite runs � of M .

I Existential MC: M |=9 ' if `(�), 0 |= ' for some initial infinite run � of M .

M |=8 ' i↵ M 6|=9 ¬'

Theorem [10, Sistla, Clarke 85], [9, Lichtenstein & Pnueli 85]

The Model checking problem for LTL is PSPACE-complete. Proof later

59/149

Weaknesses of linear behaviors

Example:

': Whenever p holds, it is possible to reach a state where q holds.

' cannot be checked on linear runs.

We need to consider the computation-trees.

Consider the two models:

M

1

: and M

2

:

M

1

|= ' but M

2

6|= '

M

1

and M

2

have the same linear runs.

60/149

Weaknesses of FO specifications

Example:

 : The system has an infinite active run, but it may always reach an inactive state.

 cannot be expressed in FO.

We need quantifications on runs: = EG(Active ^ EF¬Active)

I E: for some infinite run

I A: for all infinite runs

61/149

MSO Specifications

Definition: Syntax of MSO(<)

Let P,Q, . . . be unary predicates twinned with atoms p, q, . . . in AP.

' ::= ? | P (x) | x = y | x < y | x 2 X | ¬' | ' _ ' | 9x' | 9X '

where x, y are first-order variables and X is a second-order variable.

Definition: Semantics of MSO(<)

Let w = (T, <, h) be a temporal structure.
An assignment ⌫ maps first-order variables to time points in T
and second-order variables to sets of time points.

The semantics of first-order constructs is unchanged.

w, ⌫ |= x 2 X if ⌫(x) 2 ⌫(X)

w, ⌫ |= 9X ' if w, ⌫[X 7! T] |= ' for some T ✓ T

where ⌫[X 7! T] maps X to T and keeps unchanged the other assignments.

63/149

MSO vs Temporal

MSO logic
I MSO(<) has a good expressive power

. . . but MSO(<)-formulae are not easy to write and to understand.

I MSO(<) is decidable on computation trees
. . . but satisfiability and model checking are non elementary.

We need a temporal logic
I with no explicit variables,

I allowing quantifications over runs,

I usual specifications should be easy to write and read,

I with good complexity for satisfiability and model checking problems,

I with good expressive power.

Computation Tree Logic CTL⇤ introduced by Emerson & Halpern (1986).

65/149

CTL⇤ (Emerson & Halpern 86)
Definition: Syntax of the Computation Tree Logic CTL⇤

' ::= ? | p (p 2 AP) | ¬' | ' _ ' | ' SU ' | E' | A'
We may also add the past modality SS

Definition: Semantics of CTL⇤

Let M = (S, T, I,AP, `) be a Kripke structure.
Let � = s

0

s

1

s

2

· · · be an infinte run of M .

M,�, i |= p if p 2 `(s
i

)

M,�, i |= ' SU if 9k > i, M,�, k |= and 8i < j < k, M,�, j |= '

M,�, i |= E' if M,�

0
, i |= ' for some infinite run �0 such that �0[i] = �[i]

M,�, i |= A' if M,�

0
, i |= ' for all infinite runs �0 such that �0[i] = �[i]

where �[i] = s

0

· · · s
i

.

Remark:
I A' ⌘ ¬E¬'
I
�

0[i] = �[i] means that future is branching but past is not.
66/149

CTL⇤ (Emerson & Halpern 86)

Example: Some specifications
I EF': ' is possible

I AG': ' is an invariant

I AF': ' is unavoidable

I EG': ' holds globally along some path

67/149

State formulae and path formulae
Definition: State formulae
' 2 CTL⇤ is a state formula if 8M,�,�

0
, i, j such that �(i) = �

0(j) we have

M,�, i |= ' () M,�

0
, j |= '

If ' is a state formula and M = (S, T, I,AP, `), define

[[']]M = {s 2 S | M, s |= '}

Example: State formulae

Atomic propositions are state formulae: [[p]] = {s 2 S | p 2 `(s)}
State formulae are closed under boolean connectives.

[[¬']] = S \ [[']] [['
1

_ '
2

]] = [['
1

]] [[['
2

]]

Formulae of the form E' or A' are state formulae, provided ' is future.

Definition: Alternative syntax

State formulae ' ::= ? | p (p 2 AP) | ¬' | ' _ ' | E | A
Path formulae ::= ' | ¬ | _ | SU

68/149

Model checking of CTL⇤
Definition: Existential and universal model checking

Let M = (S, T, I,AP, `) be a Kripke structure and ' 2 CTL⇤ a formula.

M |=9 ' if M,�, 0 |= ' for some initial infinite run � of M .
M |=8 ' if M,�, 0 |= ' for all initial infinite runs � of M .

Remark:

M |=9 ' i↵ I \ [[E']] 6= ;
M |=8 ' i↵ I ✓ [[A']]

M |=8 ' i↵ M 6|=9 ¬'

Definition: Model checking problems MC8
CTL⇤ and MC9

CTL⇤

Input: A Kripke structure M = (S, T, I,AP, `) and a formula ' 2 CTL⇤

Question: Does M |=8 ' ? or Does M |=9 ' ?

Theorem:
The model checking problem for CTL⇤ is PSPACE-complete. Proof later

70/149

CTL (Clarke & Emerson 81)

Definition: Computation Tree Logic (CTL)

Syntax:

' ::= ? | p (p 2 AP) | ¬' | ' _ ' | EX' | AX' | E' U ' | A' U '

The semantics is inherited from CTL⇤.

Remark: All CTL formulae are state formulae

[[']]M = {s 2 S | M, s |= '}

Examples: Macros
I EF' = E> U ' and AG' = ¬EF¬'
I AF' = A> U ' and EG' = ¬AF¬'
I AG(req ! EF grant)

I AG(req ! AF grant)

71/149

CTL (Clarke & Emerson 81)

Definition: Semantics
All CTL-formulae are state formulae. Hence, we have a simpler semantics.
Let M = (S, T, I,AP, `) be a Kripke structure without deadlocks and let s 2 S.

s |= p if p 2 `(s)

s |= EX' if 9s ! s

0 with s

0 |= '

s |= AX' if 8s ! s

0 we have s

0 |= '

s |= E' U if 9s = s

0

! s

1

! s

2

! · · · s
k

finite path, with
s

k

|= and s

j

|= ' for all 0  j < k

s |= A' U if 8s = s

0

! s

1

! s

2

! · · · infinite path, 9k � 0 with
s

k

|= and s

j

|= ' for all 0  j < k

72/149

CTL (Clarke & Emerson 81)

Example:

1 2 3 4

5 6 7 8

q p, q q r

p, r p, r p, q

[[EX p]] =

{1, 2, 3, 5, 6}

[[AX p]] =

{3, 6}

[[EF p]] =

{1, 2, 3, 4, 5, 6, 7, 8}

[[AF p]] =

{2, 3, 5, 6, 7}

[[E q U r]] =

{1, 2, 3, 4, 5, 6}

[[A q U r]] =

{2, 3, 4, 5, 6}

73/149

CTL (Clarke & Emerson 81)

Remark: Equivalent formulae
I AX' = ¬EX¬',
I ¬(' U) = G¬ _ (¬ U (¬' ^ ¬))
I A' U = ¬EG¬ ^ ¬E(¬ U (¬' ^ ¬))
I AG(req ! F grant) = AG(req ! AF grant)

I AGF' = AGAF'

infinitely often

I EFG' = EFEG'

ultimately

I EGEF' 6= EGF'

I AFAG' 6= AFG'

I EGEX' 6= EGX'

74/149

Model checking of CTL
Definition: Existential and universal model checking

Let M = (S, T, I,AP, `) be a Kripke structure and ' 2 CTL a formula.

