
79/111

Outline

Introduction

Models

Specifications

4 Satisfiability and Model Checking for LTL

Büchi automata

From LTL to BA

Decidability and Complexity

Branching Time Specifications

80/111

Some References
[12] O. Lichtenstein and A. Pnueli.

Checking that finite state concurrent programs satisfy their linear specification.

In ACM Symposium PoPL’85, 97–107.

[13] P. Wolper.

The tableau method for temporal logic: An overview,

Logique et Analyse. 110–111, 119–136, (1985).

[14] A. Sistla and E. Clarke.

The complexity of propositional linear temporal logic.

Journal of the Association for Computing Machinery. 32 (3), 733–749, (1985).

[15] P. Gastin and D. Oddoux.

Fast LTL to Büchi automata translation.
In CAV’01, vol. 2102, Lecture Notes in Computer Science, pp. 53–65.
Springer, (2001).

http://www.lsv.ens-cachan.fr/~gastin/mes-publis.php

[16] S. Demri and P. Gastin.

Specification and Verification using Temporal Logics.
In Modern applications of automata theory, IISc Research Monographs 2.

World Scientific, To appear.

http://www.lsv.ens-cachan.fr/~gastin/mes-publis.php

81/111

Outline

Introduction

Models

Specifications

4 Satisfiability and Model Checking for LTL

Büchi automata

From LTL to BA

Decidability and Complexity

Branching Time Specifications

82/111

Büchi automata

Definition:
A Büchi automaton (BA) is a tuple A = (Q,Σ, I, T, F) where

� Q: finite set of states

� Σ: finite set of labels

� I ⊆ Q: set of initial states

� T ⊆ Q× Σ×Q: set of transitions (non-deterministic)

� F ⊆ Q: set of accepting (repeated, final) states

Run: ρ = q0, a0, q1, a1, q2, a2, q3, . . . with (qi, ai, qi+1) ∈ T for all i ≥ 0.

ρ is accepting if q0 ∈ I and qi ∈ F for infinitely many i’s.

L(A) = {a0a1a2 · · · ∈ Σ
ω
| ∃ ρ = q0, a0, q1, a1, q2, a2, q3, . . . accepting run}

A language L ⊆ Σω is ω-regular if it can be accepted by some Büchi automaton.

83/111

Büchi automata

Examples:

Infinitely many a’s:

Finitely many a’s:

No deterministic Büchi automaton for this language.

Whenever a then later b:

84/111

Büchi automata

Properties
Büchi automata are closed under union, intersection, complement.

� Union: trivial

� Intersection: easy (exercise)

� complement: difficult

Let L = Σ∗(aΣn−1b ∪ bΣn−1a)Σω

0

Σ 1
a

2
Σ · · · nΣ

0′

b
Σ

1’
b

2’
Σ

· · · n′

Σ

a

Any non deterministic Büchi automaton for Σω \ L has at least 2n states.

85/111

Büchi automata

Theorem: Büchi
Let L ⊆ Σω be a language. The following are equivalent:

� L is ω-regular

� L is ω-rational, i.e., L is a finite union of languages of the form L1 · Lω
2 where

L1, L2 ⊆ Σ+ are rational.

� L is MSO-definable, i.e., there is a sentence ϕ ∈ MSOΣ(≤)Σ(<) such that

L = L(ϕ) = {w ∈ Σω | w |= ϕ}.

Exercises:
1. Construct a BA for L(ϕ) where ϕ is the FOΣ(<) sentence

(∀x, (Pa(x) → ∃y > x, Pa(y))) → (∀x, (Pb(x) → ∃y > x, Pc(y)))

2. Given BA for L1 ⊆ Σω and L2 ⊆ Σω, construct BA for

next(L1) = Σ · L1

until(L1, L2) = {uv ∈ Σ
ω
| u ∈ Σ

+
∧ v ∈ L2 ∧

u��v ∈ L1 for all u�, u��
∈ Σ

+
with u = u�u��

}

86/111

Generalized Büchi automata

Definition: acceptance on states or on transitions

A = (Q,Σ, I, T, F1, . . . , Fn) with Fi ⊆ Q.

