
Th
ès

e
de

 d
oc

to
ra

t
N

N
T:

2
0
2
0
U

PA
S
G

0
4
6

Expressivity of first-order logic,
star-free propositional dynamic logic

and communicating automata

Thèse de doctorat de l’Université Paris-Saclay

École doctorale n◦ 580 Sciences et technologies de l’information et
de la communication (STIC)

Spécialité de doctorat: Informatique
Unité de recherche: Université Paris-Saclay, ENS Paris-Saclay, CNRS, LSV,

91190, Gif-sur-Yvette, France
Référent: ENS Paris-Saclay

Thèse présentée et soutenue en visioconférence totale,
le 27 novembre 2020, par

Marie FORTIN

Composition du jury:

Volker DIEKERT Rapporteur
Professeur, Université de Stuttgart
Blaise GENEST Rapporteur
Directeur de recherche, CNRS, Université de Rennes
Sylvain CONCHON Examinateur
Professeur, Université Paris-Saclay
Cristina SIRANGELO Examinatrice
Professeure, Université de Paris
Jean-Marc TALBOT Examinateur
Professeur, Aix-Marseille Université

Paul GASTIN Directeur de thèse
Professeur, ENS Paris-Saclay
Benedikt BOLLIG Co-encadrant de thèse
Directeur de recherche, CNRS, ENS Paris-Saclay

Résumé

Cette thèse porte sur l’expressivité de la logique du premier ordre et d’autres
formalismes sur différentes classes de structures ordonnées, parmi lesquelles les MSC
(Message Sequence Charts), un modèle standard pour les exécutions de systèmes
concurrents avec échange de messages. Cette étude est motivée par deux questions
classiques : celle de l’équivalence, pour certaines classes de structures, entre la
logique du premier ordre et son fragment avec k variables, et celle de la comparaison
entre automates et logique, dans l’esprit du théorème de Büchi-Elgot-Trakhtenbrot.

Notre approche repose, pour les deux problèmes, sur la logique dynamique
propositionnelle sans étoile (PDL sans étoile). Il s’agit d’une variante de PDL
basée sur les opérations de concaténation, inverse, union et complément de relations
binaires. Cette logique se rapproche de plusieurs formalismes classiques, et est
équivalente à la logique du premier ordre avec 3 variables.

On étudie d’abord l’expressivité de PDL sans étoile, et donc de la logique du
premier ordre avec 3 variables, sur des structures linéairement ordonnées avec des
prédicats unaires et binaires. On montre que sous certaines conditions de monotonie,
PDL sans étoile devient aussi expressive que la logique du premier ordre. Cela
implique que toute formule de la logique du premier ordre peut alors être réécrite
en une formule équivalente qui utilise au plus 3 variables. Ce résultat s’applique,
directement ou indirectement, à un certain nombre de classes naturelles, généralisant
des résultats connus (comme le cas des ordres linéaires, des réels avec la relation +1,
ou des traces de Mazurkiewicz), et répondant à des questions ouvertes (réels avec
des fonctions polynomiales, ordres linéaires avec des fonctions monotones).

On se concentre ensuite sur les MSC, auxquels ce premier résultat s’applique
également. On montre que, sur les MSC, la syntaxe de PDL sans étoile peut être sim-
plifiée pour obtenir une logique plus proche de la logique temporelle linéaire (LTL),
mais toujours équivalente à la logique du premier ordre. Cela nous permet d’aborder
un autre problème important: celui de la synthèse d’automates communicants à
partir de spécifications écrites en logique du premier ordre. Les automates com-
municants sont un modèle de systèmes concurrents dans lequel un nombre fixé
d’automates finis échangent des messages via des canaux FIFO. Ils définissent des
langages de MSC. Bien que des caractérisations de l’expressivité des automates
communicants en termes de fragments de la logique monadique du second ordre aient
déjà été établies pour certaines restrictions (borne sur la taille des canaux de com-
munications, ou omission de la relation “arrivé-avant” au niveau de la logique), la
question suivante restait ouverte dans le cas général : toute formule du premier ordre
sur les MSC peut-elle être traduite en un automate communicant équivalent ? On
montre que c’est le cas, en utilisant PDL sans étoile comme langage intermédiaire.

i

Abstract

This thesis is concerned with the expressive power of first-order logic and other
formalisms over different classes of ordered structures, among which MSCs (Message
Sequence Charts), a standard model for executions of message-passing systems.
This study is motivated by two classic problems: the k-variable property, that is,
the equivalence of first-order logic and its k-variable fragment over certain classes
of structures, and the study of logic-automata connections, in the spirit of Büchi-
Elgot-Trakhtenbrot theorem.

Our approach to both problems relies on star-free propositional dynamic logic
(star-free PDL), a variant of PDL based on the operations of concatenation, con-
verse, union and complement of binary relations. It combines features from several
classic formalisms, and has the same expressive power as the 3-variable fragment of
first-order logic.

We start by studying the expressive power of star-free PDL, and thus of the
3-variable fragment of first-order logic, over linearly ordered structures with unary
and binary predicates. We show that under certain monotonicity conditions, star-
free PDL becomes as expressive as first-order logic. This implies that any first-order
formula can then be rewritten into an equivalent formula with at most 3 variables.
This result applies, directly or indirectly, to various natural classes of structures,
generalizing several known results (such as the case of linear orders, the real line
with the +1 relation, or Mazurkiewicz traces), and answering some open questions
(reals with polynomial functions, linear orders with monotone functions).

We then focus on MSCs, to which this first result also applies. We show that,
over MSCs, star-free PDL syntax can be simplified into a logic that is closer to
linear temporal logic (LTL), but still equivalent to first-order logic. This gives us
the means to address another important problem: the synthesis of communicating
finite-state machines from first-order specifications. Communicating finite-state
machines (CFMs) are a model of concurrent systems in which a fixed number
of finite-state automata communicate through unbounded FIFO channels. They
accept languages of MSCs. While characterizations of the expressive power of
CFMs in terms of fragment of monadic second-order logic have been established
under different restrictions (bounding the size of the communication channels, or
removing the “happened-before” relation from the logic), the following question
had remained open in the general case: can every first-order formula over MSCs be
translated into an equivalent CFM? We prove that this is the case, using star-free
PDL as an intermediate language.

iii

Contents

Résumé i

Abstract iii

Contents v

1 Introduction 1

1.1 Motivations . 2

1.2 Ordered structures and message-passing systems 5

1.3 Star-free propositional dynamic logic 10

1.4 Outline . 12

2 Logical background 15

2.1 Models . 15

2.2 Monadic Second-Order Logic . 17

2.3 Bounded-variable fragments . 18

2.4 Propositional Dynamic Logic . 20

3 Star-free Propositional Dynamic Logic 23

3.1 Monadic variables . 23

3.2 Syntax and semantics . 24

3.3 Equivalence of star-free PDL and FO3 25

3.4 Interval-preserving relations . 28

3.5 Interval-preserving fragment of star-free PDL 31

3.6 Equivalence of FO and PDLsf . 33

3.7 Applications . 37

3.8 The case of complete linear orders 40

3.8.1 A fragment of PDLsf [Σ] without complement 41

v

vi CONTENTS

3.8.2 Main result . 45

3.8.3 Splitting formulas with complement operators 47

3.8.4 Complements for base path formulas 53

3.8.5 Proof of Theorem 3.30 . 64

4 Communicating Finite-State Machines 65

4.1 Message Sequence Charts . 65

4.1.1 Definition . 65

4.1.2 Logics for MSCs . 67

4.1.3 Bounded MSCs . 68

4.2 Communicating finite-state machines 70

4.3 Logical characterizations of CFMs 72

5 Logics for Message Sequence Charts 75

5.1 MSCs as interval-preserving structures 75

5.2 Fragment of star-free PDL for MSCs 78

5.2.1 Syntax . 79

5.2.2 Monotonicity . 83

5.2.3 Expressive completeness . 88

5.3 Fragment without Loop formulas . 91

5.3.1 Main result and sketch of proof 91

5.3.2 Simple cases . 94

5.3.3 A normal form for Loop formulas 95

5.3.4 The case of Loop formulas in normal form 100

5.3.5 Proof of Theorem 5.28 . 107

5.4 Temporal logics . 108

6 From logic to CFMs 117

6.1 Star-free PDL . 117

6.2 First-order logic and EMSO . 121

6.3 Temporal logics . 121

6.4 Existentially-bounded MSCs . 122

6.4.1 Known results . 122

6.4.2 A CFM for existentially-bounded MSCs 123

6.4.3 FO-definable linearizations for existentially-bounded MSCs . 124

6.4.4 Logic for linearizations . 127

6.4.5 A new proof of Theorem 6.8 129

6.4.6 Extension to infinite MSCs 130

7 Conclusion 137

7.1 The k-variable property . 138

7.2 Succinctness . 139

CONTENTS vii

7.3 Expressive completeness of temporal logics 139
7.4 Expressive power of CFMs . 140

Bibliography 143

Overview of logics 153

Index 155

Chapter 1

Introduction

One of the most fundamental characteristics of a logic or a computational system
is its expressive power. It can be studied for a number of reasons: the goal
might simply be to better understand the limits of a logic used to write program
specifications or database queries, or, for instance, to relate two distinct formalisms
through equivalence results of the form “X has the same expressive power as Y”.
This may allow to transfer techniques from one to the other, and gain new insights
on a problem; a good example would be descriptive complexity, or the application
of automata theory to prove decidability results in logic.

Expressivity is a particularly important question in formal verification. Broadly
speaking, the aim of verification is to ensure that hardware and software systems
behave as expected (essentially, to prevent bugs), by providing mathematical guar-
antees of correctness. Here we focus on the automata-theoretic approach. In
this setting, systems are modeled as variants of automata, and their specifications
are formalized e.g. as logical formulas. There are two central questions: model-
checking and synthesis. Model-checking algorithms take as input a system and
its specification, and test whether the system satisfies the specification. Synthesis
consists in constructing automatically a correct system from a given specification.

Take as a basic example the case of sequential finite-state systems modeled
as finite automata, and of specifications written in linear temporal logic (LTL).
Possible executions are represented as words over a finite alphabet. An automatonA
or a formula ϕ both define a language of words: L(A) is the set of all possible
behaviors of A, while L(ϕ) is the set of all models of ϕ. The model-checking
problem asks, given an automaton A and a formula ϕ, if all executions of A are
models of ϕ, that is, if L(A) ⊆ L(ϕ). On the other hand, the synthesis problem asks,
given a formula ϕ, to construct an automaton A such that L(A) = L(ϕ).1 Both

1 Note that our definition differs from the classical problem of reactive synthesis, in which the
system has to respond to external actions from the environment [17, 68]. Here we will consider
only closed systems.

1

2 CHAPTER 1. INTRODUCTION

problems are decidable in Pspace [77, 90]. In fact, the translation from LTL to finite
automata answering the synthesis problem is also central to model-checking. Indeed,
the model-checking problem can be reformulated as follows: given A and ϕ, is it the
case that L(A)∩L(¬ϕ) = ∅? After constructing an automaton equivalent to ¬ϕ and
taking its product with A, this comes down to a simple emptiness problem for finite
automata. The core of the decision procedure for synthesis and model-checking
is thus the fact that LTL is (effectively) no more expressive than finite automata:
every finite automaton can be translated into an equivalent LTL formula.

Formal verification has been applied to more and more complex systems, leading
to a wide variety of system models. They may involve various forms of concurrency,
recursion, unbounded data, time, probabilities, etc. Accordingly, their executions
are often represented by richer structures as well, as opposed to the previous example
of words. Specification languages are also extremely varied; classic examples include
first-order and monadic second-order logic, temporal logics such as LTL (linear tem-
poral logic) [67] and CTL (computation tree logic) [18], PDL (propositional dynamic
logic) [28], or the modal µ-calculus [54]. The complexity and even decidability of
the model-checking and synthesis problems depend heavily on the system models
and specification languages used. Usually, and especially for the system models, a
balance has to be found between expressivity and complexity or decidability. On
the other hand, some specification languages may have equal expressive powers but
widely different complexities. For instance, over finite or infinite words, LTL is as
expressive as first-order logic [53], but its satisfiability problem is only in Pspace
[77], while it is non-elementary for first-order logic [79]. While the expressive power
of classic specification languages is well understood over words, the situation is
not always so clear for other classes of structures, associated with more complex
systems.

1.1 Motivations

The aim of the present thesis is to study the expressive power of first-order logic
and other formalisms over different classes of ordered structures, with a special
focus on message-passing systems. Our motivations stem from the following classic
problems.

Connections between logic and automata. The relation between logic and au-
tomata has been studied since the early 60’s, starting with the work of Büchi [15],
Elgot [27], and Trakhtenbrot [89], who established the equivalence in expressive
power of finite automata and monadic second-order logic (MSO) over finite words:
every MSO formula can be translated into an automaton which accepts precisely
the models of the formula, and conversely, every automaton can be translated into

1.1. MOTIVATIONS 3

an MSO formula defining the same language. This was then extended to infinite
words [16] and finite and infinite trees [83, 25, 70].

These early results were used to prove the decidability of MSO over words
and trees: thanks to the translation from MSO to automata, the satisfiability of
an MSO formula reduces to the non-emptiness of the corresponding automaton.
The emptiness problem is decidable both for word and tree automata, making
satisfiability (and validity) decidable for MSO. The equivalence of MSO and tree
automata later found many other applications in logic.

As mentioned before, translations from logic to automata also play a central role
in automated verification and synthesis. While the translation from MSO to finite-
state automata is non-elementary [79], efficient procedures have been developed for
logics such as LTL [90].

Following the Büchi-Elgot-Trakhtenbrot theorem, logical characterizations of the
expressive power of automata models have been established for various classes of
structures beyond words and trees. For instance, automata are still expressively
equivalent to MSO over nested words [1] or Mazurkiewicz traces [95, 86]. As
in the case of words, the proof of these results relies on an inductive translation
from MSO to automata: the operations of disjunction, conjunction, negation, and
existential quantification at the level of logical formulas correspond respectively
to the operations of union, intersection, complementation, and projection at the
automata level. In these inductive translations, the main difficulty is often to
prove the effective closure under complementation of the automata model. There
are other classes of automata for which this property fails, and MSO may be
too expressive. In that case, a logical characterization can sometimes still be
obtained in terms of fragments of MSO. This is the case for instance of data
automata, accepting languages of data words, which are expressively equivalent
to the existential fragment of MSO with two first-order variables (EMSO2) [6].
Thomas’s graph acceptors, a generic automata model for bounded-degree graphs,
are equivalent to existential monadic second-order logic (EMSO) [87, 88].

In the previous examples, the expressive power of automata is defined in terms of
the language of behaviors they accept. Besides numerous other results of this kind,
models of automata for distributed systems have also been studied as acceptors of
(graph) architectures, and several logical characterizations in terms of MSO and
modal logics have been obtained in that setting [41, 56, 72, 73].

Expressive completeness of temporal logics. Choosing the right specification
language is a key step in verifying or synthesizing a system model. Formalizing
intuitive requirements in a given logic is an error-prone process, so choosing one in
which writing and understanding specifications is as simple as possible is paramount.
In addition, the complexities of synthesis or model-checking algorithms are largely
dependent on the logic in which the specifications are written. Usually, decision

4 CHAPTER 1. INTRODUCTION

problems for logics such as monadic second-order logic (MSO) or first-order logic
(FO) are non-elementary (or even undecidable, depending on the class of systems
and behaviors considered), while temporal or modal logics may result in more
efficient algorithms. On the other hand, one should make sure that the chosen
specification language is expressive enough for the kind of properties they want to
consider. One way to argue that this is the case is through comparisons to the
expressive power of other classic formalisms.

Kamp started a long trend of measuring the expressive power of temporal
logics in terms of first-order logic, by proving that, over Dedekind-complete linear
orders, LTL is expressively equivalent to first-order logic. Similar results have
been established for other classes of structures, such as arbitrary linear orders [32],
trees [76, 63], Mazurkiewicz traces [85, 23], or the real line equipped with predicates
+q for all rationals q [48]. In fact, there are at least two questions to consider:

(a) the expressive completeness of a particular temporal logic L, that is, can every
formula ϕ(x) in FO be translated into an equivalent formula of L?

(b) the existence of an expressively complete temporal logic, over a given class of
structures C.

While question (a) may be concerned with any “natural” temporal logic, the second
problem should be made more precise. A temporal logic consists of a set of con-
nectives, their arities, and their semantics. Formulas are simply terms formed from
atomic propositions and these connectives. For instance, the connectives of LTL are
the boolean connectives, and the temporal connectives Until and Since (from which
all other modalities can be defined). Following Gabbay [30], the problem of the
existence of an expressively complete temporal logic is usually concerned with logics
given by a finite set of FO-definable connectives (meaning that the semantics of each
modality should be given as an FO formula). Even then, there are several variants of
this problem, depending on whether only one-dimensional connectives are allowed,
or possibly multi-dimensional ones. Intuitively, a one-dimensional temporal logic
such as LTL considers a single reference point, while k-dimensional ones involve
tuples of k reference points [30, 31].

It should be noted that, besides the positive examples given above, there are also
various instances where the answer to these two questions is negative [30, 45, 44, 47].

The k-variable property. Logics with a bounded number of variables have been
extensively studied. As observed by Gabbay [30], many temporal logics can be em-
bedded into a fragment FOk of FO, consisting of all first-order formulas involving at
most k variables. Bounded variable logics also play an important role in descriptive
complexity (see e.g. [38, 50]); for instance, Immerman’s early characterizations of
the classes Pspace and Ptime relate the space and time required by a Turing

1.2. ORDERED STRUCTURES AND MESSAGE-PASSING SYSTEMS 5

machine to decide a property to the number of variables and size of formulas in a
uniform sequence of first-order formulas defining the same property [49].

One question has gathered a lot of interest [30, 69, 51, 20, 74, 3]: over a fixed
class C of structures, is there k ∈ N such that all first-order properties can be
expressed with at most k variables? If this is the case, C is said to have the k-
variable property.2

Such a k does not always exist: if C is the class of all possible structures (over
a given signature), then it does not have the k variable property for any k. For
instance, the property “there are at least k distinct elements” can be expressed in
FOk, but not in FOk−1. A classic example of a class which does have the k-variable
property is the class of all linear orders (for k = 3) [51]. In the presence of a linear
order, the previous property (“there are at least k distinct elements”) can easily be
expressed with 2 variables, for instance, for k = 4:

∃x.∃y.
(
x < y ∧ ∃x.(y < x ∧ ∃y.x < y)

)
.

Note that both x and y are quantified twice in the formula, denoting different
elements each time. This ability to reuse variables and nest quantifications means
that FOk can express many properties whose “natural” definition in FO would use
more variables.

Gabbay established tight connections between the k-variable property and the
expressive completeness of temporal logics [30]. More precisely, a class C of time
flows admits an expressively complete temporal logic, with a finite set of FO-
definable multi-dimensional temporal connectives, if, and only if, there exists k
such that every FO sentence is equivalent to one in FOk. Gabbay left open whether
this was still true for one-dimensional temporal logics, but Hodkinson later proved
that this is not the case [45]. The equivalence also fails if one asks that every
formula with up to k free variables (rather than sentences only) be equivalent to
one in FOk [46].

Another classic approach to proving or disproving that a class of structures
has the k-variable property is through Ehrenfeucht-Fräıssé games with a bounded
number of pebbles. Positive results were established in this way for linear orders
and bounded-degree trees in [51], and for (R, <,+1) in [3]. Ehrenfeucht-Fräıssé
games are used to prove that a class does not have the k-variable property for any k
in [92].

