© Branching Time Specifications
CTL*
CTL
Fair CTL

Outline

Possibility is not expressible in LTL

Example:

: Whenever p holds, it is possible to reach a state where ¢ holds.
 cannot be expressed in LTL.

We need quantifications on runs: ¢ = AG(p — EF q)
E: for some infinite run

A: for all infinite runs

© Branching Time Specifications
e CTL”
CTL
Fair CTL

QOutline

CTL* (Emerson & Halpern 86)
Definition: Syntax of the Computation Tree Logic CTL"

pu=L|p(PeAP)[~w|oVe|[Xe|pUp|Ep|Ap

In this chapter, temporal modalities U, F, G, ...are non-strict.
We may also add past modalities Y and S

Definition: Semantics of CTL*

Let M = (S,T,1,AP,?¢) be a Kripke structure.
Let 0 = s¢s1S2 - -+ be an infinte run of M.

M,o,il=Ep if M,o’,i = ¢ for some infinite run ¢’ such that o'[{] = o[i]
M,o,il=Ap if M,o’,i= ¢ for all infinite runs o’ such that ¢'[i] = o[i]

where o[i] = s - - s;.

Remark:
Ap=-E-p

o'[i] = o[i] means that future is branching but past is not.

CTL* (Emerson & Halpern 86) State formulae and path formulae

Definition: State formulae
» € CTL" is a state formula if VM, o,0’, 1,7 such that (i) = o/(j) we have

M,U,i':gﬁ — M7Ul7j):SO

Example: Some specifications If ¢ is a state formula and M = (S, T, I, AP,), define
EF : @ is possible [[SDHM ={seS|M,skEqp}
AG ¢: o is an invariant
AF ¢: © is unavoidable Example: State formulae
EG ¢: ¢ holds globally along some path Atomic propositions are state formulae: [pl ={seS|pei(s)}
State formulae are closed under boolean connectives.
[-¢] = S\ [¢] [e1 V2] = [p1] U [pe]

Formulae of the form E ¢ or A ¢ are state formulae, provided ¢ is future.

Definition: Alternative syntax

State formulae @=L |p (p€AP) |~ |V |EY |AY
Path formulae Y=o | ¢ | VY | XY | U

Model checking of CTL" Complexity of CTL"

Definition: Existential and universal model checking
Let M = (S,T,1,AP, /) be a Kripke structure and ¢ € CTL" a formula.

M =3¢ if M,0,0 = ¢ for some initial infinite run o of M.

Definition: Syntax of the Computation Tree Logic CTL*

M vy ¢ if M,0,0 = ¢ for all initial infinite run o of M. pu=L|p@eAP)|~p|oVe|Xp|pUp|Ep|Ap
[— Theorem

Mbse iff IN[EQ]#£0 The model checking problem for CTL* is PSPACE-complete

MEye iff TC[Ay] Proof:

MEy o iff M3 g PSPACE-hardness: follows from LTL C CTL".

PSPACE-easiness: reduction to LTL-model checking by inductive eliminations of
Definition: Model checking problems MC¢,r;« and MCZ; - path quantifications.

Input: A Kripke structure M = (S,T,I,AP, /) and a formula ¢ € CTL"
Question: Does M =y ¢ ? or Does M =3 ¢ ?

MCZpy+ in PSPACE

Proof:
For ¢ € LTL, let MCipy, (M, t, 1) be the function which computes in polynomial
space whether M,t =3 1, i.e., if M,t = E.

Let M = (S,T,1,AP, /) be a Kripke structure, s € S and ¢ € CTL".
Replacing Aty by = E —) we assume ¢ only contains the existential path quantifier.

MCZ2pp- (M, s, ©)
If E does not occur in o then return MCipy (M, s, @) fi
Let E be a subformula of ¢ with ¢) € LTL
Let e, be a new propositional variable
Define £/ : S — 24P" with AP’ = AP W {e,,} by
¢ (t) VAP = £(t) and ey, € £/(t) iff MCipp (M, t, 1))
Let M' = (S,T,1,AP’ ()
Let ' = pley/ E¥] be obtained from ¢ by replacing each E) by ey,
Return MCZpp (M, s, ")

Satisfiability for CTL"

Definition: SAT(CTL")
Input: A formula ¢ € CTL"

Question: Existence of a model M and a run o such that M,0,0 = ¢ ?