An infinite run σ is successful if it visits infinitely often each Fi.

A = (Q,Σ, I, T, T1, . . . , Tn) with Ti ⊆ T .
An infinite run σ is successful if it uses infinitely many transitions from each Ti.

Example: Infinitely many a’s and infinitely many b’s

0

Σ
a

Σb

Σ

0

Σ

ab

Theorem:
1. GBA and BA have the same expressive power.

2. Checking whether a BA or GBA has an accepting run is NLOGSPACE-complete.

88/111

Büchi automata with output

Definition: SBT: Synchronous (letter to letter) Büchi transducer

Let A and B be two alphabets.

A synchronous Büchi transducer from A to B is a tuple A = (Q,A, I, T, F, µ) where
(Q,A, I, T, F) is a Büchi automaton (input) and µ : T → B is the output function.

It computes the relation

[[A]] = {(u, v) ∈ Aω
×Bω

| ∃ ρ = q0, a0, q1, a1, q2, a2, q3, . . . accepting run

with u = a0a1a2 · · ·

and v = µ(q0, a0, q1)µ(q1, a1, q2)µ(q2, a2, q3) · · · }

If (Q,A, I, T, F) is unambiguous then [[A]] : Aω → Bω is a (partial) function.

We will also use SGBT: synchronous transducers with generalized Büchi acceptance.

Example: Left shift with A = B = {a, b}

1 2

a/a b/b

a/b

b/a

89/111

Composition of Büchi transducers

Definition: Composition
Let A, B, C be alphabets.

Let A = (Q,A, I, T, (Fi)i, µ) be an SGBT from A to B.

Let A� = (Q�, B, I �, T �, (F �
j)j , µ

�) be an SGBT from B to C.

Then A · A� = (Q×Q�, A, I × I �, T ��, (Fi ×Q�)i, (Q× F �
j)j , µ

��) is defined by:

τ �� = (p, p�)
a
−→ (q, q�) ∈ T ��

and µ��
(τ ��) = c

iff

τ = p
a
−→ q ∈ T and τ � = p�

µ(τ)
−−−→ q� ∈ T �

and c = µ�
(τ �)

A · A� is an SGBT from A to C.

When the transducers define functions, we also denote the composition by A� ◦A.

Proposition: Composition

1. We have [[A · A�]] = [[A]] · [[A�]].

2. If (Q,A, I, T, (Fi)i) and (Q�, B, I �, T �, (F �
j)j) are unambiguous then

(Q×Q�, A, I × I �, T ��, (Fi ×Q�)i, (Q× F �
j)j) is also unambiguous.

Then, ∀u ∈ Aω we have [[A� ◦A]](u) = [[A�]]([[A]](u)).

90/111

Product of Büchi transducers

Definition: Product
Let A, B, C be alphabets.

Let A = (Q,A, I, T, (Fi)i, µ) be an SGBT from A to B.

Let A� = (Q�, A, I �, T �, (F �
j)j , µ

�) be an SGBT from A to C.

Then A×A� = (Q×Q�, A, I × I �, T ��, (Fi ×Q�)i, (Q× F �
j)j , µ

��) is defined by:

τ �� = (p, p�)
a
−→ (q, q�) ∈ T ��

and µ��
(τ ��) = (b, c)

iff

τ = p
a
−→ q ∈ T and b = µ(τ) and τ � = p�

a
−→ q� ∈ T �

and c = µ�
(τ �)

A×A� is an SGBT from A to B × C.

Proposition: Product

We identify (B × C)ω with Bω × Cω.

1. We have [[A×A�]] = {(u, v, v�) | (u, v) ∈ [[A]] and (u, v�) ∈ [[A�]]}.

2. If (Q,A, I, T, (Fi)i) and (Q�, A, I �, T �, (F �
j)j) are unambiguous then

(Q×Q�, A, I × I �, T ��, (Fi ×Q�)i, (Q× F �
j)j) is also unambiguous.

Then, ∀u ∈ Aω we have [[A×A�]](u) = ([[A]](u), [[A�]](u)).