M |=9 ' if M, s |= ' for some s 2 I.
M |=8 ' if M, s |= ' for all s 2 I.

Remark:

M |=9 ' i↵ I \ [[']] 6= ;
M |=8 ' i↵ I ✓ [[']]

M |=8 ' i↵ M 6|=9 ¬'

Definition: Model checking problems MC8
CTL and MC9

CTL

Input: A Kripke structure M = (S, T, I,AP, `) and a formula ' 2 CTL

Question: Does M |=8 ' ? or Does M |=9 ' ?

Theorem:
Let M = (S, T, I,AP, `) be a Kripke structure and ' 2 CTL a formula.
The model checking problem M |=9 ' is decidable in time O(|M | · |'|)

75/149

References

[1] Christel Baier and Joost-Pieter Katoen.
Principles of Model Checking.
MIT Press, 2008.

[2] B. Bérard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci,
Ph. Schnoebelen.
Systems and Software Verification. Model-Checking Techniques and Tools.
Springer, 2001.

[3] E.M. Clarke, O. Grumberg, D.A. Peled.
Model Checking.
MIT Press, 1999.

[4] Z. Manna and A. Pnueli.
The Temporal Logic of Reactive and Concurrent Systems: Specification.
Springer, 1991.

[5] Z. Manna and A. Pnueli.
Temporal Verification of Reactive Systems: Safety.
Springer, 1995.

76/149

References
[6] S. Demri and P. Gastin.

Specification and Verification using Temporal Logics.
In Modern applications of automata theory, IISc Research Monographs 2.
World Scientific, 2012.
http://www.lsv.ens-cachan.fr/~gastin/mes-publis.php

[7] D. Gabbay, I. Hodkinson and M. Reynolds.
Temporal logic: mathematical foundations and computational aspects.
Vol 1, Clarendon Press, Oxford, 1994.

[8] D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi.
On the temporal analysis of fairness.
In 7th Annual ACM Symposium PoPL’80, 163–173. ACM Press.

[9] O. Lichtenstein and A. Pnueli.
Checking that finite state concurrent programs satisfy their linear specification.
In ACM Symposium PoPL’85, 97–107.

[10] A. Sistla and E. Clarke.
The complexity of propositional linear temporal logic.
Journal of the Association for Computing Machinery. 32 (3), 733–749, (1985).

77/149

Outline

Introduction

Models

Temporal Specifications

4 Satisfiability and Model Checking

CTL

Fair CTL

Büchi automata

From LTL to BA

LTL

CTL⇤

More on Temporal Specifications

79/149

Model checking of CTL

Theorem
Let M = (S, T, I,AP, `) be a Kripke structure and ' 2 CTL a formula.
The model checking problem M |=9 ' is decidable in time O(|M | · |'|)

Proof:

Compute [[']] = {s 2 S | M, s |= '} by induction on the formula.

The set [[']] is represented by a boolean array: L[s]['] = > if s 2 [[']].

The labelling ` is encoded in L: for p 2 AP we have L[s][p] = > if p 2 `(s).

For each t 2 S, the set T�1(t) is represented as a list.

for all t 2 S do for all s 2 T

�1(t) do ... od takes time O(|T |).

80/149

Model checking of CTL

Definition: procedure semantics(')

case ' = ¬'
1

semantics('
1

)
[[']] := S \ [['

1

]] O(|S|)
case ' = '

1

_ '
2

semantics('
1

); semantics('
2

)
[[']] := [['

1

]] [[['
2

]] O(|S|)
case ' = EX'

1

semantics('
1

)
[[']] := ; O(|S|)
for all t 2 [['

1

]] do for all s 2 T

�1(t) do [[']] := [[']] [{s} O(|T |)
case ' = AX'

1

semantics('
1

)
[[']] := S O(|S|)
for all t /2 [['

1

]] do for all s 2 T

�1(t) do [[']] := [[']] \ {s} O(|T |)

81/149

Model checking of CTL

Definition: procedure semantics(')

case ' = E'
1

U '
2

O(|S|+ |T |)
semantics('

1

); semantics('
2

)
L := [['

2

]] // the “todo” set L is imlemented with a list O(|S|)
Z := [['

2

]] // the “result” is computed in the array Z O(|S|)
while L 6= ; do |S| times
Invariant: [['

2

]] [L ✓ Z ✓ [[E'
1

U '
2

]] and
[['

1

]] \ T

�1(Z \ L) ✓ Z

take t 2 L; L := L \ {t} O(1)
for all s 2 T

�1(t) do |T | times
if s 2 [['

1

]] \ Z then L := L [{s}; Z := Z [{s} O(1)
od
[[']] := Z O(|S|)

Z is only used to make the invariant clear. It can be replaced by [[']].

82/149

Model checking of CTL
Definition: procedure semantics(')

case ' = A'
1

U '
2

O(|S|+ |T |)
semantics('

1

); semantics('
2

)
L := [['

2

]] // the “todo” set L is imlemented with a list O(|S|)
Z := [['

2

]] // the “result” is computed in the array Z O(|S|)
for all s 2 S do c[s] := |T (s)| O(|S|)
while L 6= ; do |S| times
Invariant: [['

2

]] [L ✓ Z ✓ [[A'
1

U '
2

]] and
8s 2 S, c[s] = |T (s) \ (Z \ L)| and
[['

1

]] \ {s 2 S | c[s] = 0} ✓ Z

take t 2 L; L := L \ {t} O(1)
for all s 2 T

�1(t) do |T | times
c[s] := c[s]� 1 O(1)
if c[s] = 0 ^ s 2 [['

1

]] \ Z then L := L [{s}; Z := Z [{s} O(1)
od
[[']] := Z O(|S|)

Z is only used to make the invariant clear. It can be replaced by [[']].

83/149

Complexity of CTL

Definition: SAT(CTL)

Input: A formula ' 2 CTL

Question: Existence of a model M and a state s such that M, s |= ' ?

Theorem: Complexity
I The model checking problem for CTL is PTIME-complete.

I The satisfiability problem for CTL is EXPTIME-complete.