Theorem
The satisfiability problem for CTL* is 2-EXPTIME-complete

QOutline

© Branching Time Specifications
CTL”
e CTL
Fair CTL

CTL (Clarke & Emerson 81)

Definition: Computation Tree Logic (CTL)

Syntax:
pu=L|p@eAP)[~p |V |EXp|AXp[EpUp|ApUgp

The semantics is inherited from CTL".

Remark: All CTL formulae are state formulae

[e]Y ={s €S| M,s = o}

Examples: Macros
EFp=ETU¢p and AFp=ATUyp
EGp=-AF—¢p and AGyp=-EF—gp
AG(req — EF grant)
AG(req — AF grant)

CTL (Clarke & Emerson 81) CTL (Clarke & Emerson 81)

Example:

Definition: Semantics

All CTL-formulae are state formulae. Hence, we have a simpler semantics.
Let M = (S,T,I,AP, /) be a Kripke structure without deadlocks and let s € S.

sEp if pel(s)

s EEXp if ds— s withs' Eo

sEAXp if Vs— s wehaves o

sEEpUY if ds=s9—s3 — sy —---s; finite path, with
sjiEvand s =@ forall0 <k <j

sEApUY if Vs=sy— 81— sa — - infinite path, 35 > 0 with
sjEvand s =@ forall 0 <k <j

CTL (Clarke & Emerson 81) Model checking of CTL
Remark: Equivalent formulae Definition: Existential and universal model checking
AXp = = EX -, Let M = (S,T,1,AP, /) be a Kripke structure and ¢ € CTL a formula.
—C4 . o A — ME3¢ if M,s|= ¢ for some s € I.
~(pUd) =GV (T U (2o A o)) MEvy ifM,skgforalsel
ApUtp=-EG¢ A-E(=¢p U (mp A—¢))
AG(req — F grant) = AG(req — AF grant) Remark:
M iff InN 0
AGF o — AGAF infinitely often Fa¢ ' el #
EFGy=EFEGy ultimately Misv e i IC[y]

MEve iff M3
EGEF
AFAGy # AFGyp Definition: Model checking problems MC¢.; and MCgpy,

EGEXyp #EGXyp Input: A Kripke structure M = (S, T,I,AP,) and a formula ¢ € CTL
Question: Does M =y ¢ ? or Does M 3 ¢ ?

Model checking of CTL

Theorem

Model checking of CTL

Definition: procedure semantics(y)

case ¢ = —pq
semantics(1)

Let M = (S,T,I,AP,) be a Kripke structure and ¢ € CTL a formula. [e] := S\ [¢1] o(ls1)
The model checking problem M =3 ¢ is decidable in time O(|M| - |¢|) case o = @1 V
semantics(ip1); semantics(p2)
“ioek [l =[]V lp2] o(s))
. . . case p = EX ¢
Compute [¢] ={s € S| M,s = ¢} by induction on the formula. semantics(io1)
The set [¢] is represented by a boolean array: L[s][¢] = T if s € [¢]. [¢] =0 o(lS1)
for all (s,t) € T do if ¢t € [1] then [¢] := [] U {s} o(T))
The labelling ¢ is encoded in L: for p € AP we have L[s][p] = T if p € {(s).
case p = AX
semantics(p1)
[e] := S o(51)
for all (s,¢) € T do if ¢ ¢ [¢1] then [¢] := [¢] \ {s} o(T)
Model checking of CTL Model checking of CTL
Definition: procedure semantics(y)
Definition: procedure semantics(y) case o = Apy U 2 | o(S| +|T))
case ¢ = Ep1 U gy o(S| + 7)) semantics(ip1); semantics(p2)
semantics(p1); semantics(2) L :=[p2] // the “todo” set L is imlemented with a list o(|S))
L :=[ps] // the “todo” set L is imlemented with a list o(|S)) Z = [p2] // the "result” is computed in the array Z o(|S])
Z = [p2] // the “result” is computed in the array Z o(]S)) for'all s € Sdoc[s] :=|T(s)] O(\SD
while L # () do |S| times while L # () do S| times
Invariant: L C Z and Invariant: L C Z and
2] U ([r] N T-1(Z \ L)) € Z C [Ep1 U 3] Vs €S, c[s] = |T'(s) \ (Z\ L)| and
take t € L; L := L\ {t} o(1) [p2] U(lpr] n{s € Scls] =0}) € Z S [Ap1 U]
for all s € T=1(t) do || times take t € L; L:= L\ {t} 0(1)_
if s€[p1]\ Z then L:=LU{s}; Z:=ZU{s} o(1) for all s € T7'(t) do |T'| times
od cls] :=c[s] -1 o(1)
[¢] =2 o(|S]) if c[s] =0As€[e1]\ Z then L:=LU{s}; Z:=ZU{s} O(1)
od
o] = 2 o(ls))