91/111

Outline

Introduction

Models

Specifications

4 Satisfiability and Model Checking for LTL

Büchi automata

From LTL to BA

Decidability and Complexity

Branching Time Specifications

92/111

Subalphabets of Σ = 2AP

Definition:
For a propositional formula ξ over AP, we let Σξ = {a ∈ Σ | a |= ξ}.
For instance, for p, q ∈ AP,

� Σp = {a ∈ Σ | p ∈ a} and Σ¬p = Σ \ Σp

� Σp∧q = Σp ∩ Σq and Σp∨q = Σp ∪ Σq

� Σp∧¬q = Σp \ Σq . . .

Notation:

In automata, p
Σξ
−−→ q stands for the set of transitions {p}× Σξ × {q}.

To simplify the pictures, we use p
ξ
−→ q instead of p

Σξ
−−→ q.

Example:

1 2

¬p ∨ q ¬q

p ∧ ¬q

q

93/111

Semantics of LTL with sequential functions

Definition: Semantics of ϕ ∈ LTL(AP, S,U)

Let Σ = 2AP and B = {0, 1}.

Define [[ϕ]] : Σω → Bω by [[ϕ]](u) = b0b1b2 · · · with bi =

�
1 if u, i |= ϕ

0 otherwise.

Example:

[[p U q]](∅{q}{p}∅{p}{p}{q}∅{p}{p, q}∅ω) = 1001110110
ω

[[X p]](∅{q}{p}∅{p}{p}{q}∅{p}{p, q}∅ω) = 0101100110
ω

[[F p]](∅{q}{p}∅{p}{p}{q}∅{p}{p, q}∅ω) = 1111111110
ω

The aim is to compute [[ϕ]] with Büchi transducers.

94/111

Synchronous Büchi transducer for p U q

Example: An SBT for [[p U q]]

1 2

3

q/1 p ∧ ¬q/1

¬q/0

q/1

p ∧ ¬q/1

q/0
¬p ∧ ¬q/1

¬p ∧ ¬q/1

Lemma: The input BA is prophetic

For all u = a0a1a2 · · · ∈ Σω,

there is a unique accepting run ρ = q0, a0, q1, a1, q2, a2, q3, . . . of A on u.

The run ρ satisfies for all i ≥ 0, qi =






1 if u, i |= q

2 if u, i |= ¬q ∧ (p U� q)

3 if u, i |= ¬(p U� q)

95/111

Special cases of Until: Future and Next

Example: F q = � U q and X q = ⊥ U q

1 2

3

q/1 ¬q/1

¬q/0

q/1

¬q/1

q/0

1

3

q/1

¬q/0

q/0
¬q/1

Exercise: Give SBT’s for the following formulae:

p U� q, F� q, G q, G� q, p R q, p R� q, p S q, p S� q, G(p → F q).

96/111

From LTL to Büchi automata

Definition: SBT for LTL modalities

� A� from Σ to B = {0, 1}: 0 Σ/1

� Ap from Σ to B = {0, 1}: 0
p / 1

¬p / 0

� A¬ from B to B: 0
0 / 1
1 / 0

� A∨ from B2 to B: 0

0, 0 / 0
1, 0 / 1
0, 1 / 1
1, 1 / 1

� A∧ from B2 to B: 0

0, 0 / 0
1, 0 / 0
0, 1 / 0
1, 1 / 1

97/111

From LTL to Büchi automata

Definition: SBT for LTL modalities (cont.)

� AU from B2 to B: 1 2

3

0, 1 / 1
1, 1 / 1

1, 0/1

0, 0 / 0
1, 0 / 0

0, 1 / 1
1, 1 / 1

1, 0/1

0, 1 / 0
1, 1 / 0

0, 0/1
0, 0/1

� AS from B2 to B: 0 1
0, 0 / 0
1, 0 / 0

0, 1 / 0
1, 1 / 0 1, 0 / 1

0, 1 / 1
1, 1 / 10, 0/1

98/111

From LTL to Büchi automata

Definition: Translation from LTL to SGBT
For each ξ ∈ LTL(AP, S,U) we define inductively an SGBT Aξ as follows:

� A� and Ap for p ∈ AP are already defined

� A¬ϕ = A¬ ◦Aϕ

� Aϕ∨ψ = A∨ ◦ (Aϕ ×Aψ)

� AϕSψ = AS ◦ (Aϕ ×Aψ)

� AϕUψ = AU ◦ (Aϕ ×Aψ)

Theorem: Correctness of the translation

For each ξ ∈ LTL(AP, S,U), we have [[Aξ]] = [[ξ]].