1.2 Ordered structures and message-passing systems

The problems described in Section 1.1 can be instantiated to various classes of
structures. In this thesis, we focus on classes of ordered structures with only

2 It should be noted that there are, in fact, several non-equivalent definitions of this notion in
the literature (see [46] for an overview). It is also related to Henkin dimension.

6 CHAPTER 1. INTRODUCTION

process 1

process 2

Figure 1.1: A simple MSC

unary and binary predicates, satisfying some monotonicity conditions. Chapters 4-6
are concerned with one particular class, message sequence charts (MSCs), which
correspond to executions of message-passing systems. We first discuss the latter.

Message sequence charts (MSCs). Communicating finite-state machines (CFM)
are a classic model of message-passing systems [14]. A CFM consists of a finite set
of processes, described by finite-state automata, that communicate by exchanging
messages through unbounded point-to-point FIFO channels. Behaviors of CFMs
can be represented in a visual manner by message sequence charts (MSCs), as
in Figure 1.1. Each process is associated with a sequence of events in the MSC,
corresponding to internal actions, sending and receiving of messages. The causal
dependencies between events are indicated by two binary relations connecting (i)
the emission of a message with its reception, and (ii) successive events executed by
one and the same process. In addition, events are partially ordered by Lamport’s
happened-before relation: an event e happens before an event f if, and only if, there
is a “message flow” path from e to f [57].

CFMs are not as well-behaved as finite-state (word) automata. Their empti-
ness problem is undecidable, as message queues can be used to simulate a Turing
machine. In addition, the class of MSC languages accepted by CFMs is not closed
under complementation, making them strictly less expressive than MSO [13]. This
led to the investigation of decidable restrictions of CFMs, such as assuming a bound
on the channel capacity. This amounts to restricting the set of possible behaviors
to universally bounded or existentially bounded MSCs (in which all, respectively at
least one, scheduling of events ensures that the number of pending messages in each
channel remains bounded at all times).

The expressive power of CFMs over bounded MSCs is well-understood: they
are equivalent to MSO, both in the case of existentially and universally bounded
MSCs, and for finite as well as infinite MSCs [43, 55, 34, 35]. These results relied
on the discovery of strong connections between bounded MSCs (and CFMs) and
Mazurkiewicz traces (and asynchronous automata). This allowed a transfer of
certain techniques and results from trace theory to bounded MSCs.

The expressive power of unbounded CFMs was investigated in [13, 11]. When

1.2. ORDERED STRUCTURES AND MESSAGE-PASSING SYSTEMS 7

the happened-before relation is dropped from the signature (leaving only the di-
rect process successor and message relations), CFMs are equivalent to EMSO, the
existential fragment of MSO. The core of the proof is a translation from FO to
CFMs, which relies on the locality of FO over structures of bounded degree (the
techniques used would therefore not go through with the happened-before relation,
of unbounded degree). The result can then be lifted from FO to EMSO using the
closure under projection of CFMs. The converse translation, from CFMs to EMSO,
is similar to the case of words.

While this gives a nice characterization of the expressive power of CFMs, it
is not always very practical to write specifications using only the direct process
successor and message relations. For instance, the mutual exclusion property is
much easier to define in terms of the happened-before relation ≤. Two events e and
f are concurrent when they are not ordered by the happened-before relation: e 6≤ f
and f 6≤ e. The mutual exclusion property asks that there are no two concurrent
events which are both in the critical section. Assuming that a unary predicate CS
denotes “being in the critical section”, the mutual exclusion property can be defined
in FO as:

¬
(
∃x.∃y.CS (x) ∧ CS (y) ∧ ¬(x ≤ y) ∧ ¬(y ≤ x)

)
.

While we will see that our results imply that there is an equivalent EMSO formula
which does not use ≤, coming up with such a formula is much harder.

This raises the question of whether the synthesis of CFMs from FO specifications
is still possible when we get rid of both restrictions (the bounded channels of [43,
55, 34, 35], and the restricted set of predicates of [13, 11]):

Question 1

Can every FO formula over MSCs be translated into an equivalent CFM, even
when the happened-before relation is included in the signature and the channels
are unbounded?

We give a positive answer to Question 1 in Chapter 6. As in the case of words,
the translation from FO to MSCs in non-elementary [79], leaving open the question
of efficient translations for other logics. While several temporal logics over MSCs
have been considered [66, 64, 12, 65], there is no canonical one, and their precise
expressive power relative to FO and MSO is not very well understood.

Question 2

Is there any expressively complete temporal logic for MSCs?

8 CHAPTER 1. INTRODUCTION

While the question remains open for one-dimensional temporal logics, we define
a logic which is expressively equivalent to FO, and which can be considered as a
two-dimensional temporal logic (more details in Section 1.3).

As discussed in Section 1.1, questions related to the expressive completeness
of temporal logics are closely related to the k-variable property, but not always
quite equivalent, depending on the exact definitions. Thus, it makes sense to ask
separately:

Question 3

Do MSCs have the k-variable property for some k?

We prove that MSCs indeed have the 3-variable property, in a strong sense:
every FO formula ϕ(x1, . . . , xn) is equivalent, over MSCs, to a boolean combination
of FO3 formulas. Note that this applies to formulas with arbitrarily many free
variables x1, . . . , xn. Each FO3 component in the boolean combination may have a
different subset of at most three free variables from {x1, . . . , xn}, and at most three
(bound or free) variables in total.

Interval-preserving structures. Our answer to Question 3 is in fact a special case
of a more general result.

Broadly speaking, we are concerned with classes of ordered structures, that is,
structures in which a special predicate ≤ is interpreted as a partial order. Assuming
an underlying order in the structure is a natural assumption when considering
models of executions of computer systems. In the case of sequential systems, events
in the execution (points in the structure) are linearly ordered according to the
progression of the computation. The underlying order may for instance be any
finite or infinite interval of Z (for discrete systems), or of Q or R (for real-time
systems). In the case of distributed systems, where events may occur in parallel,
executions are naturally partially ordered, as in the example of MSCs, rather than
linearly ordered.

Still, we focus on classes of linearly ordered structures. This is not as restrictive
as it may first appear. Even in partially ordered executions of distributed systems,
the set of events associated with a single process is still linearly ordered by the
process order. From a purely technical point of view, in the case of MSCs (and
some other structures), the process order essentially plays the same role as would
a linear order, even though it is rather a union of linear orders.3 In addition,
over MSCs, FO specifications written using the happened-before relation and the

3 This comes from the fact that MSCs only involves a fixed, finite number of processes, which
we can assume to be ordered.

1.2. ORDERED STRUCTURES AND MESSAGE-PASSING SYSTEMS 9

message relation can easily be rewritten with only the process order and the message
relation, and vice versa.

From a more practical point of view, linearly ordered structures are a natural
starting point to study the k-variable property. One of the most basic examples of
k-variable property is the class of all linear orders (with monadic predicates, but no
other binary relation besides the linear order), which has the 3-variable property.
However, the situation becomes more complicated as soon as other binary predicates
are added to the signature. Venema proved that the class of all dense linear orders,
with a second binary relation, does not have the k-variable property for any k [92].
For a long time, the question remained open for finite linear orders (see [20] for
a survey), before Rossman proved that finite ordered graphs do not have the k-
variable property for any k [74]. These examples from Venema and Rossman show
that, while the class of all linear orders has the 3-variable property, adding a single
binary relation suffices to obtain classes of structures which do not have the k-
variable property for any k. On the positive side, Antonopoulos et al. proved that
the real line equipped with a binary relation +1 and arbitrary monadic predicates
has the 3-variable property [3]. They also showed that this is still true when the
relation +1 is replaced with any linear function f : x 7→ ax+b. The conclusion of [3]
raised the question of whether this also holds for arbitrary polynomial functions,
or for other linear orders and classes of monotone functions, besides (R, <). More
generally, one may ask:

Question 4

What are some sufficient conditions for a class of linearly ordered structures
(with unary and binary relations) to have the k-variable property?

It turns out that monotonicity is a possible answer. We prove that any class of
ordered structures equipped with non-increasing or non-decreasing functions (seen
as binary predicates), and arbitrary unary predicates, has the k-variable property.
This applies to (R, <,+1), generalizing the result from [3], but also to MSCs (seen
as linearly ordered by the process order). Indeed, the assumption that the channels
are FIFO implies that the function mapping send events to matching receive events,
for any given channel, is monotone. Other examples of “indirect” applications of
this result are Mazurkiewicz traces (for which the equivalence of FO and FO3 was
already known [23]), and (R, <) with polynomial functions.

In fact, we define a slightly more general monotonicity condition, for arbitrary
binary relations rather than only functional ones, which we call being interval-
preserving. We prove that any class of linearly ordered structures with unary and
binary relations in which every binary relation is interval-preserving has the 3-
variable property.

10 CHAPTER 1. INTRODUCTION

1.3 Star-free propositional dynamic logic

While several of our contributions can be stated purely in terms of first-order
logic and automata, another formalism plays a central role in all the results of
the thesis: star-free propositional dynamic logic (star-free PDL, or PDLsf). It is
both a convenient tool, serving as an intermediate language in translations from
one formalism to another, and a logic of independent interest. It combines features
from several classic formalisms. One of them is, of course, propositional dynamic
logic (PDL), but star-free PDL also presents similarities with star-free regular
expressions, or with relation algebras.

Propositional dynamic logic was introduced by Fischer and Ladner [28] to reason
about program schemes, and has now found a large range of applications in artificial
intelligence and verification [40, 21, 59, 58, 37]. It combines event formulas which
are evaluated at a “current element” of the model, and path formulas defining
binary relations between points, which are used to navigate in the structure. Event
formulas are constructed using boolean and modal operators, while path formulas
are based on the operations of concatenation, union and Kleene star. Several
extensions have been studied, including PDL with converse [80], intersection [19],
or negation of atomic programs [62].

Star-free PDL is a variant of PDL with converse in which the Kleene star of
path formulas is removed, and replaced with a complement operation (analogously
to star-free regular expressions). Star-free PDL thus uses a classic set of operations
on binary relations: union, intersection, complement, concatenation and converse.
These are in particular the operations of relation algebras [82]. Connections between
relation algebras, modal logics and interval temporal logics are discussed in [91].

As was already known for similar logics (see e.g. [82, 93]), in general, star-
free PDL is expressively equivalent to FO3 (and less that FO). We investigate
more precisely the expressive power of star-free PDL over the classes of structures
discussed in the previous section: interval-preserving structures (that is, linearly
ordered structures in which all binary relations are interval-preserving), and MSCs.

Sufficient conditions for the 3-variable property. One of the main result of the
thesis is that, over interval-preserving structures, star-free PDL is as expressive as
full first-order logic. Since star-free PDL is equivalent to FO3, this proves that
interval-preserving structures have the 3-variable property, giving an answer to
Question 4. The translations from FO to PDLsf and from PDLsf to FO3 are effective.

Specification and synthesis of message-passing systems. This first result also
implies that, over MSCs, the logics PDLsf , FO3 and FO have the same expressive
power. Furthermore, we define an expressively complete fragment PDLMSC

sf of PDLsf

where the complement operator is replaced with path operations similar to the until

1.3. STAR-FREE PROPOSITIONAL DYNAMIC LOGIC 11

and since modalities of LTL, evaluated on the current process. It could in fact also
be defined as a fragment of regular PDL with converse and loop (or intersection).

The logic PDLMSC
sf constitutes a nice specification language for message-passing

systems. It can be seen as a simple extension of LTL to MSCs, except for the
presence of a Loop construct which allows to come back to the starting evaluation
point. Intuitively, in LTL, when evaluating a formula such as ϕ1U(ϕ2Sϕ3) (“ϕ1 holds
until a position from which ϕ2 has been true since ϕ3”), we forget about the initial
position as soon as we start evaluating the second half of the formula. More precisely,
ϕ1 U (ϕ2 S ϕ3) is true at a position e if there exists f > e and g < f such that ϕ1

holds between e and f , ϕ2 holds between f and g, and ϕ3 holds at g; there is no
constraint on the position of g relative to e. In PDLMSC

sf , the Loop construct would
allow us to require that e = g. In fact, PDLMSC

sf can be seen as a two-dimensional
temporal logic, giving a partial answer to Question 2 (it is still open whether there
exists an equivalent one-dimensional temporal logic). It is also sufficiently succinct
and intuitive to express other classic temporal connectives over partial orders with
formulas of reasonable size. More importantly, while as expressive as FO and PDLsf ,
the logic PDLMSC

sf is an easier starting point – conceptually as well as complexity-
wise – for the problem of translating logical specifications into CFMs. This comes
from the fact that it does not use the complement operation on path formulas.
Intuitively, the main difficulty when translating first-order formulas into automata
is negation: over words, each negation results in an exponential blow-up from
taking the complement of the automaton; over MSCs, the situation is even more
complicated because CFMs are not closed under complement. The complement of
path formulas in star-free PDL (or, over words, the complement in star-free regular
expressions) raises similar issues. On the other hand, by removing complements of
path formulas, the logic PDLMSC

sf becomes closer to LTL, in that negation is only
allowed at the level of unary predicates (with, however, the remaining difficulty of
Loop formulas).

One of our main results is that every PDLMSC
sf formula can be translated into

an equivalent CFM of exponential size. This is orthogonal to what was previously
known regarding translations from variants of PDL to CFMs. It was shown in [12]
that any one-way PDL formula, where the Kleene star is allowed but we can
move only in one direction (future or past), can be translated into an equivalent
CFM. However, PDLMSC

sf and PDL have incomparable expressive powers. On
the other hand, PDLMSC

sf can be defined in the extension of PDL with converse
and intersection, but the latter contains formulas which are not equivalent to any
CFM [12].

Combining the translations from FO to PDLMSC
sf , and from PDLMSC

sf to CFMs,
we obtain a positive answer to Question 1. This also has interesting consequences for
the case of existentially bounded MSCs: using the translation from FO to CFMs
over unrestricted MSCs, we give a new proof of the equivalence of the full MSO
logic and CFMs over existentially bounded MSCs, which was shown in [34] for

12 CHAPTER 1. INTRODUCTION

finite MSCs. We also extend the result to infinite MSCs.

1.4 Outline

Chapter 2 consists of general preliminaries on logic. We introduce first-order
logic and monadic second-order logic, and give a more precise presentation of the k-
variable property. We also define propositional dynamic logic (PDL) and its variants
with intersection and converse.

Chapter 3 introduces star-free PDL and our results concerning interval-preserving
structures. The main result of the chapter is the equivalence, over interval-preserving
structures, of star-free PDL, FO, and FO3.

We first define star-free PDL, and give a proof of its equivalence to FO3 over
arbitrary structures with unary and binary predicates. We then introduce interval-
preserving relations and structures, and a fragment PDLint

sf of star-free PDL in
which all path formulas define interval-preserving relations, provided all atomic
binary predicates are themselves interpreted as interval-preserving relations. We
then prove that over interval-preserving structures, PDLint

sf , PDLsf , FO3 and FO
are all expressively equivalent. We also discuss some examples of structures where
this result applies, either directly or indirectly. Finally, we prove that over complete
linear orders, the complement operator can be replaced by path operators similar
to the until and since modalities of LTL.

Chapter 4 provides preliminaries on message sequence charts (MSCs) and com-
municating finite-state machines (CFMs).

We first define MSCs (as well as existentially and universally-bounded MSCs),
and discuss possible signatures for FO and MSO over MSCs. We then introduce
communicating finite-state machines, and give a brief account of known results
concerning logical characterizations of CFMs, over bounded or unbounded MSCs.

Chapter 5 discusses variants of star-free PDL and temporal logics for MSCs, and
proves a critical result towards the synthesis of CFMs: the removal of Loop in
PDLMSC

sf formulas.

We first explain how results from Chapter 3 can be applied to MSCs. We
then define PDLMSC

sf and show that it is as expressive as full PDLsf or FO over
MSCs. We then prove that every PDLMSC

sf sentence is equivalent, up to projection,
to one which does not use Loop. Finally, we show how to define various classic
temporal modalities over MSCs, based on the happened-before relation rather than
the process order, in PDLsf .

1.4. OUTLINE 13

Chapter 6 considers the problem of synthesizing CFMs from logical specifications.
The main result of the chapter is the fact that every first-order formula (with the
happened-before relation, and over unbounded channels) can be translated into an
equivalent CFM.

We first give a translation from PDLMSC
sf formulas constructed without Loop into

CFMs, very similar to usual translations from LTL to Büchi automata. Combining
this with the results from Chapter 5, we obtain translations from PDLMSC

sf and
FO to CFMs. As a corollary, CFMs are exactly as expressive as EMSO. Our
translation produces an automaton of exponential size in the case of PDLMSC

sf ,
and non-elementary for FO. We also apply this to the temporal logic defined in
Chapter 5, and obtain in that case a CFM of size exponential in the size of the
formula, and doubly-exponential in the number of processes. Finally, we show that
our results can be used to give a new proof of the fact that, over existentially
bounded MSCs, CFMs have the same expressive power as MSO, and as regular
specifications over (bounded) linearizations [34]. We also extend this result from
finite to infinite MSCs.

Most of the results presented in the thesis appear in [9, 29, 10].

Chapter 2

Logical background

This chapter introduces the two main logics studied in the thesis: Monadic Second-
Order Logic (MSO), and Propositional Dynamic Logic (PDL). In later chapters,
we will consider several variants or restrictions of these logics, first in a general
setting and then in the special case of message-passing systems. For now, we simply
introduce basic notations and definitions. We also present one of the main questions
studied in the thesis: the k-variable property (Section 2.3).

A summary of logics introduced throughout the thesis is given on pages 153-154.

2.1 Models

All the logics we consider are interpreted over relational structures with only unary
and binary relations. These structures may represent, e.g., behaviors of message-
passing systems or real-time systems.

Accordingly, we let Σ = (Prop,Rel) denote a signature consisting of a set of Signature

unary relation symbols Prop, and a set of binary relation symbols Rel. We make no
assumption on the cardinality of Prop and Rel. We use letters P,Q, . . . to denote
elements of Prop, and α, β, . . . to denote elements of Rel.

A Σ-structure is a tuple M = (EM , (PM)P∈Prop, (αM)α∈Rel), where EM is the Σ-structure

domain of M , PM ⊆ EM is the interpretation of P , and αM ⊆ EM × EM is the
interpretation of α. We refer to elements of EM as events.

Example 2.1. The simplest class of structures we will consider are words. A word
over a finite alphabet A is a particular Σ-structure over the signature Σ = (A, {<}).
The domain of the Σ-structure consists of positions in the word, linearly ordered
according to the interpretation of <. For each a ∈ A, the interpretation of the unary
predicate a indicates which positions are occurrences of the letter a. For instance,
for A = {a, b}, the word abbaab denotes the Σ-structure

15

16 CHAPTER 2. LOGICAL BACKGROUND

p, a p, a p, c p, a p, a p, a p, a p, a

q, a

q, a q, a

q, a

q, a q, a

q, a

q, a

q, a

q, a

r, a r, b r, b r, a r, a r, c r, a r, a r, a

Figure 2.1: An MSC

w = (Ew = {0, . . . , 5}, aw = {0, 3, 4}, bw = {1, 2, 5}, <w = {(i, j) | 0 ≤ i < j ≤ 5}) .

Of course, not all (A, {<})-structures are words. The set of all words over A can be
defined as Σ-structures w such that (i) for all e ∈ Ew, there exists a unique a ∈ A
such that e ∈ aw, and (ii) Ew = N or Ew = {0, . . . , n− 1} for some n ∈ N, and <w

is the usual ordering of the natural numbers.

Alternatively, a word over A can be seen as a Σ′-structure over the signature
Σ′ = (A, {→}), where → is interpreted as the direct successor relation.

