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Abstract

We see probabilistic (self-)stabilizing algorithms as Markov chains and the set of legitimate (or
legal) states as a set of recurrent states of the Markov chain. The stabilization of the algorithm
corresponds to the time taken by the Markov chain to enter into the recurrent space. Probabilistic
classical techniques are used to infer upper bounds on the expected time to stabilization. In the case
where the algorithm contains also non-deterministic features (choice of actions), the probabilistic
algorithm is seen as a Markov decision process, and techniques of control theory are used to study
the expected time to stabilization under the “worst ” policy (or scheduler).
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1 Probability Review

1.1 Events (Brémaud,p.1)

Probability theory provides a mathematical framework for the study of random phenomena. It re-
quires a precise description of the outcome of an observation when such a phenomenon is observed.
The collection of all possibles outcome w is called the sample space {2.

Example 1. A Die. The experiment consists in tossing a die once. The possible outcomes are
w=1,2,...,6 and the sample space is the set 2 = {1,2,3,4,5,6}.

FExample 2. Coin Tosses. The experiment is an infinite sequence of coin tosses. one can take for
the sample space {2 the collection of all sequences w = {zy, },>1, where 2, = 1 or 0 depending on
whether the nth toss results in heads or tails.

Probability theory assigns to an event a number, the probability of the said event. For technical
reasons, the collection F of events that are assigned a probability is not always identical to the
collection of all subsets of (2. The requirements on F are the following.

1. The impossible event ) and the certain event {2 are in F
2. If Aisin F,sois A
3. If Ay, Ay, ... are in F, then so is U2 ; Ay

One calls the collection of subsets F a sigma field on {2, here the sigma-field of events. If the sample
space {2 is finite, one usually considers any subset of {2 to be an event. The same is generally true
for a countable sample space.

1.2 Random Variables (Brémaud,p.3)

Definition 1. Random Variables (Brémaud,p.3).

A random variable is a function: 2 — R such that for all a € R, the event {X < a} = {w; X (w) <
a} can be assigned a probability, that is, {X < a} € F.

A function X : 2 — S where S is a denumerable set is called a discrete random variable if for all
ieS: {X=i}teF.

Sometimes a random variable is called a random number. This is an innocuous habit as long as
one is aware that it is not a function X that is random, but the outcome w, which in turn makes
the number X (w) random. If X (w) is real for all w, then X is called a real random variable.

Ezample 3. : A Die. Take for X the identity X (w) = w. In that sense X is a random number
obtained by tossing a die.

Ezample 4. Coin Tosses. Here w = {x,,},>1. Define the X,, to be the random number obtained
at the nth toss: X, (w) = z,,.

1.3 Probability (Brémaud,p.4)

The probability P(A) of an event A € F measures the likeness of its occurrence. as a function
defined on F, the probability P is required to satisfy a few properties, the axioms of probability.

Definition 2. Azioms of Probability (Brémaud,p.4).
A probability (measure) on (2,F) is a mapping P : F — R such that

1. 0< P(A) <1
2. P(2) =1
3. P(3002, Ax) = 2252, P(Ay)

The third property is called sigma additivity. The triple (£2, F, P) is called a probability space,
or probability model.



The axioms of probability are motivated by the following heuristic interpretation of P(A) as
the empirical frequency of occurrence of event A. If n “independent” experiments are performed,
among which n 4 result in the realization of A, then the empirical frequency F(A) = =4 should
be close to P(A) if is “sufficiently large”. Clearly the function F' satisfies the axioms.

The axiomatic presentation of probability theory is nevetheless logically independent of the
frequency interpretation. As a matter of fact, its success is due to its apparent ignorance of the
frequency interpretation, which blurs the picture because the empirical frequency F' deends on too
many things: on the number of experiments and on the experiments themselves. The axiomatic
theory of probability connects to the frequency interpretation a posteriori: the latter appears as
a theorem, the famous strong law of large numbers (SLLN) given in Section 1.10. To obtain it, all
that is needed besides the axioms of probability and clever computations is a good definition of
what is meant by independent experiments. This definition will be given in Section ?7.

Ezxample 5. A Die. For A C 2 =1{1,2,3,4,5,6}, the formula P(A) = M%, where A is the cardinal
of A, that is, the number of elements in A, defines a probability P. This choice suggest an unbiased
die, where each outcome 1,2,3,4,5 or 6 has the same probability.

Ezample 6. Coin Tosses. Choose a probability P such that for any event of the form A = {z; =
ai,...,Tx = ag}, where as, ..., ax are arbitrary in {0,1}, P(A) = 2% This choice for probability P
implies an unbiased coin and independent tosses.

1.4 Expectation (GS,p.50)

Let x1, 9, -z, be the numerical outcomes of N repetitions of some experiment. The average
of these outcomes is m = % >; Ti. In advance of performing these experiments we can represent
their outcomes by a sequence X;, Xo, ..., X of random variables, and we shall suppose that these
variables are discrete with a common probability density function f (= P(X =.)). Then, roughly
speaking, for each possible value z, about NP(X = x) of the X; will take that value z. So the
average m is about m ~ & Y. «NP(X =z) =Y «P(X = z) where the summation here is over
all possible values of the X;. This average is called the ‘expectation’ of the underlying distribution
with probability density function P(X = .).

Definition 3. : Ezpectation (GS,p.50).
The expectation of X is defined to be E[X] = > xP(X = x) whenever this sum is absolutely
convergent.

We require absolute convergence in order that E[X] be unchanged by reordering the z;.
Note that, although the expression ) 2 P(X = ) may appear to be an uncountable sum, only
countably many of its contributions are non zero. If the numbers P(X = z) are regarded as masses
at points « then E[X] is just the position of the centre of gravity; we can speak of X as having an
‘atom’ or ‘point mass’ of size P(X = z) at . We sometimes omit the brackets and simply write
EX.

Lemma 1. (GS,p.51) If X has a probability density function P(X = .) and g : R — R, then
Elg(X)] =", 9(z)P(X = ) whenever this sum is absolutely convergent.

Ezample 7. Bernouilli variables (GS,p.52). Let X be a Bernouilli variable, taking the value 1 with
probability p (=1 —¢). Then E[X] =) 2P(X =z)=0.g+ 1.p=p.

Ezample 8. : (Counterexample,GS,p.54). Let X have probability density function P(z) = ;% for
o = £1,42,.... where A is chosen so that } P(X =) = 1. The sum } zP(X =z)= A} 1
does not converge absolutely, because both the positive and the negative parts diverge.

The expectation has the linearity and monotonicity properties, and the triangle inequality is
true:



linearity: E[aX + bY] = aE[X] + bE[Y], for all a,b € R.
Proof. ElaX +0Y] = 3, (ax +by)P(X = 2,Y =y) =ad x> P(X =zY =y)+
bY,ud  PX=2Y=y)=ad 2P(X=2)+b) yP(Y =y)=aEX +bEY.
— linearitybis: Efag: (X) + bg2(X)] = aE[g1(X)] + bE[g2(X))],
where a,b € R and g; and g, satisfy the absolute convergence conditions.
— monotonicity: (Vz g1(z) < g2(z)) = Elg1(X)] < E[g2(X)].
— triangle inequality: |E[g(X)]| < E[lg(X)]]-

Definition 4. Variance.
The variance Var(X) of a random variable X is E[(X — E[X])?].
The square root of the variance, written o, is called standard deviation.

From the linearity of expectation, it follows:
Var(X) = E[(X —m)]? = E[X?] — 2mE[X] + m? = E[X?] — m?, where m denotes E[X].

Lemma 2. (Wald) (p.19).

Let {X,,}n>1 be a sequence of integrable random variables such that E[X,] = E[X1] for all n >
1. Let T be an integer-valued random variable such that for all n > 1, the event {T' > n} is
independent of X,,. Then E[Z::1 X,] = E[X1])E[T].

1.5 Conditional Probabilities (Brémaud,p.9)

In the frequency interpretation, the definition of independence (P(A N B) = P(A)P(B)) reads, in
rough and imprecise terms nanp ~ (na/n).(np/n), or #4022 ~ nyn (here ~ is a “fuzzy” version
of the equality sign). Therefore statistics relative to A do not vary when performed on a neutral
sample of population characterized by the property B. For example, the proportion of people with
a family name beginning with H is the same among a large population with th esual mix of men
and women as it would be among a large all-male population. This is very much the intuitive
notion of independence. Dependence betewwen A and B occurs when P(AN B) # P(A)P(B). In

this case the relative frequency nanp/np ~ P(ANB)/P(B) is different from the frequency n4/n.

Definition 5. : Conditional Probability (p.9).

The conditional probability of A given B is the number P(A|B) = Pg?g;g) , defined when P(B) > 0.

The quantity P(A|B) represents our expectation of A being realized when the only available
information is that B is realized. Indeed, this expectation would then be based upon the relative
frequency nanp/np alone. A symmetric form is:

P(ANB) = P(A|B)P(B) = P(B|A)P(A).

Lemma 3. : (GS,p.10).
For any events A and B, P(A) = P(A|B)P(B) + P(A|B¢)P(B°).

Theorem 1. Bayes’s Rules (Brémaud,p.10).

— Bayes’s rule of retrodiction: with P(A) > 0, we have P(B|A) = w.

— Bayes’s rules of exclusive and exhaustive causes: For By, Bo, .... such that 221 B; = 2 and
for all A, we have P(A) =2, P(A|B;)P(B;).

— Bayes’s sequential formula: For any sequence of events A1, ..., A,, we have
P(Nf_;A;) = P(A1) P(A2| A1) P(A3| A1 0 Ag) - P(AR| NiZ] Ay).

(BT, 2002,p.28) We start with the following theorem, which is often useful for computing the
probabilities of various events, using a “divide-and-conquer” approach.

Theorem 2. (Total Probability Theorem) Let Ay, ..., A, be disjoint events that form a partition
of the sample space (each possible outcome is included in exactly one of the events Ay, ..., A,) and
assume that P(A;) > 0, for all i. Then, for any event B, we have

P(B)=P(Ai1NB)+---+ P(A,NB) = P(A,)P(B|A1) + - -- + P(B|A,).



Intuitively, we are partitioning the sample space into a number of scenarios (events) A;. Then,
the probability that B occurs is a weighted average of its conditional probability under each
scenario, where each scenario is weighted according to its (unconditional) probability. One of the
uses of the theorem is to compute the probability of various events B for which the conditional
probabilities P(B|A;) are known easy to derive. The key is to choose appropriately the partition
Ay, ..., A, and this choice is often suggested by the problem structure.

Theorem 3. We have
P(A|B) = P(C|B)P(A|IBNC)+ P(C°|B)P(BNCY),
assuming all the conditioning events have positive probability.

Definition 6. The conditional (probability) mass function of X given particular event A is defined

by
P{X =z}nA)

Definition 7. The conditional (probability) mass function of X given Y is defined by

pxpy(aly) =P(X =z | Y =y) = PHX TP(”;E 2{;)/ =y} _ Pxéi((zv)y).

Definition 8. The conditional (probability) mass function of X given Y =y is defined by

Px|y=y(2) =P(X =z [ Y =y).

1.6 Conditional Expectation

(MU,p.26). Just as we have defined conditional probability, it is useful to define the conditional
expectation of a random variable. The following definition is quite natural.

Definition 9.
BY | Z=2=) P(Y=y|Z=2),

where the summation is over all y in the range of Y.

The definition states that the conditional expectation of a random variable is, like the expec-
tation, a weighted sum of the values it assumes. The difference is that now each value is weighted
by the conditional probability that the variable assumes that value.

Proposition 1. For any random variables X and Y,
Z P(Y = y)E[X | Y =y,

where the sum is over all values in the range of Y and all of the expectations exist.

Proof. ¥, P(Y = y)E[X | Y =y = 5, P(Y =) S, aP(X =x | Y =)
=38, aP(X =2 | Y = y)P(Y = p)

Zmzy(:z:]P(X zNY =y)

P =z

.

Perhaps somewhat confusingly, the conditional expectation is also used to refer to the following
random variable.

>

I
iS\g

Definition 10. The expression E[Y|Z] is a random variable f(Z) that takes on the value E]Y | Z =
z] when Z = z.



We emphasize that E[Y|Z] is not a real value; it is actually a function of the random variable Z.
Hence E[Y|Z] is itself a function from the sample space to the real numbers and can therefore be
thought of as a random variable.

Theorem 4.
E[Y]=E[E[]Y | Z]].

Proof. E[Y|Z] is a function f(Z), where f(Z) takes on the value E[Y|Z = z] when Z = z. Hence

E[Y|Z]] ZEY|Zfz =2).

The right-hand side equals E[Y] by Prop. 1.

This theorem provides us a useful method for calculating E[Y], since it asserts that
=Y E[Y|X =2]P(X = x).

Proposition 2. (Successive conditioning)
EE(X |V.,Y,) | V1] =E[X | V1]

Theorem 5. (Total Expectation Theorem) Let Ay, ..., A, be disjoint events that form a partition
of the sample space, and assume that P(A;) > 0, for all i. Then,

}:P E[X|A;).

Theorem 6. Let Ay, ..., A, be disjoint events that form a partition of the an event B, and assume
that P(A; N B) > 0, for all i. Then,

E[X|B] = ZP (A;|B)E[X|A; N B.

The total expectation theorem basically says that “the unconditional average can be obtained
by averaging the conditional averages”.

1.7 Indicators (p.18)

The indicator function of an event A:

lifwe A
Law) = {Oifw g A
The random variable X = 1, takes the value 1 with probability P(X = 1) = P(A) and the value
p(X =0) = P(A) =1 — P(A). Therefore, E[X]=0xP(X =0)+1xP(X=1)=P(X =1)=
P(A), that is to say,
E[14] = P(A).

In particular, E[1] = 1.1

1.8 Telescope Formula

Theorem 7. Telescope Formula (MU, p.31).

For a random variable X taking its values in N, E[X| =2 P(X >1i).

Proo[f. ]Zfil P(X >i) =372, Z;;‘IP(X =Jj) = Z;il Yia P(X =)= ZJOL JP(X =)

= E[X].

The interchange of (possibly) infinite summations is justified, since the terms being summed are
all nonnegative.

! LF: Conditional expectation E[14]Y] = P(A|Y), ¢f Brémaud, p.39.



1.9 Jensen’s Inequality

Proposition 3. (MU, p.24) If a function f : R — R is convex (i.e., f(Axy + (1 — N)za) <
Af(z1) + (1 = XN) f(x2), for any x1,22 and 0 < XA < 1), then

E[f(X)] = f(E[X]).

Proof. (Case f has a Taylor expansion). Let u = E[X]. By Taylor’s theorem, there is a value ¢
such that )
(z —p)

f@) = f(u) + f'(u) (@ —p) + f”(@T > f(p) + f'(p)(x — p),

since f”(c¢) > 0 by convexity. Taking expectations of both sides and applying linearity of expacta-
tions yields the result:

E[f(X)] = E[f (1) + f'(n)(X = p)] = E[f ()] + f' () (E[X] = p) = f(p) = f(E[X]).

1.10 Almost-Sure Convergence (Brémaud,p.43)

A sequence {Z,},>1 of real random variables is said to converge P-almost surely (P-a.s.) to the
real random variable Z if P(lim,j0c Z, = Z) = 1. (Paraphrasing: For all w outside a set N of null
probability, lim, 10 Z,(w) = Z(w)).

Theorem 8. : Criterion of Almost-Sure Convergence. (Brémaud,p.43).
Let {Zn}n>1 and Z be random wvariables. If Y -, P(|Z, — Z| > €,) < oo for some sequence of
positive numbers {e, }n>1 converging to 0, then the sequence {Z,},>1 converges P-a.s. to Z.

Theorem 9. Dominated Convergence. (GS,p.160)
If {X,} is a sequence of variables with X,, — X a.s. (i.e., Xp(w) — X(w) for all w € 2 except
possibly on some null event) and ¥n,w | X, (w)| < Y(w) a.s. and E(Y) < o0, then, E(X,) — E(X).

1.11 Markov’s Inequality (p.45)

Theorem 10. Markov’s inequality. Let X be a random variable with values in R, f : R — R,
and a > 0. We then have
BIF(X)]

PUH(X) za) < =

Proof. From the inequality f(X) > al{f(x)>q}, it follows by taking expectations that

Elf(2)] = aE[l{j(x)>ay) = aP(f(X) > a).