Moreover, the number of states of Aξ is at most 2|ξ|S · 3|ξ|U

where |ξ|S (resp. |ξ|U) is the number of S (resp. U) occurring in ξ.

Remark:
� If a subformula ϕ occurs serveral time in ξ, we only need one copy of Aϕ.

� We may also use automata for other modalities: AX, AU� , . . .

99/111

Useful simplifications

Reducing the number of temporal subformulae

(Xϕ) ∧ (Xψ) ≡ X(ϕ ∧ ψ) (Xϕ) U (Xψ) ≡ X(ϕ U ψ)

(Gϕ) ∧ (Gψ) ≡ G(ϕ ∧ ψ) GFϕ ∨ GFψ ≡ GF(ϕ ∨ ψ)

(ϕ1 U ψ) ∧ (ϕ2 U ψ) ≡ (ϕ1 ∧ ϕ2) U ψ (ϕ U ψ1) ∨ (ϕ U ψ2) ≡ ϕ U (ψ1 ∨ ψ2)

Merging equivalent states

Let A = (Q,Σ, I, T, T1, . . . , Tn) be a GBA and s1, s2 ∈ Q.

We can merge s1 and s2 if they have the same outgoing transitions:

∀a ∈ Σ, ∀s ∈ Q,

(s1, a, s) ∈ T ⇐⇒ (s2, a, s) ∈ T

and (s1, a, s) ∈ Ti ⇐⇒ (s2, a, s) ∈ Ti for all 1 ≤ i ≤ n.

100/111

Other constructions

� Tableau construction. See for instance [13, Wolper 85]

+ : Easy definition, easy proof of correctness

+ : Works both for future and past modalities

– : Inefficient without strong optimizations

� Using Very Weak Alternating Automata [15, Gastin & Oddoux 01].

+ : Very efficient

– : Only for future modalities

Online tool: http://www.lsv.ens-cachan.fr/~gastin/ltl2ba/

� Using reduction rules [16, Demri & Gastin 10].

+ : Efficient and produces small automata

+ : Can be used by hand on real examples

– : Only for future modalities

� The domain is still very active.

101/111

Outline

Introduction

Models

Specifications

4 Satisfiability and Model Checking for LTL

Büchi automata

From LTL to BA

Decidability and Complexity

Branching Time Specifications

102/111

Satisfiability for LTL over (N, <)
Let AP be the set of atomic propositions and Σ = 2AP.

Definition: Satisfiability problem

Input: A formula ϕ ∈ LTL(AP, S,U)

Question: Existence of w ∈ Σω and i ∈ N such that w, i |= ϕ.

Definition: Initial Satisfiability problem

Input: A formula ϕ ∈ LTL(AP, S,U)

Question: Existence of w ∈ Σω such that w, 0 |= ϕ.

Remark: ϕ is satisfiable iff Fϕ is initially satisfiable.

Definition: (Initial) validity

ϕ is valid iff ¬ϕ is not satisfiable.

Theorem [14, Sistla, Clarke 85], [12, Lichtenstein & Pnueli 85]

The satisfiability problem for LTL is PSPACE-complete.

103/111

Model checking for LTL

Definition: Model checking problem

Input: A Kripke structure M = (S, T, I,AP, �)
A formula ϕ ∈ LTL(AP, S,U)

Question: Does M |= ϕ ?

� Universal MC: M |=∀ ϕ if �(σ), 0 |= ϕ for all initial infinite run of M .

� Existential MC: M |=∃ ϕ if �(σ), 0 |= ϕ for some initial infinite run of M .

