
6/32

Outline

Introduction

Models

Specifications

Satisfiability and Model Checking for LTL

5 Branching Time Specifications

CTL∗

CTL

Fair CTL

7/32

Possibility is not expressible in LTL

Example:
ϕ: Whenever p holds, it is possible to reach a state where q holds.
ϕ cannot be expressed in LTL.

Consider the two models:

M1: andM2:

M1 |= ϕ but M2 �|= ϕ
M1 and M2 satisfy the same LTL formulae.

We need quantifications on runs: ϕ = AG(p → EF q)

� E: for some infinite run

� A: for all infinite runs

8/32

Outline

Introduction

Models

Specifications

Satisfiability and Model Checking for LTL

5 Branching Time Specifications

CTL∗

CTL

Fair CTL

9/32

CTL∗ (Emerson & Halpern 86)
Definition: Syntax of the Computation Tree Logic CTL∗

ϕ ::= ⊥ | p (p ∈ AP) | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕ U ϕ | Eϕ | Aϕ

In this chapter, temporal modalities U, F, G, . . . are non-strict.
We may also add past modalities Y and S

Definition: Semantics of CTL∗

Let M = (S, T, I,AP, �) be a Kripke structure.
Let σ = s0s1s2 · · · be an infinte run of M .

M,σ, i |= Eϕ if M,σ�, i |= ϕ for some infinite run σ� such that σ�[i] = σ[i]

M,σ, i |= Aϕ if M,σ�, i |= ϕ for all infinite runs σ� such that σ�[i] = σ[i]

where σ[i] = s0 · · · si.

Remark:
� Aϕ ≡ ¬E¬ϕ

� σ�[i] = σ[i] means that future is branching but past is not.

10/32

CTL∗ (Emerson & Halpern 86)

Example: Some specifications
� EFϕ: ϕ is possible

� AGϕ: ϕ is an invariant

� AFϕ: ϕ is unavoidable

� EGϕ: ϕ holds globally along some path

11/32

State formulae and path formulae
Definition: State formulae
ϕ ∈ CTL∗ is a state formula if ∀M,σ,σ�, i, j such that σ(i) = σ�(j) we have

M,σ, i |= ϕ ⇐⇒ M,σ�, j |= ϕ

If ϕ is a state formula and M = (S, T, I,AP, �), define

[[ϕ]]M = {s ∈ S | M, s |= ϕ}

Example: State formulae

Atomic propositions are state formulae: [[p]] = {s ∈ S | p ∈ �(s)}
State formulae are closed under boolean connectives.

[[¬ϕ]] = S \ [[ϕ]] [[ϕ1 ∨ ϕ2]] = [[ϕ1]] ∪ [[ϕ2]]

Formulae of the form Eϕ or Aϕ are state formulae, provided ϕ is future.

Definition: Alternative syntax

State formulae ϕ ::= ⊥ | p (p ∈ AP) | ¬ϕ | ϕ ∨ ϕ | Eψ | Aψ
Path formulae ψ ::= ϕ | ¬ψ | ψ ∨ ψ | Xψ | ψ U ψ

12/32

Model checking of CTL∗

Definition: Existential and universal model checking

Let M = (S, T, I,AP, �) be a Kripke structure and ϕ ∈ CTL∗ a formula.

M |=∃ ϕ if M,σ, 0 |= ϕ for some initial infinite run σ of M .
M |=∀ ϕ if M,σ, 0 |= ϕ for all initial infinite run σ of M .

Remark:

M |=∃ ϕ iff I ∩ [[Eϕ]] �= ∅

M |=∀ ϕ iff I ⊆ [[Aϕ]]

M |=∀ ϕ iff M �|=∃ ¬ϕ

Definition: Model checking problems MC∀
CTL∗ and MC∃

CTL∗

Input: A Kripke structure M = (S, T, I,AP, �) and a formula ϕ ∈ CTL∗

Question: Does M |=∀ ϕ ? or Does M |=∃ ϕ ?

13/32

Complexity of CTL∗

Definition: Syntax of the Computation Tree Logic CTL∗

ϕ ::= ⊥ | p (p ∈ AP) | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕ U ϕ | Eϕ | Aϕ

Theorem
The model checking problem for CTL∗ is PSPACE-complete

Proof:
PSPACE-hardness: follows from LTL ⊆ CTL∗.