85/149

fairness

Example: Fairness
Only fair runs are of interest

I Each process is enabled infinitely often:
^

i

GF run
i

I No process stays ultimately in the critical section:
^

i

¬FGCS
i

=
^

i

GF¬CS
i

Definition: Fair Kripke structure

M = (S, T, I,AP, `, F
1

, . . . , F

n

) with F

i

✓ S.

An infinite run � is fair if it visits infinitely often each F

i

86/149

fair CTL

Definition: Syntax of fair-CTL

' ::= ? | p (p 2 AP) | ¬' | ' _ ' | E
f

X' | A
f

X' | E
f

' U ' | A
f

' U '

Definition: Semantics as a fragment of CTL⇤

Let M = (S, T, I,AP, `, F
1

, . . . , F

n

) be a fair Kripke structure.

Then, E
f

' = E(fair ^ ') and A
f

' = A(fair ! ')

where fair =
V

i

GFF
i

Lemma: CTLf cannot be expressed in CTL

87/149

fair CTL

Proof: CTLf cannot be expressed in CTL

Consider the Kripke structure M

k

defined by:

2k 2k − 1 2k − 2 2k − 3 · · · 4 3 2 1

p p p p¬p ¬p ¬p ¬p

I
M

k

, 2k |= EGF p but M

k

, 2k � 2 6|= EGF p

I If ' 2 CTL and |'|  m  k then

M

k

, 2k |= ' i↵ M

k

, 2m |= '

M

k

, 2k � 1 |= ' i↵ M

k

, 2m� 1 |= '

If the fairness condition is `�1(p) then E
f

> cannot be expressed in CTL.

88/149

Model checking of CTLf

Theorem
The model checking problem for CTL

f

is decidable in time O(|M | · |'|)

Proof: Computation of Fair = {s 2 S | M, s |= Ef >}
Compute the SCC of M with Tarjan’s algorithm (in time O(|M |)).
Let S0 be the union of the (non trivial) SCCs which intersect each F

i

.

Then, Fair is the set of states that can reach S

0.

Note that reachability can be computed in linear time.

89/149

Model checking of CTLf

Proof: Reductions
E
f

X' = EX(Fair ^ ') and E
f

' U = E' U (Fair ^)
It remains to deal with A

f

' U .

We have A
f

' U = ¬E
f

G¬ ^ ¬E
f

(¬ U (¬' ^ ¬))
Hence, we only need to compute the semantics of E

f

G'.

Proof: Computation of Ef G'

Let M
'

be the restriction of M to [[']]
f

.

Compute the SCC of M
'

with Tarjan’s algorithm (in linear time).

Let S0 be the union of the (non trivial) SCCs of M
'

which intersect each F

i

.

Then, M, s |= E
f

G' i↵ M, s |= E' U S

0 i↵ M

'

, s |= EFS0.

This is again a reachability problem which can be solved in linear time.

91/149

Some References
[9] O. Lichtenstein and A. Pnueli.

Checking that finite state concurrent programs satisfy their linear specification.
In ACM Symposium PoPL’85, 97–107.

[15] P. Wolper.
The tableau method for temporal logic: An overview,
Logique et Analyse. 110–111, 119–136, (1985).

[10] A. Sistla and E. Clarke.
The complexity of propositional linear temporal logic.
Journal of the Association for Computing Machinery. 32 (3), 733–749, (1985).

[16] P. Gastin and D. Oddoux.
Fast LTL to Büchi automata translation.
In CAV’01, vol. 2102, Lecture Notes in Computer Science, pp. 53–65.
Springer, (2001).
http://www.lsv.ens-cachan.fr/~gastin/mes-publis.php

[6] S. Demri and P. Gastin.
Specification and Verification using Temporal Logics.
In Modern applications of automata theory, IISc Research Monographs 2.
World Scientific, 2012.
http://www.lsv.ens-cachan.fr/~gastin/mes-publis.php

92/149

Büchi automata

Definition:
A Büchi automaton (BA) is a tuple A = (Q,⌃, I, T, F) where

I
Q: finite set of states

I ⌃: finite set of labels

I
I ✓ Q: set of initial states

I
T ✓ Q⇥ ⌃⇥Q: set of transitions (non-deterministic)

I
F ✓ Q: set of accepting (repeated, final) states

Run: ⇢ = q

0

, a

0

, q

1

, a

1

, q

2

, a

2

, q

3

, . . . with (q
i

, a

i

, q

i+1

) 2 T for all i � 0.

⇢ is accepting if q
0

2 I and q

i

2 F for infinitely many i’s.

L(A) = {a
0

a

1

a

2

· · · 2 ⌃! | 9 ⇢ = q

0

, a

0

, q

1

, a

1

, q

2

, a

2

, q

3

, . . . accepting run}

A language L ✓ ⌃! is !-regular if it can be accepted by some Büchi automaton.

93/149

Büchi automata

Examples:

Infinitely many a’s:

Finitely many a’s:

No deterministic Büchi automaton for this language.

Whenever a then later b:

94/149

Büchi automata

Properties
Büchi automata are closed under union, intersection, complement.

I Union: trivial

I Intersection: easy (exercise)

I complement: di�cult

Let L = ⌃⇤(a⌃n�1

b [b⌃n�1

a)⌃!

0

Σ 1
a

2
Σ · · · nΣ

0′

b
Σ

1’
b

2’
Σ

· · · n′

Σ

a

Any non deterministic Büchi automaton for ⌃! \ L has at least 2n states.

95/149

Büchi automata
Theorem: Büchi
Let L ✓ ⌃! be a language. The following are equivalent:

I
L is !-regular

I
L is !-rational, i.e., L is a finite union of languages of the form L

1

· L!
2

where
L

1

, L

2

✓ ⌃+ are rational.

I
L is MSO-definable, i.e., there is a sentence ' 2 MSO

⌃

(<) such that
L = L(') = {w 2 ⌃! | w |= '}.

Exercises:
1. Construct a BA for L(') where ' is the FO

⌃

(<) sentence

(8x, (P
a

(x) ! 9y > x, P

a

(y))) ! (8x, (P
b

(x) ! 9y > x, P

c

(y)))

2. Given BA for L
1

✓ ⌃! and L

2

✓ ⌃!, construct BA for

next(L
1

) = ⌃ · L
1

until(L
1

, L

2

) = {uv 2 ⌃! | u 2 ⌃+ ^ v 2 L

2

^
u

00
v 2 L

1

for all u0
, u

00 2 ⌃+ with u = u

0
u

00}
96/149

Generalized Büchi automata

Definition: acceptance on states or on transitions

A = (Q,⌃, I, T, F
1

, . . . , F

n

) with F

i

✓ Q.
An infinite run � is successful if it visits infinitely often each F

i

.

A = (Q,⌃, I, T, T
1

, . . . , T

n

) with T

i

✓ T .
An infinite run � is successful if it uses infinitely many transitions from each T

i

.

