Outline Some References
[12] O. Lichtenstein and A. Pnueli.
Checking that finite state concurrent programs satisfy their linear specification.

Introduction In ACM Symposium PoPL'85, 97-107.
[13] P. Wolper.
Models The tableau method for temporal logic: An overview,
Logique et Analyse. 110-111, 119-136, (1985).
Specifications [14] A. Sistla and E. Clarke.
The complexity of propositional linear temporal logic.
@ Satisfiability and Model Checking for LTL Journal of the Association for Computing Machinery. 32 (3), 733-749, (1985).
Blichi automata [15] P. Gastin and D. Oddoux.
From LTL to BA Fast LTL to Biichi automata translation.

In CAV'01, vol. 2102, Lecture Notes in Computer Science, pp. 53-65.
Springer, (2001).
http://www.lsv.ens-cachan.fr/~gastin/mes-publis.php

[16] S. Demri and P. Gastin.
Specification and Verification using Temporal Logics.
In Modern applications of automata theory, 11Sc Research Monographs 2.
World Scientific, To appear.
http://www.lsv.ens-cachan.fr/~gastin/mes-publis.php

Decidability and Complexity

Branching Time Specifications

Outline Biichi automata
Introduction Definition:
A Biichi automaton (BA) is a tuple A = (Q, X, I, T, F) where
Models Q: finite set of states
3. finite set of labels
Specifications I C @Q: set of initial states

T CQ x X x Q: set of transitions (non-deterministic)

@ Satisfiability and Model Checking for LTL F' C Q: set of accepting (repeated, final) states

@ Biichi automata
From LTL to BA Run: p = qo,a0,q1, 01, G2, a2,q3, - .. With (g;,as,¢i+1) € T for all i > 0.

Decidability and Complexity p is accepting if ¢o € I and ¢; € F for infinitely many i's.

Branching Time Specifications L(A) = {aomaz -+ € X | 3p = g0, a0, 1,01, 92, 62,5, . . . accepting run}

A language L C ¥¢ is w-regular if it can be accepted by some Biichi automaton.

Buchi automata

Examples:

Infinitely many a's:

Finitely many a's:

Whenever a then later b:

Buchi automata

Properties

Biichi automata are closed under union, intersection, complement.
Union: trivial
Intersection: easy (exercise)

complement: difficult

Let L = X*(aX"1b U bx"la)n¥

Any non deterministic Biichi automaton for X* \ L has at least 2" states.

Buchi automata
Theorem: Biichi
Let L C ¥ be a language. The following are equivalent:
L is w-regular

L is w-rational, i.e., L is a finite union of languages of the form L; - L where
Ly,Ly, C 21 are rational.

L is MSO-definable, i.e., there is a sentence ¢ € MSOx(<)x(<) such that
L=L(p)={weX|w ¢}

Exercises:
1. Construct a BA for L(p) where ¢ is the FOx (<) sentence

(Vz, (Pa(z) = 3y > 2, Pa(y))) = (Vz, (Po(z) = Iy > z, Pe(y)))
2. Given BA for L; C X% and Ly C ¥, construct BA for

next(Ly) =% - Ly
until(Ly, L) = {uww € Z¥ |[u € Xt Av € Ly A

u"v € Ly for all v/, u” € ¥ with u = v'u"}

Generalized Buchi automata

Definition: acceptance on states or on transitions
A=(Q,%,I,T,Fy,...,F,) with F; C Q.
An infinite run o is successful if it visits infinitely often each F;.

A=(Q,%,1,T,T1,...,T,) with T; CT.
An infinite run o is successful if it uses infinitely many transitions from each T;.

Example: Infinitely many a's and infinitely many b's

Theorem:

1. GBA and BA have the same expressive power.
2. Checking whether a BA or GBA has an accepting run is NLOGSPACE-complete.

Buchi automata with output
Definition: SBT: Synchronous (letter to letter) Biichi transducer

Let A and B be two alphabets.