Example 2.2. Figure 2.1 shows an example Σ-structure M over the signature
Σ = ({a, b, c, p, q, r}, {→,C}). Nodes correspond to elements of the domain EM ,
and labels indicate the interpretation of the unary predicates. Horizontal edges are
in the interpretation of →, and vertical or oblique edges in the interpretation of C.

This Σ-structure is a message sequence chart (MSC). Intuitively, MSCs represent
executions of message-passing systems; they will be defined precisely in Chapter 4.
The relation → corresponds to a process successor relation, i.e., connects events
which are executed successively by a same process, while the relation C connects
matching sends and receives. Here, there are three processes (thus three “horizontal
lines”), p, q and r. The interpretation of the corresponding unary predicates
identifies which events are performed by each process: notice that each event has
exactly one label among {p, q, r}. The other unary predicates (here, {a, b, c}) may
denote e.g. an action performed by the process, or a property of its current state.

Notations for binary relations. Let R ⊆ E ×E be a binary relation over a set E.
We sometimes write e R f if (e, f) ∈ R. Given e ∈ E and F ⊆ E, we let R(e) =
{f ∈ E | e R f} and R(F) =

⋃
e∈F R(e). We define the converse of a relation R as

R−1 = {(f, e) ∈ E × E | (e, f) ∈ R}, and the composition of two binary relations
R1 ⊆ E × E and R2 ⊆ E × E as

R1 · R2 = {(e, g) ∈ E × E | ∃f ∈ E. (e, f) ∈ R1 ∧ (f, g) ∈ R2} .

2.2. MONADIC SECOND-ORDER LOGIC 17

The n-th iterate Rn of a relation R is defined inductively by

R0 = {(e, e) | e ∈ E} and Rn+1 = R · Rn ,

and the reflexive transitive closure of R by

R∗ =
⋃
n∈N
Rn .

Finally, we write Rc = (E × E) \ R for the complement of R.

2.2 Monadic Second-Order Logic

We first recall the syntax and semantics of monadic second-order logic (MSO).

We assume an infinite supply of first-order variables x, y, z, . . . ranging over
events in a structure, and second-order variables X,Y, Z, . . . ranging over sets of
events. Given a signature Σ = (Prop,Rel), the set MSO[Σ] of MSO formulas over
Σ is defined as follows: Monadic

second-order

logic (MSO)Φ ::= P (x) | α(x, y) | x = y | x ∈ X | Φ ∨ Φ | ¬Φ | ∃x.Φ | ∃X.Φ ,

where P ∈ Prop, α ∈ Rel, x and y are first-order variables, and X is a second-
order variable. We use the usual abbreviations to also include implication =⇒ ,
conjunction ∧, and universal quantification ∀.

We denote by Free(Φ) the set of free (first and second-order) variables of a
formula Φ. We sometimes write Φ(x1, . . . , xm, X1, . . . , Xn) to indicate that the free
variables of Φ are among x1, . . . , xm, X1, . . . , Xn (but do not necessarily include all
of them). A sentence is a formula without any free variable.

Let Φ ∈ MSO[Σ], M a Σ-structure, and V ⊇ Free(Φ) a set of variables containing
at least all free variables of Φ. An interpretation of V in M is a function ν : V →
EM ∪ 2E

M
which maps each first-order variable x ∈ V to an element ν(x) ∈ EM ,

and each second-order variable X ∈ V to a subset ν(X) ⊆ EM . We sometimes use
the notation, e.g., [x 7→ e, y 7→ f,X 7→ F] to denote the interpretation of {x, y,X}
which maps x to e, y to f , and X to F . Given an interpretation ν of V , a first-order
variable x (which may or may not be in V), and e ∈ EM , we also write ν[x 7→ e]
for the interpretation of V ∪{x} which maps x to e and all variables y ∈ V \ {x} to
ν(y). We define similarly ν[X 7→ F].

We write M,ν |= Φ if M satisfies Φ when the free variables of Φ are interpreted

18 CHAPTER 2. LOGICAL BACKGROUND

according to the interpretation ν:

M,ν |= P (x) if ν(x) ∈ PM

M,ν |= α(x, y) if (ν(x), ν(y)) ∈ αM

M,ν |= x = y if ν(x) = ν(y)

M,ν |= x ∈ X if ν(x) ∈ ν(X)

M,ν |= Φ ∨Ψ if M,ν |= Φ or M,ν |= Ψ

M,ν |= ¬Φ if M,ν 6|= Φ

M,ν |= ∃x.Φ if there exists e ∈ EM such that M,ν[x 7→ e] |= Φ

M,ν |= ∃X.Φ if there exists F ⊆ EM such that M,ν[X 7→ F] |= Φ .

We say that two formulas Φ,Ψ ∈ MSO[Σ] are equivalent over a class of Σ-Logical equiv-

alence structures C, written Φ ≡C Ψ, if for all M ∈ C, for all sets of variables V ⊇
Free(Φ)∪Free(Ψ) and interpretation ν : V → EM t 2E

M
, we have M,ν |= Φ if and

only if M,ν |= Ψ. We say that Φ and Ψ are equivalent, written Φ ≡ Ψ, if they are
equivalent over the class of all Σ-structures.

The set of first-order (or monadic first-order) formulas over a signature Σ,FO,

monadic vs.

non-monadic

denoted FO[Σ], is the set of formulas without second-order quantification ∃X.
However, they may contain formulas x ∈ X. We say that a first-order formula
is non-monadic if it contains no such subformula.

Existential monadic second-order logic over Σ (EMSO[Σ]) is the fragment ofEMSO

MSO[Σ] consisting of formulas of the form ∃X1 . . . ∃Xn.Φ, where Φ ∈ FO[Σ].

2.3 Bounded-variable fragments

Given k ∈ N, we denote by FOk[Σ] the set of FO[Σ] formulas which use at mostk-variable

fragment

(FOk,EMSOk)

k distinct first-order variables (and arbitrarily many second-order variables), and
EMSOk[Σ] the set of formulas of the form ∃X1 . . . ∃Xn.Φ, where Φ ∈ FOk[Σ]. Note
that a same variable can be quantified and re-used several times. For instance,
the formula ∃x.∃y.∃z.α(x, y) ∧ α(y, z) is not syntactically in FO2[Σ]; however, it is
equivalent to the FO2[Σ] formula ∃x.∃y. (α(x, y) ∧ ∃x.α(y, x)).

The bounded variable hierarchy is strict in general: for all k, there exists a
sentence in FOk+1[Σ] which is not equivalent to any formula in FOk[Σ]. A simple
example of such a formula is

∃x1 . . . ∃xk+1.
∧

1≤i<j≤k+1

¬(xi = xj) ,

which states that there are at least k + 1 distinct elements in the model.
However, there are certain classes of structures over which this hierarchy col-

lapses. For instance, it is well-known that over finite or infinite words, FO[Σ] and

2.3. BOUNDED-VARIABLE FRAGMENTS 19

FO3[Σ] have the same expressive power [53, 51]. It is then natural to ask for which
classes this is the case:

Given a class C of structures, is there a k such that all FO-definable
properties over C can be expressed with at most k variables?

In fact, there are several non-equivalent versions of this question, which have been
studied for various classes [30, 69, 51, 20, 74, 3]. For instance, it is not equivalent
to ask that all sentences in FO[Σ], or all formulas with up to k free variables, are
equivalent to one in FOk[Σ]. There may also be variations depending on whether
one considers monadic or non-monadic first-order logic (that is, whether second-
order variables are allowed in the syntax). The differences between several of
these properties, including connections to expressively complete temporal logics,
are discussed in [46].

In this thesis, we will study what Hodkinson and Simon [46] call the strong
k-variable property : we say that a class C of structures has the strong k-variable (strong)

k-variable

property

property if and only if every formula in FO[Σ] (with an arbitrary number of free
variables) is equivalent to a finite boolean combination of formulas in FOk[Σ].
Hodkinson and Simon showed that for monadic first-order logic, this is in fact
equivalent to the seemingly weaker k-variable property, which requires that all FO[Σ]
formulas with at most k free first-order variables are equivalent to one in FOk[Σ].

Example 2.3. Let p : R → R be a polynomial function. Fix Σ = (∅, {<, p}), and
consider the Σ-structure M = (R, <, {(x, p(x)) | x ∈ R}), where < is the usual
ordering of the real numbers. Antonopoulos et al. [3] showed that {M} has the 3-
variable property if p is an affine function x 7→ ax+b, and left open in the conclusion
of [3] whether this is the case for an arbitrary polynomial p. We answer positively
this question in Section 3.7.

Let us give some examples of FO3[Σ] formulas over this structure. We can
compare the value of p at two points using the formula

p(x) ≤ p(y) := ∃z. p(x, z) ∧ ∃x. (p(y, x) ∧ z ≤ x) ,

where z ≤ x is an abbreviation for z = x ∨ z < x. We can then define formulas
min(x) ∈ FO3[Σ] and max(x) ∈ FO3[Σ] which state that x is a local minimum
(resp. maximum) of p, for instance:

min(x) := (∃z. z < x ∧ ∀y. (z < y ≤ x =⇒ p(x) ≤ p(y))) ∧
(∃z. x < z ∧ ∀y. (x ≤ y < z =⇒ p(x) ≤ p(y))) .

Finally, if m1 < · · · < mn are the local extrema of p, we can also define a formula
mi ≤ x ∈ FO3[Σ] which states that there exist at least i local extrema before x,
alternating quantifications over y and x to identify them. For instance, m2 ≤ x is
the formula

∃y. y ≤ x ∧ (min(y) ∨max(y)) ∧ ∃x. x < y ∧ (min(x) ∨max(x)) .

20 CHAPTER 2. LOGICAL BACKGROUND

2.4 Propositional Dynamic Logic

While MSO is a very natural and expressive logic, satisfiability of MSO formulas
and other verification problems are undecidable in general, and non-elementary over
structures such as words where decidability is recovered.

Propositional dynamic logic (PDL) is another classical logic which is quite ex-
pressive, though less than MSO, and has better algorithmic properties. Originally,
PDL has been used to reason about program schemas and transition systems [28].
Since then, PDL and its extensions with intersection and converse [80] have de-
veloped a rich theory with applications in artificial intelligence and verification
[40, 21, 59, 58, 37].

Syntax and semantics. PDL consists of two sorts of formulas: event formulas
which are evaluated at events in a structure, and path formulas which are evaluated
at pairs of events and allow us to navigate inside the structure. In addition, we
can also define sentences to reason about global properties of the model. Given a
signature Σ = (Prop,Rel), formulas in PDL[Σ] are defined as follows:Propositional

Dynamic

Logic (PDL)
ξ ::= Eϕ | ξ ∨ ξ | ¬ξ (sentences)

ϕ ::= P | true | ϕ ∨ ϕ | ¬ϕ | 〈π〉ϕ (event formulas)

π ::= α | {ϕ}? | π · π | π + π | π∗ (path formulas)

where P ∈ Prop and α ∈ Rel. We will also consider the extension of PDL with
intersection and converse of path formulas: ICPDL[Σ] is the set of formulasICPDL

ξ ::= Eϕ | ξ ∨ ξ | ¬ξ (sentences)

ϕ ::= P | true | ϕ ∨ ϕ | ¬ϕ | 〈π〉ϕ (event formulas)

π ::= α | {ϕ}? | π · π | π + π | π∗ | π ∩ π | π−1 (path formulas)

Let M = (EM , (PM)P∈Prop, (αM)α∈Rel) be a Σ-structure. The semantics JϕKM

of an event formula ϕ is a subset of EM , and the semantics JπKM of a path formula
is a binary relation over EM . Both are defined below. When M is clear from the
context, we simply write JϕK and JπK instead of JϕKM and JπKM . We also write
M, e |= ϕ when e ∈ JϕKM , and M, e, f |= π when (e, f) ∈ JπKM .

For event formulas,

JP KM = PM

JtrueKM = EM

Jϕ ∨ ϕ′KM = JϕKM ∪ Jϕ′KM

J¬ϕKM = EM \ JϕKM

J〈π〉ϕKM = {e ∈ EM | ∃f ∈ JϕKM . (e, f) ∈ JπKM} .

2.4. PROPOSITIONAL DYNAMIC LOGIC 21

Intuitively, 〈π〉ϕ holds at e if there exists a path matching π which starts at e and
ends in some f such that ϕ holds at f . The semantics of path formulas is defined
as follows:

JαKM = αM

J{ϕ}?KM = {(e, e) | e ∈ JϕKM}

Jπ · π′KM = JπKM · Jπ′KM

Jπ + π′KM = JπKM ∪ Jπ′KM

Jπ∗KM =
(
JπKM

)∗
Jπ−1KM =

(
JπKM

)−1

Jπ ∩ π′KM = JπKM ∩ Jπ′KM .

Finally, sentences are evaluated at the level of the structure:

M |= Eϕ if JϕKM 6= ∅
M |= ξ ∨ ξ′ if M |= ξ or M |= ξ′

M |= ¬ξ if M 6|= ξ .

We use the usual abbreviations to define the conjunction ∧ of sentences or event
formulas and the event formula false. The dual of the 〈π〉 modality is defined as
[π]ϕ := ¬〈π〉¬ϕ, and the dual of E quantification as Aϕ := ¬E¬ϕ. We also write ICPDL

macros〈π〉 for the event formula 〈π〉true. In ICPDL[Σ], we also define an event formula
Loop(π) := 〈π ∩ {true}?〉, which holds at e if and only if (e, e) ∈ JπK. Note that this
is not a PDL[Σ] formula.

Example 2.4. PDL captures various temporal logic modalities. For instance, for
Rel = {→}, the CTL formula EXϕ can be expressed in PDL as 〈→〉ϕ, and EϕU ψ
as 〈({ϕ}? · →)∗〉ψ.

Example 2.5. The MSC from Figure 2.1 satisfies the sentence

E
(
p ∧ ¬〈→−1〉 ∧ 〈(→ ·→)∗ ·C−1〉 r

)
which states that there exists an event on process p which is at an even position
(counting from 0 for the leftmost position), and which corresponds to the reception
of a message from process r.

Expressivity and complexity. In general, PDL and ICPDL are less expressive than
MSO, and incomparable with FO or EMSO. More formally, each event formula
ϕ ∈ ICPDL[Σ] and path formula π ∈ ICPDL[Σ] can be inductively translated (in
a standard way, see also Section 3.3) into MSO[Σ] formulas ϕ̃(x) and π̃(x, y) with

22 CHAPTER 2. LOGICAL BACKGROUND

respectively one and two free variables, such that for all Σ-structure M and events
e and f in M , we have M, e |= ϕ if and only if M, [x 7→ e] |= ϕ̃(x), and M, e, f |= π
if and only if M, [x 7→ e, y 7→ f] |= π̃(x, y). Similarly, each ICPDL[Σ] sentence can
be translated into an equivalent MSO[Σ] sentence.

In contrast with MSO and FO, the satisfiability of PDL or ICPDL formulas
is decidable (respectively in Exptime [28] and 2-Exptime [37]). However, this
is not always the case for satisfiability over a fixed class of structures C (that is,
the problem of deciding if the input formula has a model in C). For instance, PDL
satisfiability over (unbounded) MSCs or over grids is undecidable. Note that neither
of these classes is definable in ICPDL.

Chapter 3

Star-free Propositional Dynamic Logic

In this chapter, we introduce star-free propositional dynamic logic. Star-free PDL
is a variant of PDL which uses the operations from star-free regular expressions
(·,+, c), instead of the operations of regular expressions (·,+, ∗). It also allows the
use of the converse operator, as in ICPDL.

In general, star-free PDL is equivalent to FO3. We show that when restricted to
linearly ordered structures where binary relation symbols are interpreted as interval-
preserving relations, it is also equivalent to full first-order logic.

The equivalence between star-free PDL and first-order logic over linear orders
with interval-preserving relations generalizes several known results. In particular,
it applies to linear orders and real-time signals, which were respectively shown to
have the 3-variable property by Immerman and Kozen [51], and Antonopoulos et
al. [3]. The usual approach to proving that a class of structures has the k-variable
property is through Ehrenfeucht-Fräıssé games with a bounded number of pebbles
[42, 69, 51, 3]. The use of star-free PDL as an intermediate language provides a
new effective translation from FO to FO3. We give other examples of applications
in Section 3.7.

We also show in the last section that over complete linear orders (with additional
interval-preserving relations), the complement operation in star-free PDL can be
replaced with path formulas similar to the until and since modalities of LTL. Besides
highlighting interesting connections with temporal logics, this results in a logic with
better algorithmic properties.

3.1 Monadic variables

In this chapter, we will only talk about non-monadic first-order logic; that is, we
consider first-order formulas without any occurrence of predicates x ∈ X. We still
denote this logic by FO[Σ].

23

24 CHAPTER 3. STAR-FREE PROPOSITIONAL DYNAMIC LOGIC

In other terms, we choose not to distinguish between monadic variables X and
relation symbols in Prop. Our results still apply to both monadic and non-monadic
first-order logic: we assume Prop and its interpretation to be arbitrary, and we
could therefore handle any monadic variable as an extra relation symbol from the
signature.

3.2 Syntax and semantics

We introduced star-free propositional dynamic logic (PDLsf) in [9] for message
sequence charts, and in a more general setting in [29]. It is a variant of ICPDL
where the Kleene star operator on path formulas is replaced with a complement
operator. The syntax of PDLsf [Σ] is as follows:Star-free

propositional

dynamic logic

(PDLsf)

ξ ::= Eϕ | ξ ∨ ξ | ¬ξ (sentences)

ϕ ::= true | P | ϕ ∨ ϕ | ¬ϕ | 〈π〉ϕ (event formulas)

π ::= α | {ϕ}? | π−1 | π · π | π + π | πc (path formulas)

where P ∈ Prop and α ∈ Rel. Satisfaction is defined as in Section 2.4 for ICPDL,
with additionally

JπcKM =
(
EM × EM

)
\
(
JπKM

)
.

We can define π∩π′ as (πc + π′c)c, and use the same abbreviations as in Section 2.4.
We also define > := ({true}? + {true}?c). We then have J>KM = EM × EM .

Example 3.1. Suppose that Rel = {<} ∪ {+q | q ∈ Q}, and that we consider
only models with domain R and with the natural interpretations of < and +q:
J+qK = {(r, r + q) | r ∈ R}. Let q, r ∈ Q≥0 and P,Q ∈ Prop. Let us show that
the formula P U(q,r)Q of metric temporal logic can be expressed in PDLsf [Σ]. This
formula holds at time t ∈ R if there exists t′ ∈ JQK such that t+ q < t′ < t+ r and
for all t < t′′ < t′, t′′ ∈ JP K, as illustrated below:

P

t t′

Q

+q

+r

It is equivalent to the following PDLsf event formula:

〈(+q ·<) ∩ (+r ·>) ∩ (< · {¬P}? ·<)c〉Q ,

where > := (<)−1.

3.3. EQUIVALENCE OF STAR-FREE PDL AND FO3 25

Connection with the calculus of relations. Path formulas of star-free PDL use
the same operations as terms in the calculus of relations [81, 82, 36]: concatenation,
converse, union, and complement. The calculus of relations is a logic without
quantifiers, which has been studied in proof theory and algebraic logic, as well as
foundations of mathematics. Its terms are formed from atomic relations (including
the identity relation), boolean operations, composition, and converse. Sentences in
the calculus of relations are equations of the form t = t′, where t and t′ are terms.

There is therefore a correspondence between path formulas of star-free PDL and
terms in the calculus of relation. The identity relation of the calculus of relations
corresponds to the formula {true}? in star-free PDL. If we include formulas {P}?
as atomic relations, other test formulas {ϕ}? of star-free PDL could be removed
by defining {ϕ ∨ ψ}? as {ϕ}? + {ψ}?, {¬ϕ}? as {true}? ∩ {ϕ}?c, and {〈π〉ϕ}? as
{true}? ∩ (π · {ϕ}? · π−1).