Example: Infinitely many a’s and infinitely many b’s

0

Σ
a

Σb

Σ

0

Σ

ab

Theorem:
1. GBA and BA have the same expressive power.
2. Checking whether a BA or GBA has an accepting run is NLOGSPACE-complete.

98/149

Büchi automata with output
Definition: SBT: Synchronous (letter to letter) Büchi transducer

Let A and B be two alphabets.
A synchronous Büchi transducer from A to B is a tuple A = (Q,A, I, T, F, µ) where
(Q,A, I, T, F) is a Büchi automaton (input) and µ : T ! B is the output function.
It computes the relation

[[A]] = {(u, v) 2 A

! ⇥B

! | 9 ⇢ = q

0

, a

0

, q

1

, a

1

, q

2

, a

2

, q

3

, . . . accepting run

with u = a

0

a

1

a

2

· · ·
and v = µ(q

0

, a

0

, q

1

)µ(q
1

, a

1

, q

2

)µ(q
2

, a

2

, q

3

) · · · }

If (Q,A, I, T, F) is unambiguous then [[A]] : A! ! B

! is a (partial) function,
in which case we also write [[A]](u) = v for (u, v) 2 [[A]].

We will also use SGBT: synchronous transducers with generalized Büchi acceptance.

Example: Left shift with A = B = {a, b}

1 2a/a b/b
a/b

b/a

99/149

Composition of Büchi transducers
Definition: Composition
Let A, B, C be alphabets.
Let A = (Q,A, I, T, (F

i

)
i

, µ) be an SGBT from A to B.
Let A0 = (Q0

, B, I

0
, T

0
, (F 0

j

)
j

, µ

0) be an SGBT from B to C.
Then A · A0 = (Q⇥Q

0
, A, I ⇥ I

0
, T

00
, (F

i

⇥Q

0)
i

, (Q⇥ F

0
j

)
j

, µ

00) defined by:

⌧

00 = (p, p0)
a�! (q, q0) 2 T

00 and µ

00(⌧ 00) = c

i↵

⌧ = p

a�! q 2 T and ⌧ 0 = p

0 µ(⌧)���! q

0 2 T

0 and c = µ

0(⌧ 0)

is an SGBT from A to C.
When the transducers define functions, we also denote the composition by A0 �A.

Proposition: Composition

1. We have [[A · A0]] = [[A]] · [[A0]].

2. If (Q,A, I, T, (F
i

)
i

) and (Q0
, B, I

0
, T

0
, (F 0

j

)
j

) are unambiguous then
(Q⇥Q

0
, A, I ⇥ I

0
, T

00
, (F

i

⇥Q

0)
i

, (Q⇥ F

0
j

)
j

) is also unambiguous,
and, 8u 2 A

! we have [[A0 �A]](u) = [[A0]]([[A]](u)).

100/149

Product of Büchi transducers
Definition: Product
Let A, B, C be alphabets.
Let A = (Q,A, I, T, (F

i

)
i

, µ) be an SGBT from A to B.
Let A0 = (Q0

, A, I

0
, T

0
, (F 0

j

)
j

, µ

0) be an SGBT from A to C.
Then A⇥A0 = (Q⇥Q

0
, A, I ⇥ I

0
, T

00
, (F

i

⇥Q

0)
i

, (Q⇥ F

0
j

)
j

, µ

00) defined by:

⌧

00 = (p, p0)
a�! (q, q0) 2 T

00 and µ

00(⌧ 00) = (b, c)

i↵
⌧ = p

a�! q 2 T and b = µ(⌧) and ⌧ 0 = p

0 a�! q

0 2 T

0 and c = µ

0(⌧ 0)

is an SGBT from A to B ⇥ C.

Proposition: Product

We identify (B ⇥ C)! with B

! ⇥ C

!.

1. We have [[A⇥A0]] = {(u, v, v0) | (u, v) 2 [[A]] and (u, v0) 2 [[A0]]}.
2. If (Q,A, I, T, (F

i

)
i

) and (Q0
, A, I

0
, T

0
, (F 0

j

)
j

) are unambiguous then
(Q⇥Q

0
, A, I ⇥ I

0
, T

00
, (F

i

⇥Q

0)
i

, (Q⇥ F

0
j

)
j

) is also unambiguous,
and, 8u 2 A

! we have [[A⇥A0]](u) = ([[A]](u), [[A0]](u)).

102/149

Subalphabets of ⌃ = 2AP

Definition:
For a propositional formula ⇠ over AP, we let ⌃

⇠

= {a 2 ⌃ | a |= ⇠}.
For instance, for p, q 2 AP,

I ⌃
p

= {a 2 ⌃ | p 2 a} and ⌃¬p

= ⌃ \ ⌃
p

I ⌃
p^q

= ⌃
p

\ ⌃
q

and ⌃
p_q

= ⌃
p

[⌃
q

I ⌃
p^¬q

= ⌃
p

\ ⌃
q

. . .

Notation:

In automata, s
⌃⇠��! s

0 stands for the set of transitions {s}⇥ ⌃
⇠

⇥ {s0}.
To simplify the pictures, we use s

⇠�! s

0 instead of s
⌃⇠��! s

0.

Example: G(p ! F q)

1 2

¬p ∨ q ¬q

p ∧ ¬q

q

103/149

Semantics of LTL with sequential functions

Definition: Semantics of ' 2 LTL(AP, SU, SS)

Let ⌃ = 2AP and B = {0, 1}.
Define [[']] : ⌃! ! B! by [[']](u) = b

0

b

1

b

2

· · · with b

i

=

(
1 if u, i |= '

0 otherwise.

Example:

[[p SU q]](;{q}{p};{p}{p}{q};{p}{p, q};!) = 1001110110!

[[X p]](;{q}{p};{p}{p}{q};{p}{p, q};!) = 0101100110!

[[F p]](;{q}{p};{p}{p}{q};{p}{p, q};!) = 1111111110!

The aim is to compute [[']] with Büchi transducers.

104/149

Synchronous Büchi transducer for p SU q
Example: An SBT for [[p SU q]]

1 2

3

q/1 p ∧ ¬q/1

¬q/0

q/1

p ∧ ¬q/1

q/0
¬p ∧ ¬q/1

¬p ∧ ¬q/1

Lemma: The input BA is unambiguous (prophetic)

For all u = a

0

a

1

a

2

· · · 2 ⌃!,
there is a unique accepting run ⇢ = s

0

, a

0

, s

1

, a

1

, s

2

, a

2

, s

3

, . . . of A on u.

The run ⇢ satisfies for all i � 0, s
i

=

8
><

>:

1 if u, i |= q

2 if u, i |= ¬q ^ (p U q)

3 if u, i |= ¬(p U q)

Hence, the SBT computes [[p SU q]].

105/149

Special cases of Until: Future and Next

Example: F q = > SU q and X q = ? SU q

1 2

3

q/1 ¬q/1

¬q/0

q/1

¬q/1

q/0

1

3

q/1

¬q/0

q/0¬q/1

Exercise: Give SBT’s for the following formulae:

p U q, F q, G q, G q, p R q, p R q, p SS q, p S q, G(p ! F q).