A synchronous Biichi transducer from A to B is a tuple A = (Q, A, I, T, F, 1) where
(Q,A,I,T,F) is a Biichi automaton (input) and p : 7' — B is the output function.
It computes the relation

[A] = {(u,v) € A x B¥ | 3p = qo,a0,q1,a1,q2, 02,43, . .. accepting run
with © = agajas - - -
and v = pu(qo, ao, q1)p(q1, a1, g2) p(qa, az, q3) -+ }
If (Q,A,I,T,F) is unambiguous then [A] : A — B“ is a (partial) function.

We will also use SGBT: synchronous transducers with generalized Biichi acceptance.
Example: Left shift with A = B = {a, b}
aja b/b

(3 a/b

Composition of Biichi transducers

Definition: Composition

Let A, B, C be alphabets.

Let A= (Q,A,I,T,(F};);,) be an SGBT from A to B.

Let A" = (Q', B, I',T", (F});, ') be an SGBT from B to C.

Then A- A" = (Q x Q", A, I x I',T", (F; x Q");, (Q x F});,pu") is defined by:

= (p,p) = (¢,¢) € T" and p"(7") = ¢

iff

r=pSgeTandr =p X g €T/ and c = /()

A- A" is an SGBT from A to C.
When the transducers define functions, we also denote the composition by A’ o A.

Proposition: Composition
1. We have [A- A’] = [A] - [A].
2. If (Q,A, I, T, (F;);) and (Q', B, I', T, (F]’)J) are unambiguous then
(Q@xQ A IxTI'T" (F;xQ)(Q % FJ’)J) is also unambiguous.
Then, Yu € A“ we have [A" o A](u) = [A]([A] (u)).

Product of Buchi transducers

Definition: Product

Let A, B, C be alphabets.

Let A= (Q,A,I,T,(F;);,u) bean SGBT from A to B.

Let A" = (Q', A, I',T",(F});,1') be an SGBT from A to C.

Then Ax A" =(Q x Q' , A, I x I'|'T", (F; x Q")i, (Q x F});, ") is defined by:

7_// — (p;p/) i> (q7 q/) c T// and MN(T”) — (b, C)
iff
T=pSqgeTandb=yp(r)and 7' =p' & ¢ €T and c = 1/ (')
A x A" is an SGBT from A to B x C.

Proposition: Product
We identify (B x C)* with B¥ x C*.
1. We have [A x A'] = {(u,v,v") | (u,v) € [A] and (u,v") € [A]}.
2. If(Q, A, I, T, (Fi);) and (Q', A, I',T", (F});) are unambiguous then
(@x QA I xI'T", (F; x Q')i, (Q x F});) is also unambiguous.
Then, Yu € A“ we have [A x A'](u) =

(LAl (w), [A](w))-

QOutline

@ Satisfiability and Model Checking for LTL
Blichi automata
@ From LTL to BA
Decidability and Complexity

Subalphabets of ¥ = 247

Definition:
For a propositional formula & over AP, we let ¥¢ = {a € ¥ | a |= £}
For instance, for p,q € AP,

Y,={aeX|pea} and X ,=%\3%,
Yprg =2pNEg and Xy = X, U3y
YpA-q :Ep\zq

Notation:

b
In automata, p —» ¢ stands for the set of transitions {p} x Ye x {q}.

b
To simplify the pictures, we use p £> q instead of p = q.

Example:
o
pPA—q
@9

Semantics of LTL with sequential functions

Definition: Semantics of ¢ € LTL(AP,S, U)
Let ¥ = 2AF and B = {0, 1}.

Define [¢] : ¢ — B¥ by [¢](u) = bobiby - - - with b; = {1 if u,i =

0 otherwise.

Example:

[p U gl (0{qg}{p}0{p}{r}{a}0{p}{p, ¢}0*) = 1001110110
Xpl(0{gH{p}0{p}{p}H{a}0{p}{p, ¢}0*) = 0101100110*
[Fol(0{aH{p}0{p}{p}{a}0{p}{p, ¢}0*) = 1111111110*

The aim is to compute [p] with Biichi transducers.