M |=∀ ϕ iff M �|=∃ ¬ϕ

Theorem [14, Sistla, Clarke 85], [12, Lichtenstein & Pnueli 85]

The Model checking problem for LTL is PSPACE-complete

105/111

MC∃(U) ≤P SAT(U) [14, Sistla & Clarke 85]

Let M = (S, T, I,AP, �) be a Kripke structure and ϕ ∈ LTL(AP,U)

Introduce new atomic propositions: APS = {ats | s ∈ S}

Define AP
�
= AP �APS Σ� = 2AP�

π : Σ�ω → Σω by π(a) = a ∩AP.

Let w ∈ Σ�ω. We have w |= ϕ iff π(w) |= ϕ

Define ψM ∈ LTL(AP
�,X,F�

) of size O(|M |2) by

ψM =

�
�

s∈I

ats

�
∧ G

�




�

s∈S



ats ∧

�

t �=s

¬att ∧

�

p∈�(s)

p ∧
�

p/∈�(s)

¬p ∧
�

t∈T (s)

X att









Let w = a0a1a2 · · · ∈ Σ�ω. Then, w |= ψM iff there exists an initial infinite run σ
of M such that π(w) = �(σ) and ai ∩APS = {atsi} for all i ≥ 0.

Therefore, M |=∃ ϕ iff ψM ∧ ϕ is satisfiable

M |=∀ ϕ iff ψM ∧ ¬ϕ is not satisfiable

Remark: we also have MC
∃
(X,F�

) ≤P SAT(X,F�
).

106/111

QBF Quantified Boolean Formulae

Definition: QBF

Input: A formula γ = Q1x1 · · ·Qnxnγ� with γ� =
�

1≤i≤m

�

1≤j≤ki

aij

Qi ∈ {∀, ∃} and aij ∈ {x1,¬x1, . . . , xn,¬xn}.

Question: Is γ valid?

Definition:
An assignment of the variables {x1, . . . , xn} is a word v = v1 · · · vn ∈ {0, 1}n.
We write v[i] for the prefix of length i.
Let V ⊆ {0, 1}n be a set of assignments.

� V is valid (for γ�) if v |= γ� for all v ∈ V ,

� V is closed (for γ) if ∀v ∈ V , ∀1 ≤ i ≤ n s.t. Qi = ∀,

∃v� ∈ V s.t. v[i− 1] = v�[i− 1] and {vi, v�i} = {0, 1}.

Proposition:

γ is valid iff ∃V ⊆ {0, 1}n s.t. V is nonempty valid and closed

107/111

QBF ≤P MC∃(U�) [14, Sistla & Clarke 85]
Let γ = Q1x1 · · ·Qnxn

�

1≤i≤m

�

1≤j≤ki

aij with Qi ∈ {∀, ∃} and aij literals.

Consider the KS M :

e0 s1

xt
1

xf
1

e1 s2

xt
2

xf
2

e2 · · · sn

xt
n

xf
n

en

f0

a11

a12
...

a1k1

f1

a21

a22
...

a2k2

f2 · · · fm−1

am1

am2

...

amkm

fm

Let ψij =

�
G
�
(xf

k → sk R� ¬aij) if aij = xk

G
�
(xt

k → sk R� ¬aij) if aij = ¬xk
and ψ =

�

i,j

ψij .

Let ϕj = G
�
(ej−1 → (¬sj−1 U

� xt
j) ∧ (¬sj−1 U

� xf
j) and ϕ =

�

j|Qj=∀

ϕj .

Then, γ is valid iff M |=∃ ψ ∧ ϕ.
110/111

Complexity of LTL

Theorem: Complexity of LTL
The following problems are PSPACE-complete:

� SAT(LTL(S,U)), MC
∀
(LTL(S,U)), MC

∃
(LTL(S,U))

� SAT(LTL(X,F�
)), MC

∀
(LTL(X,F�

)), MC
∃
(LTL(X,F�

))

� SAT(LTL(U�)), MC
∀
(LTL(U�)), MC

∃
(LTL(U�))

� The restriction of the above problems to a unique propositional variable

The following problems are NP-complete:

� SAT(LTL(F
�
)), MC

∃
(LTL(F

�
))