2 (Case X takes only finitely many values). By induction, one can prove that if f is convex then, for
any xi,Zz,...,Tn and A1, Ao, ..., Aq with 300 A =1, (07, hiwe) < 3°7, Aif(@:). Then, it follows:
E[f(X)] > f(B[X]).



2 Markov Chains (KS, p.25)

2.1 Stochastic Processes (Kemeny-Snell, p.14)

We wish to give a probability measure to describe an experiment which takes place in stages.
The outcome at the nth stage is allowed to depend on the outcomes of the previous stages. It is
assumed, however, that the possibility for each possible outcome at a particular stage is known
when the outcomes of all the previous stages are known. From this knowledge we shall construct
a possibility space and measure for the over-all experiment.

We require that there be a finite number of possible outcomes at each stage and that we know
the probabilities for any particular outcome at the j-th stage, given the knowledge of the outcomes
for the first j — 1 stages. For each j we obtain a tree T);. The set of paths of this tree serves as
a possibility space for any statement relating to the first j experiments. On this tree we assign
a measure to the set of all paths. We first assign branch probabilities. Then the weight assigned
to a path is the product of all branch probabilities on the path. The tree measures are consistent
in the following sense. A statement whose truth value depends only on the first j stages may
be considered a statement relative to any tree T; for i > j. Each of these trees has its own tree
measure and the probability of the statement could be found from any one of these measures.
However, in every case the same probability would be assigned.

Assume that we have a tree for an n stage experiment. Let X; be a function with domain
the set of paths T,, and value the outcome at the j-th stage. Then functions X;, X5, ..., X,, are
called the outcome functions. The set of functions X;, Xo,..., X, is called a stochastic process.
(In Markov chain theory it is convenient to denote the first outcome by X instead of X;.)

There is a simple connection between the branch probabilities and the outcome functions. The
branch probabilities at the first stages are:

P[X; =]
at the second stage

PlXo =j | X1 =1]
at the third stage

PXs=k| Xo=7j,X1 =1
etc.

A stochastic process for which the outcome functions all have ranges which are subsets of a
given finite set is called a finite stochastic process.

Therefore, for a finite stochastic process we have a tree and a tree measure and a sequence of
outcome functions X,,,n =0,1,2,... . The domain of X,, is the tree T}, and the range is the set
S, of possible outcomes for the n-th experiment. The value of X, is j if the outcome of the n-th
experiment is j.

A finite stochastic process is an independent process if

(I) For any statement p whose truth value depends only on the outcomes before the n-th:

PIX, =j | p| = P[X, = j].

For such a process the kowledge of the outcome of any preceding experiment does not affect the
knowledge of the outcome of any preceding experiment does not affect our predictions for the next
experiment. For a Markov process we weaken this to allow the knowledge of the immediate past
to influence these predictions.

Definition 11. A finite Markov process is a finite stochastic process such that
(II) For any statement p whse truth value depends only on the outcomes before the n-th,

]P[Xn :] | Xpo1= va] = IP[Xn :] | Xp1= ]



We shall refer to condition I as the Markov property. For a Markov process, knowing the
outcome of the last experiment we can neglect any other information we have about the past
in predicting the future. Itis important to realize that this is the case only if we know exactly
the outcome of the last experiment. For example, if we know only that the outcome of the last
experiment was either ¢ or k then knowledge of the truth value of a statement p relating to earlier
experiments may affect our future predictions.

Definition 12. The n-th step transition probabilities for a Markov process, denoted by p;;(n) are
pij(n) =P[X, =j | X1 =1

Definition 13. A finite Markov chain is a finite Markov process such that the transition proba-
bilities p;j(n) do not depend on n. In this case they are denoted by p;;. The elements of possible
outcomes of the experiments (elements of S) are called states.

Definition 14. The transition matrix for a Markov chain is the matriz P with entries p;;. The

initial probability vector is the vector my = {p§0)} = {P[Xo, = j|}.

For a Markov chain we may visualize a process which moves from state to state. It sarts
in j with probability p§0). If at any time it is in state j, then it moves on the next “step” to
J with probability p;;. The initial probabilities are thought of as giving the probabilities for the
various possible starting states. The initial probability vector and the transition matrix completely
determine the Markov chain process, since they are sufficient to build the entire tree measure.Thus,
given any probability vector my and any probability matrix P, there is a unique Markov chain
(except possibly for renaming the states) which will have the 7y as initial probability vector and
P as transition matrix.

2.2 Recapitulation and Examples
Definition 15. (Markov Models)

— A Markov chain model is specified by identifying:
(a) the set of states S = {1,...,m},
(b) the set of possible transitions, namely, those pairs (4, j) for which p;; > 0, and,
(c) the numerical values of those p;; that are positive.
— The Markov chain specified by this model is a sequence of random wvariables Xg, X1, Xo, ...,
that take values in S, and which satisfy
IP(Xn—i-l = ]|Xn = i7Xn—1 = Z‘n—la -n,XO = 7’0) = IP(Xn—i-l = ]‘Xn = Z) = Pij,
for all times n, all states i,j € S, and all possible sequences ig,...,1,_1 of earlier states.

All the elements of a Markov chain model can be encoded in a transition probability matriz,
which is simply a two-dimensional array whose element at the i-th row and j-th column is p;;:

P11 P12 ** Pim
P21 P22 " P2m

Pmi1 Pm2 *°° Pmm

It is also helpful to lay out the model in the so-called transition probability graph, whose nodes
are the states and whose arcs are the possible transitions. By recording the numerical values of
p;; near the corresponding arcs, one can visualize the entire model in a way that can make some
of its major properties readily apparent.



FEzample 9. Un exemple est donné en figure 1, correspondant a la matrice de transition suivante :

03919
003553
r_|000001
“[o10000
000010
004003

Fig. 1. Un exemple de graphe associé & une chaine de Markov

Ezample 10. We consider Herman’s mutual exclusion algorithm [?]. The topology is a cyclic graph
(ring) of N vertices, and the scheduler synchronous. The set of states is Q = {0, 1}, and the number
of machines N is odd. At each step, the state of every machine x(i) (1 < i < N) is changed into
x'(i) as follows:

— if (i) # x(i — 1) then z'(i) = —x(4),

. . . . 0 with probability 1/2,
_ﬁ“”:x@_ntmndm:{l mmimmmmiﬁz

(When ¢ =1, (i — 1) stands for N. As usual, -0 stands for 1, and —1 for 0.)

For two tokens, the Herman matrix is of the form:

100 . 0

111

4%4

0% 31
111
114
4 4

Ezample 11. We consider the problem of the Iterated Prisoner’s Dilemma, as modeled in [?]. The
topology is a cyclic graph (ring) of N vertices, and the scheduler randomized central. The set of
states is @ = {—,+}. At each step, a vertex i (1 < i < N) is chosen uniformly at random, and
the values z (i) and z(i + 1) are changed into 2’(¢) and (i + 1) respectively as follows:

—ifz(i) = 2(i+ 1), then 2'(i) = 2'(i + 1) = +,
—ifx(i) #2(i+ 1), then 2'(4) = 2'(i + 1) = —.

(When i = N, (i + 1) stands here for 1.)



2.3 The Probability of a Path (BT 2002,p.318)

Given a Markov chain model, we can compute the probability of any particular sequence of future states.
This is analoguous to the use of the multiplication rule on sequential (tree) probability models. In partic-
ular, we have

]P(XO = io,Xl = il, ,Xn = Zn) = IP(XO = io)pioilpiliz ot Pigy i

If the initial state X is given and is known to be equal to some g, a similar argument yields
P(X1 =11, ..c; Xn = 1| X0 = 10) = Digiy Pirio *** Dip_1in-

Graphically, a state sequence can be identified with a sequence of arcs in the transition probability graph,
and the probability of such a path (given the initial state) is given by the product of the probabilities
associated with the arcs traversed by the path.

2.4 n-Step Transition Probabilities (BT 2002,p.319)

Many Markov chain problems require the calculation of the probability law of the state at some future time,
conditioned at the current state. This probability law is captured by the n-step transition probabilities,
defined by

pij(n) = P(Xyn = j[Xo =1).
In words, p;;j(n) is the probability that the state after n time periods will be j, given that the current
state is i.

(GS,p.196)Broadly speaking, we are interested in the evolution of X over two different time scales, the
‘short term’ and the ‘long term’ In the short term the random evolution of X is described by P, whilst
long-term changes are described in the following way.

Definition 16. (GS,p196) The n-step transition matrix P, = (p;;(n)) is the matriz of n-step transition
probabilities p;;(n) = P(Xpmin = j| Xm = 1),

Of course, P, = P

Theorem 11. : Chapman-Kolmogorov Equations (GS,p196)
pij(m+n) = 32, pir(m)pr;(n)
Hence Ppyn = Py Pn, and so P, = P™, the nth power of P.

This theorem relates long-term development to short-term development, and tells us how X,, depends
on the initial variable X, Let ,ui") = P(X,, = i) be the density function of X,,, and write (™ for the row
vector with enties (u{™ : i € S).

Lemma 4. (GS,p196) ™™ = u"™ P, and hence p™ = p(© P,
Thus we reach the important conclusion:

Theorem 12. Distribution of an HMC
The distribution of a discrete-time HMC is determined by its initial distribution
matriz P.

©) and its transition

Many questions about the chain can be expressed in terms of these quantities (P and u(o)), and the
study of the chain is thus largely reducible to the study of algebraic properties of matrices.

2.5 Classification of states (Kemeny-Snell, p.35)

(Brémaud, p.71) All the properties defined in the present section are topological in the sense that they
concern only the naked transition graph (without labels).

Definition 17. A set C of states is called:

— closed if for alli € C:p;; >0=j € C.
— irreducible (or strongly connected) if i < j for alli,5 € C.



Once the chain takes a value in a closed set C' of states then it never leaves C' subsequently. A closed
set containing exactly one state is called absorbing. We have:

Proposition 4. A state i is absorbing if and only if pi; = 1.

Definition 18. (GS,p.204) We say i communicate with j, written i — j, if the chain may ever visit state
J with positive probability, starting from i (that is, i — j if p;;(n) > 0 for some n > 0). We say i and j
are interconnected if i — j and j — i, in which case we write i < j.

It is easy to see that < is an equivalence relation (Two states are in the same equivalence class if they
“communicate”, i.e. if one can go from either state to the other one.) The state space S can be partitioned
into equivalence classes of <. The resulting partial ordering shows us the possible directions in which the
process can proceed. The minimal elements of the partial ordering are of particular interest.

Definition 19. The minimal elements of the partial ordering of equivalence classes are called recurrent
sets. The remaining element are called transient sets. The elements of a transient set are called transient
states. The elements of a recurrent set are said to be recurrent (or non-transient).

Since every finite partial ordering must have at least one minimal element, there must be at least
one recurrent set for every Markov chain. However, there need be no transient set. The latter will occur
if the entire chain consists of a single recurrent set, or if there are several recurrent sets, which do not
communicate with eithers.

If a process leaves a transient set it can never return to this set, while if it onces enters a recurrent
set, it can never leave it.

Theorem 13. : Decomposition of the State Space (GS,p.205).
The state space S can be partitioned uniquely as E =T U Ry U Ra U --- where T is the state of transient
states, and the R; are the recurrent sets.

Proposition 5. Fach recurrent set is closed and irreducible.

The decomposition theorem gives us a canonical form for the transition matrix. We renumber the
states as follows: The elements of a given equivalence class will receive consecutive numbers. The minimal
sets will come first, the sets that are one level above the minimal sets, then sets that are one level above
the minimal sets, then sets with two levels above the minimal sets, etc. This will assure us that we can go
from a given state to another in the same class, or to a state in an earlier class, but not to a state in a later
class. The communication structure of a transition matrix is therefore of the form P = (Py, P», Ps, ...).

Ri Ry Rs T
PO 00
Ry
_ 0P 00
P= R, 00 P50 (8.5)
Rs rTx T T
T

Ezample 12. In the example of Fig. 1, there are two recurrent sets: {ss} and {ss, s¢}. After reordering
the set as {ss, s3, S¢, 51, S2, S4}, with the recurrent sets at the beginning, the matrix of transition has the
form:

OrI- RO O
[an]
[en]
OwFIF O O O

Q= O O O =

Every finite Markov chain has always at least one recurrent set (since finite partial ordering < must
have at least one minimal element). Moreover, two distinct recurrent sets are disjoint (since they are both
strongly connected).



Ezample 13. Consider Herman’s algorithm in the case where NN is odd. In a configuration, a “token” at
position ¢ (1 <4 < N) corresponds to the presence of two contiguous states of the same value (00 or 11)
at position ¢ — 1 and ¢. Since N is odd, any configuration contains always at least one token. It is easy to
see that such a set is recurrent:

The set L is the set of the configurations with a single token. There are 2N such configurations: they are
of the form z; = 01---010010--- 101 where token 00 is at position i, or z; = 10---101101---010 where
token 11 is at position ¢, for all 1 < ¢ < N. (Letters in bold indicate that they are subjet to randomized
transitions.) Let us show that £ is recurrent, i.e. closed and strongly connected.

Applying a transition to an arbitrary element of £, say x;, leads to the ‘dual’ element z; = 10--- 101101 - -
with probability 1/2, where token 11 is at the same position, or to 2,11 = 10---101001 - - - 010 with prob-
ability 1/2, where token 00 is at position one more right. This shows that £ is closed (since =} and ;41
belong to £). Moreover, this shows that one can go from z; to x} and z;41 in one step; two elements of £
are thus connected together within at most N steps. Hence L is strongly connected.

2.6 Combining States (Kemeny-Snell, p. 123)

Assume that we are given an r-state Markov chain with transition matrix P and initial vector m. Let
A ={A:1,As,..., A} be a partition of the set of states. We form a new process as follows. The outcome
of the j-th experiment in the new process is the set Ay that contains the outcome of the j-th step in the
original chain. We define branch probabilities as follows: At the zero level we assign

]PW[XO S Az] (1)
At the first level we assign

]PW[Xl S AJ‘ | Xp € Al}

In general, at the n-th level we assign branch probabilities,

P X, €A | Xno1 € As,..., X1 €A, Xo €A (2)
The above procedure could be used to reduce a process with a very large number of states to a process with
a smaller number of states. We call this process a lumped process. It is also often the case in applications
that we are only interested in questions which relate to this coarser analysis of the possibilities. Thus it is
important to able to determine whether the new process ca be treated by Markov chain methods.

Definition 20. We shall say that a Markov chain is lumpable with respect to a partition A = {A1, Aa, ..., Ar}
if for every starting vector m the lumped process defined by (1) and (2) is a Markov chain and the transition
probabilities do not depend on the choice of .

Let pia, = > 4e A, Pik: Then p;4; represents the probability of moving from state 7 into set A; in one
step of the original Markov chain.

Theorem 14. A necessary condition for a Markov chain to be lumpable with respect to a partition A =
{A1, A2,..., As} is that for every pair of sets A; and Aj, pra,; have the same value for every k € A;.
These common values {pi;} form the transition matriz for the lumped chain.

Proof. For the chain to be lumpable it is clearly necesaary that
P.[X1 € A; | Xo € A

be the same for every p;;. In particular this must be the same for 7= having a 1 in its k-th component,
for state k € A;. Hence pra, = P.[X:1 € Aj] = ps; for every k € A;. Hence PrA; = PL[X1 € Aj] = pij
for every k € A;. Thus the condition given is necessary. To prove it is sufficient, we must show that if the
condition is satisfied the probability (2) depends only on A, and A;. The probability (2) may be written
in the form

]PTr’ [Xl S At}

where 7’ is a vector with non-zero components only on the states of As. It depends on 7 and on the first
n outcomes. However, if Px[X, € A;] = ps for all k € A, then it is clear also that P/[X; € A;] = Pst.
Thus the probability in (2) depends only on As and A;.

NB: This notion of lumpable Markov chain is similar to the definition of probabilistic bisimulation of
Larsen and Skou [?], in the sense that lumping consists in creating a new Markov chain bisimilar to the
original one and having less states.