The correspondence between sentences of star-free PDL and sentences of the
calculus of relations is somewhat less straightforward, but it is always possible to
define e.g. a sentence π = π′ in star-free PDL as ¬E 〈π ∩ π′c + πc ∩ π′〉.

However, the focus of star-free PDL and the calculus of relations is different. It
is easier to reason about properties of events in star-free PDL, and the distinction
between boolean operations at the level of event formulas and boolean operations
at the level of path formulas will become important in the next sections. On the
other hand, most of the work on the calculus of relations is concerned with proof
systems and algebraic axiomatisations.

3.3 Equivalence of star-free PDL and FO3

Over arbitrary structures, PDLsf [Σ] is equivalent to FO3[Σ]. This can be deduced
from the equivalence of first-order logic and the calculus of relations [82]. Neverthe-
less, we provide a proof of this result, first for completeness, and also to illustrate
the difference with the case of first-order logic with arbitrarily many variables.

Let us first formalize this equivalence. We say that a sentence ξ ∈ PDLsf [Σ]
is equivalent to a sentence Φ ∈ FO[Σ], written ξ ≡ Φ, when for all Σ-structures Equivalence

between FO

and PDLsf

formulas

M , we have ξ |= M if and only if Φ |= M . Given an event formula ϕ ∈ PDLsf [Σ],
and an FO formula Φ(x) with a single free variable x, we say that ϕ and Φ are
equivalent, written ϕ ≡ Φ(x), if for all M and events e in M , we have M, e |= ϕ if
and only if M, [x 7→ e] |= Φ(x). Similarly, for a path formula π ∈ PDLsf [Σ] and an
FO[Σ] formula Φ(x, y) with exactly two (ordered) free variables x and y, we write
π ≡ Φ(x, y) if for all M and events e, f in M , we have M, e, f |= π if and only if
M, [x 7→ e, y 7→ f] |= Φ(x, y).

Example 3.2. Let us give PDLsf [Σ] formulas equivalent to the FO3[Σ] formulas
from Example 2.3. First, the formula x ≤ y := x < y ∨ x = y is equivalent to the

26 CHAPTER 3. STAR-FREE PROPOSITIONAL DYNAMIC LOGIC

path formula
≤ := <+ {true}? .

The formula p(x) ≤ p(y) is then equivalent to the path formula

π := p · ≤ · p−1

Finally, min(x) is equivalent to the formula

〈> ∩ ((πc ∩>) ·>)c〉 ∧ 〈< ∩ ((πc ∩<) ·<)c〉

where > = (<)−1.

An easy induction shows that any formula in PDLsf [Σ] can be translated into
an FO[Σ] formula which uses at most three distinct variables:

Lemma 3.3.

1. For every sentence ξ ∈ PDLsf [Σ], there exists a sentence ξ̃ ∈ FO3[Σ] such that
ξ ≡ ξ̃.

2. For every event formula ϕ ∈ PDLsf [Σ], there exists a formula ϕ̃(x) ∈ FO3[Σ]
such that ϕ ≡ ϕ̃(x).

3. For every path formula π ∈ PDLsf [Σ], there exists a formula π̃(x, y) ∈ FO3[Σ]
such that π ≡ π̃(x, y).

Proof. The formulas ξ̃, ϕ̃(x) and π̃(x, y) are defined inductively as follows:

Ẽϕ := ∃x.ϕ̃(x)

ξ̃ ∨ ξ′ := ξ̃ ∨ ξ̃′

¬̃ξ := ¬ξ̃

t̃rue(x) := ∀x.(x = x)

P̃ (x) := P (x)

ϕ̃ ∨ ϕ′(x) := ϕ̃(x) ∨ ϕ̃′(x)

¬̃ϕ(x) := ¬ϕ̃(x)

〈̃π〉ϕ(x) := ∃y.π̃(x, y) ∧ ϕ̃(y)

α̃(x, y) := α(x, y)

{̃ϕ}?(x, y) := ϕ̃(x) ∧ x = y

π̃−1(x, y) := π̃(y, x)

π̃ · π′(x, y) := ∃z.π̃(x, z) ∧ π̃′(z, y)

π̃ + π′(x, y) := π̃(x, y) ∨ π̃′(x, y)

π̃c(x, y) := ¬π̃(x, y)

The converse is also true. For formulas with three free variables, the translation
in PDLsf [Σ] gives a boolean combination of PDLsf [Σ] path formulas.

Proposition 3.4.

3.3. EQUIVALENCE OF STAR-FREE PDL AND FO3 27

1. Any FO3[Σ] sentence is equivalent to some PDLsf [Σ] sentence.

2. Any FO3[Σ] formula with a single free variable is equivalent to some PDLsf [Σ]
event formula.

3. Any FO3[Σ] formula with two free variables is equivalent to some PDLsf [Σ]
path formula.

4. Any FO3[Σ] formula Φ(x, y, z) with three free variables is equivalent to a finite
disjunction of formulas of the form π̃(x, y)∧π̃′(x, z)∧π̃′′(y, z), where π, π′, π′′ ∈
PDLsf [Σ].

Proof. We prove the result by induction on FO3[Σ] formulas. For atomic formulas,
we have:

P (x) ≡ P α(x, x) ≡ Loop(α) (x = x) ≡ true

α(x, y) ≡ α α(y, x) ≡ α−1 (x = y) ≡ (y = x) ≡ {true}? .

The case of negation is easy since it is allowed at the level of PDLsf [Σ] sentences
and event formulas, and corresponds to the complement operation for path formulas.
For formulas with three free variables, if Φ(x, y, z) ≡

∨
i π̃i(x, y)∧ π̃′i(x, z)∧ π̃′′i (y, z),

then
¬Φ(x, y, z) ≡

∧
i

π̃ic(x, y) ∨ π̃′i
c(x, z) ∨ π̃′′i

c(y, z) ,

and we only need to bring the resulting formula into disjunctive normal form.
For disjunction, the only non-trivial cases are when the two subformulas in the

disjunction do not have the same free variables. If Φ(x) ≡ ϕ and Ψ(x, y) ≡ π, then

Φ(x) ∨Ψ(x, y) ≡ ({ϕ}? · >) + π .

If Φ(x) ≡ ϕ and Ψ(x) ≡ ψ, then

Φ(x) ∨Ψ(y) ≡ ({ϕ}? · >) + (> · {ψ}?) .

If Φ(x, y) ≡ π and Ψ(x, y) ≡ π′, then

Φ(x, y) ∨Ψ(x, z) ≡
(
π̃(x, y) ∧ >̃(x, z) ∧ >̃(y, z)

)
∨
(
>̃(x, y) ∧ π̃′(x, z) ∧ >̃(y, z)

)
.

The other cases are similar.
We are left with the case of existential quantification. The interesting case is

Φ(x, y) = ∃z.Ψ(x, y, z). By induction, Φ(x, y) is equivalent to a finite disjunction of
formulas of the form

π̃(x, y) ∧ ∃z.
(
π̃′(x, z) ∧ π̃′′(y, z)

)
≡ π ∩ (π′ · π′′−1) .

28 CHAPTER 3. STAR-FREE PROPOSITIONAL DYNAMIC LOGIC

The other cases are easy: if Φ = ∃x.Ψ(x) and Ψ(x) ≡ ϕ, then Φ ≡ Eϕ. If Φ = ∃x.Ψ
and Ψ ≡ ξ, then Φ ≡ ξ∧E true. If Φ(x) = ∃y.Ψ(x, y) and Ψ(x, y) ≡ π, then Φ(x) ≡
〈π〉. If Φ(x) = ∃y.Ψ(x) and Ψ(x) ≡ ϕ, then Φ(x) ≡ ϕ. If Φ(x, y) = ∃z.Ψ(x, y), and
Ψ(x, y) ≡ π, then Φ(x, y) ≡ π.

Remark 3.5. The fragment of PDLsf [Σ] where concatenation of path formulas is
disallowed is expressively equivalent to FO2[Σ] [61].

Going beyond 3 variables. In the remainder of the chapter, we define conditions
under which FO[Σ], FO3[Σ] and PDLsf [Σ] have the same expressive power. As in
Proposition 3.4, we want to define an inductive translation from FO[Σ] formulas
(this time with arbitrarily many variables) into PDLsf [Σ] formulas, or boolean
combinations of PDLsf [Σ] formulas if there are more than two free variables. The
difficulty is to deal with existential quantification, typically, formulas such as

∃x.π̃1(x1, x) ∧ π̃2(x2, x) ∧ · · · ∧ π̃n(xn, x) .

Informally, this formula holds if and only if the intersection of all JπiK(xi) is non-
empty. For n = 2, as in Proposition 3.4, this is easy to check: Jπ1K(x1) ∩ Jπ2K(x2)
is non-empty if and only if (x1, x2) ∈ Jπ1 · π−1

2 K. In the next two sections, we define
restrictions on the structures and on the formulas which ensure that each JπiK(xi) is
an interval; then checking that the intersection of the n intervals is nonempty comes
down to checking that the pairwise intersections are nonempty, which corresponds
to the case n = 2.

3.4 Interval-preserving relations

In this section, we define interval-preserving relations and interval-preserving struc-
tures, and state some of their basic properties.

Linear orders. A partial order ≤ over a set E is a reflexive, transitive and anti-
symmetric relation ≤ ⊆ E×E. A linear order or total order is a partial order such
that for all e, f ∈ E, we have e ≤ f or f ≤ e. We also call linear order the pair
(E,≤).

For F ⊆ E, we also denote by ≤ the restriction of ≤ to F . Then, if (E,≤) is a
linear order, (F,≤) is also one. We write e < f if e ≤ f and f 6= e. Moreover, for
e ∈ F , we write e < F if for all f ∈ F , e < f , and F < e if for all f ∈ F , f < e. For
F,G ⊆ E, we write F < G if for all f ∈ F and g ∈ G, f < g. We define similarly
e ≤ F , F ≤ e, and F ≤ G.

3.4. INTERVAL-PRESERVING RELATIONS 29

Ie1 e2

f1 f2

e

f

e′

≤ ≤
∃

J

e1 e2

f1 f2f

e

f ′

≤ ≤

∃

Figure 3.1: Definition of interval-preserving relations.

Interval-preserving relations. Let (E,≤) be a linear order. An interval of (E,≤)
is a set I ⊆ E such that for all e ≤ f ≤ g with e, g ∈ I, we have f ∈ I. For
e, f ∈ E, we denote by [a, b) the interval {c ∈ E | a ≤ c < b}, and similarly for the
intervals [a, b], (a, b], (a, b). We call a relation R ⊆ E×E over a linear order (E,≤)
interval-preserving if: interval-

preserving

relation• For all intervals I of (E,≤), R(I) is an interval of (R(E),≤).

• For all intervals J of (E,≤), R−1(J) is an interval of (R−1(E),≤).

In other terms, for all e1 R f1 and e2 R f2 with e1, e2 ∈ I, for all f1 ≤ f ≤ f2, if
there exists some e ∈ E such that e R f , then there exists one in I (cf. Figure 3.1).
Note that we do not require that all elements between f1 and f2 are in R(I), but
only those which are in the image of R. Notice also that we may have e1 ≤ e2

or e2 ≤ e1. The second condition is symmetric: for all e1 R f1 and e2 R f2 with
f1, f2 ∈ J , for all e1 ≤ e ≤ e2, if there exists some f ∈ F such that e R f , then
there exists one in J .

Example 3.6. For any linear order (E,≤) and partial function f : E → E, if f
is increasing or decreasing then the relation {(e, f(e)) | e ∈ dom(f)} is interval-
preserving.

As another example, consider a structure M = (E,≤, (PM)P∈Prop) such that
≤ is a linear order. For P,Q ∈ Prop, let

untilP,Q = {(e, f) ∈ E × E | e < f ∧ f ∈ QM ∧ ∀e < g < f, g ∈ PM} .

Then untilP,Q is interval-preserving.

The following lemma states some simple closure properties of interval-preserving
relations.

Lemma 3.7. Let (E,≤) be a linear order, and R,R1,R2 ⊆ E × E interval-
preserving relations. Then:

1. R−1 is interval-preserving.

2. R1 ∩R2 is interval-preserving.

30 CHAPTER 3. STAR-FREE PROPOSITIONAL DYNAMIC LOGIC

3. R1 · R2 is interval-preserving.

Proof. Part 1 follows from the fact that (R−1)
−1

= R.
Let us prove 2. Since (R1∩R2)−1 = R−1

1 ∩R
−1
2 , by symmetry, it suffices to prove

that for all intervals I of (E,≤), (R1 ∩ R2)(I) is an interval of ((R1 ∩ R2)(E),≤).
Let e1, e2 ∈ I and f1 ≤ f ≤ f2 such that (e1, f1), (e2, f2) ∈ (R1 ∩ R2) and (e, f) ∈
(R1 ∩ R2) for some e ∈ E. If e ∈ I, then we are done. Otherwise, suppose
for instance that e < e1 ≤ e2 (the other cases, e < e2 ≤ e1 or e1 ≤ e2 < e or
e2 ≤ e1 < e, are similar). Since R1 is interval-preserving, there exists e1 ≤ e′ ≤ e2

such that e′ R1 f . Then, since e < e1 ≤ e′ andR−1
1 (f) is an interval of (R−1

1 (E),≤),
we obtain e1 R1 f . Similarly, e1 R2 f . Hence e1 (R1 ∩ R2) f .

Let us show that 2 implies 3. Again, by symmetry, it suffices to prove that for all
intervals I of (E,≤), (R1 ·R2)(I) is an interval of ((R1 ·R2)(E),≤). Let R3 ⊆ E×E
denote the relation R1(E)× E. It is interval-preserving, since for all intervals I of
(E,≤), R3(I) is either empty (if I ∩ R1(E) = ∅) or equal to E = R3(E), and
similarly for R−1

3 (I). Moreover, we have

(R1 · R2)(E) = {g ∈ E | ∃e, f ∈ E. (e, f) ∈ R1 ∧ (f, g) ∈ R2}
= {g ∈ E | ∃f ∈ E. f ∈ R1(E) ∧ (f, g) ∈ R2}
= {g ∈ E | ∃f ∈ E. (f, g) ∈ R3 ∧ (f, g) ∈ R2}
= (R2 ∩R3)(E) .

Now, let I be some interval of (E,≤), and J be the smallest interval of (E,≤)
containing R1(I):

J := {f ∈ E | ∃f1, f2 ∈ R1(I), f1 ≤ f ≤ f2} .

Note that J is indeed an interval of (E,≤). Moreover, by definition of R1 being
interval-preserving, we have J ∩R1(E) ⊆ R1(I), hence J ∩R1(E) = R1(I). Then

(R1 · R2)(I) = R2(R1(I))

= R2(J ∩R1(E))

= {f ∈ E | ∃e ∈ J. e ∈ R1(E) ∧ (e, f) ∈ R2}
= {f ∈ E | ∃e ∈ J. (e, f) ∈ R3 ∧ (e, f) ∈ R2}
= (R2 ∩R3)(J) .

Then, according to 2, (R1 ·R2)(I) is an interval of ((R2∩R3)(E),≤), i.e., an interval
of ((R1 · R2)(E),≤).

Interval-preserving structures. Let Σ = (Prop,Rel) be a signature with a distin-
guished symbol ≤ ∈ Rel, and M = (EM , (PM)P∈Prop, (αM)α∈Rel) a Σ-structure.
We say that M is interval-preserving if ≤M is a linear order over EM , and for all
α ∈ Rel, αM is interval-preserving.

3.5. INTERVAL-PRESERVING FRAGMENT OF STAR-FREE PDL 31

3.5 An interval-preserving fragment of star-free PDL

In this section, we define a fragment of PDLsf [Σ] in which all path formulas are
interval-preserving, that is, path formulas define interval-preserving relations when
interpreted in interval-preserving Σ-structures. We will show in the next section
that this fragment captures FO[Σ] (over interval-preserving Σ-structures).

Definition 3.8. A path formula π ∈ PDLsf [Σ] is called interval-preserving if for interval-

preserving

formula

all interval-preserving Σ-structures M , JπKM is interval-preserving.

Notice that for all ϕ, the formula {ϕ}? is interval-preserving. By definition,
all atomic path formulas α ∈ Rel are also interval-preserving. By Lemma 3.7, all
PDLsf [Σ] formulas constructed without the boolean operators + and c (but possibly
with ∩) are interval-preserving. However, the complement or the union of interval-
preserving relations are not in general interval-preserving, since the complement or
union of intervals are not always intervals.

In order to define an (expressive enough) interval-preserving fragment of PDLsf ,
we thus need to restrict the use of the complement operator. The next lemma
shows that when the complement is applied only to formulas of the form λ · π · µ
with λ, µ ∈ {≤,≤−1} it results in interval-preserving formulas. As in previous
examples, we denote the formula ≤−1 by ≥.

Lemma 3.9. For all path formulas π ∈ PDLsf [Σ], the formulas

(≤ · π · ≤)c (≤ · π · ≥)c (≥ · π · ≤)c (≥ · π · ≥)c

are interval-preserving.

Proof. Let us show that (≤ · π · ≤)c is interval-preserving. We have

(e, f) ∈ J(≤ · π · ≤)cK if and only if f < J≤ · πK(e) .

We can then make the following observations: if (e, f) ∈ J(≤ · π · ≤)cK,

• For all f ′ ≤ f , (e, f ′) ∈ J(≤ · π · ≤)cK. Indeed, we have

f ′ ≤ f < J≤ · πK(e) .

• For all e′ ≥ e, (e′, f) ∈ J(≤ · π · ≤)cK. Indeed, we have

f < J≤ · πK(e) ⊇ J≤ · πK(e′) .

This proves that (≤ · π · ≤)c is interval-preserving. Indeed, for all intervals I, for all
e1 ≤ e ≤ e2, we have

e2 ∈ J(≤ · π · ≤)cK(I) =⇒ e ∈ J(≤ · π · ≤)cK(I) and

e1 ∈ J(≤ · π · ≤)cK−1(I) =⇒ e ∈ J(≤ · π · ≤)cK−1(I) .

32 CHAPTER 3. STAR-FREE PROPOSITIONAL DYNAMIC LOGIC

Therefore, J(≤ · π · ≤)cK(I) and J(≤ · π · ≤)cK−1(I) are intervals.

This also implies that (≥ · π · ≥)c is interval-preserving. Indeed, we have (π−1)
c ≡

(πc)−1 for all π, so in particular,

(≥ · π · ≥)c ≡ ((≤ · π−1 · ≤)
c
)
−1
.

The remaining cases are similar. For (≤ · π · ≥)c, we have

(e, f) ∈ J(≤ · π · ≥)cK if and only if J≤ · πK(e) < f .

Therefore, if (e, f) ∈ J(≤ · π · ≥)cK:

• For all f ≤ f ′, (e, f ′) ∈ J(≤ · π · ≥)cK.

• For all e′ ≥ e, (e′, f) ∈ J(≤ · π · ≥)cK.

Finally, for (≥ · π · ≤)c, we have

(e, f) ∈ J(≥ · π · ≤)cK if and only if f < J≥ · πK(e) .

Therefore, if (e, f) ∈ J(≥ · π · ≤)cK:

• For all f ′ ≤ f , (e, f ′) ∈ J(≥ · π · ≤)cK.

• For all e′ ≤ e, (e′, f) ∈ J(≥ · π · ≤)cK.

Note that Lemma 3.9 holds even if π is not interval-preserving.