PSPACE-easiness: reduction to LTL-model checking by inductive eliminations of
path quantifications.

14/32

MC∃

CTL∗ in PSPACE

Proof:

For ψ ∈ LTL, let MC∃
LTL(M, t,ψ) be the function which computes in polynomial

space whether M, t |=∃ ψ, i.e., if M, t |= Eψ.

Let M = (S, T, I,AP, �) be a Kripke structure, s ∈ S and ϕ ∈ CTL∗.
Replacing Aψ by ¬E¬ψ we assume ϕ only contains the existential path quantifier.

MC∃
CTL∗(M, s,ϕ)

If E does not occur in ϕ then return MC∃
LTL(M, s,ϕ) fi

Let Eψ be a subformula of ϕ with ψ ∈ LTL

Let eψ be a new propositional variable

Define �� : S → 2AP�
with AP� = AP � {eψ} by

��(t) ∩AP = �(t) and eψ ∈ ��(t) iff MC∃
LTL(M, t,ψ)

Let M � = (S, T, I,AP�, ��)

Let ϕ� = ϕ[eψ/Eψ] be obtained from ϕ by replacing each Eψ by eψ

Return MC∃
CTL∗(M �, s,ϕ�)

15/32

Satisfiability for CTL∗

Definition: SAT(CTL∗)

Input: A formula ϕ ∈ CTL∗

Question: Existence of a model M and a run σ such that M,σ, 0 |= ϕ ?

Theorem
The satisfiability problem for CTL∗ is 2-EXPTIME-complete

16/32

Outline

Introduction

Models

Specifications

Satisfiability and Model Checking for LTL

5 Branching Time Specifications

CTL∗

CTL

Fair CTL

17/32

CTL (Clarke & Emerson 81)

Definition: Computation Tree Logic (CTL)

Syntax:

ϕ ::= ⊥ | p (p ∈ AP) | ¬ϕ | ϕ ∨ ϕ | EXϕ | AXϕ | Eϕ U ϕ | Aϕ U ϕ

The semantics is inherited from CTL∗.

Remark: All CTL formulae are state formulae

[[ϕ]]M = {s ∈ S | M, s |= ϕ}

Examples: Macros
� EFϕ = E� U ϕ and AFϕ = A� U ϕ

� EGϕ = ¬AF¬ϕ and AGϕ = ¬EF¬ϕ

� AG(req → EF grant)

� AG(req → AF grant)

18/32

CTL (Clarke & Emerson 81)

Definition: Semantics
All CTL-formulae are state formulae. Hence, we have a simpler semantics.
Let M = (S, T, I,AP, �) be a Kripke structure without deadlocks and let s ∈ S.

s |= p if p ∈ �(s)

s |= EXϕ if ∃s → s� with s� |= ϕ

s |= AXϕ if ∀s → s� we have s� |= ϕ

s |= Eϕ U ψ if ∃s = s0 → s1 → s2 → · · · sj finite path, with
sj |= ψ and sk |= ϕ for all 0 ≤ k < j

s |= Aϕ U ψ if ∀s = s0 → s1 → s2 → · · · infinite path, ∃j ≥ 0 with
sj |= ψ and sk |= ϕ for all 0 ≤ k < j

19/32

CTL (Clarke & Emerson 81)

Example:

1 2 3 4

5 6 7 8

q p, q q r

p, r p, r p, q

[[EX p]] =

{1, 2, 3, 5, 6}

[[AX p]] =

{3, 6}

[[EF p]] =

{1, 2, 3, 4, 5, 6, 7, 8}

[[AF p]] =

{2, 3, 5, 6, 7}

[[E q U r]] =

{1, 2, 3, 4, 5, 6}

[[A q U r]] =

{2, 3, 4, 5, 6}

20/32

CTL (Clarke & Emerson 81)

Remark: Equivalent formulae
� AXϕ = ¬EX¬ϕ,

� ¬(ϕ U ψ) = G¬ψ ∨ (¬ψ U (¬ϕ ∧ ¬ψ))

� Aϕ U ψ = ¬EG¬ψ ∧ ¬E(¬ψ U (¬ϕ ∧ ¬ψ))

� AG(req → F grant) = AG(req → AF grant)

� AGFϕ = AGAFϕ infinitely often

� EFGϕ = EFEGϕ ultimately

� EGEFϕ �= EGFϕ

� AFAGϕ �= AFGϕ

� EGEXϕ �= EGXϕ

21/32

Model checking of CTL

Definition: Existential and universal model checking

Let M = (S, T, I,AP, �) be a Kripke structure and ϕ ∈ CTL a formula.