-010



Ezample 14. Let us consider the following matrix

RN S

111

R 2 4 4
P= 202
N\t

S 4 4 2

We note that the probability of moving from either of states R and S to N is the same. Hence if we
choose for our partition A = ({N},{R, S}) = (G, B), the condition for lumpability is satisfied. The new
transition matrix is

G B

01
P':G<13).
B 1 1

Note that the condition for lumpability is not satisfied for the partition A = ({R},{N, S}) since pya, =
pnr = 3 and psa, = psr = ;-



3 Time to Absorption: An Algebraic View

(KS, p. 22+46)

Proposition 6. In any finite Markov chain, no matter where the process starts, the probability after n
steps that the process is in a recurrent state tends to 1 as n tends to co.

Definition 21. A set of states O is an open set if from every state in O it is possible to go to a state in
the complementary set —-O.

Proposition 7. A set of states O is open if and only if no recurrent set is a subset of O.

Lemma 5. If A" tends to O (zero matriz) as n tends to infinity, then (I — A) has an inverse, and
I-A) ' =T+A+A+...=>" A"
k=0

Proposition 8. Let O be an open set of states. Let QQ be the s X s submatriz of P corresponding to these
states. Let the process start in i. Then:

1. I — Q has an inverse, and
I-Q7'=1+Q+Q + =3 Q"
k=0

2. The i-th component of T = (I — Q)™ '1 is the mean number of steps needed to leave O, where 1 denotes
the column vector with all entries 1.

(BT,p.150)
Proposition 9. If M is a nonnegative matriz then the following are equivalent:

1. p(M) <1
2. There exists some w such that ||M||5, < 1
(where |M||% = max; - 327, [majlw; = max; -[Mw]; = [[Mw]|%).

3. There exists some A < 1 and w > 0 such that Mw < \w.

Proposition 10. Given any square matriz M, there exists some w > 0 such that | M||% < 1 if and only
if p(IMI) < 1.

Proposition 11. If M is row diagonally dominant (i.e. 3=, ; |ai;| < |aii|, for all i), then the Jacobi-type
iteration x := Mx +b (for solving Mx = b) converges, as well as the corresponding Gauss-Seidel iteration
(i.e., the iteration where the components are updated one at a time).

It is easy to show that the set of transient states of a Markov chain is open. Therefore, the above
theorem gives us the expected time to absorption of a Markov chain under an algebraic form.

Proposition 12. (BT89, p. 170) Consider the directed graph associated with P®. Let {X(t) |t =0,1,...}
be a Markov chain whose one-step transition probabilities are given by P. Let T be a positive integer and
let

O0r = min;=s,... ., P(there exists some 7 < T such that X (1) = 1|X(0) = 7). (10.1)*

(a) Assume that, for all state i, there exists a positive path from i to state 1. Then, there exists K > 0
such that 6T > 0 for all T > K.

(b) If o1 >0, then
p(P) < (IPT]|oe)T < (1= 67)V/T < 1.

3 i.e., the graph with the state space S = {1,...,7} as its set of vertices and an oriented edge from vertex
i to vertex j if and only if p;; > 0.
4 Alternatively: [PT];1 > 0 for all 4 > 1.



Proof. (a) The positivity of o7 is a straightforward consequence of the fact that for each ¢ # 1, there exists
a sequence of positive probability transitions leading from ¢ to 1. We simply need to take 7" large enough
so that for each ¢ # 1, there exists at least one such path that uses no more than 7" arcs.

(b) Let
o= (,%).

which is easily seen to be a stochastic matrix, and let {Y (¢)|t = 0,1, ...} be an associated Markov chain.
We notice that Y (¢) has the same transition probabilities with X (¢) except that state 1 is an absorbing
state: once Y () becomes 1, it never changes. It follows that

57 < P(there exists some 7 < T such that Y(7) = 1[Y(0) = i) = [Q7 i1, i=2,...,n (8.8)
We now notice that Q7 is of the form

"= (1%). 9

where ¢ is an (n — 1)-dimensional column vector with all its entries bounded below by 7. Since Q is a
stochastic matrix, so is Q7 and each row sums to 1. It follows from Eq. (8.9) that the sum of the entries
in any row of P? is bounded above by 1 — &7. Therefore, p(PT) < ||PT||ec < 1 — d7. The result follows
because p(P) = (p(PT))Y/T.

3.1 Application

Proposition 13. The expected timed to absorption of a lumped chain is equal to the expected time to
absorption of the original chain.

Ezample 15. (Herman after lumping). Configurations with k& tokens are represented by k-tuples of the
distances between conscutive tokens.
Lumpability is ensured due to the invariance by rotation of the (minimal distance) between tokens.
Let us now explain the computation of the D-transition matrix Qy for k = 2 in Herman’s example [?].
Ay ={1,2,...,m} with m = N/2. Q2 is the m x m matrix of components £(d, e) (with d,e € Ay), of the
form:
1/2 1/4
1/4 1/2 1/4

1/4 1/2 1/4
1/4 3/4
Note that, component £(1, L) = 1/4 is excluded from the matrix Q2, since the L-column has been
truncated. We then compute Bz = (Z — Q2) ™", which gives:

44 . ... 4
488 ... 8
8§12 . . . 12
4 812. . .4m

By corollary 7?7, we know that the result of applying B> to 1 gives a column vector of d-component
2d(N — d), for d € {1,...,|N/2]}. Therefore Ez(d ~»* 1) = 2d(N — d). The maximal expected time
corresponds to d = | N/2| = m, and is 2m(m+1) ~ N?/2. This corresponds to E[min{t : X; € £ | Xo = i}]
for i € Xo.



4 Markov Chains with costs (BT89, p.308-312)

4.1 Motivation: Expected Time to Absorption (Bertsekas-Tsitsiklis 2002, p.341)

We now turn our attention to the expected number of steps until a recurrent state is entered (an event
that we refer to as “absorption”), starting from a particular transient state. For any state ¢, we denote

v; = E[number of transitions until absorption, starting from ¢]

= E[min{n > 0 | X, is recurrent}| X, = i].

Note that if ¢ is recurrent, then v; = 0 according to this definition.

We can derive equations for the v; by using the total expectation theorem.’® We argue that the time
to absorption starting from a transient state 7 is equal to 1 plus the expected time to absorption starting
from the next state, which is j with probability p;;. We then obtain a system of linear equations, stated
below, which has a unique solution.

NB: finite solution.

Proposition 14. The expected times to absorption, v1,...,vm are the unique solution to the equations
v; = 0, for all recurrent states 1,
v =1+ E;”ﬂpijvj, for all transient states i.

Proof. The statement v; = 0 for all recurrent states 4, is obvious. Let R be the set of recurrent states.
Consider the case where ¢ is transient. We have:
v; = Emint: X; € R | Xo = 1]

= Z](E[Hllnt : Xt eER | XO = i,Xl :]] X IP(Xl :j ‘ Xo = ZD
Zj(E[mint : Xt cER | X1 :]] X pij)
Zj(l + E[mint: Xy € R | Xo =j]) X psj
>25(

1+ v;)pij
L+ 32, vipij

Let P be the transition matrix of probabilistic transitions restricted to the subset of transient con-
figurations. The probability of not stabilizing (i.e., reaching a recurrent state) on the very next step is
Pi (a column vector indexed by the initial state); and thus in general P*1 gives the probabilities that
stabilization will not occur within k& steps. From elementary probability, the expected time to stabilization
is a column vector o = (3, pk)i where this summation exists, provided stabilization occurs with prob-
ability 1: each element of the vector gives the expected time from that initial state. Where the summation
does exist, matrix algebra shows that in fact we have & = Po + 1. Thus if from every initial configuration
i in S the expected time ¥ to stabilisation is finite, we know that it satisfies

&= Pz+1.
Conversely, if we have some # that satisfies Z = P# + 1 uniquely then, provided we have established (by
some other means) that the expected time to stabilisation is everywhere finite, we will know it is given
by Z.
Proposition 15. Let P be the transition matriz of probabilistic transitions restricted to the subset of
transient configurations. We have:

— For all i, the expected time to stabilization v; from i is finite.
— ¥ is the unique solution of £ = PT + 1.

4.2 A More General Approach: Expected Cost Vector

Consider a stationary discrete-time Markov chain p = (X;) with state space S = {1,2,...,m}, and transi-
tion probability matrix P(u) with elements p;;. Suppose that if the state is X () = j at time ¢, there is a
cost ¢ incurred (sometimes denoted by ¢ (j) or ¢(Xr)), where ¢} is a given scalar (Le.: ¢ is a function
from S to R).

c* is called the one-step cost vector associated with p. Since we have

P(X: = j|Xo = 1) = [P"(1)]-

In the following, we will often abbreviate P(u) as P, and ¢ as c.

® (BT 2002,p.105):E[X] = Y7 | P(A;)E[X|A;], where Ay, ..., A, are disjoint events that form a partition
of the sample space, ans IP(A;) > 0 for all i. Furthermore: E[X|B] =" | P(A;|B)E[X|A; N B).



Definition 22. The expected cost associated with the system starting at state i is

vi = Y50 Bile(X0)] = 520 PalXe = )e() = 252 Phieli) = 52 [Pl
Equivalently, we have

v=7>32,Pc (2.1),
where v and c are the vectors with coordinates v; and c;, respectively.

v 18 called the expected cost vector associated with P.

NB: The expected time to stabilization corresponds to the case & = 1.

Given a closed set £, we will say that the Markov chain p = (X;) (or more simply P) is stabilizing
w.r.t. £ if VilP;(Tz < oo) where T, is the first time where a state of L is reached, starting from 4 (i.e. for
all i, Tr = min{t : X; € L|Xo = i}.e

We will consider the special case where state 1 is cost-free and absorbing, and that p is stabilizing
w.r.t. £={1}. (It is the case when all the recurrent states have been lumped in a single class.)

Lemma 6. Suppose that state 1 be absorbing and cost-free and that p is stabilizing w.r.t. 1. Let L be the
operator defined by L(v) = ¢+ Pv. Then the expected cost vector v is such that:

(a0) (I — P)™" is invertible, and v is finite and is equal to (I — P) " 'c.

(al) v is the unique fized point of L within V.”

(a2) lim;—oo (L) (u) = v for allu € V.

(a3) If there exists u such that w > Lu then u > v.

Proof. (a0)-(al)-(a2). Let us write P in the form

Pn1
Since p is stabilizing, there exists some ¢ > 0 such that state 1 is reached with positive probability after
at most  transitions regardless of the initial state ([P'];1 > 0 for all 7). It was shown in Prop. 12 that for
some 0 > 0, we have
p(P) < [Pl <1-36. (2.7)
Since ¢1 = 0, it is seen from Eq. (2.6) that for all ¢ > 0, we have

where

Cm

From Eq. (2.7) we can see that the spectral radius p(P) of P satisfies p(P) < 1. Therefore, P" tends to
0, and, by lemma, 5, the matrix (I — P) is invertible. It follows that the equation & = &+ P has a unique
solution. This solution, call it x*, satisfies

¥ =é+ P@E+Px) ==Y " Pé+ PMa*, Vm. (2.9)
Since p(P) < 1, we have lim,, ... P™z* = 0. Therefore, by taking the limit in Eq. (2.9) as m — oo, we
obtain that the series > - P’c is convergent and is the (unique) solution of 2* = Lz*. Now this series
defines the cost vector ©. Hence:

6 We know that P is stabilizing iff [P?]il > 0, which is equivalent itself to the connectivity of 7 to 1.
7 Recall that V is the set of vectors of R™ with first component v; = 0.



So & = &+ P, ¢1 = 0. Furthermore, v; = 0. Tt follows using Eq. (2.6) that v satisfies the equation
v = L(v)(= ¢+ Pv). Furthermore, since p(P) < 1, the iteration

9= L(v),®
converges to ¥ starting from an arbitrary initial condition. Hence lim;_.(L)*(v) = v for all v € V.

(a3). Suppose v > Lwv, for some v. Hence: ¥ > L%. Since ¥ = L¥, we have: o — 7 > 15(17 — ). Hence:
0 —10 > P™(0 — 1), for all m > 1. Now P™ — 0 when m tends to co (since p(P) < 1). Hence, by taking
the limits of the sides of the above inequation: & — ¢ > 0. It follows: v — v > 0 (assuming v; = 0).

Lemma 6 can be rephrased as a “maximum principle” as follows.

Proposition 16. (Mazimum Principle) Let ¢ be a cost vector on S = {1,...,m}, L a subset of S, and
P the transition matriz of a Markov chain (X) stabilizing w.r.t. L (i.e., for all i, P;(min{t : X; € L} <
o0) = 1). Suppose that L is closed and cost-free. If for some column vector u of size |S]|,

0 on L,
uZ (resp. =) {Pu—/—c on S\ L.

Then u > (resp. =) v, where v is the expected cost of absorption to L (i.e., vi = Ei[> ;o c(X¢)] fori e S).

NB: The proposition can be generalized by replacing the hypothesis u > 0 on £ by v > ¢ on L, where
¢ is a function called the final costS, and v is vi = Ei[} g, < ¢(Xt) + @(X1)l{1<00y] for i € S).

4.3 Recapitulation

Summary:
- Series > ;2 P*c converges to, say, .
- % = &+ P7 has ? as a unique solution.
- Tteration of & = ¢ 4 P4, starting from arbitrary initial vector, converges to .

NB:

- Gives a linear programming scheme of resolution

- For ¢ = 1, we compute the expected time of absorption (or exit from the transient space)

- using lumping, these results of exiting from the transient space generalize to the case where the
absorbing states are not unique. It suffices to consider a set £ closed and cost-free, such that from any
i € S there exists a path from i to £, and take for V', the set of vectors of components null on states of L.

8 Tt can be shown that this iteration converges even if executed in a totally asynchronous environment.



5 Maximum Principle: Applications

5.1 Application to Herman with three tokens (Mclver-Morgan)

Ezample 16. Application to Herman with 3 tokens (McIver-Morgan) Consider the special case in which
exactly three processors have tokens initially. we give an exact value for the expected time to stabilisation.

Lemma 7. The expected time to stabilisation of a ring with initially three tokens is 4abc/N, where a,b, c
are the initial separations of the token. (Note that a +b+c = N).

Proof. Let L be the set of one-token configurations, and S = S\ L be the set of three-token config-
urations of the ring. Define column vector 4 over S so that for r in S the r- entry Uy is 4arbre. /N,
where a,, b., ¢, are the particular separations a,b,c in that configuration r; let P be the reduced
Markov matrix for S only. Direct calculation shows that Pi = 4 — 1, as explained hereafter. In a
three-token system there are eight equiprobable outcomes for a single step, ranging from “all tokens
kept” to “all tokens passed”. Their effect transformed a, b, c into a’,b’, ¢’ respectively, as tabulated below:

no token passed: a b c

a—1 b c+1
one token passed: a+1 <b—1 c ~
a b4+1 (c—1 Direct calculation of Pa for initial configuration a,b,c

a b—1 c+1
two tokens passed: a+1 b c—1
a—1 b+1 c

all tokens passed: a b c
gives
abc
+a—1Dblc+1)+(a+1)(b—1ec+a(db+1)(c—1)
UBXAIN X b~ 1)(c+ 1) + (a4 Dbl — 1) + (a — 1)(b+ 1)e
+abc,

which via a + b+ ¢ = N is readily simplified to 4abc/N — 1 as required. It follows by Prop. 16 that the
r-entry of @ gives the expected time to stabilisation for each r in S.

Ezxample 17. Gambler’s ruin

5.2 Application to Herman with k tokens

Ezample 18. Herman with k tokens via decreasing function (Mclver-Morgan).

Proposition 17. The expected time to stabilisation of Herman’s Ring is O(N?).

Proof. Choose for an upper bound the column vector @ of height n—1 whose r-entry is 2z, (2N —z, —1) for
each configuration r, where x, is the extent of r, the minimum number of contiguous segments containing
all tokens in 7. Note that since z,. < N —1 for all configurations r, each entry of u is O(N %) as a function
of N. Elementary (but detailed) calculation shows that @ > Pa + 1.

Hence we have 4 > ¥ from Prop. 16, where ¥ is the vector of expected time to absorption, giving that
each entry is O(N?).



5.3 Application to Israeli-Jalfon on a Ring

Avec Israeli-Jalfon, chaque politique (Markovienne) est caractérisée par une matrice de transition P par-
ticuliére. Nous appliquons les critéres ci-dessus pour montrer 1’équivalence et I’optimalité en temps moyen
des stratégies pour Israeli-Jalfon sur anneau, pour aller d’une classe de configurations initiales & une classe
de configurations finales. On supposera prouvé que la probabilité d’aller d’une configuration initiale & une
configuration finale est 1, et on “lumpera” toutes les configurations finales en un seul état (assimilés & un
état “1” unique et cost-free).