106/149

From LTL to Büchi automata

Definition: SBT for LTL modalities

I A> from ⌃ to B = {0, 1}: 0 Σ/1

I A
p

from ⌃ to B = {0, 1}: 0
p / 1

¬p / 0

I A¬ from B to B: 0
0 / 1
1 / 0

I A_ from B2 to B: 0

0, 0 / 0
1, 0 / 1
0, 1 / 1
1, 1 / 1

I A^ from B2 to B: 0

0, 0 / 0
1, 0 / 0
0, 1 / 0
1, 1 / 1

107/149

From LTL to Büchi automata

Definition: SBT for LTL modalities (cont.)

I A
SU

from B2 to B:
Unambiguous
Prophetic

1 2

3

0, 1 / 1
1, 1 / 1

1, 0/1

0, 0 / 0
1, 0 / 0

0, 1 / 1
1, 1 / 1

1, 0/1

0, 1 / 0
1, 1 / 0

0, 0/1
0, 0/1

I A
SS

from B2 to B:
Deterministic

0 1
0, 0 / 0
1, 0 / 0

0, 1 / 0
1, 1 / 0 1, 0 / 1

0, 1 / 1
1, 1 / 10, 0/1

108/149

From LTL to Büchi automata
Definition: Translation from LTL to SGBT
For each ⇠ 2 LTL(AP, SU, SS) we define inductively an SGBT A

⇠

as follows:

I A> and A
p

for p 2 AP are already defined

I A¬' = A¬ �A
'

I A
'_ = A_ � (A

'

⇥A

)

I A
'SS

= A
SS

� (A
'

⇥A

)

I A
'SU

= A
SU

� (A
'

⇥A

)

Theorem: Correctness of the translation

For each ⇠ 2 LTL(AP, SU, SS), we have [[A
⇠

]] = [[⇠]] and A
⇠

is unambiguous.

Moreover, the number of states of A
⇠

is at most 2|⇠|SS · 3|⇠|SU
the number of acceptance conditions is |⇠|

SS

where |⇠|
SS

(resp. |⇠|
SU

) is the number of SS (resp. SU) occurring in ⇠.

Remark:
I If a subformula ' occurs serveral time in ⇠, we only need one copy of A

'

.

I We may also use automata for other modalities: A
X

, A
U

, . . .

109/149

Useful simplifications

Reducing the number of temporal subformulae

(X') ^ (X) ⌘ X(' ^) (X') SU (X) ⌘ X(' SU)

(G') ^ (G) ⌘ G(' ^) GF' _ GF ⌘ GF(' _)
('

1

SU) ^ ('
2

SU) ⌘ ('
1

^ '
2

) SU (' SU
1

) _ (' SU
2

) ⌘ ' SU (
1

_
2

)

Merging equivalent states

Let A = (Q,⌃, I, T, T
1

, . . . , T

n

) be a GBA and s

1

, s

2

2 Q.
We can merge s

1

and s

2

if they have the same outgoing transitions:
8a 2 ⌃, 8s 2 Q,

(s
1

, a, s) 2 T () (s
2

, a, s) 2 T

and (s
1

, a, s) 2 T

i

() (s
2

, a, s) 2 T

i

for all 1  i  n.

110/149

Other constructions

I Tableau construction. See for instance [15, Wolper 85]
+ : Easy definition, easy proof of correctness
+ : Works both for future and past modalities
– : Ine�cient without strong optimizations

I Using Very Weak Alternating Automata [16, Gastin & Oddoux 01].
+ : Very e�cient
– : Only for future modalities

Online tool: http://www.lsv.ens-cachan.fr/
~

gastin/ltl2ba/

I Using reduction rules [6, Demri & Gastin 10].
+ : E�cient and produces small automata
+ : Can be used by hand on real examples
– : Only for future modalities

I The domain is still very active.

112/149

Satisfiability for LTL over (N, <)
Let AP be the set of atomic propositions and ⌃ = 2AP.

Definition: Satisfiability problem

Input: A formula ' 2 LTL(AP, SU, SS)

Question: Existence of w 2 ⌃! and i 2 N such that w, i |= '.

Definition: Initial Satisfiability problem

Input: A formula ' 2 LTL(AP, SU, SS)

Question: Existence of w 2 ⌃! such that w, 0 |= '.

Remark: ' is satisfiable i↵ F' is initially satisfiable.

Definition: (Initial) validity

' is valid i↵ ¬' is not satisfiable.

Theorem [10, Sistla, Clarke 85], [9, Lichtenstein & Pnueli 85]

The satisfiability problem for LTL is PSPACE-complete.

113/149

Model checking for LTL

Definition: Model checking problem

Input: A Kripke structure M = (S, T, I,AP, `)
A formula ' 2 LTL(AP, SU, SS)

Question: Does M |= ' ?

I Universal MC: M |=8 ' if `(�), 0 |= ' for all initial infinite run of M .

I Existential MC: M |=9 ' if `(�), 0 |= ' for some initial infinite run of M .

M |=8 ' i↵ M 6|=9 ¬'

Theorem [10, Sistla, Clarke 85], [9, Lichtenstein & Pnueli 85]

The Model checking problem for LTL is PSPACE-complete

115/149

MC9(SU) P SAT(SU)
[10, Sistla & Clarke 85]

Let M = (S, T, I,AP, `) be a Kripke structure and ' 2 LTL(AP, SU)

Introduce new atomic propositions: AP
S

= {at
s

| s 2 S}
Define AP0 = AP]AP

S

⌃0 = 2AP

0
⇡ : ⌃0! ! ⌃! by ⇡(a) = a \AP.

Let w 2 ⌃0!. We have w |= ' i↵ ⇡(w) |= '

Define
M

2 LTL(AP0
,X,F) of size O(|M |2) by

M

=

_

s2I

at
s

!
^ G

0

@
_

s2S

0

@at
s

^
^

t 6=s

¬at
t

^
^

p2`(s)

p ^
^

p/2`(s)

¬p ^
_

t2T (s)

X at
t

1

A

1

A

Let w = a

0

a

1

a

2

· · · 2 ⌃0!. Then, w |=

M

i↵ there exists an initial infinite run �
of M such that ⇡(w) = `(�) and a

i

\AP
S

= {at
si} for all i � 0.

Therefore, M |=9 ' i↵

M

^ ' is initially satisfiable
M |=8 ' i↵

M

^ ¬' is not initially satisfiable

Remark: we also have MC9(X,F) 
P

SAT(X,F).

116/149

QBF Quantified Boolean Formulae

Definition: QBF

Input: A formula � = Q

1

x

1

· · ·Q
n

x

n

�

0 with �0 =
^

1im

_

1jki

a

ij

Q

i

2 {8, 9} and a

ij

2 {x
1

,¬x
1

, . . . , x

n

,¬x
n

}.
Question: Is � valid?