Z is only used to make the invariant clear. It can be replaced by [¢].

Z is only used to make the invariant clear. It can be replaced by [¢].

Complexity of CTL

Definition: SAT(CTL)
Input: A formula ¢ € CTL
Question: Existence of a model M and a state s such that M, s = ¢ ?

Theorem: Complexity
The model checking problem for CTL is PTIME-complete.
The satisfiability problem for CTL is EXPTIME-complete.

Outline

© Branching Time Specifications
CTL"
CTL
e Fair CTL

fairness

Example: Fairness

Only fair runs are of interest

Each process is enabled infinitely often: /\ G Frun;

7

No process stays ultimately in the critical section: /\ -FGCS; = /\ GF-CS;

7 (2

Definition: Fair Kripke structure
M = (S,T,I,AP,¢,Fy, ..., F,) with F, C S.

An infinite run o is fair if it visits infinitely often each F;

fair CTL

Definition: Syntax of fair-CTL
pu=L|p(peAP) ||V |ErXo|ArXp|ErpUp|ArpUep

Definition: Semantics as a fragment of CTL"
Let M = (S,T,1,AP, ¢, Fy, ..., F,) be a fair Kripke structure.

Then, E; ¢ = E(fair A ¢) and As o = A(fair —)
where fair = A\, GF F;

Lemma: CTL; cannot be expressed in CTL

fair CTL

Proof: CTL; cannot be expressed in CTL
Consider the Kripke structure M defined by:

(3 (3
2%k 2% — 1 2% — 2 %—3) -
P p

p -p p -p p = -p

M, 2k EEGFp but M, 2k—2 £ EGFp

If o € CTL and || < m < k then
My, 2k |= ¢ iff My, 2m = @
My, 2k —1 = @ iff Mg,2m—1FE ¢

If the fairness condition is £~!(p) then E; T cannot be expressed in CTL.

Model checking of CTL/

Theorem
The model checking problem for CTLy is decidable in time O(|M| - |¢|)

Proof: Computation of Fair = {s € S| M,s =E; T}
Compute the SCC of M with Tarjan's algorithm (in time O(|M])).
Let S’ be the union of the (non trivial) SCCs which intersect each F;.
Then, Fair is the set of states that can reach S’.

Note that reachability can be computed in linear time.

Model checking of CTL;

Proof: Reductions

Er Xy = EX(Fair A ¢) and Ef pUy =EpU (Fair Av)

It remains to deal with Ay U 1.

We have AroUt¥ =-E; G A=Ef(=p U (g A 1))
Hence, we only need to compute the semantics of E; G .

Proof: Computation of E; G

Let M, be the restriction of M to [¢] ;.

Compute the SCC of M., with Tarjan's algorithm (in linear time).

Let S’ be the union of the (non trivial) SCCs of M, which intersect each F;.
Then, M,s =EEf Gy iff M,s EE@US" iff M,,s = EFS".

This is again a reachability problem which can be solved in linear time.