L’idée pour montrer que, pour un probléme donné, toutes les politiques sont équivalentes est de calculer
le cout v* pour une politique p particuliére, et de montrer v* = Pv* 4+ 1 sur S\ £, ou P représente la
matrice générique associée & une politique quelconque.

Pour montrer qu’une politique particuliére de cott v est maximale, on montre v* > Qu* + 1, ou Q
représente la matrice générique ) associée & une politique quelconque.

NB: Pour trouver le cotit v* d’une politique particuliére, on peut soit y arriver par calcul, soit I'intuiter
et vérifier qu’elle satisfait v* = Pv* 4+ 1 ou P désigne la matrice associée a la politique en question. (Le
résultat provient de 'unicité de la solution de ’équation, en vertu de ’hypothése de convergence presque
siire vers un état final.)

Nous obtenons des résultats qui se résument ainsi :

— Pour aller de 3 jetons distincts & un jeton, toutes les politiques sont équivalentes.
— Pour aller de 2 jetons distincts a 1 jeton, dans le cas ot p # 1/2, la politique consistant a bouger le
jeton le plus éloigné de 'autre pour le sens horaire, est optimale.

On considére Israeli-Jalfon sur un anneau avec 3 jetons. Soit 3 jetons sur un anneau de longueur N, et
soit a, b, ¢ les distances respectives des jetons 24 2 (a+b+c= N et a,b,c > 0).

a = 0 (resp. b = 0, ¢ = 0) signifie que deux jetons sont confondus; a = b = 0 (resp. b = ¢ = 0,
¢ = a = 0) signifie que les 3 jetons sont confondus.

a =1 (resp. b =1, ¢ = 1) signifie que deux jetons sont contigus; a =b=1 (resp. b=c=1,c=a =1)
signifie que les 3 jetons sont contigus.

a>2ANb>2 (resp. b>2Ac>2,¢c>2Aa > 2)signifie qu'un jeton est isolé;

a>2Ab>2Ac> 2 signifie que les 3 jetons sont isolés.

Une configuration M sera caractérisée par le triplet (a,b, c) des distances respectives de ses 3 jetons.®

On considérera une politiques particuliére po consistant & bouger systématiquement un jeton donné,
par exemple: un jeton isolé. Pour calculer v*°, le temps moyen d’absorption associé & uo, on utilisera un
résultat classique sur le temps moyen des marches aléatoires symétriques sur un segment (ou “gambler
ruin”), pour dire : étant donnée une configuration de départ (a,b,c), si on bouge systématiquement le
méme jeton (par exemple, en faisant varier a et ¢, et laissant b invariant), le temps moyen pour que a ou
¢ devienne 0 (resp. 1) est de ac (resp. (a — 1)(c — 1)).

Israeli-Jalfon 1 on a Ring Soit Ci les configurations ou les 3 jetons sont confondus (a = b = 0,
b=c=0ouc=a=0). Posons, pour tout point M = (a,b,c):
vHO (M) = ac+ bla+ ¢) = ab+ bc + ca.

NB: 1l est facile de voir que: v*° (M) correspond & E[min{¢ : Y; € C1 | Yo = M}], ou Y; correspond
a la stratégie qui consiste a choisir, une fois pour toutes, un jeton de la configuration initiale, & déplacer
systématiquement ce jeton jusqu’a ce qu’il se confonde avec un des deux autres jetons, puis & bouger
systématiquement un des deux jetons distincts restants (s’il en existe deux) jusqu’a ce qu’il se confonde
avec 'autre, produisant ainsi une configuration de C;.

Considérons maintenant une stratégie () qui consiste & bouger, & chaque étape, un jeton quelconque
(pas nécessairement toujours le méme comme dans (Y;)). Montrons que, pour tout M ¢ C; (i.e, tel que
M contienne au moins deux jetons distincts), on a: v*0 (M) = Qv*° (M) + 1.

— Si les 3 jetons dans M : (a,b,c) sont distincts (a,b,c > 1), on peut supposer, pour fixer les idées, que
Q@ bouge M en modifiant a et b, mais pas c. (Les autres cas sont analogues). On a:

9Tly a du “lumping” dans cette caractérisation, car on agrége des configurations qui ne différent que par
rotation.



Qu*°(a,b,c)

=1/2v"(a—1,b+1,¢) +1/20*°(a +1,b—1,¢)

=1/2((a+1)(b—1)+ (b—1)c+cla+1)) +1/2((a—1)(b+ 1)+ (b+ 1)c+ c(a — 1))
=ab+bc+ca—1

=v"%(a,b,c) — 1.

— Si deux jetons seulement sont distincts (par exemple a = 0,b > 1,¢ > 1), il est facile de voir que:
vHO (M) = QuH° (M) + 1, ot Q est une matrice de transition qui fait bouger, a chaque étape, 'un des
deux jetons de M, quel qu’il soit.

Par conséquent, en vertu de la proposition 16, v*°(M) est égal au temps moyen d’absorption v (M)
associé & la politique (). On a ainsi montré I’équivalence de toutes les politiques du point de vue du temps
moyen d’absorption.

NB1: 1l resterait en fait & montrer, que toute politique @ atteint C; en temps fini avec probabilité 1.

Israeli-Jalfon on a Ring a 2 jetons with g > p One supposes now that ¢ > p. One considers
configurations with two tokens only (configurations (d,e) with d > 2,e > 2,d + e = N). Recall that d is
the distance from token 1 to token 2 in the clockwise sense. If ¢ > p, it means that it is faster for a token
to move anticlockwise than clockwise. Therefore a “maximal” strategy, say u, should select token 2 (resp.
1) if its “anticlockwise” distance to the other one is the bigger: it selects token 1 if d < e (anticlockwise
distance from 1 to 2 equals e), and token 2 otherwise (anticlockwise distance from 2 to 1 equals d). Under
such a policy, the system behaves as a biased random wal on segment 0, ..., N/2 with a reflecting barrier
at N/2. Let @, (e, d) be the expected time to reach Lo, i.e. a configuration with e =1 or d = 1, under this
policy. Let us sketch out how to show that p is maximal indeed. By question 1, any arbitrary policy P
is “terminating”, therefore, in order to prove that v*(d,e) is slower than P, it suffices, by the “maximum
principle”; to show, for all (d,e) & Lo:

v”(d,e) > 1—|—p1}”(d1,€1)—|—q1}“(d2,62) (*)a
where (d;, e;) is the configuration resulting from (d,e) by moving the token selected by P clockwise for
i = 1, anticlockwise for i = 2.

For (d,e) where the policy of P coincides with the policy of u, checking the inequality (*) is immediate.
Consider now a configuration (d, e) where the policy of P differs from the policy of x. In order to fix the
idea, suppose d < e. (The other case is symmetrical.) Then P selects token 2, and (di,e1) = (d+1,e—1),
(d2,e2) = (d — 1,e + 1). The inequality (*) becomes:

vH(d,e) > 1+ pv*(d+1,e—1)+qu*(d—1,e+ 1)
On the other hand, by first step analysis, since x moves the 1st token, we have:

vH(d,e) =1+ pvH(d—1,e+ 1)+ qu*(d+1,e — 1)
We have therefore to show, when d < e:

(g—p)v*(d+1l,e—1)> (g—p*(d—1,e+1), ie

v(d+1l,e—1) >vH(d—1,e+1).
This is to say that u takes more time to reach £ from (d 4+ 1,e — 1) than from (d — 1,e + 1). This is
(intuitively) true because the time needed to go from a configuration (d,e) to L2 increases with d when d
ranges from 0 to N/2.

NB: We have proved the optimality of u without using an explicit formulation of the associated cost
v, but using only the property: v(d + 1) > v(d — 1) for 0 < d < N/2 (resp.: v(d — 1) > v(d + 1) for
N/2 <d< N —-1).

5.4 Application to Israeli-Jalfon on a Graph (Tetali-Winkler)

1J on a Graph: Two Tokens The hitting time He(z,y) from z to y is defined to be the expected
number of steps for a random walk on G beginning at vertex = to reach vertex y for the first time. The
meeting time Mg (z,y) is defined to be the expected number of moves before tokens placed initially at
vertices z and y of G meet, given optimal (delaying) play by the demon in deciding at each step which
token will move.



Theorem 15. Let G be any connected, undirected graph, and let t be a remotel® vertex of G. Then for
every pair x,y of vertices of G,

Mc(l',y) < HG(xvy) + HG(:% t) - HG(t7 Z/)-

Proof. Let p a given policy deciding at each step which token will move. Let Pj; be the transition
matrix associated to the Markov chain of playing = or y on G according to p (until meeting occurs).
Let vf(x,y) be the expected number of moves before tokens placed initially at vertices z and y meet
(MG({E, y) = maxu(v”(x, y)))

We define a vector u defined for each couple (x,y) of vertices of G (i.e., for each state) in accordance
with the right-hand side of the above inequality, as follows:

u(l’,y) = HG('T7y) + HG(y7 t) - HG(t7 y) = HG(wa) + H(;(m,t) - H(;(t,m)

(u is symmetric on account of the fact: He (z,y)+Hea (y, 2)+He (2, ) = Ha(z, 2)+He (2, y)+Ha (y, x), due
to the reversibility of the Markov chain for random walks on an undirected graph.) Since u is symmetric,
no matter which token p decides to move, its expected value will decline by 1. Furthermore w is non-
negative (on account of the remoteness of t). It follows by Prop. 16: u(z,y) > vh(z,y) for all p, hence:
u(l‘7 y) > Mg (1:7 y)'

Corollary 1. Mg(z,y) < &n®.

Proof. Follows from Theorem 15 and Brightwell-Winkler (4/27)n® upper bound for the worst-case value
of Ha(z,y)-

IJ on a graph: k tokens Suppose we reinstate the demon but give him more than two tokens to work
with; as in the description of Israeli and Jalfon self-stabilizing token management scheme above, the rule
is that whenever two tokens meet one is eliminated. However, for our purposes it is more convenient to
think of tokens not being eliminated but simply “glued together” when they meet; then when there are k
tokens at the beginning, we can employ throughout the multivariate potential

1
uk(xl, 7:Ck) = m ZMG(xiyxj)

1<Jj

where the z;’s will cease to be all distinct once collisions begin. Suppose, for example, that tokens corre-
sponding to indices ¢ € I are currently on vertex v and are designated for movement by the demon; then the
expected value of Mg(z;, ;) drops by at least 1 when |{4,j} UI| = 1, which occurs for |I|(k—|I]|) > k—1
of the terms, while the other terms remain constant. hence the expected value of ux diminishes by at least
1 at every step, as desired.

Note that Mq(zi,z;) remains at zero when ¢ and j are both in I, since tokens ¢ and j continue to
travel to the same vertex. It is for this reason that we use Mg rather than our original v in the definition
of ug; the expected value of M¢(v) can in some circumstances jump as v moves, e.g. when v is remote.

Now the application of the maximum principle shows that the expected time before reducing to a
single token is at most the maximum value of u; on G, which is in turn bounded by k times the maximum
2-token meeting time.

Theorem 16. In any graph G on n vertices, the mazimum meeting time is bounded by (8/27)n?.

Optimal Policy by Maximum Principle (Brémaud,p.184) We consider a stochastic process
{X,} with values in S, that is controlled in the following way. Let A some set, the set of actions, and
{pij(a);i,j € Staca a family of transition probabilities on S. A control policy p1 is a (measurable) function
u: S — A which prescribes to take action u(i) when the process is in state i. Let Pol be the set of control
policies.

Let {P(p)}pepol, be a family of transition matrices on S, with the interpretation that, if at time n
the controlled process is in state 7, and if the controller takes action a = 1(7), then at time n + 1 the state
will be j with probability p;;(a).

10" A vertex t is remote if it is minimal for the vertex relation <, defined by u < v iff Hg(u,v) < Hg(v, ),
which can be shown to be transitive (i.e., is a pre-order).



Therefore, under the strategy p, the controlled process is an MC with transition matrix P(u), where

(P())iz = pij (p(3))-

There is a cost v!" associated with each strategy p and each initial state ¢, of the form

v = BTy (X)),

0<k

where ¢* as in Maximum Principle Proposition 16, with S \ £ fixed, and moreover, ¢/ = (i, u(i)), for
appropriate functions c. The problem of optimal control is that of finding, if it exists, an optimal policy
u*, such that
vt >l
for all states ¢, all policies . We have the following result.
Suppose that there exists a function v* : S — R such that

v = supaca{)_pii(@)v] +c(i,a)}
j€s
for all i € S\ £, and
vy =0
for all ¢ € £, and that the suprema above are attained for a = u*(¢), for some (measurable) function
p*: S — A. Then u* is an optimal control and v* = v* .

Proof. Since for all controls u, v* > P*v* +¢" on S\ £, and v* > 0 on L, it follows from the (extended
version of ) maximum principle that v* > v* for all controls p. Also v = v* and therefore u* is an optimal
control.



6 Markov Decision Processes with Costs

6.1 Markov Decision Processes

A Markov decision process (MDP) is a generalization of a markov chain in which nondeterministic choice
coexist with probabilistic one. Given a countable set C, let D(C) be the set of probability distributions
over C, i.e., the set of functions f : C'+ [0,1] such that > . f(z) =1.

Definition 23. An MDP (S, Acts, A, p) consists of the following components:

— a finite set S of states;

— a finite set Acts of actions;

— a function A : S +— 24°° that associates with each i € S a finite set A(i) C Acts of actions available
at s;

— a function p : S X Acts — D(S) that associates with eachi,j € S and a € A(i) the probability p(i,a)(j),
sometimes written p;;(a), of a transition from i to j when action a is selected.

Il est souvent utile pour décrire un processus de décision markovien IT = (S, Acts, A, p) d’avoir une
représentation graphique adaptée. Nous allons décrire ici celle qui est le plus souvent utilisée. La représen-
tation est celle d’un graphe dans lequel les noeuds sont les éléments ¢ € S. Pour tout ¢ € S et a € A(q)
nous dessinons un faisceau d’arcs pour chaque j tel que p;;(a) > 0. Les arcs appartenant au méme faisceau
sont reliés ensemble par un petit arc de cercle, et chaque faisceau porte le label de ’action correspondante.

Ezample 19. Le barman aveugle

Cet exemple classique de théorie des automates va nous permettre d’illustrer la maniére dont on
représente graphiquement les processus de décision markoviens. Un barman a les yeux bandés et il y
a quatre jetons sur son plateau disposés pour former un carré (voir figure 2 (une face des jetons est
blanche l'autre face est noire). A chaque coup, il décide s’il retourne un jeton (action Un), deux jetons
adjacents (action Adj) ou deux jetons opposés (action Opp), puis tire au sort aléatoirement le (ou les
jetons qu’il retourne). Son but, est que les jetons soient tous retournés dans le méme sens 4 la fin. Voici la
représentation graphique du processus de décision markovien associé dans lequel chaque état est la classe
des configurations & inversion de couleur prés et a rotation prés: Nous pouvons détailler ici ’ensemble des

Fig. 2. représentation graphique du probléme du barman aveugle

caractéristiques de ce processus de décision markovien:

- 85=1{1,2,3,4} ou:
e 1 est I’état qui représente les configurations dans lesquelles les quatre jetons sont de la méme
couleur.
e 2 celui qui représente les configurations avec un jeton d’une couleur différente des trois autres.
e 3 celui qui représente les configurations avec les deux jetons opposés de la méme couleur.
e 4 qui représente les configurations avec deux jetons adjacents de la méme couleur.



— Pour tout i € {2,3,4}A(i) = {Un, Opp, Adj}, A(1) = 0.
— Et les différentes lois de probabilités:

j= |
p2,;(Un) |
p2,;(Opp) |
p2,j(Adj) |
p3,;(Un) |
|

\

\

\

[

\OOOHOOOEH

OO = OO == OIN
—
Ny
—
\o}

3, (Opp)
3,5 (Adj)
pa,;(Un)
p4,;(Opp)
P4, (Adj)

Definition 24. Given an MDP (S, Acts, A,p), a subset L of states is closed if:
Vie L,a€ A(i): pijla) >0=j€L.