Definition:
An assignment of the variables {x

1

, . . . , x

n

} is a word v = v

1

· · · v
n

2 {0, 1}n.
We write v[i] for the prefix of length i.
Let V ✓ {0, 1}n be a set of assignments.

I
V is valid (for �0) if v |= �

0 for all v 2 V ,

I
V is closed (for �) if 8v 2 V , 81  i  n s.t. Q

i

= 8,
9v0 2 V s.t. v[i� 1] = v

0[i� 1] and v

0
i

= 1� v

i

.

Proposition:

� is valid i↵ 9V ✓ {0, 1}n s.t. V is nonempty valid and closed

117/149

QBF P MC9(U) [10, Sistla & Clarke 85]
Let � = Q

1

x

1

· · ·Q
n

x

n

^

1im

_

1jki

a

ij

with Q

i

2 {8, 9} and a

ij

literals.

Consider the KS M :

e0 s1

xt
1

xf
1

e1 s2

xt
2

xf
2

e2 · · · sn

xt
n

xf
n

en

f0

a11

a12
...

a1k1

f1

a21

a22
...

a2k2

f2 · · · fm−1

am1

am2

...

amkm

fm

Let
ij

=

(
G(xf

k

! s

k

R ¬a
ij

) if a
ij

= x

k

G(xt

k

! s

k

R ¬a
ij

) if a
ij

= ¬x
k

and =
^

i,j

ij

.

Let '
i

= G(e
i�1

! (¬s
i�1

U x

t

i

) ^ (¬s
i�1

U x

f

i

)) and ' =
^

i|Qi=8

'

i

.

Then, � is valid i↵ M |=9 ^ '.
120/149

Complexity of LTL

Theorem: Complexity of LTL
The following problems are PSPACE-complete:

I SAT(LTL(SU, SS)), MC8(LTL(SU, SS)), MC9(LTL(SU, SS))

I SAT(LTL(X,F)), MC8(LTL(X,F)), MC9(LTL(X,F))

I SAT(LTL(U)), MC8(LTL(U)), MC9(LTL(U))

I The restriction of the above problems to a unique propositional variable

The following problems are NP-complete:

I SAT(LTL(F)), MC9(LTL(F))

122/149

Complexity of CTL⇤

Definition: Syntax of the Computation Tree Logic CTL⇤

' ::= ? | p (p 2 AP) | ¬' | ' _ ' | X' | ' U ' | E' | A'

Theorem
The model checking problem for CTL⇤ is PSPACE-complete

Proof:
PSPACE-hardness: follows from LTL ✓ CTL⇤.

PSPACE-easiness: reduction to LTL-model checking by inductive eliminations of
path quantifications.

123/149

MC9
CTL⇤ in PSPACE

Proof:

For 2 LTL, let MC9
LTL

(M, t,) be the function which computes in polynomial
space whether M, t |=9 , i.e., if M, t |= E .

Let M = (S, T, I,AP, `) be a Kripke structure, s 2 S and ' 2 CTL⇤.
Replacing A by ¬E¬ we assume ' only contains the existential path quantifier.

MC9
CTL

⇤(M, s,')

If E does not occur in ' then return MC9
LTL

(M, s,') fi

Let E be a subformula of ' with 2 LTL

Let e

be a new atomic proposition

Define `0 : S ! 2AP

0
with AP0 = AP] {e

} by

`

0(t) \AP = `(t) and e

2 `

0(t) i↵ MC9
LTL

(M, t,) (i↵ M, t |= E)

Let M 0 = (S, T, I,AP0
, `

0)

Let '0 = '[e

/E] be obtained from ' by replacing each E by e

Return MC9
CTL

⇤(M 0
, s,'

0)

124/149

Satisfiability for CTL⇤

Definition: SAT(CTL⇤)

Input: A formula ' 2 CTL⇤

Question: Existence of a model M and a run � such that M,�, 0 |= ' ?

Theorem
The satisfiability problem for CTL⇤ is 2-EXPTIME-complete

125/149

Outline

Introduction

Models

Temporal Specifications

Satisfiability and Model Checking

5 More on Temporal Specifications

Expressivity

Ehrenfeucht-Fräıssé games

Separation

127/149

Expressivity

Definition: Equivalence
Let C be a class of time flows.

Two formulae ', 2 TL(AP, SU, SS) are equivalent over C if
for all temporal structures w = (T, <, h) over C and all time points t 2 T we have

w, t |= ' i↵ w, t |=

Two formulae ' 2 TL(AP, SU, SS) and (x) 2 FO
AP

(<) are equivalent over C if
for all temporal structures w = (T, <, h) over C and all time points t 2 T we have

w, t |= ' i↵ w, x 7! t |=

We also write w |= (t).

Remark: TL(AP, SU, SS) ✓ FO3
AP(<) ✓ FOAP(<)

8' 2 TL(AP, SU, SS), 9 (x) 2 FO3

AP

(<) such that ' and (x) are equivalent.

128/149

Expressivity
Definition: complete linear time flows

A time flow (T, <) is linear if < is a total strict order.

A linear time flow (T, <) is complete if every nonempty and bounded subset of T
has a least upper bound and a greatest lower bound.

(N, <), (Z, <) and (R, <) are complete.

(Q, <) and (R \ {0}, <) are not complete.

Theorem: Expressive completeness [11, Kamp 68]

For complete linear time flows, TL(AP, SU, SS) = FO
AP

(<)

Elegant algebraic proof of TL(AP, SU) = FO
AP

(<) over (N, <) due to Wilke 98.

See also Diekert-Gastin [17]: TL = FO = SF = AP = CFBA = VWAA.

Example:

 (x) = ¬P
a

(x) ^ ¬P
b

(x) ^ 8y8z (P
a

(y) ^ P

b

(z) ^ y < z) !

9v y < v < z ^
0

@
P

c

(v) ^ x < y

_ P

d

(v) ^ z < x

_ P

e

(v) ^ y < x < z

1

A

129/149

Stavi connectives: Time flows with gaps
Definition: Stavi Until: U

Let w = (T, <, h) be a temporal structure and i 2 T. Then, w, i |= ' U if

9k i < k

^ 9j (i < j < k ^ w, j |= ¬')
^ 9j (i < j < k ^ 8` (i < ` < j ! w, ` |= '))

^ 8j

i < j < k !

 9k0 [j < k

0 ^ 8j0 (i < j

0
< k

0 ! w, j

0 |= ')]
_ [8` (j < ` < k ! w, ` |=) ^ 9` (i < ` < j ^ w, ` |= ¬')]

��

Similar definition for the Stavi Since S.

Example:

Let w = (R \ {0}, <, h) with h(p) = R� and h(q) = R
+

.

Then, w,�1 6|= p SU q but w,�1 |= p U q.

Theorem: [13, Gabbay, Hodkinson, Reynolds]

TL(AP, SU, SS, S,U) is expressively complete for FO
AP

(<) over the class of all
linear time flows.