Corollary 3.10. Any path formula π over the following syntax is interval-preserving:

ϕ ::= true | P | ϕ ∨ ϕ | ¬ϕ | 〈π〉ϕ
π ::= α | {ϕ}? | π−1 | π · π | π ∩ π | (λ · π · µ)c ,

where P ∈ Prop, α ∈ Rel, and λ, µ ∈ {≤,≥}.

The restriction of complement operators to formulas of the form λ · π ·µ (where
λ, µ ∈ {≤,≥}) is not as strong as it may seem. Indeed, in interval-preserving
Σ-structures, the formulas λ · π · µ suffice to characterize π:

Lemma 3.11. For all interval-preserving π ∈ PDLsf [Σ], over interval-preserving
structures,

π ≡ (≤ · π · ≤) ∩ (≤ · π · ≥) ∩ (≥ · π · ≤) ∩ (≥ · π · ≥) ∩ ({〈π〉}? · > · {〈π−1〉}?) .

3.6. EQUIVALENCE OF FO AND PDLsf 33

Proof. The direct implication is obvious. Conversely, let

(e, f) ∈ J(≤ · π · ≤) ∩ (≤ · π · ≥) ∩ (≥ · π · ≤) ∩ (≥ · π · ≥) ∩ ({〈π〉}? · > · {〈π−1〉}?)K .

Since (e, f) ∈ J(≤ · π · ≤)K, there exists (e1, f1) ∈ JπK such that e ≤ e1 and
f1 ≤ f . Similarly, there exists (e2, f2) such that e ≤ e2 and f ≤ f2. Let I be the
closed interval delimited by e1 and e2, i.e., I = [e1, e2] or I = [e2, e1]. We have
f1 ≤ f ≤ f2 and f ∈ J〈π−1〉K. Since π is interval-preserving, there exists e′ ∈ I such
that (e′, f) ∈ JπK. Note that e′ ≥ e.

Similarly, since (e, f) ∈ J(≥ · π · ≤) ∩ (≥ · π · ≥)K, there exists e′′ ≤ e such that
(e′′, f) ∈ JπK. Since e′′ ≤ e ≤ e′ and e ∈ J〈π〉K, we obtain (e, f) ∈ JπK.

Using Lemma 3.11, it is not very difficult to prove that at the level of sentences or
event formulas, PDLsf [Σ] and the fragment defined in Corollary 3.10 have the same
expressive power. In fact, we can even further restrict this fragment by limiting the
use of the intersection to Loop(π) formulas, as defined below. The fact that the
resulting logic is expressively equivalent to PDLsf [Σ] is proved in Section 3.6.

Definition 3.12. Let PDLint
sf [Σ] be the set of formulas PDLint

sf [Σ]

ξ ::= Eϕ | ξ ∨ ξ | ¬ξ
ϕ ::= true | P | ϕ ∨ ϕ | ¬ϕ | 〈π〉ϕ | Loop(π)

π ::= α | {ϕ}? | π−1 | π · π | (λ · π · µ)c ,

where P ∈ Prop, α ∈ Rel, and λ, µ ∈ {≤,≥}.

It follows from Corollary 3.10 that all path formulas of PDLint
sf [Σ] are interval-

preserving.

Lemma 3.13. All path formulas π ∈ PDLint
sf [Σ] are interval-preserving.

3.6 Equivalence of FO and PDLsf over interval-preserving
structures

The main result of the chapter is an effective translation of FO[Σ] formulas into
finite positive boolean combinations of formulas in PDLint

sf [Σ].

Theorem 3.14. Every formula Φ ∈ FO[Σ] with at least one free variable is equiva-
lent, over interval-preserving Σ-structures, to a finite positive boolean combination
of formulas of the form π̃(x, y), where x, y ∈ Free(Φ) and π ∈ PDLint

sf [Σ].

Note that the equivalent formula may also contain subformulas of the form
π̃(x, x).

Before proving Theorem 3.14, we state some of its consequences.

34 CHAPTER 3. STAR-FREE PROPOSITIONAL DYNAMIC LOGIC

Corollary 3.15. Over interval-preserving Σ-structures,

1. Every sentence Φ ∈ FO[Σ] is equivalent to a PDLint
sf [Σ] sentence.

2. Every formula Φ(x) ∈ FO[Σ] with a single free variable is equivalent to a
PDLint

sf [Σ] event formula.

3. Every formula Φ(x, y) ∈ FO[Σ] with two free variables is equivalent to a
PDLsf [Σ] path formula (or to a finite positive boolean combination of PDLint

sf [Σ]
path formulas).

Proof. We first prove 2, which immediately implies 1. By Theorem 3.14, Φ(x) is
equivalent to a finite positive boolean combination of formulas of the form π̃(x, x),
which are themselves equivalent to the formulas Loop(π). The combination of these
Loop(π) formulas is then an event formula of PDLint

sf [Σ].

For 3, we know that Φ(x, y) is equivalent to a finite positive boolean combination
of formulas of the form π̃(x, y), π̃(y, x), π̃(x, x), or π̃(y, y). We can replace any

subformula π̃(y, x) with π̃−1(x, y), and any subformula π̃(x, x) with π̃1(x, y) ∨
π̃2(x, y), where π1 = ({Loop(π)}? · ≤) and π2 = ({Loop(π)}? · ≥), and similarly for
formulas π̃(y, y). We obtain an equivalent positive boolean combination of formulas
of the form π̃(x, y). Since PDLsf [Σ] allows union and intersection of path formulas,
this is equivalent to a PDLsf [Σ] formula.

Another consequence of Theorem 3.14 and Lemma 3.3 is that the class of
interval-preserving Σ-structures has the strong 3-variable property:

Theorem 3.16. Over interval-preserving Σ-structures, any formula in FO[Σ] is
equivalent to a finite boolean combination of formulas in FO3[Σ].

The remainder of the section is devoted to the proof of Theorem 3.14.

Eliminating negations. In order to deal with negation in the inductive translation
from FO[Σ] to PDLsf [Σ], we need to show that the complement of a PDLint

sf [Σ]
path formula can be expressed as a positive boolean combination of PDLint

sf [Σ] path
formulas. This is an immediate consequence of Lemma 3.11:

Lemma 3.17. For all path formulas π ∈ PDLint
sf [Σ], πc is equivalent, over interval-

preserving Σ-structures, to a finite union of PDLint
sf [Σ] formulas.

Proof. By Lemma 3.11, over interval-preserving Σ-structures,

π ≡ (≤ · π · ≤) ∩ (≤ · π · ≥) ∩ (≥ · π · ≤) ∩ (≥ · π · ≥) ∩ ({〈π〉}? · > · {〈π−1〉}?) .

3.6. EQUIVALENCE OF FO AND PDLsf 35

Therefore,

πc ≡ (≤ · π · ≤)c + (≤ · π · ≥)c + (≥ · π · ≤)c + (≥ · π · ≥)c +

({〈π〉}? · > · {〈π−1〉}?)
c
,

and we only need to show that ({〈π〉}? · > · {〈π−1〉}?)
c

is equivalent to a finite union
of PDLint

sf [Σ] path formulas. This is the case, as

({〈π〉}? · > · {〈π−1〉}?)
c

≡ {¬〈π〉}? · >+> · {¬〈π−1〉}?
≡ ({¬〈π〉}? · ≤) + ({¬〈π〉}? · ≥) + (≤ · {¬〈π−1〉}?) + (≥ · {¬〈π−1〉}?) .

Existential quantification. The elimination of existential quantifiers relies on the
simple lemma below:

Lemma 3.18. Let (E,≤) be a linear order, and I1, . . . , In intervals of (E,≤). Then⋂
1≤i≤n Ii 6= ∅ if and only if for all 1 ≤ i, j ≤ n, Ii ∩ Ij 6= ∅.

Proof. We show that there exists k and ` such that
⋂

1≤i≤n Ii = Ik∩I`, which implies
the result. We define relations vleft and vright over {I1, . . . , In} which, intuitively,
compare respectively the left and right bounds of the intervals:

I vleft J if ∀e ∈ J, ∃f ∈ I, f ≤ e
I vright J if ∀e ∈ I, ∃f ∈ J, e ≤ f .

It is easy to check that vleft and vright are transitive and total, that is, for all I, J ,
I vleft J or J vleft I (and similarly for vright). Thus, there exist k and ` such that
Ii vleft Ik for all i, and I` vright Ii for all i. Then for all e ∈ Ik ∩ I`, for all i, there
exist f, f ′ ∈ Ii such that f ≤ e ≤ f ′. Since Ii is an interval, we obtain e ∈ Ii. Hence
Ik ∩ I` =

⋂
1≤i≤n Ii.

The next lemma follows from an application of Lemma 3.18 to intervals of the
form JπiK(ei).

Lemma 3.19. Let n ≥ 1. For all path formulas π1, . . . , πn and all event formulas
ϕ in PDLint

sf [Σ], the FO[Σ] formula

Φ(x1, . . . , xn) = ∃x.

ϕ̃(x) ∧
∧

1≤i≤n
π̃i(xi, x)

 (xi 6= x for all i)

is equivalent, over interval-preserving Σ-structures, to a finite positive boolean com-
bination of formulas of the form π̃(xj , xk), with 1 ≤ j, k ≤ n and π ∈ PDLint

sf [Σ].

36 CHAPTER 3. STAR-FREE PROPOSITIONAL DYNAMIC LOGIC

Proof. Let ψ = ϕ ∧
∧

1≤i≤n 〈π
−1
i 〉, and

Ψ(x1, . . . , xn) =
∧

1≤i,j≤n

˜(πi · {ψ}? · π−1
j)(xi, xj) .

Intuitively, Ψ(x1, . . . , xn) states that for all i, j, the intersection of JπiK(xi) and
JπjK(xj) contains at least one event satisfying ψ:

xi xj
JπiK(xi) JπjK(xj)

ψ
πi

πj

Let us show that, over interval-preserving Σ-structures,

Φ(x1, . . . , xn) ≡ Ψ(x1, . . . , xn) .

Let M be an interval-preserving Σ-structure, and ν : {x1, . . . , xn} → EM . For all
1 ≤ i ≤ n, let Ii = JπiK(ν(xi)) ∩ JψK. Let us show that Ii is an interval of (JψK,≤).
First, since πi is interval-preserving, JπiK(ν(xi)) is an interval of (J〈π−1

i 〉K,≤). Thus,
Ii is an interval of (J〈π−1

i 〉K ∩ JψK,≤). But since J〈π−1
i 〉K ⊇ JψK, this is simply

(JψK,≤). Besides, it is easy to verify that

M,ν |= Φ(x1, . . . , xn) ⇐⇒
⋂

1≤i≤n
Ii 6= ∅ .

Applying Lemma 3.18, we obtain

M,ν |= Φ ⇐⇒ for all 1 ≤ i, j ≤ n, Ii ∩ Ij 6= ∅
⇐⇒ for all 1 ≤ i, j ≤ n, (ν(xi), ν(xj)) ∈ Jπi · {ψ}? · π−1

j K

⇐⇒ M,ν |= Ψ .

Translation from FO[Σ] to PDLint
sf [Σ]. We are now ready to give the proof of

Theorem 3.14.

Proof of Theorem 3.14. We assume that Φ is in prenex normal form, and prove the
result by induction. The translation of atomic formulas α(x, y) is straightforward;

moreover, P (x) ≡ {̃P}?(x, x), and (x = y) ≡ ˜{true}?(x, y). Using Lemma 3.17 to
eliminate negations, we obtain the result for all quantifier-free formulas.

The case Φ = ∀x.Ψ ≡ ¬∃x.¬Ψ reduces to the case of existential quantification,
applying again Lemma 3.17 to eliminate negations.

We are left with the case Φ = ∃x.Ψ. If x is not free in Ψ, then Φ ≡ Ψ (since Ψ
has at least one free variable) and we are done by induction. Otherwise, assume that

3.7. APPLICATIONS 37

Free(Ψ) = {x1, . . . , xn} with n > 1 and x = xn. By induction, Ψ is equivalent to a
positive boolean combination of formulas of the form π̃(xi, xj) with π ∈ PDLint

sf [Σ].

We replace π̃(xi, xj) with π̃−1(xj , xi) whenever j < i, and bring the resulting formula
into disjunctive normal form. Each conjunct is then of the form Υ = Υ1 ∧Υ2 ∧Υ3,
where Υ1 uses only variables from {x1, . . . , xn−1}, Υ2 =

∧
i π̃i(yi, x) with yi = xj

for some 1 ≤ j < n, and Υ3 =
∧
j π̃j(x, x). Note that Υ3 ≡ ϕ̃(x), where ϕ =∧

j Loop(πj). Then ∃x.Ψ is equivalent to a finite disjunction of formulas

∃x.Υ ≡ Υ1 ∧ ∃x. (Υ2 ∧ ϕ̃(x))

with Υ1 and Υ2 as above. If Υ2 is empty, then we replace ∃x.ϕ̃(x) with the formula

(≤ · {ϕ}? · ≥)(x1, x1) ∨ (≥ · {ϕ}? · ≤)(x1, x1) .

Otherwise, we apply Lemma 3.19 to ∃x. (Υ2 ∧ ϕ̃(x)). In all cases, we obtain an
equivalent formula which is a finite positive boolean combination of formulas π̃(xi, xj)
with 1 ≤ i, j < n and π ∈ PDLint

sf [Σ].

3.7 Applications

Various classes of structures studied in the literature are interval-preserving, or
easily reducible to interval-preserving structures.

Linear orders. It follows from Theorem 3.16 that any class of linear orders has
the 3-variable property. This was initially proven in [51] using Ehrenfeucht-Fräıssé
games. The case of formulas with one free variable is also implied by Kamp’s
theorem [53, 32] stating that LTL is expressively complete for first-order logic.

Real-time systems. Let A ⊆ R (for instance, A = {1},N,Q). The structure
(R, <,+A) = (R, <, ({(r, r + a) | r ∈ R})a∈A) has the 3-variable property. This
gives a new proof of a result from [3], which was again proven through Ehrenfeucht-
Fräıssé games.

Polynomials over R. Theorem 3.16 also allows us to answer an open question from
[3], namely, whether structures over the real numbers with polynomial functions
have the 3-variable property:

Suppose that Rel = {≤} ∪ P, where P is a set of polynomials p : R → R. Let
MP be the (∅,Rel)-structure (R,≤, (pMP)p∈P), where ≤ is the usual ordering of the
real numbers, and pMP = {(x, p(x)) | x ∈ R} for all p ∈ P. Given an interpretation
h : Prop → 2R of the unary predicates, we denote by (MP , h) the Σ-structure
(R,≤, (pMP)p∈P , (h(P))P∈Prop). We also denote by CR[Σ] the set of all structures
(MP , h).

38 CHAPTER 3. STAR-FREE PROPOSITIONAL DYNAMIC LOGIC

Theorem 3.20. CR[Σ] has the strong 3-variable property, i.e., any FO[Σ] formula
is equivalent over CR[Σ] to a finite boolean combination of formulas in FO3[Σ].

Proof. The idea is to decompose each polynomial function into a finite number of
monotone (and thus, interval-preserving) partial functions.

Let p ∈ P, and m1 < · · · < mn its local extrema. We denote by p(−∞,m1),
p[m1,m2), . . . , p[mn,+∞) the (monotone) restrictions of p to intervals delimitated by
its local extrema, and P ′p the set of these partial functions. Let P ′ =

⋃
p∈P P ′p, and

Σ′ = (Prop, {≤}]P ′). As above, we let MP ′ = (R,≤, (pIMP′)pI∈P ′), where ≤ is the
usual ordering of the real numbers, and pI

MP′ = {(x, p(x)) | x ∈ I}. We denote by
CR[Σ′] the set of Σ′-structures (MP ′ , h) with h : Prop→ 2R, defined as above. Note
that all structures in CR[Σ′] are interval-preserving.

We say that two formulas Φ ∈ FO[Σ] and Ψ ∈ FO[Σ′] are equivalent, written
Φ ≡ Ψ, when for all h : Prop → 2R and ν : Free(Φ) ∪ Free(Ψ) → R, we have
(MP , h), ν|Free(Φ) |= Φ if and only if (MP ′ , h), ν|Free(Ψ) |= Ψ.

Let Φ ∈ FO[Σ]. The formula Ψ ∈ FO[Σ′] obtained by replacing each atomic
formula p(x, y) by

∨
pI∈P ′p pI(x, y) is equivalent to Φ. Applying Theorem 3.16 to Ψ,

we obtain another formula Ψ′ ∈ FO[Σ′] such that Ψ′ ≡CR[Σ′] Ψ and Ψ′ is a finite

boolean combination of formulas in FO3[Σ′].
Following Example 2.3, one can construct for each pI ∈ P ′ a formula “x ∈ I”

of FO3[Σ] such that (MP , h), ν |= x ∈ I if and only if ν(x) ∈ I. Consider now the
formula Φ′ ∈ FO[Σ] obtained by replacing each atomic formula pI(x, y) in Ψ′ by
x ∈ I ∧ p(x, y). Then Φ′ ≡ Ψ′, hence Φ ≡CR[Σ] Φ′. Moreover, Φ′ is a finite boolean

combination of formulas in FO3[Σ].

Mazurkiewicz traces. Mazurkiewicz traces [24] are a common way to describe
executions of concurrent systems. We assume a finite alphabet A, and a reflexive
and symmetric relationD ⊆ A×A called the dependence relation. A (Mazurkiewicz)
trace over (A,D) is a labeled partial order (E,≤, λ) such that

• E is a finite or countably infinite set.

• ≤ ⊆ E×E is a partial order such that for all e ∈ E, {f ∈ E | f ≤ e} is finite.
We let < denote the strict part of ≤, and write e l f if e < f and there are
no f ′ with e < f ′ < f .

• λ : E → A is the labeling function.

• for all e, f ∈ E such that (λ(e), λ(f)) ∈ D, we have e ≤ f or f ≤ e.

• for all e, f ∈ E such that el f , (λ(e), λ(f)) ∈ D.

Let Σ = (A,≤) be the signature associated with traces over (A,D). It was
proven in [23], as a corollary of the expressive completeness of an extension of LTL

3.7. APPLICATIONS 39

to traces, that every sentence in FO[Σ] is equivalent, over traces, to a sentence in
FO3[Σ]. Using Theorem 3.16, we can give a new proof of this, and in fact, show a
slightly stronger result, where we also consider formulas with free variables.

Traces are partially ordered rather than linearly ordered, so we cannot directly
apply our results about interval-preserving structures. However, like in the example
of polynomial functions, we can define an alternative signature Σ′ and a faithful
description of traces as interval-preserving Σ′-structures that allow us to apply
Theorem 3.16.

Theorem 3.21. The class of traces over (A,D) has the strong 3-variable property:
any FO[Σ] formula is equivalent, over traces, to a finite boolean combination of
formulas in FO3[Σ].

Proof. For a trace (E,≤, λ) and a, b ∈ A, we denote by ≤a,b the restriction of ≤ to
events labeled a and b, respectively:

e ≤a,b f if e ≤ f and λ(e) = a and λ(f) = b .

We also define a linear order v ⊆ E×E as follows: we fix a linear order v ⊆ A×A,
and we let

e v f if λ(e) @ λ(f) or (λ(e) = λ(f) ∧ e ≤ f) .

This is indeed a linear order over A, since for all e, f such that λ(e) = λ(f), we
have (λ(e), λ(f)) ∈ D, which implies that e ≤ f or f ≤ e.

We let Σ′ = (A, {v} ∪ {≤a,b | a, b ∈ A}).

Claim 3.22. For all traces M = (E,≤, λ), the Σ′-structure induced by M is
interval-preserving (with respect to v).