N O OO O O OO |W
O O F OO OO Kr

—_
[\]
—_
[\]

When a closed set L is reduced to one state, say 1, we say that 1 is “absorbing”.

Definition 25. Given an MDP (S, Acts, A,p) and a closed set L a policy u is stabilizing w.r.t. £ if, for
alli € S:

P/ (T < 0) = 1, where Tr = min{t : X; € L} is the first (random) time of entrance in L (starting
from Xo =i under policy ).

Given a closed set £, we denote by Polp the class of stabilizing policies (w.r.t. £).

6.2 Markov Decision Processes with Costs (BT89, pp. 312+4317)

Consider an MDP (S, Acts, A, p). At each state i, we are given a set of actions A(7). We now suppose that
we are also given a cost function ¢ : S x Acts — R, that associates with each state ¢ and each action
a € A(i) the scalar c(i,a) or sometimes c¢;(a) If the state is ¢ and action a is chosen at time ¢, the cost
incurred is ¢;(a).

Consider the finite set of functions p that map states ¢ into actions u(i) € A(¢), that is the set:

Polp = {u | p(t) € A(%), i =1,...,m}.

We can regard each p as a memoryless or deterministic policy that chooses always the same action when
the system is at state i, whenever the time t is.
The cost associated to a path ipagii - -- corresponds to the sum >, . ¢i, (ak).

Suppose that there is a cost-free state, say state 1, which is absorbing (i.e.: For all a € A(1),¢1(a) =0
and pi1(a) = 1). Our objective will be to find the “minimum expected cost” to reach such a state 1, and
the associated policy. Formally, let: Ty;; = min{k | X; = 1} be the random variable indicating the first
time of entrance in state 1. We have:

Definition 26. Given an MDP with cost, suppose that there is a cost-free state, say state 1, which is
absorbing. The (expected) cost v} of a policy p at i € S\{1} is defined by

T{l}—l

=B Y o Xe, n(X0))] = B e Xk, n(X5)))-
k=0

k=0

The (expected) cost vector v* of policy p is the vector whose i-th component is v} (1 <1 < m). Note
that v}’ = 0.

Definition 27. Given an MDP with cost (S, Acts, A, P,c), suppose that there is a cost-free state, say
state 1, which is absorbing, the minimum cost problem is to determine, for all i € S\{1}

* .
v; = inf of
nEPolp

The minimum cost vector is the vector v* whose i-th component is v; (i.e., the minimum cost starting at
state 1).



We say that the policy u is optimal if u is stabilizing and, for all : v} =

vy
The advantage of the minimum cost problem is to allow us to unify the problems of finding the

minimum and the mazimum expected time to absorption, which are seen as two instances of the minimum
cost problem, with ¢ = 1 for the minimum expected time and ¢ = —1 for the maximum one.

6.3 One-Step Cost Operators

Deterministic policies Let i be a deterministic policy. Let P(u) be the transition probability matrix
corresponding to u, that is, the matrix with elements

[P(W))i; = pij(p(3)), fori,j=1,...,m

Let also

c1(p(1))

e (i(m))

For a deterministic (memoryless) policy 1 we have P(X; = j | Xo =4, and u is used) = [P*(u1)]:;. There-
fore, if v/ is the expected cost corresponding to initial state ¢ and policy p, and v* is the vector of
coordinates vy, ..., vk, we have: v* = limy_ oo ZfZO(Pt ())e. 1

Given a deterministic policy wu, it is convenient to introduce the mappings L* : R™ — R™ and
L™ : R™ — R™ defined by:

L*(v) = ¢ + P(u)v,

L*(v) is the vector whose ith component [L*(v)]; is: mingeaslei(a) + 3272, pij(a) v;]-

Note that L" is the mapping involved in the iteration v := ¢ + Pv of Section 4 with ¢ and P replaced by
c¢* and P(u), respectively. After k iterations, we have: (L*)*(v) = P*(u)v + S2F_ [Pt (p)]c".

Therefore, for a deterministic policy p, we can write the expected cost vector: v = limg_. o0 (L*)* (v°),
where v° is the zero vector (0,0, ...,0).

The following proposition gives a basic property of L*, and L".

Proposition 18. Let u € Polp, j € S and a € A(j). Then L* and L" (in the sense that L*(v) < L*(v")
and L*(v) < L*(v') for all v,v" such that v < v').

6.4 Computing the Minimal Cost Vector

We are going to show that, under reasonable conditions, the minimum cost vector, denoted by v*, is a
fixed point of the mapping L* (i.e., v* = L*(v")), and can be obtained in the limit through the “dynamic
programming” iteration v := L*(v).

The minimal cost problem can be seen as a generalisation of the shortest path problem in a (non-
probabilistic) graph.'?

"1 This is justified as follows: v} = B[, c(Xe, m(X0))] = 3, EV[e(Xe, p(Xe))] = 2 (0 Pi(Xe =
3)e(G w(3))) = 32 (2, [P (W)]ssef) = 32, (P! (u)c")i. Hence v** = 37, (P*(u))e”.

2 The shortest path problem is an important example of dynamic programming problem where one makes
assumptions similar to H1 and H2. It concerns a directed graph consisting of m nodes, numbered 1, ..., m.
Node 1 is a special node called the “destination”, and has no outgoing arcs. Each arc (,7) is given a
scalar ¢;; called “length”. The problem is to find a path of minimum length (or shortest path) from each
node to the destination. The Bellman-Ford algorithm solves the problem by iterating on v:

V; = minjeA(i)(cij—l—vj), t=2,...,.m

vy :=0.
where A(7) denotes here the set of all the nodes j for which there is an outgoing arc (i, ;) from node i.
This iteration converges to the solution provided that two assumptions on the graph are satisfied, that
correspond to H1 and H2. This solution is then the (unique) solution of of “Bellman’s equation™



We will operate under the following assumption:

Assumption H.
State 1 is absorbing and cost-free (i.e., p11(a) = 1 and c¢1(a) = 0 for all a € A(1)), and furthermore:

— H1: there exists at least one stabilizing deterministic'® policy.!*
— H2: Each non-stabilizing deterministic policy yields infinite cost for at least one initial state, i.e.:
for each non-stabilizing u, there is a state i € S\{1} such that v/ = limj_[>r_, P*()c"]; = oo.

We have the following lemmas.

Lemma 8. Let Assumption H hold:
(al) Let pu a stabilizing deterministic policy. Then v* is the unique fized point of L* within V.
(a2) Let u a stabilizing deterministic policy. Then lim;—oo(L*)!(v) = v* for allv € V.
(b) Let p be a deterministic policy. If there exists v € V such that v > L*(v), then u is stabilizing.

Proof. (al)-(a2) : If u is stabilizing, the conclusion follows from Lemma 6.
() : If v € V and v > L*(v), then by the monotonicity of L*,
v > (L*)(v) = P'(u)v + 42 PH(p)e, vt > 1.
If ;+ were non-stabilizing, then some subsequence of ZZ_:B P*(u)c" would have a coordinate that tends to

infinity (by H2), thereby contradicting the above inequality.

Lemma 9. Let Assumption H hold. Then:
L™ has at most one fizpoint within the subspace V = {v € R™|v; = 0}.

Proof. Let us show that L has at most one fixed point within V. Indeed, if v an(/i v’ are two fixed points in
V, then we select p and p’ such that v = L*(v) = L*(v) and v = L*(v") = L* (v'). By Lemma 8 (b), we
have that y and 4 are stabilizing, and furthermore v = v* and v’ = v*'. We have v = (L*)!(v) < (L*)*(v)
for all ¢ > 1, and by Lemma 8 (a2), we obtain v < limt_,oo(L“l)t(v) = v*' =o' Similarly, v’ < v, showing
that v = v’ and that L* has at most one fixed point within V.

Lemma 10. Let Assumption H hold. Then:
There exists a stabilizing deterministic policy u* such that v = L* (v) iff v = L*(v).
This shows thats L™ has a unique fizpoint, which is equal to v" .

Proof. Let us show that L" has a fixed point within V', and exhibit a stabilizing deterministic policy w*
such that L* = L . Let u be a stabilizing policy (whose existence is guaranteed by H1). Choose p’ € Polp
such that L“,(v“) = L*(v"). Then we have v* = L*(v") > L (v*). By the Maximum Principle, it follows:

ot > ot (3.12)
If v* = v*, then we obtain v* = v* = L“’(v”/) = (v*) = L*(v*) and v* is a fixed point of L*. If
ot £ v“l, then v!' > vé‘/ for at least one state i. We then replace p by u’ and continue the process. Since
the set of stabilizing policies is finite, we must obtain eventually two successive stabilizing policies with
equal cost vectors, thereby showing that L™ has a fixed point yithjn V. }':urthermoge, the construction
provides a stabilizing deterministic policy, say p*, such that L* (v* ) =v* = L*(v* ).

i =minjeae(ai; +237), 1=2,...,m,

xr1 = 0.
The first assumption (corresponding to H1) says: “There exists a path from every node i = 2, ..., m to the
destination node 1”. The second assumption says (corresponding to H2): “Every cycle has positive length”
(cf BT89, p318,293). It is easy to a construct “counterexample” to Bellman-Ford’s algorithm when there
exist non-positive cycles (Counterexample (BT89, p. 297), Fig.4.1.1: avec un état 1 absorbant, un arc
allant de I’état 2 & 1 avec proba. 1 et colit 1, un cycle de cout nul (et proba. 1) entre 2 et 3). In this
counterexample, the shortest distances are vi = 0, v5 = v3 = 1 and satisfy Bellman’s equation. The zero
vector also satisfies Bellman’s equation, and if the Bellman-Ford algorithm is started with that vector, it
will make no progress towards the shortest distance vector. The problem comes from the multiplicity of
solutions of the Bellman’s equation. This counterexample can be seen (after straightforward adaptation)
as a counterexample for the minimum cost problem when H2 is not satisfied (which entails multiple
fixed points for L*).
In (de Alfaro 99), H1 is different: For all s € S, Prp(i) = {u € Pol|P{(T(13 < o0) = 1} # 0, where Pol
is the set of policies non necessarily deterministic.
(BT 91) Note that under Assumption H1, the set {1} consisting of just state 1 is a recurrent class under
all P(u), u € Polp. Furthermore, y is non-stabilizing if and only if under P(u), there exists a recurrent
class other than {1}.
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Lemma 11. Let Assumption H hold. Then:
For allv eV, limg— o Lk(v) =o*

Proof. Let us show that (L*)!(v) — v*" for all v € V. Let A be the vector with coordinates

0 ifi=1
Ai_{& ifi#1,

where § > 0 is some scalar, and let v2 be the vector in V satisfying

L (02) =v? — A
[There is a unique such vector because the equation v = ¢* + A + P(u*)v®(= L* (v2) + A) has a
unique solution within V' by the analysis of Lemma 6.

Since v° is the cost vector corresponding to p* for " replaced by "+ A, we have v > o*,
Furthermore, for any v € V, there exists A > 0 such that v < v2. we have:

o =L (") < L*(v?) < LM (v2) = 0P — A < 02,

Using the monotonicity of L and the previous relation, we obtain:

o = (L)) < (L) () < L (02) <0, Ve > 1)
Hence, (L*)*(v?) converges to some & € V, and by continuity of L*, we must have & = v* . It is also seen
using the fact that v = 0, that

v —A=L* (" )= A< L (v — A) < L") = o,
s0v" —A < limy oo (L) (0" —A) < v*". Similarly, as earlier, it follows that lim; . (L*)! (0" —A) = v*".
For any v € V, we can find § > 0 such that

A <wv <0l
By monotonicity of L*, we then have
(L)'(0" = A) < (L")'(v) < (L)'(v7), vt>1,
and since lims— oo (L*) (v* — A) < (L*)(v) < (L*)*(v?) = v*, it follows that lims— oo (L*) (v) = v* .

Lemma 12. Let Assumption H hold. Then:
The unique fizpoint v* of L™ is equal to the minimum cost vector v*.

As a recapitulation of the above lemmas, we have:

Proposition 19. Let Assumption H hold. Then:

(al) L™ has at most one fizpoint within the subspace V = {v € R™|v; = 0}.

(a2) There exists a stabilizing deterministic policy pu* such that v = L* (v) iff v = L*(v).
This shows thats L™ has a unique fizpoint, which is equal to o

(a3) For all v € V, limg .o LF(v) = v

(a4) The unique fixpoint " of L* is equal to the minimum cost vector v*.

(c) A deterministic policy p is optimal if and only if L*(v*) = L*(v").
Furthermore, there exists an optimal (deterministic) stabilizing policy.

As a summary, we have, under Assumption H:

- The minimum cost vector v* is the unique fixed point of L* within the space V.

- For every v € V = {w € R™ | w1 = 0}, limy—oo (L*) v = v™.

- There exists a deterministic policy x4 which is optimal, and can be obtained by “policy iteration” (see
below).

Policy Iteration The construction used in the proof of Lemma 10 to show that L* has a fixed point
constitutes an algorithm, known as policy iteration, for obtaining an optimal stabilizing policy starting with
an arbitrary stabilizing policy. In the typical iteration of this algorithm, given a stabilizing deterministic
policy p and the corresponding cost vector v*, one obtains a new stabilizing deterministic policy u’
satisfying the equation L* (v*) = L*(v*), or, equivalently,
' (i) = arg min, e 5, [ci(a) + 307, pij(a)vf],  i=2,3,...,m.

The new policy is strictly better if the current policy is nonoptimal; indeed, it was shown by Eq. (3.12) and
the discussion following that equation o < v*, with strict inequality v/ ' < vt for at least one state ¢, if
the policy p is nonoptimal. Because the number of deterministic policies is finite, it follows that this policy
iteration algorithm terminates after a finite number of iterations with an optimal stabilizing (deterministic)
policy. Note that each iteration involves a “policy evaluation” step, whereby, given u € Polp, we obtain
the corresponding cost vector v* by solving the system of equations v* = c¢* + P(u)v" subject to the
constraint v{" = 0. This step can be very time-consuming when the number of states is large.



Example 20. Considérons le MDP de la Figure 3.

1/10

9/10

110 C A

Fig. 3. Un exemple pour le probléme du pire temps moyen

Calculons les pires temps moyen d’absorption v}, v5 (avec ¢;(a) = —1 pour ¢ = A, B et « = a,b, ¢, d).
Tout d’abord,calculons le vecteur v, en trouvant le point-fixe de ’opérateur de Bellman. Partons de 1’état
initial v4 = vp = 0. On obtient le systéme:

1 1

Wit =paala)vi —1=Lovi -1

n+1 __ . n n _ : 1,n 9 n 1, n

vt = minge(v,o} [PBB(Q)VE + pra(@)vi] — 1 = min[50%, ;504 + F508] — 1.
En partant du vecteur v%,v% = (0,0), on trouve:

A'UB ) k)
U%‘ = —1,11‘132: -1
11 . 1

va = —15,vp = min{—35, -1} —1= -2

3 _ I .3 _ e S11 119y g _ 219

VA = — 150,V = min{—55, — 155 I=—-15%

A chaque itération de v, il n’ y a qu’'un seul choix d’action possible, viz. a. A chaque itération de v3,
le minimum de 'opérateur de Bellman est obtenu pour l'action a = c. (Cela pourrait se démontrer par
récurrence.) Cela signifie que la politique (déterministe) optimale consiste a sélectionner 'action a en A et
Paction ¢ en B. La suite (v}, v%) converge vers (—%, —%0) qui correspond a (v}, vg), et donne ('opposé
du) pire temps d’absorption en partant de A et B.



Ezample 21. Policy Iteration

(ab) Exercice 3.5: Show that, under H, if © € R" is such that L*(z) > z, then v* > z. Use this fact

to show that v* solves the linear program
maximize 3’z
subject to c(i,a) + 37, pij(a) z; >z, i=1,...,n, a € A(i),
where [ is a nonzero vector with nonnegative coordinates.

Here is a slightly different version of Prop. 19.
Proposition 20. Let Assumption H hold. Then:

— The functional L* admits exactly one fizpoint v® such that v® = L*v®.
— The fizpoint v°* of L is the single optimal solution of the following linear programming problem on the

set {vi}iz1 of variables: Mazimize ), vi subject to
vi <Y pig(a) vy +elia) i€ S\{1}.
jes
— Consider any Markovian policy ) that selects at every i # 1 only actions a that minimize ZjeS pij(a) v+

c(iya). Then, policy n is stabilizing, and we have: v] = v} = v] for all i # 1.