130/149

Stavi connectives: Time flows with gaps

Exercise: Isolated gaps

Let '
p

= p SU p ^ SF¬p ^ ¬(p SU ¬p) ^ ¬(p SU ¬(p SU>)).

Let w = (T, <, h) with T ✓ R and t 2 T.

Show that if w, t |= '

p

then T has a gap.

Let
p,q

= '

p

^ (q _ '
p

) SU (q ^ ¬p).
Show that

p,q

is equivalent to p U q over the time flow (R \ {0}, <).

Show that TL(AP, SU, SS) is FO
AP

(<)-complete over the time flow (R \ Z, <).

132/149

Temporal depth

Definition: Temporal depth of ' 2 TL(AP, SU, SS)

td(p) = 0 if p 2 AP

td(¬') = td(')

td(' _) = max(td('), td())

td(' SS) = max(td('), td()) + 1

td(' SU) = max(td('), td()) + 1

Lemma:
Let B ✓ AP be finite and k 2 N.
There are (up to equivalence) finitely many formulae in TL(B, SU, SS) of temporal
depth at most k.

133/149

k-equivalence

Definition:
Let w

0

= (T
0

, <, h

0

) and w

1

= (T
1

, <, h

1

) be two temporal structures.
Let i

0

2 T
0

and i

1

2 T
1

. Let k 2 N.

We say that (w
0

, i

0

) and (w
1

, i

1

) are k-equivalent, denoted (w
0

, i

0

) ⌘
k

(w
1

, i

1

), if
they satisfy the same formulae in TL(AP, SU, SS) of temporal depth at most k.

Lemma: ⌘k is an equivalence relation of finite index.

Example:

Let a = {p} and b = {q}. Let w
0

= babaababaa and w

1

= baababaaba.

(w
0

, 3) ⌘
0

(w
1

, 4)

(w
0

, 3) ⌘
1

(w
1

, 4) ?

(w
0

, 3) ⌘
1

(w
1

, 6) ?

Here, T
0

= T
1

= {0, 1, 2, . . . , 9}.

134/149

EF-games for TL(AP, SU, SS)
The EF-game has two players: Spoiler (Player I) and Duplicator (Player II).

The game board consists of 2 temporal structures:
w

0

= (T
0

, <, h

0

) and w

1

= (T
1

, <, h

1

).

There are two tokens, one on each structure: i
0

2 T
0

and i

1

2 T
1

.

A configuration is a tuple (w
0

, i

0

, w

1

, i

1

)
or simply (i

0

, i

1

) if the game board is understood.

Let k 2 N.
The k-round EF-game from a configuration proceeds with (at most) k moves.

There are 2 available moves for TL(AP, SU, SS): SU-move or SS-move (see
below).

Spoiler chooses which move is played in each round.

Spoiler wins if

I Either duplicator cannot answer during a move (see below).

I Or a configuration such that (w
0

, i

0

) 6⌘
0

(w
1

, i

1

) is reached.

Otherwise, duplicator wins.

135/149

Strict Until and Since moves

Definition: SU-move
I Spoiler chooses " 2 {0, 1} and k

"

2 T
"

such that i
"

< k

"

.

I Duplicator chooses k
1�" 2 T

1�" such that i
1�" < k

1�".
Spoiler wins if there is no such k

1�".
Either spoiler chooses (k

0

, k

1

) as next configuration of the EF-game,
or the move continues as follows

I Spoiler chooses j
1�" 2 T

1�" with i

1�" < j

1�" < k

1�".

I Duplicator chooses j
"

2 T
"

with i

"

< j

"

< k

"

.
Spoiler wins if there is no such j

"

.
The next configuration is (j

0

, j

1

).

Similar definition for the SS-move.

136/149

Winning strategy

Definition: Winning strategy

Duplicator has a winning strategy in the k-round EF-game starting from
(w

0

, i

0

, w

1

, i

1

) if he can win all plays starting from this configuration.
This is denoted by (w

0

, i

0

) ⇠
k

(w
1

, i

1

).

Spoiler has a winning strategy in the k-round EF-game starting from (w
0

, i

0

, w

1

, i

1

)
if she can win all plays starting from this configuration.

Example:

Let a = {p}, b = {q}, c = {r}. Let w
0

= aaaabbc and w

1

= aaababc.

(w
0

, 0) ⇠
1

(w
1

, 0)

(w
0

, 0) 6⇠
2

(w
1

, 0)

Here, T
0

= T
1

= {0, 1, 2, . . . , 5}.

137/149

EF-games for TL(AP, SU, SS)
Lemma: Determinacy

The k-round EF-game for TL(AP, SU, SS) is determined:
For each initial configuration, either spoiler or duplicator has a winning strategy.

Theorem: Soundness and completeness of EF-games

For all k 2 N and all configurations (w
0

, i

0

, w

1

, i

1

), we have

(w
0

, i

0

) ⇠
k

(w
1

, i

1

) i↵ (w
0

, i

0

) ⌘
k

(w
1

, i

1

)

Example:

Let a = {p}, b = {q}, c = {r}.
Then, aaaabbc, 0 |= p SU (q SU r) but aaababc, 0 6|= p SU (q SU r).

p SU (q SU r) cannot be expressed with a formula of temporal depth at most 1.

p SU (q ^ X q) cannot be expressed with a formula of temporal depth at most 1.

Exercise:
On finite linear time flows, “even length” cannot be expressed in TL(AP, SU, SS).

138/149

Moves for Strict Future and Past modalities

Definition: SF-move
I Spoiler chooses " 2 {0, 1} and j

"

2 T
"

such that i
"

< j

"

.

I Duplicator chooses j
1�" 2 T

1�" such that i
1�" < j

1�".
Spoiler wins if there is no such j

1�".
The new configuration is (j

0

, j

1

).

Similar definition for the SP-move.

Example:

p SU q is not expressible in TL(AP, SP, SF) over linear flows of time.

Let a = ;, b = {p} and c = {q}.
Let w

0

= (abc)na(abc)n and w

1

= (abc)n(abc)n.

If n > k then, starting from (w
0

, 3n,w
1

, 3n), duplicator has a winning strategy in
the k-round EF-game using SF-moves and SP-moves.

139/149

Moves for Next and Yesterday modalities

Notation: il j

def

= i < j ^ ¬9k (i < k < j).

Definition: X-move
I Spoiler chooses " 2 {0, 1} and j

"

2 T
"

such that i
"

l j

"

.

I Duplicator chooses j
1�" 2 T

1�" such that i
1�" l j

1�".
Spoiler wins if there is no such j

1�".
The new configuration is (j

0

, j

1

).

Similar definition for the Y-move.

Exercise:
Show that p SU q is not expressible in TL(AP,Y, SP,X, SF) over linear time flows.

140/149

Non-strict Until and Since moves
Definition: U-move

I Spoiler chooses " 2 {0, 1} and k

"

2 T
"

such that i
"

 k

"

.