Synchronous Biichi transducer for p U ¢

Example: An SBT for [p U ¢]

Lemma: The input BA is prophetic

For all u = agaias--- € X%,
there is a unique accepting run p = qo, ao, q1, a1, 42, G2, q3, . . . of A on u.

1 ifuibE=gq
The run p satisfies for all i >0, ¢; = ¢ 2 ifu,i E—gA(pU q)
3 ifuifE=(pUq)

Special cases of Until: Future and Next

Example: Fg=T Uqgand Xg= 1 Ugq

i1CQ)

ﬁq/l q/O

G-/

Exercise: Give SBT's for the following formulae:
pU'q Fq Gq GqpRq pRqpSq pSq Gp— Fq).

From LTL to Buchi automata

Definition: SBT for LTL modalities

A+ from X to B = {0,1}: 2/1
A, from ¥ to B = {0, 1}: —\zéé
A_ from B to B: ‘ ??(1)

0,0/0

2 : 1,0/1

Ay from B to B: ' 01/1
1,1/1

0,0
Ax from B? to B: ‘ 37(3;8
1,1/1

From LTL to Buchi automata

Definition: SBT for LTL modalities (cont.)

Ay from B? to B:

As from B? to B:

—_ = =

0,0/0 ’ 50
1,0/0 C@‘ 0.0/1 O (1)1

From LTL to Buchi automata

Definition: Translation from LTL to SGBT
For each £ € LTL(AP, S, U) we define inductively an SGBT A as follows:

AT and A, for p € AP are already defined

A=A 0A,

Apvy = Av o (Ap x Ay)

Agsy = As o (A, x Ay)

Apuy = Ay o (Ap X Ay)

Theorem: Correctness of the translation
For each £ € LTL(AP, S, U), we have [A¢] = [¢].

Moreover, the number of states of A¢ is at most 2l€ls . 3l€lu
where [£]s (resp. |€|y) is the number of S (resp. U) occurring in &.

Remark:
If a subformula ¢ occurs serveral time in &, we only need one copy of A,,.

We may also use automata for other modalities: Ax, Ay, ...

Useful simplifications

Reducing the number of temporal subformulae

(Xp) A (Xeh) = X(p AY) (Xp) U (Xep) = X(e U)
(Gp) A (GY) =G(pAY) GFoVGFyY=GF(p V)
(PrUP)A(p2UY) = (1 Ap2) Uy (pUp1) V(e Ute) =@ U (¢1 Vo)

Merging equivalent states

Let A=(Q,%,I,T,Ty,...,T,) be a GBA and s1,52 € Q.
We can merge s; and sy if they have the same outgoing transitions:
Ya e X, Vs € Q,

(s1,a,8) € T <> (s2,a,s) €T
and (s1,a,8) € T; < (s2,a,8) € T; forall 1 <i<n.

Other constructions

Tableau construction. See for instance [13, Wolper 85]
+ : Easy definition, easy proof of correctness
+ : Works both for future and past modalities
— : Inefficient without strong optimizations

Using Very Weak Alternating Automata [15, Gastin & Oddoux 01].
+ : Very efficient
— : Only for future modalities

Online tool: http://www.lsv.ens-cachan.fr/~gastin/1t12ba/

Using reduction rules [16, Demri & Gastin 10].
+ : Efficient and produces small automata
+ : Can be used by hand on real examples
— : Only for future modalities

v

v

v

v

The domain is still very active.

Outline

@ Satisfiability and Model Checking for LTL
Biichi automata
From LTL to BA
@ Decidability and Complexity

Satisfiability for LTL over (N, <)

Let AP be the set of atomic propositions and ¥ = 24F,

Definition: Satisfiability problem
Input: A formula ¢ € LTL(AP, S, U)

Question: Existence of w € ¥“ and i € N such that w, i |= ¢.

Definition: Initial Satisfiability problem
Input: A formula ¢ € LTL(AP, S, U)

Question: Existence of w € 3¢ such that w,0 |= ¢.
Remark: ¢ is satisfiable iff F ¢ is initially satisfiable.
Definition: (Initial) validity

@ is valid iff = is not satisfiable.