Proof. Let a, b ∈ A, and I be an interval of (E,v). Let us show that J≤a,bK(I)
is an interval of (J〈≤−1

a,b〉K,v), the symmetric condition is proven similarly. So let

f1, f2 ∈ J≤a,bK(I), and let f ∈ J〈≤−1
a,b〉K such that f1 v f v f2. Let us show that

for e1 ∈ I such that e1 ≤a,b f1, we also have e1 ≤a,b f . By definition of ≤a,b, we
have λ(e1) = a and λ(f) = λ(f1) = b. In particular, f1 v f implies f1 ≤ f . By
transitivity of ≤, we obtain e1 ≤ f , i.e., e1 ≤a,b f .

Let Φ ∈ FO[Σ], and let Φ′ ∈ FO[Σ′] be the formula obtained from Φ by replacing
every formula x ≤ y by

∨
a,b∈A x ≤a,b y. By Theorem 3.16 and Claim 3.22, there

exists a finite boolean combination Ψ′ ∈ FO[Σ′] of FO3[Σ′] formulas such that Φ′

and Ψ′ are equivalent over traces. Define Ψ ∈ FO[Σ] as the formula obtained from
Ψ′ by replacing every formula x v y with∨

a@b

a(x) ∧ b(y) ∨
∨
a∈A

a(x) ∧ a(y) ∧ a ≤ y ,

40 CHAPTER 3. STAR-FREE PROPOSITIONAL DYNAMIC LOGIC

and every formula x ≤a,b y with x ≤ y ∧ a(x) ∧ b(y). Then Ψ is a finite boolean
combination of FO3[Σ] formulas, and Φ and Ψ are equivalent over traces.

Theorem 3.21 is in fact true for all labeled partial orders such that: (i) the set
of labels is finite, and (ii) for every label a, the restriction of the partial order to
a-labeled elements is linear. These are called pomsets without auto-concurrency
in [26], semi-words in [78, 22], P-traces in [5].

Message Sequence Charts. In Chapter 5, we will see that MSCs, which represent
behaviors of message-passing systems, can also be interpreted as interval-preserving
structures. Like traces, MSCs are labeled partial orders in which elements with a
same label are totally ordered, but in addition, they are also equipped with another
binary relation called the message relation.

3.8 The case of complete linear orders

In this section, we show that over complete linear orders, we can further restrict
the use of complement, while keeping the full expressive power of PDLsf [Σ] (i.e., of
FO[Σ]). This results in a simpler syntax, closer to known temporal logics, and
without an explicit complement operation. This is interesting from an algorithmic
point of view, as the complement operator is usually a source of high complexities.
To better understand this, we can look at the example of words. Over words,
star-free regular expressions and LTL are both known to have the same expres-
sive power as first-order logic. However, the complexity of translating a star-free
regular expression into finite automata is non-elementary [79], while it is Pspace
for LTL [77, 90]. The non-elementary complexity for star-free regular expressions
comes from the use of a complement operation, which is similar to the complement
of path formulas in star-free PDL. On the other hand, while negation is also allowed
in LTL, it is closer to negation at the level of event formulas in star-free PDL, in
the sense that both are applied to unary, rather than binary, predicates. Our aim
in this section is to define a fragment of star-free PDL which is still expressively
equivalent to first-order logic (over complete linear orders), but somewhat closer in
its syntax to LTL.

This section is largely independent from the remainder of the thesis, and not
required to understand subsequent chapters. We will later define a similar fragment
when studying the special case of MSCs, and the present section highlights the fact
that the equivalence of star-free PDL and its complement-free variant can be proven
in a more general setting. However, as the proofs are much simpler for MSCs, we
will not need to rely on the results presented here.

Definition 3.23. Let Σ = (Prop,Rel) be a signature with ≤ ∈ Rel. A Σ-structure
M = (EM , (PM)P∈Prop, (αM)α∈Rel) is complete if ≤M is a complete linear order,complete

Σ-structure

3.8. THE CASE OF COMPLETE LINEAR ORDERS 41

i.e., a linear order such that any nonempty subset F ⊆ EM with an upper bound
has a least upper bound supF .

Note that in a complete Σ-structure M , every nonempty subset F ⊆ EM with
a lower bound also has a greatest lower bound inf F .

Example 3.24. The structure (R,≤,+A) for A ⊆ R is a complete Σ-structure.
Discrete Σ-structures, where every element has a successor and a predecessor, are
also complete.

3.8.1 A fragment of PDLsf [Σ] without complement

We start by defining a fragment PDL<•sf [Σ] of PDLsf [Σ] without a complement
operator, but with additional “atomic” path formulas.

Path formulas for Until and Since. We define two more path formulas, <ϕ and>ϕ, <ϕ, >ϕ

similar to LTL strict until and strict since modalities, with the following semantics.
Given an event formula ϕ ∈ PDLsf [Σ] and a Σ-structure M ,

J<ϕKM =
{

(e, f) ∈ EM × EM | e < f ∧ ∀g ∈ EM .
(
e < g < f =⇒ g ∈ JϕKM

)}
J>ϕKM =

{
(e, f) ∈ EM × EM | f < e ∧ ∀g ∈ EM .

(
f < g < e =⇒ g ∈ JϕKM

)}
.

Note that >ϕ ≡ (<ϕ)−1. The formulas <ϕ and >ϕ are easily definable in PDLsf [Σ]:

<ϕ ≡ < ∩ (< · {¬ϕ}? ·<)c

>ϕ ≡ > ∩ (> · {¬ϕ}? ·>)c .

Remark 3.25. The usual LTL strict until SU and strict since SS modalities can
be defined as

ϕ SU ψ ≡ 〈<ϕ〉ψ and ϕ SS ψ ≡ 〈>ϕ〉ψ .

For the non-strict versions,

ϕ U ψ ≡ ψ ∨ (ϕ ∧ 〈<ϕ〉ψ) and ϕ S ψ ≡ ψ ∨ (ϕ ∧ 〈>ϕ〉ψ) .

Sup and inf of a path formula. For all π ∈ PDLsf [Σ] we introduce path formulas
sup π and inf π with sup π, inf π

Jsup πKM = {(e, f) ∈ EM × EM | f = sup JπKM (e)}
Jinf πKM = {(e, f) ∈ EM × EM | f = inf JπKM (e)} .

In particular, Jsup πK(e) is non-empty if and only if supJπK(e) is well-defined, in
which case it is a singleton (and similarly for inf π).

42 CHAPTER 3. STAR-FREE PROPOSITIONAL DYNAMIC LOGIC

The formulas sup π and inf π could be defined as follows in PDLsf [Σ]:

sup π ≡ (π ·>)c ∩ ((π ·>)c ·<)c

inf π ≡ (π ·<)c ∩ ((π ·<)c ·>)c .

Intuitively, the formula (π ·>)c relates e to upper bounds of JπK(e), and ((π ·>)c ·<)c

selects the minimal element among these lower bounds. The case of inf π is similar.

Syntax of PDL<•
sf [Σ]. In PDL<•sf [Σ], we do not allow any complement operators,

but we allow formulas <ϕ and >ϕ, and a very restricted use of inf and sup: they
appear only in formulas inf (λ · α) or sup (λ · α) where α ∈ Rel and λ is an order
formula in {≤, <,≥, >}. We can see these inf (λ · α) and sup (λ · α) formulas as
additional atomic formulas, defined only from the relations in Rel. We also restrict
the use of the converse operation to “atomic” formulas, which can already be done
in PDLsf [Σ] or PDLint

sf [Σ].

Definition 3.26. The set of PDL<•sf [Σ] formulas is defined as follows:PDL<•
sf [Σ]

ξ ::= Eϕ | ξ ∨ ξ | ¬ξ
ϕ ::= true | P | ϕ ∨ ϕ | ¬ϕ | 〈π〉ϕ | Loop(π)

σ ::= α | inf (λ · α) | sup (λ · α)

π ::= σ | σ−1 | {ϕ}? | <ϕ | >ϕ | π · π ,

where P ∈ Prop, α ∈ Rel \ {≤}, λ ∈ {≤, <,≥, >}.

Since all operators of PDL<•sf [Σ] are definable in PDLsf [Σ], we can see the logic
PDL<•sf [Σ] as a fragment of PDLsf [Σ], and we sometimes identify PDL<•sf [Σ] formulas
with their equivalent in PDLsf [Σ]. So we may talk for instance about PDLsf [Σ]
formulas πc or π1 + π2 for π, π1, π2 ∈ PDL<•sf [Σ].

Macros. Note that we can also define < and > in PDL<•sf [Σ]:

< ≡ <true > ≡ >true .

And while ≤, ≥ and > are not formulas of PDL<•sf [Σ], they are equivalent to finite
unions of PDL<•sf [Σ] path formulas.

Finally, π−1 is also definable in PDL<•sf [Σ]. For simplicity, we do not distinguish
between π−1 (which is syntactically in PDLsf [Σ] but not in PDL<•sf [Σ]) and the
equivalent formula in PDL<•sf [Σ].

Lemma 3.27. For all π ∈ PDL<•sf [Σ], there exists π′ ∈ PDL<•sf [Σ] such that
π−1 ≡ π′.

Proof. We can define π′ inductively using the following equivalences:

(π−1
1)
−1 ≡ π1 {ϕ}?−1 ≡ {ϕ}? <−1

ϕ ≡ >ϕ (π1 · π2)−1 ≡ π−1
2 · π

−1
1 .

3.8. THE CASE OF COMPLETE LINEAR ORDERS 43

Properties of PDL<•
sf [Σ]. An important remark is that all PDL<•sf [Σ] path formu-

las are interval-preserving. In fact, the new formulas inf (λ · α) or sup (λ · α) satisfy
a stronger property: they define non-increasing or non-decreasing functions from
an interval of EM to EM .

Lemma 3.28. Let π ∈ PDL<•sf [Σ] of the form π = sup (λ · α) or π = inf (λ · α),
where α ∈ Rel \ {≤} and λ ∈ {≤, <,≥, >}. In any Σ-structure M ,

1. If M is complete, then the set J〈π〉K is an interval of (EM ,≤M).

2. If π is of the form

π = sup (≥ · α) , π = sup (> · α) , π = inf (≤ · α) , or π = inf (< · α) ,

then for all (e1, f1), (e2, f2) ∈ JπK such that e1 ≤ e2, we have f1 ≤ f2.

3. If π is of the form

π = sup (≤ · α) , π = sup (< · α) , π = inf (≥ · α) , or π = inf (> · α) ,

then for all (e1, f1), (e2, f2) ∈ JπK such that e1 ≤ e2, we have f2 ≤ f1.

Proof. We distinguish four cases.

Case 1: suppose that π = sup (λ · α) for λ ∈ {≥, >}.
Let (e1, f1), (e2, f2) ∈ Jsup (λ · α)K such that e1 ≤ e2. We have f1 = supJλ · αK(e1)

and f2 = supJλ · αK(e2). Since

Jλ · αK(e1) ⊆ Jλ · αK(e2) and Jλ · αK(e2) ≤ f2 ,

we have

Jλ · αK(e1) ≤ f2 , i.e., f1 ≤ f2 .

This proves property 2.

Similarly, for all e1 ≤ e ≤ e2, we have

Jλ · αK(e1) ⊆ Jλ · αK(e) ⊆ Jλ · αK(e2) .

In particular, Jλ · αK(e) ≤ f2. If, in addition, Jλ · αK(e) 6= ∅, then if M is a complete
Σ-structure, supJλ · αK(e) is well-defined. Otherwise, if Jλ · αK(e) = ∅, then we also
have Jλ · αK(e1) = ∅, and

supJλ · αK(e) = sup ∅ = supJλ · αK(e1) = f1 .

In any case, supJλ · αK(e) is well-defined, i.e., e ∈ J〈π〉K. This proves property 1.

44 CHAPTER 3. STAR-FREE PROPOSITIONAL DYNAMIC LOGIC

Case 2: suppose that π = inf (λ · α) for λ ∈ {≥, >}. Similarly to the previous
case, for all (e1, f1), (e2, f2) ∈ Jinf (λ · α)K such that e1 ≤ e2, we have

Jλ · αK(e1) ⊆ Jλ · αK(e2) =⇒ f2 ≤ Jλ · αK(e1)

hence f2 ≤ f1. This proves property 3. If M is complete, then for all e1 ≤ e ≤ e2,

• f2 ≤ Jλ · αK(e), therefore, if Jλ · αK(e) 6= ∅, infJλ · αK(e) is well-defined;

• If Jλ · αK(e) = ∅, then infJλ · αK(e) = inf ∅ = infJλ · αK(e1) = f1.

Thus, e ∈ J〈π〉K, which proves property 1.

Case 3: suppose that π = sup (λ · α) for λ ∈ {≤, <}. For all (e1, f1), (e2, f2) ∈
Jsup (λ · α)K such that e1 ≤ e2, we have

Jλ · αK(e2) ⊆ Jλ · αK(e1) =⇒ Jλ · αK(e2) ≤ f1 ,

hence f2 ≤ f1. This proves property 3. If M is complete, then for all e1 ≤ e ≤ e2,

• Jλ · αK(e) ≤ f1, therefore, if Jλ · αK(e) 6= ∅, supJλ · αK(e) is well-defined;

• If Jλ · αK(e) = ∅, then supJλ · αK(e) = sup ∅ = supJλ · αK(e2) = f2.

Thus, e ∈ J〈π〉K, which proves property 1.

Case 4: suppose that π = inf (λ · α) for λ ∈ {≤, <}. For all (e1, f1), (e2, f2) ∈
Jinf (λ · α)K such that e1 ≤ e2, we have

Jλ · αK(e2) ⊆ Jλ · αK(e1) =⇒ f1 ≤ Jλ · αK(e2) ,

hence f1 ≤ f2. This proves property 2. If M is complete, then for all e1 ≤ e ≤ e2,

• f1 ≤ Jλ · αK(e), therefore, if Jλ · αK(e) 6= ∅, infJλ · αK(e) is well-defined;

• If Jλ · αK(e) = ∅, then infJλ · αK(e) = inf ∅ = infJλ · αK(e2) = f2.

Thus, e ∈ J〈π〉K, which proves property 1.

Lemma 3.29. All path formulas π ∈ PDL<•sf [Σ] are interval-preserving.

Proof. Recall that
<ϕ ≡ < ∩ (< · {¬ϕ}? ·<)c

Moreover, < is interval-preserving, and by Lemma 3.9, so is (< · {¬ϕ}? ·<)c ≡
(≤ · (< · {¬ϕ}? ·<) · ≤)c. Therefore, by Lemma 3.7, <ϕ and >ϕ ≡ <−1

ϕ are also
interval-preserving.

In addition, by Lemma 3.28, for all λ ∈ {≤, <,≥, >} and α ∈ Rel \ {≤}, the
formulas sup (λ · α) and inf (λ · α) define non-increasing or non-decreasing partial
functions. Therefore, they are interval-preserving.

Since interval-preserving formulas are closed under concatenation and converse
(Lemma 3.7), all path formulas π ∈ PDL<•sf [Σ] are thus interval-preserving.

3.8. THE CASE OF COMPLETE LINEAR ORDERS 45

3.8.2 Main result

The aim of this section is to show that over the class of complete and interval-
preserving Σ-structures, PDLint

sf [Σ] and PDL<•sf [Σ] are expressively equivalent:

Theorem 3.30. Over complete interval-preserving Σ-structures,

1. Any PDLint
sf [Σ] sentence is equivalent to a PDL<•sf [Σ] sentence.

2. Any PDLint
sf [Σ] event formula is equivalent to a PDL<•sf [Σ] event formula.

3. Any PDLint
sf [Σ] path formula is equivalent to a finite union of PDL<•sf [Σ] path

formulas.

By Theorem 3.14, this also implies that over complete and interval-preserving
Σ-structures, PDL<•sf [Σ] has the same expressive power as FO[Σ].

Remark 3.31. For many classes of complete interval-preserving Σ-structures, it is
possible to also remove the inf (λ · α) and sup (λ · α) formulas from the syntax of
PDL<•sf [Σ] without losing in expressivity. This is for instance the case over structures
(R, <,+A), since

inf (≤ ·+a) ≡ inf (< ·+a) ≡ sup (≥ ·+a) ≡ sup (> ·+a) ≡ +a

inf (≥ ·+a) ≡ inf (> ·+a) ≡ sup (≤ ·+a) ≡ sup (< ·+a) ≡ {false}? .

More generally, formulas inf (λ · α) and sup (λ · α) can be eliminated over structures
where JαK defines a total increasing or decreasing bijection (and in fact, one can show
that every interval-preserving bijection is either increasing or decreasing). They are
also unnecessary over message sequence charts (see Chapter 5).

Consequences of Theorem 3.30. Theorem 3.30 provides a logic which is also
expressively equivalent to FO[Σ] over complete interval-preserving Σ-structures, but
which has better algorithmic properties than PDLsf [Σ]. Of course, most decision
problems for FO[Σ], and therefore PDLsf [Σ] or PDL<•sf [Σ], are undecidable. How-
ever, for specific classes of structures and problems for which this is not the case,
having a logic without a complement operator results in better complexities. We
discussed the case of words at the beginning of the section, and Chapter 5 and 6
provide further examples of this.

PDL<•sf [Σ] is also closer to classic temporal logics. Recall that 〈<ϕ〉ψ corre-
sponds to a strict until formula ϕ SU ψ, and 〈>ϕ〉ψ to the strict since ϕ SS ψ.
In addition, formulas 〈π1 · π2〉ϕ can be unfolded as 〈π1 · π2〉ϕ ≡ 〈π1〉 (〈π2〉ϕ).
Combining these observations, the syntax of PDL<•sf [Σ] event formulas could be
equivalently described as

ϕ ::= true | P | ϕ ∨ ϕ | ϕ SU ψ | ϕ SS ψ | ¬ϕ | 〈σ〉ϕ | 〈σ−1〉ϕ | Loop(π) ,

46 CHAPTER 3. STAR-FREE PROPOSITIONAL DYNAMIC LOGIC

and seen as a (one-dimensional) temporal logic with an infinite number of Loop(π)
modalities (on the other hand, if Rel is finite, we only need a finite number of 〈σ〉
modalities).

Given a class C of complete interval-preserving Σ-structures, the problem of
the existence of an expressively complete temporal logic over C, with a finite set
of FO-definable modalities, can then be reformulated as whether it is possible to
bound the length of π (that is, the number of top-level concatenations) in Loop(π)
formulas.

Example 3.32. Over (R,≤,+Q), all formulas of Metric Temporal Logic (MTL)
(cf. Example 3.1) can be defined in PDL<•sf [Σ] using loop formulas of length at
most 4. For instance,

φU(q,r) ψ ≡ Loop(<ϕ · {ϕ}? · (+q)−1) ∧ 〈+q〉 Loop(<ϕ · {ψ}? ·<true ·+(r − q)−1) .

MTL was shown to be expressively complete for first-order logic [48, 47]. Similar
arguments could be applied to do the proof at the level of PDL<•sf [Σ] instead of
working directly with first-order formulas.

On the other hand, there are classes of structures for which the length of Loop(π)
formulas cannot be bounded. For instance, over (R,≤,+Z), no temporal logic with
modalities definable by first-order formulas of bounded quantifier depth can be
expressively complete for first-order logic [44]. To regain expressive completeness,
one has to add to MTL an infinite set of counting modalities Cn(ϕ), which states
that there are at least n positions satisfying ϕ in the next unit of time [47]. This
could be written in PDL<•sf [Σ] as

Cn(ϕ) ≡ Loop
(
≤ · ({ϕ}? ·<)n−1 · {ϕ}? · ≤ · (+1)−1

)
,

that is, a loop formula of length 2n+ 2.