I Duplicator chooses k
1�" 2 T

1�" such that i
1�"  k

1�".
Either spoiler chooses (k

0

, k

1

) as new configuration of the EF-game,
or the move continues as follows

I Spoiler chooses j
1�" 2 T

1�" with i

1�"  j

1�" < k

1�".

I Duplicator chooses j
"

2 T
"

with i

"

 j

"

< k

"

.
Spoiler wins if there is no such j

"

.
The new configuration is (j

0

, j

1

).

I If duplicator chooses k
1�" = i

1�" then the new configuration must be (k
0

, k

1

).

I If spoiler chooses k
"

= i

"

then duplicator must choose k

1�" = i

1�",
otherwise he loses.

Similar definition for the S-move.

Exercise:
1. Show that SU is not expressible in TL(AP, S,U) over (R, <).
2. Show that SU is not expressible in TL(AP, S,U) over (N, <).

142/149

Semantic Separation
Definition:
Let w = (T, <, h) and w

0 = (T, <, h

0) be temporal structures over the same time
flow, and let t 2 T be a time point.

I
w,w

0 agree on t if `(t) = `

0(t)

I
w,w

0 agree on the past of t if `(s) = `

0(s) for all s < t

I
w,w

0 agree on the future of t if `(s) = `

0(s) for all s > t

Recall: h : AP ! 2T and we let `(t) = {p 2 AP | t 2 h(p)}.

Definition: Pure formulae and separation
Let C be a class of time flows. A formula ' over some logic L is pure past
(resp. pure present, pure future) over C if

w, t |= ' i↵ w

0
, t |= '

for all temporal structures w = (T, <, h) and w

0 = (T, <, h

0) over C
and all time points t 2 T such that

w,w

0 agree on the past of t (resp. on t, on the future of t).

A logic L is separable over a class C of time flows if each formula ' 2 L is equivalent
to some (finite) boolean combination of pure formulae.

143/149

Syntactic Separation
Definition: Syntactically pure formulae and separation

A formula ' 2 TL(AP, SU, SS) is

I syntactically pure present if it is a boolean combinations of formulae in AP,

I syntactically pure future if it is a boolean combinations of formulae of the
form ↵ SU � where ↵,� 2 TL(AP, SU),

I syntactically pure past if it is a boolean combinations of formulae of the form
↵ SS � where ↵,� 2 TL(AP, SS).

I syntactically separated if it is a boolean combinations of syntactically pure
formulae.

Example:

The formulae '
1

= SF(q ^ SP p) and '
2

= SF(q ^ ¬ SP¬p) are not separated but
there are equivalent syntactically separated formulae.

Remark: Syntax versus semantic

Every formula ' 2 TL(AP, SU, SS) which is syntactically pure present (resp. future,
past) is also semantically pure present (resp. future, past).

144/149

Separation

Theorem: [8, Gabbay, Pnueli, Shelah & Stavi 80]

TL(AP, SU, SS) is syntactically separable over discrete and complete linear orders.

Definition: Discrete linear order
A linear time flow (T, <) is discrete if every non-maximal element has an immediate
successor and every non-minimal element has an immediate predecessor.

I (N, <) is the unique (up to isomorphism) discrete and complete linear order
with a first point and no last point.

I (Z, <) is the unique (up to isomorphism) discrete and complete linear order
with no first point and no last point.

I Any discrete and complete linear order is isomorphic to a sub-flow of (Z, <).

Theorem: Gabbay, Reynolds, see [7]

TL(AP, SU, SS) is syntactically separable over (R, <).

145/149

Initial equivalence

Definition: Initial Equivalence

Let C be a class of time flows having a least element (denoted 0).
Two formulae ', 2 TL(AP, SU, SS) are initially equivalent over C if
for all temporal structures w = (T, <, h) over C we have

w, 0 |= ' i↵ w, 0 |=

Two formulae ' 2 TL(AP, SU, SS) and (x) 2 FO
AP

(<) are initially equivalent
over C if for all temporal structures w = (T, <, h) over C we have

w, 0 |= ' i↵ w |= (0)

Corollary: of the separation theorem

For each ' 2 TL(AP, SU, SS) there exists 2 TL(AP, SU) such that ' and are
initially equivalent over (N, <).

146/149

Initial equivalence

Example: TL(AP, SU, SS) versus TL(AP, SU)

G(grant ! (¬grant SS request))

is initially equivalent to

(request R ¬grant) ^ G(grant ! (request _ (request SR ¬grant)))

Theorem: (Laroussinie & Markey & Schnoebelen 2002)

TL(AP, SU, SS) may be exponentially more succinct than TL(AP, SU) over (N, <).

147/149

Separation and Expressivity

Theorem: [12, Gabbay 89] (already stated by Gabbay in 81)

Let C be a class of linear time flows.

Let L be a temporal logic able to express SF and SP.

Then, L is separable over C i↵ it is expressively complete for FO
AP

(<) over C.

Exercise: Checking semantically pure
Is the following problem decidable? If yes, what is his complexity?

Input: A formula ' 2 TL(AP, SU, SS)

Question: Is the formula ' semantically pure future?

148/149

Some References
[11] J. Kamp.

Tense Logic and the Theory of Linear Order.
PhD thesis, UCLA, USA, (1968).

[8] D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi.
On the temporal analysis of fairness.
In 7th Annual ACM Symposium PoPL’80, 163–173. ACM Press.

[12] D. Gabbay.
The declarative past and imperative future: Executable temporal logics for
interactive systems.
In Temporal Logics in Specifications, April 87. LNCS 398, 409–448, 1989.

[13] D. Gabbay, I. Hodkinson and M. Reynolds.
Temporal expressive completeness in the presence of gaps.
In Logic Colloquium ’90, Springer Lecture Notes in Logic 2, pp. 89-121, 1993.

[14] I. Hodkinson and M. Reynolds.
Separation — Past, Present and Future.
In “We Will Show Them: Essays in Honour of Dov Gabbay”.
Vol 2, pages 117–142, College Publications, 2005.
Great survey on separation properties.

149/149

Some References

[7] D. Gabbay, I. Hodkinson and M. Reynolds.
Temporal logic: mathematical foundations and computational aspects.
Vol 1, Clarendon Press, Oxford, 1994.

[17] V. Diekert and P. Gastin.
First-order definable languages.
In Logic and Automata: History and Perspectives, vol. 2, Texts in Logic and
Games, pp. 261–306. Amsterdam University Press, (2008).
Overview of formalisms expressively equivalent to First-Order for words.
http://www.lsv.ens-cachan.fr/~gastin/mes-publis.php

[18] H. Straubing.
Finite automata, formal logic, and circuit complexity.
In Progress in Theoretical Computer Science, Birkhäuser, (1994).

[19] K. Etessami and Th. Wilke.
An until hierarchy and other applications of an Ehrenfeucht-Fräıssé game for
temporal logic.
In Information and Computation, vol. 106, pp. 88–108, (2000).