NB: To prove H1: find f: S — IN such that Vi £ 135 : p;; >0A (G =1V f(j) < f(2))

Recapitulation:
- Politique optimale et temps (colit) moyen associé. Méthode (BT):

(a) minimum cost vector is unique solution of Bellman’s equation.
(b) successive approximation methods convenenient to the minimum cost vector for an arbitrary start-

ing vector.
(c) the policy iteration algorithm yields an optimal deterministic (Markovian) policy.

NB: Under assumption 1, the set {1} consisting of just state 1 is a recurrent class under all P(u), 4 € Polp.
Furthermore, p is non-stabilizing if and only if under P(u), there exists a recurrent class other than {1}.



7 Time to Absorption: A Martingale View (Brémaud, p.178+185-191)

7.1 Stopping Time

Definition 28. : Stopping Times (p.83).

A stopping time with respect to a stochastic process {Xn }n>0 1, by definition, a random variable T taking
its values in N U {oo} and such that for all integers m > 0, the event {7 = m} can be expressed in terms
of X0, X1, ey Xom.

The latter property is symbolized by the notation {7 = m} € X§*. When the state space is countable,
this means that 1{,—,3 = ¥m(Xo, ..., Xmn), for some function v, with values in {0, 1}. For a given stop-
ping time 7, one can decide whether 7 = m just by observing Xo, X1, ..., X;,. This is why stopping times
are said to be nonanticipative.

It is decidable if 7 = m or not with knowledge of past and present only (no future).

A stopping time corresponds to a strategy for determining when to stop a sequence based only on the
outcomes seen so far. For example, the first time the gambler wins five games in a raw is a stopping time,
since this can be determined by looking at the outcomes of the games played. similarly, the first time the
gambler has won at leat a hundred dollars is also a stopping time. Letting 7" be the last time the gambler
wins five games in a row, however, would not be a stopping time, since determining whether 7" = n cannot
be done without knowing X, +1, Xn+2, ...

Ezample 22. Successive Returns (p.84).
Let m = Ti,T2,... be the successive return times to state i. If there are only r returns to state i, let
Tr41 = Tr42 = -+- = 00. These random times are stopping times with respect to { X, }»>0, since for any
m > 1,

{me=m}={>"",1;x,=i} = k, Xm =i} is indeed expressible in terms of Xo, ..., Xp.

Ezample 23. (Counterezample: p.84). The random time 7 = inf{n > 0;X,41 = i} where 7 = oo if
Xnt1 # i for all n > 0, is anticipative because 7 = m} = {X1 # i, ..., Xon # i, Xim+1 # i} for all m > 0.
Knowledge of this random time provides information about the value of the process just after it. It is em
not a stopping time.

7.2 Martingales

Definition 29. : Martingales (Brémaud, p.179)
A real-valued stochastic process {Yn} such that for each n > 0,

(i) Y, is a function of Xo,..., Xn, and

(i) (E[|Yn]] < 0o VY, >0) is called a martingale (resp submartingale, supermartingale) with respect
to {Xn} if, moreover, E[Yp+1|Xo0,X1,...,Xn] =Yn (resp > Y,, <Y,) (25)

1 . .
5 not necessarily a Markov chain

In the above definition, {X,} can be any stochastic process

A good way to think of martingales is as a model of “fair game” Here X,, represents what happens
in the game at time n, and Y,, represents the player’s wealth at time n (after the n-th play of the game)
So, at time n, Y, represents the current wealth, and E[Y,,+1]|X1,..., X,,] represents the expected wealth
after one more play To say that these two are equal means that the next play of the game is “fair”. One
of the main results of martingale theory, which is the key to the recurrence (resp transience) criteria, is
the probabilistic counterpart of the convergence of a bounded nondecreasing sequence of real numbers to
a finite limit.

Theorem 17. : Martingale Convergence (Brémaud, p.185)
Let {Y,,} be either a nonnegative supermartingale, or a bounded submartingale, with respect to {X,} Then
almost surely, limntoo Yo exists™® and is finite.

15 A stochastic process with state space S is a sequence { X, },>0 of random variables with values in S
%he: {weN:Y,(w) — Y(w)} as n — oo} is an event whose probability—1



Theorem 18. Optional Sampling (Brémaud, p.185)
Let {M,,} be a martingale with respect to some process {X,}, and let T be a stopping time of { X, } Suppose
that at least one of the following conditions holds:
(o) P-as, T < ng for some ng > 0, or
(B) P-as, T <ocoAN(n<T = |M,| <K < 0),
Then E[Mr] = E[Mo].*"

7.3 Time to Absorption with Martingales

Ezample 24. (GZbis, p.118+401) Let {S,, : n > 0} be a simple symmetric random walk with 0 < Sy < N
and with absorbing barriers at 0 and N. Let us compute the mean time until absorption using the optional
stopping theorem.

Let T be the time until absorption, and note that {5, } is bounded, and therefore uniformly integrable.
Also P(T < 00) = 1since T is no larger than the waiting time for NV consecutive steps in the same direction.

Secondly, {S2 —n :n > 0} is a martingale, since

E[S2.1 — (n+1) | Su] =

E[(Sn + Xns1)? — (n+1) | Sa] =

E[S2 | Sp] +2E[Sn X Xnt1 | Su]l + E[X241] — (n+1) =

S2 + 28, E[Xny1] + E[X2 1] — (n+1) =

S24(3+ 1) - (n+1)=

S2 —n,

where X, denotes the size of the nth jump (i.e., 1 with half probability).

The optional stopping theorem (if it may be applied) gives that

E[S3] = E[ST — T] = N°P(Sr = N) — E[T],

and hence E[T] = NE[So] — E[S{] as required (using the fact that P(St = N) = E[So]/N, which can be
proved by using the optional stopping theorem to {S, : n > 0}, viewed as a martingale w.r.t. itself).'®

It remains to check the conditions of the optional stopping theorem. Certainly P(7T" < co) = 1, and in
addition, if n < T, we have: |S2 —n| < K < oo for K = N* — N.

Proposition 21. Suppose that D = (D), is a nonnegative stochastic process on {0,1,---, B} such
that
E[Di41|D¢] < 8Dy (with 0 < B < 1). Then if 7 is the first time that D; = 0, we have: E[r] < B/(1 — ).

Proof. The process Z(t) = (B — Dt) — (1 — B) min(¢,7) is a submartingale since E[Z(t + 1)] — Z(t) =
Dy — E[Di1]— (1—=8) > (1 = B)(Dy — 1) > 0. Moreover, 7 is a stopping time for Z, and the differences
Z(t+1) — Z(t) are bounded. The Optional Stopping/Sampling theorem for submartingales (see e.g., [?])
then applies, which yields: E[Z;] > Zo, i.e: B — (1 — 8)E[r] > 0. Hence: E[7] < %.

Proposition 22. Suppose that D = (D:)2, is a nonnegative stochastic process on {0,1,--- B} such
that

E[D¢41|D¢] < Dy. Furthermore suppose that P(Dyy1 # Dy) > « (with o > 0) when Dy > 0. Then if T is
the first time that Dy = 0, we have: E[r] < B?/a.

Proof. (This proof follows that given in [?]; cf [?]):
The process Z(t) = (B — D;)? — at is a submartingale since E[(D;11 — D:)?] > a. (We have: E[(Dy41 —
D)?] > P((Diy1 — Di)? > 1) = P(Dy1 # Dy) > o) Moreover, T is a stopping time for Z, and the
differences Z(t+ 1) — Z(t) are bounded. The Optional Stopping theorem for submartingales then applies:
E[Z;] = B?> — aE[r] > Zo = (B — D)®. Hence:

2

E[r] < 1(B* - (B-Do)>) < 2.

o

These theorems will allow us to analyse the behavior of Markov chains as random walks with a drift.

7 Mz is obtained by (repeatedly) drawing an experience with (M,,) until n = T is observed. This is a
restriction of the martingale to the space n =T.

18 We have indeed E[S,4+1 | Sn] = Sn, hence, by the optional stopping theorem, E[Sy] = E[Sr] =
0 x P(St = 0) + N x P(Sy = N) = NP(Sr = N).



8 Time To Stabilization: A Coupling View

8.1 Coupling

(Sinclair) Coupling is an elementary probabilistic method for bounding the mixing time of a Markov chain
M by relating it to the stopping time of an associated stochastic process.

(Brémaud,p.128) Coupling is an old idea of Doeblin (1938), revived in Markov-chain theory by the
influential work of Griffeath (1975) and Pitman (1974), and brought to fame by Lindvall (1977) who gave
a purely probabilistic proof of the renewal theorem. The coupling method has a wide range of applications
(see the book (Lindvall,1992))

Definition 30. A coupling of a Markov chain M; with state space S is a Markov chain (X¢,Y:) on the
state pace S x S with the properties

1. Each of the processes (X;) and (Yi) is a faithful copy of M; *°
2. Ith = )/t; then Xt+1 = Yt+1.

Although each of (X:), (Yz), viewed in isolation, behaves exactly like (M), they need not be inde-
pendent; on the contrary, we will construct a joint distribution for the two processes in such a way that
they tend to move closer together. By the second condition above, once they have met they must remain
together at all future times.

We will sometimes denote such a coupling (X, Y;) by (X,Y) — (X’,Y’) (meaning that, given a pair
(X,Y) € S x S, the coupling goes from (X¢,Y;) to (Xit1, Yit1) with P(X41 = X'|(X4,V2) = (X,Y)) =
pxxr and P(Yip = Y'|(X¢, Y2) = (X,Y)) = pyyr).-

Definition 31. Given a coupling (X¢,Y:), the (expected) coupling time is:
T = maX; jes E[Ti,j],
where T; ; =min{t: X; =Y: | Xo=14,Yo =3}

Note that T; ; is the (random) time until the processes meet.
Using Prop. 21 and 22, we can bound the coupling time via contractive distances as follows.

Theorem 19. Given a Markov chain (M,), suppose there exist a coupling (X,Y) — (X', Y"), a function §
on S X S which takes values in {0,1,..., B}, and a positive constant 8 < 1 such that, for all (X,Y) € SxS:

- (X, Y)=04¢f X =Y, and
— E[6(X',Y"|X,Y] < B§(X,Y). (1)

Then the coupling time satisfies: T < %.

Proof. Consider two elements i,; € S, and the coupling (X¢,Y;) starting from (Xo, Yo) = (4,5). Let D
be the process defined by D: = §(X¢,Y;) for ¢ > 0. Since 6(X¢,Y:) = 0 iff X; = Y3, the quantity T;,; is
the time required for D; to reach 0. Consider the coupling (X, Y;) which starts from (Xo,Yo) = (4, 7).
Therefore by Prop. 21, we have, for all 4,5 € S, E[T; ;] < B/(1 — ().

Theorem 20. Given a Markov chain (M), suppose suppose there exist a coupling (X,Y) — (X',Y"), a
function 6 on Sx.S which takes values in {0,1, ..., B} and a constant o > 0 such that, for all (X,Y) € SxS:

- (X, Y)=04¢f X =Y, and
- E[§(X",Y)|X,Y] <§(X,Y) A PO(X,Y') #6(X,Y)) > a. 2)

Then the coupling time satisfies: T < BTZA

Proof. Consider two elements i, of S and a coupling (X¢,Y:) of initial element (Xo,Yy) = (4, 7). Let
D; = §(X¢,Y:) for t > 0. Since §(X,,Y;) = 0 iff Xy =Y, the quantity 75 ; is the time required for D; to
reach 0. Therefore by Prop. 22, we have, for all 4,5 € S, E[T; ;] < B%/c.

19 This means (Mitzenmacher-Upfal,p.274): P(X;y1 =i’ | (Xt,Y:) = (4,7)) = P(Myy1 =4 | My = i) and
P(Yit1 =j' | (X, Ys) = (4,7)) = P(Mey1 = 5" | My = j).



Ezample 25. (Coupling with contractive distance for Herman).

Reprenons ’exemple de 'algorithme de Herman, et trouvons une distance sur les couples de configurations.
Nous ne donnerons pas en détail ’ensemble des preuves ici, car le calcul du temps de convergence pour
Herman est plus simple par la technique du path coupling que nous décrivons ci-apres.

— Coupling: Le coupling que nous choisissons est extrémement simple; nous ne forgons les choix proba-
bilistes uniquement si la machine 7 a une transition probabiliste & faire & la fois dans la configuration
X et dans la configuration Y; (i.e., lorsque X¢(i) = X:(i — 1) et Y;(¢) = Yi(¢ — 1)); dans ce cas
les machines i de X, et Y; sont forcés de faire le méme choix probabilistes, ainsi X;41(%) et Yi11(7)
coincident:

0 avec probabilité 1/2,

Xe1 (i) = Vi (0) = {1 avec probabilité 1/2.

— Fonction §: la fonction §(X¢,Y;) est assez simple elle correspond a la distance maximale entre deux
machines dont les valeurs différent entre X; et Y:. L’évolution de § est donnée dans la figure 4. Ainsi

Agree Dis. Zone Agree

:;& 75::
; .
/5 Z

Fig. 4. L’évolution de § sous le coupling

on obtient sans entrer dans les détails:

=06+ 1 avec probabilité 1/4

<0 —1 avec probabilité 1/4

<4 avec probabilité 1/4

=4 avec probabilité 1/4

Donc, E(6(Xe41,Yeq1)| X, ¥2) < 0(X, Y2)

Et, P(§(Xtt1, Yer1) # 0(Xe, V) > 5

1l existe donc un coupling satisfait les propriétés désirées. Il s’ensuit, d’aprés le théoréme 20 que le
temps de coupling de Herman est donc majoré par 2N2.

0

8.2 Path coupling

As pointed out in [?], it is often cumbersome to measure the expected change in distance between two
arbitrary configurations. The method of path coupling, introduced by Bubley and Dyer [?], simplifies the
approach by showing that only pairs of configurations that are “close” need to be considered. Path coupling
involves defining a coupling (X, Y:) by considering a path, or sequence X; = Zo, Z1, ..., Zr = Y: between
X: and Y; where the Z; satisfy certain conditions. The following version of the path coupling method is
convenient:

Lemma 13. (Dyer and Greenhill [?])
Let & be a metric®® defined on S x S which takes value in {0, ..., B}.
Let U be a subset of S x S such that, for all (X,Y) €S x S:

there exists a path X = Zo, Z1,....,Z, =Y between X and Y
such that (Zi, Ziz1) € U for 0<i<r and Y./_) 8(Zi, Zit1) = §(X,Y). (3)
Suppose there exist a coupling (X,Y) — (X', Y") for the Markov chain (M:) on all pairs (X,Y) € U, and
a constant B < 1 such that, for all (X,Y) € U:

E[(X",YX, Y] < B§(X,Y). (4)
Then this coupling can be extended to a coupling for (M;) on Sx.S, which satisfies (4) for all (X,Y) € SxS.

20 Te., a function such that: §(X,Y) =0iff X =Y, and §(X,2) < §(X,Y) + (Y, Z), for all X,Y,Z € S.



Proof. Let us show that, for any (X,Y) € Sx S, E[§(X',Y')|X,Y] < B3(X,Y). Let X = Zo, Z1,..,Z, =Y
be the path between X and Y, whose existence is stated by (3), i.e.: such that (Z;, Z;11) e Ufor 0 <i <r
and 3170 6(Zi, Zis1) = 6(X,Y). We have
ES(X" Y <SIZ) El6(Z], Zl41)) (by triangular inequality and linearity of expectation)
<>y B8(Ziy Zisr) (by (4), since each (Z;, Z;+1) belongs to U)
— B5(X,Y).

Two configurations X and Y are said to be adjacent if (X,Y) € U.

NB: One cannot a priori go from one configuration to an adjacent configuration through a single-step
transition of the Markov chain.

The advantage of this lemma is that it allows us to check the crucial property (4) on the set U of
adjacent pairs only, rather than on the entire space S x S. In particular, it allows us to find ma coupling
and a contractive distance in a simpler way in order to bound the coupling time.

Ezample 26. (Path coupling for Herman). Let us come back to Herman’s algorithm (see Example 10).