Outline of the proof. The remainder of the section is devoted to the proof of
Theorem 3.30. We focus on 3., which implies 2. and 1. In order to prove the
result, we show that finite unions of PDL<•sf [Σ] path formulas are closed under
the operations of PDLint

sf [Σ]. In particular, we need to prove that for all finite
unions π of PDL<•sf [Σ] paths formulas, and for all λ, µ ∈ {≤,≥}, the formula
(λ · π · µ)c is equivalent, over complete interval-preserving structures, to a finite
union of PDL<•sf [Σ] path formulas. This is proven by induction on π. Section 3.8.3
deals with the inductive cases π = π1 · π2 and π = π1 + π2, and Section 3.8.4 with
all the base cases. We put everything together in Section 3.8.5.

3.8. THE CASE OF COMPLETE LINEAR ORDERS 47

3.8.3 Splitting formulas with complement operators

The most important step towards proving Theorem 3.30 is to show that formulas
of the form (λ · π · µ)c, where π is a concatenation of several path formulas, can be
broken down into “smaller” formulas (λ′ · π′ · µ′)c.

Lemma 3.33. For all interval-preserving path formulas π1, π2 ∈ PDLsf [Σ], over
complete interval-preserving Σ-structures,

(π1 · π2)c ≡ ({¬〈π1 · π2〉}? · >) + (> · {¬〈(π1 · π2)−1〉}?) +

(π1 · {〈π2〉}? ·>)c · (≥ · {〈π−1
1 〉}? · π2)

c
+

(π1 · {〈π2〉}? · ≥)c · (> · {〈π−1
1 〉}? · π2)

c
+

(π1 · {〈π2〉}? ·<)c · (≤ · {〈π−1
1 〉}? · π2)

c
+

(π1 · {〈π2〉}? · ≤)c · (< · {〈π−1
1 〉}? · π2)

c
.

Proof. First, notice that (e, f) ∈ Jπ1 · π2K if and only if there exists g ∈ Jπ1{〈π2〉}?K(e)
such that g ∈ Jπ−1

2 {〈π
−1
1 〉}?K(f). Therefore,

(e, f) ∈ J(π1 · π2)cK ⇐⇒ Jπ1{〈π2〉}?K (e) ∩
q
π−1

2 {〈π
−1
1 〉}?

y
(f) = ∅ .

We write π1 = π1{〈π2〉}?, and π2 = π−1
2 {〈π

−1
1 〉}?. Note that π1 and π2 are interval-

preserving. Moreover, J〈π−1
1 〉K = J〈π−1

1 〉 ∧ 〈π2〉K = J〈π−1
2 〉K. So Jπ1K(e) and Jπ2K(f)

are both intervals of (J〈π−1
1 〉K,≤). Thus,

Jπ1K(e) ∩ Jπ2K(f) = ∅ ⇐⇒
(
Jπ1K(e) < Jπ2K(f) or Jπ2K(f) < Jπ1K(e)

)
.

Now, in a complete Σ-structure, Jπ1K(e) < Jπ2K(f) if and only if Jπ1K(e) = ∅,
Jπ2K(f) = ∅, or there exists g (for instance, g = supJπ1K(e)) such that

Jπ1K(e) ≤ g < Jπ2K(f) or Jπ1K(e) < g ≤ Jπ2K(f) ,

i.e.,

g ∈ J(π1 ·>)cK(e) ∩ J(π2 · ≤)cK(f) or g ∈ J(π1 · ≥)cK(e) ∩ J(π2 ·<)cK(f) .

It follows that

Jπ1K(e) < Jπ2K(f) ⇐⇒ (e, f) ∈ J{¬〈π1〉}? · >+> · {¬〈π2〉}? + σK ,

where

σ = (π1 ·>)c · ((π2 · ≤)c)−1 + (π1 · ≥)c · ((π2 ·<)c)−1

= (π1{〈π2〉}? ·>)c · ((π−1
2 {〈π

−1
1 〉}? · ≤)

c
)
−1

+

(π1{〈π2〉}? · ≥)c · ((π−1
2 {〈π

−1
1 〉}? ·<)

c
)
−1

≡ (π1{〈π2〉}? ·>)c · (≥ · {〈π−1
1 〉}? · π2)

c
+

(π1{〈π2〉}? · ≥)c · (> · {〈π−1
1 〉}? · π2)

c
.

48 CHAPTER 3. STAR-FREE PROPOSITIONAL DYNAMIC LOGIC

Similarly,

Jπ2K(f) < Jπ1K(e) ⇐⇒ (e, f) ∈ J{¬〈π1〉}? · >+> · {¬〈π2〉}? + σ′K ,

where

σ′ = (π1 · {〈π2〉}? ·<)c · (≤ · {〈π−1
1 〉}? · π2)

c
+

(π1 · {〈π2〉}? · ≤)c · (< · {〈π−1
1 〉}? · π2)

c
.

Finally, notice that

{¬〈π1〉}? · > ≡ {¬〈π1 · π2〉}? · >
> · {¬〈π2〉}? ≡ > · {〈(π1 · π2)−1〉}? .

Notice that by applying Lemma 3.33 to formulas π′1 = λ · π1 and π′2 = π2 ·µ, we
obtain a decomposition of (λ · (π1 · π2) · µ)c in terms of formulas of the form

(λ′ · ({ϕ}? · πi · {ψ}?) · µ′)c (i ∈ {1, 2} and λ′, µ′ ∈ {≤, <,≥, >}) .

Furthermore, the next lemma shows that we can get rid of the test formulas, so
that the complement operator only occurs in subformulas of the form

(λ′ · πi · µ′)c (i ∈ {1, 2} and λ′, µ′ ∈ {≤, <,≥, >}) .

Lemma 3.34. Let π ∈ PDL<•sf [Σ] such that for all λ ∈ {≤, <,≥, >}, the formula

(λ · π)c

is equivalent, over complete interval-preserving Σ-structures, to a finite union of
PDL<•sf [Σ] path formulas. Then for all ϕ ∈ PDLsf [Σ], for all λ ∈ {≤, <,≥, >}, the
formula

(λ · {ϕ}? · π)c

is also equivalent, over complete interval-preserving Σ-structures, to a finite union
of PDL<•sf [Σ] path formulas.

Proof. Let ϕ ∈ PDL<•sf [Σ], and π = {ϕ}? · π.

Case λ = ≤. Let us show that this case reduces to the case λ = <. More precisely,
we prove that

(≤ · π)c ≡ (≤ · π)c + {¬〈π〉}? · (< · π)c +> · {¬ 〈π−1〉 }? .

The right-to-left implication is easy to check. Conversely, let

(e, f) ∈ J(≤ · π)cK \
q
(≤ · π)c +> · {¬ 〈π−1〉 }?

y
.

3.8. THE CASE OF COMPLETE LINEAR ORDERS 49

Since (e, f) ∈ J(≤ · π)cK, we also have (e, f) ∈ J(< · π)cK. So we only need to prove
that e ∈ J¬〈π〉K ≡ J¬〈π〉 ∨ ¬ϕK. Suppose that e ∈ J〈π〉K, and let us show that
e /∈ JϕK.

By assumption, f /∈ J¬〈π−1〉K, hence there exists e1 such that (e1, f) ∈ JπK.
In addition, since (e, f) ∈ J(≤ · π)cK, we must have e1 < e. Now, since (e, f) /∈
J(≤ · π)cK, there is also e ≤ e2 such that (e2, f) ∈ JπK:

e1 e e2

f

< ≤

{ϕ}? · π = π
π

We then have

e1 ≤ e ≤ e2 , e ∈ J〈π〉K and e1, e2 ∈ JπK−1(f) ,

and since π is interval-preserving, we obtain (e, f) ∈ JπK. Finally, we also know that
(e, f) /∈ JπK = J{ϕ}? · πK, hence e /∈ JϕK.

Case λ = ≥. Similarly, this case reduces to the case λ = >. We have

(≥ · π)c ≡ (≥ · π)c + {¬〈π〉}? · (> · π)c +> · {¬ 〈π−1〉 }? .

Case λ = <. Let us show that

(< · π)c ≡
(
{¬〈< · π〉}? · >

)
+
(
> · {¬〈(< · π)−1〉}?

)
+

(< · π)c +
(
<¬〈π〉 · (≤ · π)c

)
+
(
<¬〈π〉 · {¬〈π〉}? · (< · π)c

)
.

The right-to-left implication is easy to check. Conversely, let

(e, f) ∈ J(< · π)cK \ J{¬〈< · π〉}? · >+> · {¬〈(< · π)−1〉}?K .

It follows from the fact that (e, f) /∈ J{¬〈< · π〉}? · >K that

e < J< · {〈π〉}?K(e) 6= ∅ .

Therefore, in a complete Σ-structure,

e′ = infJ< · {〈π〉}?K(e)

is well-defined. Note that e ≤ e′, and that if e < e′, then (e, e′) ∈
q
<¬〈π〉

y
, as

illustrated in the figure below:

50 CHAPTER 3. STAR-FREE PROPOSITIONAL DYNAMIC LOGIC

e e′ = infJ< · {〈π〉}?K(e)≤ ≤
J< · {〈π〉}?K(e)

π π π

We want to prove that (e, f) ∈ J(< · π)cK or (e, f) ∈ J<¬〈π〉 · (≤ · π)cK or (e, f) ∈
J<¬〈π〉 · {¬〈π〉}? · (< · π)cK. To do so, it suffices to show that one of the following
holds:

e = e′ and (e′, f) ∈ J(< · π)cK or

e < e′ and (e′, f) ∈ J(≤ · π)cK or

e < e′ < J< · {〈π〉}?K(e) and (e′, f) ∈ J(< · π)cK .

Let us first prove that

(e′, f) ∈ J(< · π)cK .

Suppose towards a contradiction that there exists e′ < e3 such that (e3, f) ∈ JπK.
Since e′ = infJ< · {〈π〉}?K(e), there exists e2 ∈ J〈π〉K such that e′ ≤ e2 < e3.
Moreover, since f ∈ J〈(< · π)−1〉K, there exists e1 such that (e1, f) ∈ JπK. Since
(e, f) ∈ J(< · π)cK, we must have e1 ≤ e:

e1 e e′ e2 e3

f

≤ ≤ ≤ <

π
π

π

We then have

e1 ≤ e2 ≤ e3 , e2 ∈ J〈π〉K and e1, e3 ∈ JπK−1(f) ,

and since π is interval-preserving, (e2, f) ∈ JπK, that is, (e2, f) ∈ JπK. This
contradicts the fact that (e, f) /∈ J< · πK. Hence,

(e′, f) ∈ J(< · π)cK .

If e = e′ or e < e′ < J< · {〈π〉}?K(e), there is nothing more to prove. Otherwise,

e < e′ = minJ< · {〈π〉}?K(e) .

Then (e′, f) /∈ JπK = J{ϕ}? · πK but e′ ∈ JϕK, hence (e′, f) /∈ JπK, that is, (e′, f) ∈
J(≤ · π)cK.

3.8. THE CASE OF COMPLETE LINEAR ORDERS 51

Case λ = >. This case is symmetric to the previous one: we have

(> · π)c ≡
(
{¬〈> · π〉}? · >

)
+
(
> · {¬〈(> · π)−1〉}?

)
+

(> · π)c +
(
>¬〈π〉 · (≥ · π)c

)
+
(
>¬〈π〉 · {¬〈π〉}? · (> · π)c

)
.

Putting together Lemmas 3.33 and 3.34, we obtain the following.

Lemma 3.35. Let π1, π2 ∈ PDL<•sf [Σ] such that for all λ, µ ∈ {≤, <,≥, >},

(λ · π1 · µ)c and (λ · π2 · µ)c

are equivalent, over complete interval-preserving Σ-structures, to finite unions of
PDL<•sf [Σ] path formulas. Then for all λ, µ ∈ {≤, <,≥, >},

(λ · (π1 · π2) · µ)c

is equivalent, over complete interval-preserving Σ-structures, to a finite union of
PDL<•sf [Σ] path formulas.

Proof. By Lemma 3.33 applied to π′1 = λ ·π1 and π′2 = π2 ·µ, it is sufficient to prove
that for all λ, µ ∈ {≤, <,≥, >} and ϕ ∈ PDL<•sf [Σ],

(λ · π1 · {ϕ}? · µ)c and (λ · {ϕ}? · π2 · µ)c

are equivalent to finite unions of PDL<•sf [Σ] path formulas.

For (λ · {ϕ}? · π2 · µ)c, this follows from Lemma 3.34 applied to π′ = π2 · µ.

For (λ · π1 · {ϕ}? · µ)c, the situation is symmetric, so we can go through con-
verses of path formulas to obtain the same result. More precisely, let π′ = π−1

1 ·λ−1.
For all λ′,

(
λ′ · π′

)c ≡ ((λ · π1 ·
(
λ′
)−1
)−1

)c

≡
(

(λ · π1 ·
(
λ′
)−1

)
c)−1

.

Since (λ · π1 · (λ′)−1)
c

is equivalent to a finite union of PDL<•sf [Σ] path formulas, so is
its converse, and thus (λ′ · π′)c. Therefore, π′ satisfies the conditions of Lemma 3.34.
So for all ϕ ∈ PDL<•sf [Σ] and µ ∈ {≤, <,≥, >}, taking λ′ = µ−1, we obtain that(

µ−1 · {ϕ}? · π′
)c

is equivalent to a finite union of PDL<•sf [Σ] path formulas. Therefore, so is its
converse,((

µ−1 · {ϕ}? · π′
)c)−1

≡
((
µ−1 · {ϕ}? · π′

)−1
)c
≡ (λ · π1 · {ϕ}? · µ)c .

52 CHAPTER 3. STAR-FREE PROPOSITIONAL DYNAMIC LOGIC

We can prove a similar result for π1 + π2:

Lemma 3.36. Let π1, π2 ∈ PDL<•sf [Σ] such that for all λ, µ ∈ {≤, <,≥, >},

(λ · π1 · µ)c and (λ · π2 · µ)c

are equivalent, over complete interval-preserving Σ-structures, to finite unions of
PDL<•sf [Σ] path formulas. Then for all λ, µ ∈ {≤, <,≥, >},

(λ · (π1 + π2) · µ)c

is equivalent, over complete interval-preserving Σ-structures, to a finite union of
PDL<•sf [Σ] path formulas.

Proof. The proof relies on the following observation:

Claim 3.37. For all π1, π2 ∈ PDLsf [Σ],

((π1 + π2) · ≤)c ≡ {¬Loop((π1 · ≤)c · (π2 · ≤)−1)}? · (π1 · ≤)c +

{¬Loop((π2 · ≤)c · (π1 · ≤)−1)}? · (π2 · ≤)c

((π1 + π2) · ≥)c ≡ {¬Loop((π1 · ≥)c · (π2 · ≥)−1)}? · (π1 · ≥)c +

{¬Loop((π2 · ≥)c · (π1 · ≥)−1)}? · (π2 · ≥)c .

Proof. We prove the first equivalence, the second is similar. We have

((π1 + π2) · ≤)c ≡ (π1 · ≤)c ∩ (π2 · ≤)c .

Note that for all e, J(π1 · ≤)cK(e) and J(π2 · ≤)cK(e) are downward-closed. Indeed,

f ∈ J(πi · ≤)cK(e) ⇐⇒ f < JπiK(e) .

Thus, we must have

J(π1 · ≤)cK(e) ⊆ J(π2 · ≤)cK(e) or J(π2 · ≤)cK(e) ⊆ J(π1 · ≤)cK(e) ,

or equivalently,

e ∈
q
¬Loop((π1 · ≤)c · (π2 · ≤)−1)

y
or e ∈

q
¬Loop((π2 · ≤)c · (π1 · ≤)−1)

y
.

In the first case, we have

J((π1 + π2) · ≤)cK (e) = J(π1 · ≤)cK ∩ J(π2 · ≤)cK = J(π1 · ≤)cK (e)

=
q
{¬Loop((π1 · ≤)c · (π2 · ≤)−1)}? · (π1 · ≤)c

y
(e) ,

and in the second case,

J((π1 + π2) · ≤)cK (e) = J(π1 · ≤)cK ∩ J(π2 · ≤)cK = J(π2 · ≤)cK (e)

=
q
{¬Loop((π2 · ≤)c · (π1 · ≤)−1)}? · (π2 · ≤)c

y
(e) .

3.8. THE CASE OF COMPLETE LINEAR ORDERS 53

Let π1, π2 ∈ PDL<•sf [Σ] such that for all λ, µ ∈ {≤, <,≥, >},

(λ · π1 · µ)c and (λ · π2 · µ)c

are equivalent, over complete interval-preserving Σ-structures, to finite unions of
PDL<•sf [Σ] path formulas.

Let λ, µ ∈ {≤, <,≥, >}. If µ = {≤}, then we apply the first equivalence of
Claim 3.37 to π′1 = λ · π1 and π′2 = λ · π2. We obtain a finite union of PDL<•sf [Σ]
path formulas equivalent to

((λ · π1 + λ · π2) · ≤)c ≡ (λ · (π1 + π2) · µ)c .

If µ = {<}, then we apply the first equivalence of Claim 3.37 to π′1 = λ · π1 ·< and
π′2 = λ · π2 ·<. Note that in that case, we have

(π′i · ≤)
c ≡ (λ · πi ·<)c ≡ (λ · πi · µ)c ,

so we obtain again a finite union of PDL<•sf [Σ] path formulas equivalent to

((λ · π1 ·<+ λ · π2 ·<) · ≤)c ≡ (λ · (π1 + π2) ·< · ≤)c ≡ (λ · (π1 + π2) · µ)c .

Similarly, if µ = {≥}, then we apply the second equivalence of Claim 3.37 to
π′1 = λ · π1 and π′2 = λ · π2, and if µ = >, then we apply the second equivalence of
Claim 3.37 to π′1 = λ · π1 ·> and π′2 = λ · π2 ·>.

3.8.4 Complements for base path formulas

Recall that we want to prove by induction that for all finite unions π of PDL<•sf [Σ]
paths formulas, and for all λ, µ ∈ {≤,≥}, the formula (λ · π · µ)c is equivalent,
over complete interval-preserving Σ-structures, to a finite union of PDL<•sf [Σ] path
formulas. We have solved the inductive cases π = π1 · π2 and π = π1 + π2 in Lem-
mas 3.35 and 3.36, provided we generalize the result to all λ, µ ∈ {≤, <,≥, >}. We
also know that finite unions of PDL<•sf [Σ] path formulas are closed under converse.
We are left with the base cases: we want to show that for all π = α, π = sup (λ · α),
π = inf (λ · α), π = {ϕ}?, or π = <ϕ, formulas of the form (λ · π · µ)c are expressible
as finite unions of PDL<•sf [Σ] formulas.

Lemma 3.38. For all α ∈ Rel \ {≤} and λ, µ ∈ {≤, <,≥, >}, the formula

(λ · α · µ)c

is equivalent, over complete Σ-structures, to a finite union of PDL<•sf [Σ] path for-
mulas.

54 CHAPTER 3. STAR-FREE PROPOSITIONAL DYNAMIC LOGIC

Proof. This follows from the fact that for all path formula π, over complete Σ-
structures,

(λ · π ·<)c ≡ {¬〈λ · π ·<〉}? · >+ inf (λ · π) · ≥
(λ · π · ≤)c ≡ {¬〈λ · π · ≤〉}? · >+ inf (λ · π) ·>+

{¬Loop((λ · π) · (inf (λ · π))−1)}? · inf (λ · π)

(λ · π ·>)c ≡ {¬〈λ · π ·>〉}? · >+ sup (λ · π) · ≤
(λ · π · ≥)c ≡ {¬〈λ · π · ≥〉}? · >+ sup (λ · π) ·<+

{¬Loop((λ · π) · (sup (λ · π))−1)}? · sup (λ · π) .