Theorem [14, Sistla, Clarke 85], [12, Lichtenstein & Pnueli 85]
The satisfiability problem for LTL is PSPACE-complete.

Model checking for LTL

Definition: Model checking problem

Input: A Kripke structure M = (S, T, 1, AP, /)
A formula ¢ € LTL(AP, S, U)

Question: Does M E ¢ ?

Universal MC: M =y ¢ if £(0),0 = ¢ for all initial infinite run of M.
Existential MC: M =5 ¢ if £(0),0 = ¢ for some initial infinite run of M.

M ':v (%2} iff M %3 %

Theorem [14, Sistla, Clarke 85], [12, Lichtenstein & Pnueli 85]
The Model checking problem for LTL is PSPACE-complete

MC?(U) <p SAT(U) [14, Sistla & Clarke 85]

Let M = (S,T,1,AP,) be a Kripke structure and ¢ € LTL(AP, U)

Introduce new atomic propositions: APg = {at,; | s € S}
Define AP’ = AP & APg 3 = 2AF 7 X% = % by 7(a) = a N AP.

Let w € ¥'%. We have w = ¢ iff m(w) = ¢
Define ¢ps € LTL(AP', X, F’) of size O(|M|?) by

¢M—(\/ats>/\6/<\/ (ats/\/\ﬂatt/\ /\ pA /\ -p A \/ Xatt))

sel ses t#s pEL(s) pEL(s) teT(s)

Let w = agajas --- € X'“. Then, w |= 1) iff there exists an initial infinite run o
of M such that m(w) = £(¢) and a; N APg = {ats, } for all i > 0.

Therefore, M =3¢ iff 4y A @ is satisfiable
M =y ¢ iff 4y A - is not satisfiable

Remark: we also have MC?(X,F') <p SAT(X,F’).

QBF Quantified Boolean Formulae

Definition: QBF
Input: A formula v = Q121 - - Qnx,y with o/ = /\ \/ a;j

1<i<m 1<j<k;
Q; € {V,3} and a;; € {z1,~21,..., 20, Ty}

Question: Is ~y valid?

Definition:
An assignment of the variables {x1,...,2,} is a word v = v; - - - v, € {0,1}".

We write v[i] for the prefix of length 4.
Let V C {0,1}" be a set of assignments.

V is valid (for v") if v |+ forall v € V,
V' is closed (for v) if Vv € V, V1 <i<mst. Q; =V,
I eV st vfi — 1] =v'[i — 1] and {v;,v}} = {0, 1}.

Proposition:
~visvalid iff 3V C{0,1}" s.t. V is nonempty valid and closed

QBF <p MC?(U') [14, Sistla & Clarke 85]

Let vy = Q11 - Qnin, \/ ai; with Q; € {V,3} and a; literals.
1<i<m 1<5<k;

Consider the KS M:

N
—»€0)—»S1 e —»S2 €2 Sn En
; N f/v a f/v
31 i) T, J
{ @11 @21 Gm1
/awk« 4“22§§ CyIm2 A
fo : fi : fa fm—1 : fmn —
A1k, A2k, Amk,,
G(af — s, R —ayy) ifay =y
Let ¢;; = k Y & and = i
Yig {G,(IL'Z — s R =ay;) if a; = —ag A v {}w /

Let ;= G'(e;_1 — (msj_1 U ah) A (=s; 1 U xf) and o= /\ ©;.

Then, ~v is valid iff M =3¢ A .

Complexity of LTL

Theorem: Complexity of LTL

The following problems are PSPACE-complete:
SAT(LTL(S, U)), MC¥(LTL(S, U)), MC?(LTL(S, U))
SAT(LTL(X,F")), MCY(LTL(X, F")), MC?(LTL(X, F'))
SAT(LTL(U")), MCY(LTL(U")), MC?(LTL(U"))
The restriction of the above problems to a unique propositional variable

The following problems are NP-complete:
SAT(LTL(F')), MC?(LTL(F"))