Lemma 14. For Herman’s algorithm and N odd, there exist a subset U of S x S, a metric 6 on S x S
taking value in {0, ..., N} and satisfying condition (3), and a coupling such that:

- v()(157Yt) eU E[5(Xt+17yt+1)|Xt7Yt} S 6(Xt7}/t)7 and
— V(th) €eSxS (UJ’Lth Xt 75 )/;g) : ]P((S(Xt+17n+1) 75 5(Xt7)/;g)) Z 1/2

Proof. — Subset U and metric §. We define ¢ as the Hamming distance: §(X¢,Y;) is the number of
positions at which X; and Y; differ. The pair (X, Y;) belongs to U iff §(X;,Y;) = 1. It is immediate
to check condition (3) of Lemma 13.
— Coupling. The coupling is defined in order to force X: and Y: to do the same probabilistic choice,
when they both have to perform a random action. In other words, for all ¢ (1 <4 < N):
If X¢(i) = X¢(i — 1) and Yi(¢) = Yi(i — 1) then

N . [0 with probability 1/2,
X1 (0) =Yena (1) = {1 with probability 1/2.

— Proof of E[6(X¢+1,Yi+1)] = 6(X¢,Y:) on U. Consider a pair (X;,Y:) € U, and let £ be the position of
disagreement between X; and Y;. In order to fix the ideas consider the following vector

Xt [(rviva--ve2000uv42--vN
Y:) \vive--vi2010wvp42 - vNn

where all the v; are in {0, 1}, the figures in bold font correspond to positions ¢. (The other cases are
similar.) After one step, the state of all the machines at position 1,--- , N are updated. We have:

Xew1\ _ (Vivh Vg v TP Uy
(Yt+1> - <Vi Vy oV ovp1 0 1V2+2 va)

where ‘?” means “0 with prob. 1/2 and 1 with prob. 1/2”. Note that, for 1 <i < /—1and ¢+2 <i < N,
Xt+1(i) = Yiy1(i) = v} thanks to our coupling. So X;+1 and Y;4+1 coincide everywhere except, perhaps,
at positions £ or £ + 1. We have:

0 with probability 1/4,
0(Xt41,Ye1) = 1 with probability 1/2,

2 with probability 1/4.
Hence E[(s(Xt+1,}/15+1)|Xt,Yt] = 5(Xt7)/t), for all (Xt,Yt) eU.

— Proof of P(6(X¢41,Yiq1) # 6(Xy,Y:)) > 1/2. Let us denote by ¢ the number of disagreeing tokens (a
disagreeing token is a position ¢ such that X;(: — 1) = X;(4) # Y:(¢ — 1) = Y;(4)) and by p the number
of zones of contiguous disagreeing positions. Let us identify the three sources of possible evolution of
the set of disagreeing positions after a step (see Figure 77):

1. Thanks to the coupling, each disagreeing token X;(i — 1) = X, (i) # Y:(i — 1) = Yi(¢) evolves in a
new agreeing position X¢41(i) = Yz41(¢) with probability 1.

2. Each first position in a disagreeing zone, say ¢, such that X, (i — 1) = Y;(¢ — 1) and X, (i) # Yi(¢)
can evolve in an agreeing position with probability 1/2. We denote by r the number of such ¢
(0<r<p).
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Fig. 5. Evolution of a disagreeing zone

3. Each first position in agreeing zone, say %, such that X;(i — 1) # Y;(i — 1) and X,(¢) = Yi(¢)
can evolve in a disagreeing position with probability 1/2. We denote by s the number of such ¢
(0<r<p).

Cases 2 and 3 are depicted on Figure 5.

We have: 6(X¢y1, Yit1) = 6(Xe,Y:) — ¢ — r + s. Therefore the event §(X¢41, Yir1) = 0(Xy, Y:) corre-
sponds to all the cases where ¢+r = s. If ¢ > p, such an event can never occur (probability 0). Otherwise,
its probablhty is 4% f;g (Elr)) (qi'r) = 4% ;:;g (f) (pfzfr) S
= (pzf’q) < 53 (25) (by Vandermonde’s convolution [?])
<1 (by induction on p).

Hence ]P((S(XH»l,Y;JFl) §£ 5(Xt,Y;3)) 2 %

By Lemma 13, this coupling on U can be extended to a coupling on S x S with the same contractive
properties. Hence, by Theorem 20, we have:

Theorem 21. The coupling time of Herman is bounded above by 2N>.

8.3 Stabilization Revisited

We show hereafter that the coupling time gives an upper bound on the stabilization time. More precisely,
we assume that we are given a Markov chain (M), and a recurrent set £, and we consider the problem of
proving the stabilization property of (M;)$2, w.r.t. £. We focus on a Markov chain with a unique recurrent
set. This corresponds to the notion of “self-stabilizing” algorithm, as originally defined by Dijkstra in the
deterministic framework [?], where all the legal configurations are strongly connected. More precisely,
in the non-probabilistic context, we say that, given a set £ of legal configurations, (M;) is stabilizing
w.r.t. £ if, starting from any initial configuration, the system is guaranteed to reach a configuration of £
within a finite number of transitions (see, e.g., [?]). For example, in mutual exclusion problems, a legal
configuration is a configuration with a single token, which expresses the fact that only one machine can
enjoy the resource. In the probabilistic context of Markov chains, the convergence property has to be
guaranteed with probability 1. Formally:

Definition 32. Given a closed set L of configurations, (M) is (self-)stabilizing w.r.t. L, if (M;) converges
towards L (with probability 1), whatever the initial configuration is, i.e:
Vie S Pi(Tr <oo0)=172%

Given a Markov chain (M:)$2 on a finite set S, and a closed set £ of configurations, we are interested
in methods for proving the stabilization property of (M;) w.r.t. £. We are also interested in evaluating
the rate of convergence of (M;) to L. The expected stabilization time is the standard rate of convergence
used in the self-stabilization community (see, e.g., [?], p. 118). It is the expected time for (M;) to reach
L, starting from the “worst” configuration, i.e.:

Definition 33. Given a Markov chain (M:) and a set L of configurations, the expected stabilization time
of L (or more simply the stabilization time) is:

A = mazies Ei[Tg],
where E[.] denotes expectation and Tp = min{t: X, € L}.

21 Recall that by Markov’s theorem (see, e.g., [?]) (M) is stabilizing iff
Vie S Pi(T: >0) =1. ().



Let us recall that a finite Markov chain always converges towards the set of “recurrent” configurations,
that is the union of the recurrent sets (see, e.g., (Kemeny-Snell)). > We have:

Proposition 23. A finite Markov chain (M) is stabilizing w.r.t. the union of recurrent sets. Moreover:
If (M) is stabilizing w.r.t. a subset L of S and L is recurrent, then L is the unique recurrent set.

We assume that we are given a Markov chain (M/;) and a recurrent set £, and we focus on the problem
of proving the stabilization property of (M;) w.r.t. L. The following property will be useful.

Proposition 24. Given a closed set L, if A is finite, then (My) is stabilizing w.r.t. L.

Proof. By contraposition. Suppose that (M) is not stabilizing. Then, from (), we know that there exists
1 € S such that
P(M, € L ]| Mo=1i)=0forall t >0.

So A, takes always an infinite value. Therefore E[A;.] is infinite, and so is A..

In case L is not only closed, but recurrent (i.e., closed and irreducible), we have, using Prop. 23:

Proposition 25. Given a recurrent set L, if A is finite, then (M) is stabilizing w.r.t. L, and L is the
unique recurrent set.

In the following, we assume that we are given a Markov chain (M;) and a recurrent set £, and we
focus on the problem of proving the stabilization property of (M;) w.r.t. L.

Theorem 22. Given a Markov chain (X;) and a recurrent set L, if there ewists a coupling of finite
expected time T, then:

1. The expected stabilization time A satisfies: A, <T.
2. L is the unique recurrent set, and (X.) is stabilizing w.r.t. L.

Proof. Let us suppose that there exists a coupling of finite expected T, and let us show statements 1
and 2.

1. Recall that: A,z = min{t : X € L | X° =4}, and T;; = min{t : X; = Y; | X° = 4,Y° = j}.
Suppose now that y € £. Then Y; € L since L is closed. Hence: A;x < T;; forallie S,5 € £. And
by taking the expectations, then the maxima of the two sides: A, < T.

2. Uniqueness of £ and stabilization of (X;) follow from the finiteness of A, (statement 1) by Prop. 25.

This theorem gives a method for showing stabilization via coupling.

8.4 Stabilization Time Using Coupling

By Theorem 22, finding an upper bound on the time of coupling T allows us at once to prove the stabi-
lization property and to obtain an upper bound on the stabilization time. We give hereafter two sufficient
conditions for bounding the coupling time. In each case, this provides us additionally with an upper bound
for the stabilization time.

Theorem 23. Given a Markov chain (M) and a recurrent set L, suppose there exist a coupling (X,Y) —
(X',Y"), a function 6 on S x S which takes values in {0,1,..., B} and a constant 3 < 1 such that, for
all (X, Y)e S x8S:

- (X, Y)=0¢f X =Y, and

Then L is the unique recurrent set and (M) is stabilizing w.r.t. L. Furthermore, the expected stabilization
time satisfies: Az < %.

Proof. Let us consider an integer-valued function § satisfying the assumptions of Theorem 23, and let
us show Ay < %. (The facts that £ is the unique recurrent set, and (M) is stabilizing follow from
statement 1, by Prop. 25.) By Theorem 19, we have: for all i,5 € S, E[T;;] < B/(1 — 3). Now, from
Theorem 22 (statement 1), we infer: A, < max;; E[T; ;] < B/(1-(3).

22 Given a closed set £, (M) is stabilizing w.r.t. £ iff Rec C £, where Rec is the set of recurrent states of
(M).



A similar theorem exists even when 3 =1, i.e.: E[6(X¢y1, Yit1)|Xe, Y] < 6(Xy, V), provided that the
probability of 6(X¢41,Yi+1) # §(X¢, Y:) can be bounded below.

Theorem 24. Given a Markov chain (M;) and a< recurrent set L, suppose there exist a coupling (X,Y) —
(X',Y"), a function § on S X S which takes values in {0,1,..., B} and a positive constant « such that, for
all (X, Y)e SxS:

- 4X,)Y)=04ff X =Y, and
- E5(X,Y)X,Y]<8(X,Y) A PEX,Y)£6X,Y)) > (2)

Then L is the unique recurrent set and (M) is stabilizing w.r.t. L. Furthermore, the expected stabilization
time satisfies: Ar < B?/a.

The proof of Theorem 24 is analogous to that of Theorem 23, but relies on Prop. 22.

Proof. Let us consider an integer-valued function § satisfying the assumptions of Theorem 24, and let
us show Az < B?/a. (The facts that £ is the unique recurrent set, and (M;) is stabilizing follow from
statement 1, by Prop. 25.) From Theorem 20, we have: for all 4,5 € S, E[T; ;] < B*/c. Now, from Theorem
22, we infer: Ay < maz;; E[T; ;] < BQ/a.

Therefore finding a coupling (X¢,Y:) and a function § such that (1) (resp. (2)) holds allows us to
prove that (M) is stabilizing, and gives us an upper bound on the expected stabilization time. Thus, from
example 26, Theorems 21 and 24, and Lemma 13, we have:

Theorem 25. For N odd, Herman’s algorithm is stabilizing w.r.t. the set L of configurations with a single
token. Furthermore, the expected stabilization time satisfies: Ay < 2N2,

Note that the metric 6 on S x S found here (Hamming distance) is much simpler than the decreasing
function on S used by Herman, which involves the number of tokens of a configuration x together with
the minimal distance between two tokens of x. The method here gives also directly an upper bound for
the expected stabilization time with no need for a separate analysis as done in Herman’s work [?].



9 Stationary Distributions (Steady-State Behavior), Mixing and
Coupling

9.1 Computation of the Stationary Distribution (BT89, p.166-170)

Definition 34. Given a Markov chain of transition matriz P, a stationary distribution 7 is a probability
distribution T satisfying
T =P,

(where 7 is viewed as a row vector), i.e, for all i € S: m =}, g T;pji-
The equations m; = Z]’e < T;pji are called the balance equation.

Iteration of equation m = 7P gives m = wP" for all n > 0, and therefore (by the Chapman-Kolmogorov
equation (?77)), if the initial distribution v = 7, then the distribution at the n-th step is still 7, for all
n > 0. Thus, if a chain is started with a stationary distribution, it keeps the same distribution forever.
Thus, a stationary distribution represents a steady state or an equilibrium in the chain’s behavior.

NB (Brémaud,p.76): The balance equation 7P = 7, together with the requirement that = be a prob-
ability vector, i.e., 71 = 1 (where 1 is a column vector with all its enries equal to 1), constitute |S| + 1
equations for S variables. One of the S equations in 7P = 7 is superfluous given the constraint 71 = 1.
Indeed, summing up all equalities of 7P = 7 yields the equality 7P1 = 71, that is, 71 = 1.

Theorem 26. A Markov chain with a single recurrence class (and possibly some transient states) has a
unique stationary distribution 7. Furthermore:

— m = 0 if i is a transient state.
— m; > 0 if i is recurrent.

Proof. A FAIRE 777

NB: (BT89,p.169) We now consider an algorithm “implementing” a variant of the iteration m := wP.
The algorithm is described by

7T1(t+1)=71’1(t), (84)

7Ti(t+ 1) = Z;.Lzl Wj(t)pjz‘, 1 =2,..,n, (85)
The initialization of the algorithm is arbitrary, provided that 71 (0) # 0. In order to represent the algorithm
in matrix form, we partition the matrix P as shown:

b1 a

p=(n0). 6o
Here, a (respectively, b) is a row (respectively, a column) vector of dimension n — 1 and P is the matrix
of dimension (n — 1) X (n — 1) obtained by deleting the first row and the first column of P. Let 7(t) be
the row vector (72(t),...,7n(t)). Then, Eq. (8.5) can be rewritten as

7t +1) =7(t)P 4+ m1(0)a. (8.6)
This iteration converges provided that p(P) < 1 (Prop. ??). The following result provides conditions for
this to be the case and characterizes the limit of 7(¢).

9.2 Stationary Distribution As Limit of p;;(n) (BT 2002,p.326)

In Markov chain models, we are often interested in long-term state occupancy behavior, that is, in the
n-step transition probabilities p;;(n) when n is very large. We have seen (777) that the p;;(n) may converge
to steady-state values that are independent of the initial state. We wish to understand the extent to which
this behavior is typical.

If there are two or more recurrent classes, it is clear that the limiting values of the p;;(n) must depend
on the initial state (the possibility of visiting j far into the future depends on whether j is in the same
class as the initial state i). We will, therefore, restrict attention to chains involving a single recurrent class,
plus possibly some transient states. This is not as restrictive as it may seem, since we know that once the
state enters a particular recurrent class, it will stay within that class. Thus, the asymptotic behavior of a
multiclass chain can be understood in terms of the asymptotic behavior of a single-class chain.



Even for chains with a single recurrent class, the p;;(n) may fail to converge. To see this, consider a
recurrent class with two states, 1 and 2, such that from state 1 we can only go to 2, and from 2 we can
only go to 1 (pi2 = p21 = 1). Then, starting at some state, we will be in that same state after any even
number of transitions, and in the other state after any odd number of transitions. Formally,

pis(n) = { 1, n even,
v 0, n odd.
What is happening here is that the recurrent class is periodic, and for such a class, it can be seen that the
pij(n) generically oscillate.

We now assert that for every state j, the probability p;;(n) of being a state j approaches a limiting value
that is independent of the initial state ¢, provided we exclude the two situations discussed above (multiple
recurrent classes and/or a periodic class). This limiting value, denoted by ;, has the interpretation

m; = P(X, =7j), when n is large,
and is called the steady-state probability of j. The following is an important theorem.

Theorem 27. (Steady-State Convergence) Consider a Markov chain with a single recurrent class, which
is aperiodic. Then, for each j, we have:

llmn_>oo Dij (TL) = Tj, fO’I" all i.

The steady-state probabilities 7; sum to 1 and form a probability distribution on the state space,
called the stationary distribution of the chain. The reason for the qualification “stationary” is that if the
initial state is chosen according to this distribution, i.e., if

]P(XO :j):ﬂ'j, 7=1..m,
then, using the total probability theorem, we have

P(X1 =j) =31, P(Xo = k)pej = 222, mebrks = 75,
where the last equality follows from part (b) of the steady-state convergence theorem. Similarly, we obtain
P(X, = j) = 7j, for all n and j. Thus, if the initial state is chosen according to the stationary distribution,
the state at any future time will have the same distribution.