M |=∃ ϕ if M, s |= ϕ for some s ∈ I.
M |=∀ ϕ if M, s |= ϕ for all s ∈ I.

Remark:

M |=∃ ϕ iff I ∩ [[ϕ]] �= ∅

M |=∀ ϕ iff I ⊆ [[ϕ]]

M |=∀ ϕ iff M �|=∃ ¬ϕ

Definition: Model checking problems MC∀
CTL and MC∃

CTL

Input: A Kripke structure M = (S, T, I,AP, �) and a formula ϕ ∈ CTL

Question: Does M |=∀ ϕ ? or Does M |=∃ ϕ ?

22/32

Model checking of CTL

Theorem
Let M = (S, T, I,AP, �) be a Kripke structure and ϕ ∈ CTL a formula.
The model checking problem M |=∃ ϕ is decidable in time O(|M | · |ϕ|)

Proof:

Compute [[ϕ]] = {s ∈ S | M, s |= ϕ} by induction on the formula.

The set [[ϕ]] is represented by a boolean array: L[s][ϕ] = � if s ∈ [[ϕ]].

The labelling � is encoded in L: for p ∈ AP we have L[s][p] = � if p ∈ �(s).

23/32

Model checking of CTL

Definition: procedure semantics(ϕ)

case ϕ = ¬ϕ1

semantics(ϕ1)
[[ϕ]] := S \ [[ϕ1]] O(|S|)

case ϕ = ϕ1 ∨ ϕ2

semantics(ϕ1); semantics(ϕ2)
[[ϕ]] := [[ϕ1]] ∪ [[ϕ2]] O(|S|)

case ϕ = EXϕ1

semantics(ϕ1)
[[ϕ]] := ∅ O(|S|)
for all (s, t) ∈ T do if t ∈ [[ϕ1]] then [[ϕ]] := [[ϕ]] ∪ {s} O(|T |)

case ϕ = AXϕ1

semantics(ϕ1)
[[ϕ]] := S O(|S|)
for all (s, t) ∈ T do if t /∈ [[ϕ1]] then [[ϕ]] := [[ϕ]] \ {s} O(|T |)

24/32

Model checking of CTL

Definition: procedure semantics(ϕ)

case ϕ = Eϕ1 U ϕ2 O(|S|+ |T |)
semantics(ϕ1); semantics(ϕ2)
L := [[ϕ2]] // the “todo” set L is imlemented with a list O(|S|)
Z := [[ϕ2]] // the “result” is computed in the array Z O(|S|)
while L �= ∅ do |S| times
Invariant: L ⊆ Z and

[[ϕ2]] ∪ ([[ϕ1]] ∩ T−1(Z \ L)) ⊆ Z ⊆ [[Eϕ1 U ϕ2]]
take t ∈ L; L := L \ {t} O(1)
for all s ∈ T−1(t) do |T | times

if s ∈ [[ϕ1]] \ Z then L := L ∪ {s}; Z := Z ∪ {s} O(1)
od
[[ϕ]] := Z O(|S|)

Z is only used to make the invariant clear. It can be replaced by [[ϕ]].