The equations

T = D ey TkDkjs j=1,..,m,
are called the balance equations. They are a simple consequence of part (a) of the theorem and the
Chapman-Kolmogorov equation. Indeed, once the convergence of p;;(n) to some 7; is taken for granted,
we can consider the equation,

pij(n) = 2230, pik(n — )prj,
take the limit of both sides as n — oo, and recover the balance equations.
Together with the normalization equation

Z;cnzl T =1,
the balance equations can be solved to obtain the ;.

23

Example 27. Herman Prove that the uniform distribution on the configurations with a single token is
stationary.

Ezample 28. A simple queue (Mitzenmacher-Upfal,p.173)

A queue is a line where customers wait for service We examine a model for a bounded queue where
time is divided into steps of equal length at each time step, exactly one of the following occurs:

- If the queue has fewer than n customers, then with probability A\ a new customer joins the queue

- If the queue is not empty, then with probability x the head of the line is served and leaves the queue

- With the remaining probability, the queue is unchanged
If X; is the number of customers in the queue at time ¢, then under the foregoing rules the X; yield a
finite-state Markov chain its transition matrix has the following nonzero entries:

Py = Aif i <n;

1-—A ifi=0
Pi=<¢1-XA—pif1<i<n-1
1—p ifi=n

3 According to the a famous and important theorem from linear algebra (called the Perron-Frobenius the-
orem), the balance equations always have a nonnegative solution, for any Markov chain. What is special
about a chain that has a single recurrent class, which is aperiodic, is that given also the normalization
equation, the solution is unique and is equal to the limit of the n-step transition probabilities p;;(n).



The Markov chain is irreducible finite and aperiodic, so it has a unique stationary distribution 7 We use
T = TP to write

o = (1 7A)7T0+4uﬂ—7 17

m:Awi_1+(1—)\—p)7ri+,u7ri+1, 1§’LS’I’L*1,

T = Ap—1 + (1 — p) 70
It is easy to verify that m;, = Wo(%)i is a solution to the preceding system of equations adding the

A For all 1 <i < n,

requirement Y "  m; = 1, we have: Y 1 jm =Y 1 Wo(;)i =1, 0or mp =

o /w
E SN VN
Another way to compute the stationary probability in this case is to use cut-sets For any i, the

transitions ¢ — ¢ 4+ 1 and ¢ + 1 — ¢ constitute a cut-set of the graph representing the Markov chain
Thus, in the stationary distribution, the probability of moving from state i to ¢ + 1 must be equal to the
probability of moving from state ¢ = 1 to i, or: Aw; = um;+1 A simple induction now yields: m; = Wo(%)i

In the case where there is no upper limit 7 on the number of customers in a queue, the Markov chain
has a countably infinite state space The Markov chain has a stationary distribution iff the following set
of linear equations has a solution with all ; > 0:

7o = (1= A)mo + i — 1

m:Awi_1+(1—)\—p)7ri+,u7ri+1, ’1,21

W'

22520 (M 1)
the solution to the case where there is no upper bound n on the number of the customers in the finite
system All of the m; are greater than 0 iff A < u, which corresponds to the situation when the rate at
which customers arrive is lower than the rate at which they are served If A > u, then the rate at which
customers arrive is higher than the rate at which they depart hence there is no stationary distribution, and
the queue length will become arbitrarily long In this case, each state in the Markov chain is transient The
case of A = p is more subtle Again there is no stationary distribution and the queue length will become
arbitrarily long, but now states are null recurrent.

1
S oA /m)?
s

It is easy to verify that m; = = (%)’(1 — %) is a solution of this system This naturally generalizes

9.3 Mixing

(Mitzenmacher-Upfal,p.271) In our study of discrete time Markov chains, we found that ergodic Markov
chains converge to a stationary distribution. However, we did not determine how quickly they converge,
which is important in a number of algorithmic applications, such as sampling using the Markov chain
Monte Carlo technique. We will introduce the notion of coupling, a powerful method for bounding the
rate of convergence of Markov chains.

(Brémaud,p.125) Consider an HMC that is irreducible and positive recurrent In particular, if its initial
distribution is the stationary distribution, it keeps the same distribution at all times the chain is said to
be in the stationary regime, or in equilibrium, or in steady state A question arises naturally: What is the
long-run behavior of the chain when the initial distrribution u is arbitrary? For instance, will it converge
to equilibrium, and in which sense? When the HMC is reducible, another type of problem is of interest
Suppose, for instance, that the set of transient states is not empty and that each remaining state is
absorbing One may want to compute the probability of reaching a given absorbing state when the initial
state is transient, or the probability of remaining forever in the transient state In this special case, where
all the recurrent states are absorbing, the probability of leaving the transient set is exactly the property of
converging We are dealing here with almost-sure convergence For an ergodic HMC, the type of convergence
of interest is not almost-sure convergence but convergence in variation of the distribution at time n to the
stationary distribution This type of convergence is relative to a metric structure that we proceed to define

Definition 35. : Distance in Variation (Brémaud,p125)
Let S be a countable space and let i and v be probability distributions on S The (total) distance in variation
dv (u,v) between u and v is defined by:

v (o) = i = vl = 3 3 i~ wil
i€s
The distance in variation between two random variables X and Y with values in S and respective
distributions p and v is dv (u,v), and is denoted with a slight abuse of notation dy (X,Y).
That dy is indeed a distance is clear.
This is just the L; norm, with the 1/2 introduced so that the distance is always at most 1.



Lemma 15. (MU,p272) The variation distance between two distributions p and v on S is given by
dv (u, v) = max la — val.

Proof. Let ST C S be the set of states i such that p; > v;, and let S~ C S be the set of states i such that
Vi > .

Clearly,
MaxAcs A — VA = g+ — Vg+, and
MAXACS VA — lA = Vg— — fbg—-

But since pus = vs = 1, we have
Mg+ + pg— =vg+ +rvg- =1,
which implies that

Hs+ — Vg+ = Vg— — fg—-
Hence
maxacs [pa — va| = s+ — Vet | = |us- —vs-|.

Finally, since

lps+ —ver |+ lus— —vg-| = Zies |pi — vil = 2dv (p,v),
we have

maxacs \MA - VA\ = dV(lh V)7
completing the proof.

NB: (Mitzenmacher-Upfal, p.272) Fig.11.1: The areas shaded by upward diagonal lines correspond
to values i where p; < v; (aka: P(X = i) < P(Y = j)); the areas shaded by downward diagonal lines
correspond to values ¢ where u; > v; (aka: P(X = i) > P(Y = j)). The total area shaded by upward
diagonal lines must equal the total area shaded by downward diagonal lines, and the variation distance
equals one of these two areas.

Definition 36. : Convergence in Variation (Brémaud,p128)
Let {u™} and v be probability distributions on a countable state space S If limproo dy (™, ) = 0, the
sequence {u'™} is said to converge in variation to the probability distribution v.

Let {X,} be an S-valued stochastic process. If for some probability distribution v on S, the distribution
w(Xy) of the random variable X,, converges in variation to v, ie, if

limy o 3seq P(X0 = ) — 1] = 0,
then {X,} is said to converge in variation to v.

There is some abuse of terminology in the above definition (it is the state random variable, not the
process, that converges in variation) However, such abuse turns out to be harmless and very convenient

If the process {X,} converges in variation to , then
limy1oe E[f(Xn)] = 7(f) for all bounded function f : .S — R, where 7(f) = >, o™ f(3)
Indeed, if M is an upper bound of |f|, then:

(Bl (Xn) = (Dl = 1 Xies FOP(Xn = i) —mi)| S M35 g [P(Xp = i) — il

(Randall)

The time a Markov chains takes to converge to its stationary distribution, known as mizing time of the
chain, is measured in terms of the variation distance between the distribution at time ¢ and the stationary
distribution. For a comparison of rates of convergence based on different measures of distances, in the case
of reversible Markov chains, see (Aldous-Fill, to appear)((Lovasz-Winkler 1998).

Definition 37. : Mixing Time.
Let w be the stationary distribution of a Markov chain (X:) with state space S. For € > 0, the mixing time
7(e) is defined by:
7(g) = max;es 7i(€),
where 7;(e) = min{t : dv (Xp,7) <e, V' >t | Xo =i}.

We say a Markov chain is rapidly mizing if the mixing time is bounded above by a polynomial in n
and loge™!, where n is the size of each configuration in the state space.



9.4 Relating the Mixing Time to the Coupling Time

(Randall) It is well-known from probability theory that the eigenvalue gap of the transition matrix of the
Markov chain provides a good bound on the mixing rate of a chain (see, e.g., (Sinclair, 1993)). However,
for most algorithmic applications the size of the state space is exponentially large and we typically do
not have a compact, mathematical representation of the adjacency matrix, so it is far too diffficult to
determine the eigenvalues of the transition matrix. Another popular method for bounding mixing times
is coupling, both because of its elegance and its simplicity. This was first introduced in computer science
in the context of sampling spanning trees (Broder, 1989), and has since seen many more applications.

Observe that convergence in variation concerns only the marginal distributions of the process, not the
process itself. Therefore, if there exists another process { X} }n>0 with u(X,) = p(X,,) for all n > 0, and
if there exists another process { X, }n>0 such that u(X,) = 7 for all n > 0, then convergence in variation
to 7 follows from
limmoo dv(X;“ Xﬁ[) =0. (19)
This trivial observation is useful because of the resulting freedom in the choice of {X, } and {X, }. In
particular, one can use dependent versions, and the most interesting case occurs when there exists a finite
random time 7' such that X, = X, for all n > T. It follows then, as will be proven later (see lemma
below???) that:
dy(Xp, X)) <P(T >n). (1.10)

Finiteness of T is equivalent to lim,1..IP(7 > n) = 0, and therefore (1.9) is a consequence of (1.10).

Lemma 16. (MU,p.278-280) Given two distributions p and v on a state space S, Let Z = (X,Y) be
a random variable on S x S. where X is distributed according to a distribution p and Y s distributed
according to a distribution v. Then:

dy (j1,v) < P(X £Y).
Moreover, there exists a joint distribution Z = (X,Y), where X is distributed according to p and Y is
distributed according to v, for which equality holds.

Proof. For each s € S, we have

P(X =Y =) < min(P(X = i), P(Y = 1)).
Hence

P(X = Y) < ¥, comin(P(X = i), P(Y =),
and therefore

P(X#Y) 21—, gmin(P(X =1), P(Y =1))

5 es(P(X = ) — min(P(X = i), P(Y = 0))).
Hence we are done if we can show

dv(p,v) =3 ,cs(P(X =14) — min(P(X =), P(Y =1i))). (11.2)
But P(X =) — min(P(X =4),P(Y =4)) = 0 when u; < v;, and when p; > v; it is

P(X =i) -~ P(Y =4) = p; — vi.
If we let ST be the set of all the states i for which u; > v;, then the right-hand side of Eqn (11.2) is equal
to g+ — Vg+, which is equal to dy(X,Y) from the argument in Lemma 15. This gives the first part of
the lemma.

Equality holds in Eqn. (11.1) if we take a joint distribution where X = Y as much as possible.
Specifically, let m; = min(lP(X =14),P(Y =4)). If >, m; = 1, then X and Y have the same distribution
and we are done. Otherwise, let Z = (X,Y) be defined by

PX =4,Y =j)= { (u-m)w;-my)

1=32, ms

otherwise.

The idea behind this choice of Z is to first match X and Y as much as possible and then force X and Y
to behave independently if they do not match.

For this choice of Z,

PX=Y)=>,mi=1—dv(v).

It remains to show that, for this choice of Z, P(X = i) = p;; the same argument will hold for P(Y = j3).
If m; = p; then P(X = ¢,Y =4) = m; and P(X =4,Y = j) = 0 when = # y, so P(X =) = p;. If
m; = v;, then

P(X =i)=>,P(X =4Y =)

(pi—my) (v —myj)
:miJrZy;sx = 1722;2 .



(Hi=mm3) 3oy 2q (v —my)

=it =5 me

= - Gz (s tmemma)
=m; + (ui — my)

= Mi,

completing the proof.

Again, examining a specific example (such as in Figure 11.177?) helps understand the above proof.
Example 29. Maximal Coupling for Herman
(Sinclair)

Theorem 28. The mizing time 7(¢) of an ergodic®* Markov chain satisfies: 7(e) < T[ln ],
where T = min{t : P(T;; >t) < e ' for all i,j}.

Recall that T;; = min{t : X: =Y; | Xo =4,Yo = j}. Thus, to obtain an upper bound on the mixing
time, it suffices to find a coupling with a small “threshold” time 7.

Proof. Letting Yo = j distributed according to the stationary distribution 7, we have, using Lemma 16:
dv(Xt,ﬂ')) < ]P(Xt 7& Y't) < max; j ]P(Ti,j > t)
Also, by definition of 7 we have, for any positive integer k and all pairs z,y € S:
P(T;; >kT)<e*
To see this, consider a sequence of k epochs each of length 7', during each of which coupling fails to occur
with probability at most e~! The two inequalities yield the theorem.

Rather than with 7 itself, it is often convenient to work with the expected coupling time T (defined
as T = max; ; E[T;;], see Def. 31). Using Markov’s inequality,?® we have:

Theorem 29. The mizing time 7(c) of an ergodic Markov chain satisfies: T(¢) < eT[ln ¢7'].

This is somewhat cruder than the previous theorem, but often easier to use in practice when an upper
bound on the expectation of T} ; is readily available but its distribution is more complicated.

NB: Theorem 28 has a converse which (very loosely stated) says that there always exists a coupling
that captures the time taken for the chain to converge (see (Griffeath,1978)).

Theorem 30. (Convergence to Steady State (Brémaud,p.130) Let P be an irreducible and aperiodic
transition matrix on S. For all probability distributions pu and v on S,
limp,— oo dv (uP™,vP™) = 0.
In particular, if v is the stationary distribution 7, lim,— dy (uP™,7) =0,
and with p = §;, the probability distribution putting all its mass on j,
limp—oo i [Pii(n) — mi| = 0.

Proof. (sketch). By constructing two coupling chains with initial distributions u and v respectively, using
the facts that the product chain is irreducible, aperiodic, with p;;(n)pk,¢(n) as probability of transition
from (i, k) to (j,¢), and {mm;}; jyes2 as a stationary distribution.

9.5 The Markov Chain Monte Carlo Method (MU, p.263)

The Monte Carlo method is absed on sampling. It is often difficult to generate a random sample with
the required probability distribution. The Markov chain Monte Carlo (MCMC) method provides a very
general approach to sampling from a desired probability distribution. The basic idea is to define an
ergodic (irreducible aperiodic) Markov chain whose set of states is the sample space and whose stationary
distribution is the required sampling distribution. Let Xo, X1,..., X, be a run of the chain. The Markov
chan converges to the stationary distribution, so it can be used as a sample. Similarly, repeating this
argument with X, as the starting point, we can use X2, as a sample, and so on. We can therefore use the
sequence X, Xo2,, X3r,... as almost independent samples from the stationary distribution of the Markov
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chain. The efficiency of this approach depends on (a) how large r must be to ensure a suitably good sample
and (b) how much computation is required for each step of the Markov chain.

The Metropolis algorithm refers to a general construction that transforms any ireducible Markov chain
on a state space S to a time-reversible Marko chain with a required stationary distribution.

Let us assume that we have designed an irreducible state space for our Markov chain; now we want
to construct a Markov chain on this state space with a stationary distribution 7, = b(z)/B, where for all
x € S we have b(z) > 0 and such that B = Y _b(x) is finite. We will only need the ratios between the
required probabilities; the sum B can be unknown.

Proposition 26. For a finite state space S and neighborhood structure {N(X) | x € S}, let N =
maxges |N(x)|. Let M be any number such that M > N. For all x € S, let my > 0 be the desired
probability of state x in the stationary distribution. Consider a Markov chain where

(1/M)min(1, 7y /7)) ifz#y andy € N(z);
Pry= 10 ifx#y andy & N(z);
172y¢sz,y ife=uy.

Then, if this chain is irreducible and aperiodic, the stationary distribution is given by the probabili-
ties Ty