25/32

Model checking of CTL
Definition: procedure semantics(ϕ)

case ϕ = Aϕ1 U ϕ2 O(|S|+ |T |)
semantics(ϕ1); semantics(ϕ2)
L := [[ϕ2]] // the “todo” set L is imlemented with a list O(|S|)
Z := [[ϕ2]] // the “result” is computed in the array Z O(|S|)
for all s ∈ S do c[s] := |T (s)| O(|S|)
while L �= ∅ do |S| times
Invariant: L ⊆ Z and

∀s ∈ S, c[s] = |T (s) \ (Z \ L)| and
[[ϕ2]] ∪ ([[ϕ1]] ∩ {s ∈ S | c[s] = 0}) ⊆ Z ⊆ [[Aϕ1 U ϕ2]]

take t ∈ L; L := L \ {t} O(1)
for all s ∈ T−1(t) do |T | times

c[s] := c[s]− 1 O(1)
if c[s] = 0 ∧ s ∈ [[ϕ1]] \ Z then L := L ∪ {s}; Z := Z ∪ {s} O(1)

od
[[ϕ]] := Z O(|S|)

Z is only used to make the invariant clear. It can be replaced by [[ϕ]].

26/32

Complexity of CTL

Definition: SAT(CTL)

Input: A formula ϕ ∈ CTL

Question: Existence of a model M and a state s such that M, s |= ϕ ?

Theorem: Complexity
� The model checking problem for CTL is PTIME-complete.

� The satisfiability problem for CTL is EXPTIME-complete.

27/32

Outline

Introduction

Models

Specifications

Satisfiability and Model Checking for LTL

5 Branching Time Specifications

CTL∗

CTL

Fair CTL

28/32

fairness

Example: Fairness
Only fair runs are of interest

� Each process is enabled infinitely often:
�

i

GF runi

� No process stays ultimately in the critical section:
�

i

¬FGCSi =
�

i

GF¬CSi

Definition: Fair Kripke structure

M = (S, T, I,AP, �, F1, . . . , Fn) with Fi ⊆ S.

An infinite run σ is fair if it visits infinitely often each Fi

29/32

fair CTL

Definition: Syntax of fair-CTL

ϕ ::= ⊥ | p (p ∈ AP) | ¬ϕ | ϕ ∨ ϕ | Ef Xϕ | Af Xϕ | Ef ϕ U ϕ | Af ϕ U ϕ

Definition: Semantics as a fragment of CTL∗

Let M = (S, T, I,AP, �, F1, . . . , Fn) be a fair Kripke structure.

Then, Ef ϕ = E(fair ∧ ϕ) and Af ϕ = A(fair → ϕ)

where fair =
�

i GFFi

Lemma: CTLf cannot be expressed in CTL

30/32

fair CTL

Proof: CTLf cannot be expressed in CTL

Consider the Kripke structure Mk defined by:

2k 2k − 1 2k − 2 2k − 3 · · · 4 3 2 1

p p p p¬p ¬p ¬p ¬p

� Mk, 2k |= EGF p but Mk, 2k − 2 �|= EGF p

� If ϕ ∈ CTL and |ϕ| ≤ m ≤ k then

Mk, 2k |= ϕ iff Mk, 2m |= ϕ

Mk, 2k − 1 |= ϕ iff Mk, 2m− 1 |= ϕ

If the fairness condition is �−1(p) then Ef � cannot be expressed in CTL.

31/32

Model checking of CTLf

Theorem
The model checking problem for CTLf is decidable in time O(|M | · |ϕ|)

Proof: Computation of Fair = {s ∈ S | M, s |= Ef �}

Compute the SCC of M with Tarjan’s algorithm (in time O(|M |)).

Let S� be the union of the (non trivial) SCCs which intersect each Fi.

Then, Fair is the set of states that can reach S�.

Note that reachability can be computed in linear time.

32/32

Model checking of CTLf

Proof: Reductions
Ef Xϕ = EX(Fair ∧ ϕ) and Ef ϕ U ψ = Eϕ U (Fair ∧ ψ)

It remains to deal with Af ϕ U ψ.

We have Af ϕ U ψ = ¬Ef G¬ψ ∧ ¬Ef (¬ψ U (¬ϕ ∧ ¬ψ))

Hence, we only need to compute the semantics of Ef Gϕ.

Proof: Computation of Ef Gϕ

Let Mϕ be the restriction of M to [[ϕ]]f .

Compute the SCC of Mϕ with Tarjan’s algorithm (in linear time).

Let S� be the union of the (non trivial) SCCs of Mϕ which intersect each Fi.

Then, M, s |= Ef Gϕ iff M, s |= Eϕ U S� iff Mϕ, s |= EFS�.

This is again a reachability problem which can be solved in linear time.