Let us prove the first two equivalences; the last two are symmetric. As usual,
we trivially have

J{¬〈λ · π ·>〉}? · >K ⊆ J(λ · π ·>)cK .

Recall also that
(e, f) ∈ J(λ · π ·<)cK ⇐⇒ f ≤ Jλ · πK (e) .

If (e, f) ∈ Jinf (λ · π) · ≥K, then

f ≤ infJλ · πK(e) ≤ Jλ · πK(e) ,

therefore, (e, f) ∈ J(λ · π ·<)cK. Conversely, let

(e, f) ∈ J(λ · π ·<)cK \ J{¬〈λ · π ·<〉}? · >K .

We have f ≤ Jλ · πK(e) 6= ∅. Since the Σ-structure is complete, inf Jλ · πK (e) is well
defined, and f ≤ inf Jλ · πK (e). Therefore,

(e, f) ∈ Jinf (λ · π) · ≥K .

Thus,
(λ · π ·<)c ≡ {¬〈λ · π ·<〉}? · >+ inf (λ · π) · ≥ .

Let us move to the proof of the second equation. As in the previous case,

(e, f) ∈ J(λ · π · ≤)cK ⇐⇒ f < Jλ · πK (e) ,

which implies

J{¬〈λ · π · ≤〉}? · >+ inf (λ · π) ·>K ⊆ J(λ · π · ≤)cK .

On the other hand, we may have infJλ · πK(e) < Jλ · πK (e) or infJλ · πK(e) ∈ Jλ · πK (e),
so the inclusion may be strict. Let

(e, f) ∈ J(λ · π · ≤)cK \ J{¬〈λ · π · ≤〉}? · >+ inf (λ · π) ·>K .

3.8. THE CASE OF COMPLETE LINEAR ORDERS 55

Since f < Jλ · πK (e) 6= ∅, inf Jλ · πK (e) is well-defined, and f ≤ inf Jλ · πK (e). Since
(e, f) /∈ Jinf (λ · π) ·>K, this means that f = inf Jλ · πK (e). The condition f <
Jλ · πK (e) can then be written as

e ∈
r
¬Loop((λ · π) · (inf (λ · π))−1)

z
.

Therefore, (e, f) ∈ J{¬Loop((λ · π) · (inf (λ · π))−1)}? · inf (λ · π)K. This proves the
left-to-right implication of the second equivalence. Conversely,

(e, f) ∈ J{¬Loop((λ · π) · (inf (λ · π))−1)}? · inf (λ · π)K implies f < Jλ · πK (e) ,

that is, (e, f) ∈ J(λ · π · ≤)cK. Thus,

(λ · π · ≤)c ≡ {¬〈λ · π · ≤〉}? · >+ inf (λ · π) ·>+

{¬Loop((λ · π) · (inf (λ · π))−1)}? · inf (λ · π) .

The next two lemmas deal with the case of formulas of the form π = sup (λ · α) or
π = inf (λ · α). According to Lemma 3.28, we can distinguish two cases, depending
on whether JπK is non-decreasing or non-increasing.

Lemma 3.39. Let π be a path formula of the form

π = sup (≥ · α) , π = sup (> · α) , π = inf (≤ · α) , or π = inf (< · α) ,

for some α ∈ Rel \ {≤}. Then for all λ ∈ {≤, <,≥, >}, the formula

(λ · π · µ)c

is equivalent, over complete Σ-structures, to a finite union of PDL<•sf [Σ] path for-
mulas.

Proof. The proof relies on Lemma 3.28. First, using the fact that J〈π〉K is an interval,
we obtain:

Claim 3.40. For all (e, f) ∈ J(λ · π · µ)cK, at least one of the following holds:

1. Jλ · π · µK (e) = ∅

2.
r

(λ · π · µ)−1
z

(f) = ∅

3. JπK (e) 6= ∅.

Proof. Let us illustrate the proof in the case λ = ≤ and µ = ≤. Let (e, f) ∈
J(≤ · π · ≤)cK satisfying neither condition 1 nor 2. We have J≤ · π · ≤K (e) 6= ∅,
hence there exists e1, f1 such that e ≤ e1 and (e1, f1) ∈ JπK. We also have
J(≤ · π · ≤)−1K(f) 6= ∅, hence there exists e2, f2 such that f2 ≤ f and (e2, f2) ∈ JπK.
Moreover, since (e, f) /∈ J≤ · π · ≤K, we cannot have e ≤ e2. That is, e2 < e:

56 CHAPTER 3. STAR-FREE PROPOSITIONAL DYNAMIC LOGIC

e

f

(≤ · π · ≤)c

e2

f2

π

≤

e1

f1

π

≤<

Since J〈π〉K is an interval containing e1 and e2, we obtain JπK(e) 6= ∅.
In the general case, we obtain similarly (e1, f1), (e2, f2) ∈ JπK such that e λ e1

and f2 µ f , which implies e λc e2. So we have e2 λ′ e λ e1 for some (λ′, λ) ∈
{(≤, <), (<,≤), (≥, >), (>,≥). In any case, e belongs to the interval J〈π〉K.

Note that conditions 1 and 2 of Claim 3.40 always imply (e, f) ∈ J(λ · π · µ)cK,
and their disjunction hold if and only if

(e, f) ∈
r
{¬〈λ · π · µ〉}? · >+> · {¬〈(λ · π · µ)−1〉}?

z
.

So to decompose (λ · π · µ)c as a finite union of PDL<•sf [Σ] path formulas, we only
need to find a suitable characterization of J(λ · π · µ)cK(e) in the case where JπK(e) 6= ∅.
To do so, we use the fact that JπK (seen as a partial function) is non-decreasing.

Case λ = ≤ and µ = ≤. If JπK(e) 6= ∅, then, since JπK is non-decreasing, the
unique element of JπK(e) is the minimum of J≤ · πK(e). Therefore,

J(≤ · π · ≤)cK (e) = {f | f < J≤ · πK(e)} = {f | f < JπK(e)} = Jπ ·>K(e) .

So we obtain

(≤ · π · ≤)c ≡ {¬〈≤ · π · ≤〉}? · >+> · {¬〈(≤ · π · ≤)−1〉}? + (π ·>) .

Case λ = ≥ and µ = ≥. Symmetrically,

(≥ · π · ≥)c ≡ {¬〈≥ · π · ≥〉}? · >+> · {¬〈(≥ · π · ≥)−1〉}? + (π ·<) .

Case λ = ≤ and µ = <. Similarly to the first case,

(≤ · π ·<)c ≡ {¬〈≤ · π ·<〉}? · >+> · {¬〈(≤ · π ·<)−1〉}? + (π · ≥) .

Indeed, for e such that JπK(e) 6= ∅, we have, using as before the monotonicity of JπK,

J(≤ · π ·<)cK (e) = {f | f ≤ J≤ · πK(e)} = {f | f ≤ JπK(e)} = Jπ · ≥K(e) .

Case λ = ≥ and µ = >. Symmetrically,

(≥ · π ·>)c ≡ {¬〈≥ · π ·>〉}? · >+> · {¬〈(≥ · π ·>)−1〉}? + (π · ≤) .

3.8. THE CASE OF COMPLETE LINEAR ORDERS 57

Case λ = < and µ = ≤. This case is slightly different, since we no longer have
JπK ⊆ Jλ · πK. We need to divide the case JπK(e) 6= ∅ into two sub-cases, according
to whether the unique f ∈ JπK(e) is also in J< · πK(e).

If JπK(e) 6= ∅ and JπK(e) ⊆ J< · πK(e), that is, if e ∈
q
Loop(< · π · π−1)

y
, we

have, as in the first case,

J(< · π · ≤)cK (e) = Jπ ·>K (e) .

Assume that JπK(e) 6= ∅ but JπK(e) 6⊆ J< · πK(e), that is, e ∈
q
¬Loop(< · π · π−1)

y
.

Let us show that

J(< · π · ≤)cK (e) =
q
π · ≥+ π ·<¬〈π−1〉 · {¬〈π−1〉}?

y
(e) .

Let f be the unique element in JπK(e). Since JπK is non-increasing and f /∈ J< · πK(e),
we have f < J< · πK(e). So for all f ′ ∈ Jπ · ≥K(e), we have

f ′ ≤ f < J< · πK(e) ,

that is, f ′ ∈ J(< · π · ≤)cK(e). In addition, by monotonicity of JπK, for all f < f ′,
we have f ′ < J< · πK(e) if and only if for all f < g ≤ f ′, g /∈ 〈π−1〉:

J< · π · ≤K(e)

e

f f ′<¬〈π−1〉

ππ π π π

<

<

Moreover, we have (f < f ′ and g /∈ J〈π−1〉K for all f < g ≤ f ′) if and only if
(f, f ′) ∈

q
<¬〈π−1〉 · {¬〈π−1〉}?

y
. So we have

J(< · π · ≤)cK (e) =
q
π · ≥+ π ·<¬〈π−1〉 · {¬〈π−1〉}?

y
(e) .

Combining all cases, we obtain

(< · π · ≤)c ≡ {¬〈< · π · ≤〉}? · >+> · {¬〈(< · π · ≤)−1〉}? +

{Loop(< · π · π−1)}? · π ·> +

{¬Loop(< · π · π−1)}? · π · ≥ +

{¬Loop(< · π · π−1)}? · π ·<¬〈π−1〉 · {¬〈π−1〉}? .

Case λ = > and µ = ≥. Symmetrically,

(> · π · ≥)c ≡ {¬〈> · π · ≥〉}? · >+> · {¬〈(> · π · ≥)−1〉}? +

{Loop(> · π · π−1)}? · π ·< +

{¬Loop(> · π · π−1)}? · π · ≤ +

{¬Loop(> · π · π−1)}? · π ·>¬〈π−1〉 · {¬〈π−1〉}? .

58 CHAPTER 3. STAR-FREE PROPOSITIONAL DYNAMIC LOGIC

Case λ = < and µ = <. Similarly to the case λ = < and µ = ≤,

(< · π ·<)c ≡ {¬〈< · π ·<〉}? · >+> · {¬〈(< · π ·<)−1〉}? +

π · ≥+ {¬Loop(< · π · π−1)}? · π ·<¬〈π−1〉 .

Case λ = > and µ = >. Symmetrically,

(> · π ·>)c ≡ {¬〈> · π ·>〉}? · >+> · {¬〈(> · π ·>)−1〉}? +

π · ≤+ {¬Loop(> · π · π−1)}? · π ·>¬〈π−1〉 .

Case λ = ≤ and µ = ≥. Let us show that

(≤ · π · ≥)c ≡ {¬〈≤ · π · ≥〉}? · >+> · {¬〈(≤ · π · ≥)−1〉}? .

As usual, the right-to-left inclusion is trivial. Conversely, let

(e, f) /∈
r
{¬〈≤ · π · ≥〉}? · >+> · {¬〈(≤ · π · ≥)−1〉}?

z
.

Let us show that (e, f) ∈ J≤ · π · ≥K. Since e ∈ J〈≤ · π · ≥〉K, there exists (e1, f1) ∈
JπK such that e ≤ e1. If f1 ≥ f , then we are done. So, suppose f < f1. Since
f ∈ J〈(≤ · π · ≥)−1〉K, there exists (e2, f2) ∈ JπK such that f ≤ f2:

e

f

e1

f1

≤

π

<

e2

f2≤

π

We then have f1 < f2. By monotonicity, e1 < e2, hence, e < e2 and (e, f) ∈
J≤ · π · ≥K.

Case (λ, µ) ∈ {(≤, >), (<,≥), (<,>), (≥,≤), (≥, <), (>,≤), (>,<)}. Let
us show that the prof of the previous case can be generalized, and

(λ · π · µ)c ≡ {¬〈λ · π · µ〉}? · >+> · {¬〈(λ · π · µ)−1〉}? .

We use the notation

λ =

{
≤ if λ ∈ {≤, <}
≥ if λ ∈ {≥, >} .

Let

(e, f) /∈
r
{¬〈λ · π · µ〉}? · >+> · {¬〈(λ · π · µ)−1〉}?

z
.

3.8. THE CASE OF COMPLETE LINEAR ORDERS 59

There exist (e1, f1), (e2, f2) ∈ JπK such that e λ e1 and f2 µ f . If f1 µ f , then
(e, f) ∈ Jλ · π · µK. Otherwise, we have f µ f1. Then,

f2 µ f µ f1 , therefore, f2 µ f1 .

By monotonicity of JπK, we obtain

e2 µ e1 , and thus, e1 λ e2 .

Therefore, e λ e2, and (e, f) ∈ Jλ · π · µK.

Lemma 3.41. Let π be a PDL<•sf [Σ] path formula of the form

π = sup (≤ · α) , π = sup (< · α) , π = inf (≥ · α) , or π = inf (> · α) .

for some α ∈ Rel \ {≤}. Then for all λ ∈ {≤, <,≥, >}, the formula

(λ · π · µ)c

is equivalent, over complete Σ-structures, to a finite union of PDL<•sf [Σ] path for-
mulas.

Proof. The proof is similar to the previous one, except we now have non-increasing
functions instead of non-decreasing ones. Since J〈π〉K is an interval, we still have
(with the exact same proof):

Claim 3.42. For all (e, f) ∈ J(λ · π · µ)cK, at least one of the following holds:

1. Jλ · π · µK (e) = ∅

2.
r

(λ · π · µ)−1
z

(f) = ∅

3. JπK (e) 6= ∅.

Since JπK is non-increasing rather than non-decreasing as in the previous lemma,
the trivial and non-trivial cases are reversed. Apart from this, the arguments remain
essentially the same. For this reason, we only give the proof for two cases. We use
the same notation as before:

λ =

{
≤ if λ ∈ {≤, <}
≥ if λ ∈ {≥, >} .

60 CHAPTER 3. STAR-FREE PROPOSITIONAL DYNAMIC LOGIC

Case λ = µ. Let us show that in that case,

(λ · π · µ)c ≡ {¬〈λ · π · µ〉}? · >+> · {¬〈(λ · π · µ)−1〉}? .

Let

(e, f) /∈
r
{¬〈λ · π · µ〉}? · >+> · {¬〈(λ · π · µ)−1〉}?

z
.

There exist (e1, f1), (e2, f2) ∈ JπK such that e λ e1 and f2 µ f . If f1 µ f , then
(e, f) ∈ Jλ · π · µK. Otherwise, we have f µ f1. Then,

f2 µ f µ f1 , therefore, f2 µ f1 .

Since JπK is non-increasing, we obtain

e1 µ e2 , i.e., e1 λ e2 .

Therefore, e λ e2, and (e, f) ∈ Jλ · π · µK.

Case λ = < and µ = >. Let us show that

(< · π ·>)c ≡ {¬〈< · π · ≥〉}? · >+> · {¬〈(< · π · ≥)−1〉}? +

π · ≤+ {¬Loop(< · π · π−1)}? · π ·>¬〈π−1〉 .

Let e such that JπK(e) 6= ∅, and f the unique element in JπK(e). Since JπK is
non-increasing, we have

J< · πK(e) ≤ f .

In particular, for all f ′ ∈ Jπ · ≤K(e), J< · πK(e) ≤ f ≤ f ′, hence f ′ ∈ J(< · π ·>)cK(e).
Suppose that in addition, f /∈ J< · πK(e), that is, e ∈ J¬Loop(< · π · π−1)K,

and let f ′ ∈
q
π ·>¬〈π−1〉

y
(e), that is, f ′ ∈

q
>¬〈π−1〉

y
(f). Suppose towards a

contradiction that f ′ /∈ J(< · π ·>)cK (e), i.e., there exists (e1, f1) ∈ JπK such that
e < e1 and f ′ < f1. Since JπK is non-increasing and e < e1, we have f1 ≤ f . Since
f /∈ J< · πK(e), this implies f1 < f . So there exists f1 such that f ′ < f1 < f and
f1 ∈ J〈π−1〉K, which contradicts f ′ ∈

q
>¬〈π−1〉

y
(f).

Conversely, let f ′ ∈ J(< · π ·>)cK (e) \ Jπ · ≤K (e). Since f ′ /∈ Jπ · ≤K (e), we have
f ′ < f . Let us show that

f ′ ∈
q
π ·>¬〈π−1〉

y
(e) , i.e., f ′ ∈

q
>¬〈π−1〉

y
(f) .

Suppose towards a contradiction that this is not the case, i.e., there exists (e1, f1) ∈
JπK such that f ′ < f1 < f . Since JπK is non-increasing and f1 < f , we have e < e1,
and thus (e, f) ∈ J< · π ·>K, a contradiction.

3.8. THE CASE OF COMPLETE LINEAR ORDERS 61

Lemma 3.43. For all event formulas ϕ ∈ PDL<•sf [Σ] and λ, µ ∈ {≤, <,≥, >}, the
formula

(λ · {ϕ}? · µ)c

is equivalent, over complete interval-preserving Σ-structures, to a finite union of
PDL<•sf [Σ] path formulas.

Proof. We apply Lemma 3.34 with π = µ. So we only need to prove that for all
λ, µ ∈ {≤, <,≥, >},

(λ · µ)c

is equivalent, over complete interval-preserving Σ-structures, to a finite union of
PDL<•sf [Σ] path formulas. We have

(≤ · ≤)c ≡ > (≤ · ≥)c ≡ {false}?
(≤ ·<)c ≡ ≥ (≤ ·>)c ≡ > · {¬〈<〉}?
(< · ≤)c ≡ ≥ (< · ≥)c ≡ {¬〈<〉}? · >
(< ·<)c ≡ ≥+<false (< ·>)c ≡ {¬〈<〉}? · >+> · {¬〈<〉}? ,

and the remaining cases are obtained by taking the converse of all formulas.

Lemma 3.44. For all event formulas ϕ ∈ PDL<•sf [Σ] and λ, µ ∈ {≤, <,≥, >}, the
formula

(λ ·<ϕ · µ)c

is equivalent, over complete interval-preserving Σ-structures, to a finite union of
PDL<•sf [Σ] path formulas.

Proof. Again, we need to distinguish several cases.

Case (λ, µ) ∈ {(≤,≥), (<,≥), (≤, >), (<,>)}. Let us show that in that case,

(λ ·<ϕ · µ)c ≡ {¬〈λ ·<ϕ · µ〉}? · >+> · {¬〈(λ ·<ϕ · µ)−1〉}? .

The right-to-left inclusion is easy to check. Conversely, let us show that for all
e ∈ J〈λ ·<ϕ · µ〉K and f ∈ J〈(λ ·<ϕ · µ)−1〉K, we have (e, f) ∈ Jλ ·<ϕ · µK.

Since e ∈ J〈λ ·<ϕ · µ〉K, there exist g1, h1, f1 such that e λ g1, (g1, h1) ∈ J<ϕK,
and h1 µ f1. Similarly, since f ∈ J〈(λ ·<ϕ · µ)−1〉K, there exist e2, g2, h2 such that
e2 λ g2, (g2, h2) ∈ J<ϕK, and h2 µ f . We distinguish three cases:

• Suppose g1 ≤ g2. Since λ ∈ {≤, <}, e λ g1 ≤ g2 implies e λ g2. We then have

e λ g2 , (g2, h2) ∈ J<ϕK , h2 µ f ,

and thus, (e, f) ∈ Jλ ·<ϕ · µK.

62 CHAPTER 3. STAR-FREE PROPOSITIONAL DYNAMIC LOGIC

• Suppose h1 ≥ h2. Similarly,

e λ g1 , (g1, h1) ∈ J<ϕK , h1 µ f ,

and thus, (e, f) ∈ Jλ ·<ϕ · µK.

• Otherwise, we have g2 < g1 < h1 < h2, which implies (g1, h2) ∈ J<ϕK. Then

e λ g1 , (g1, h2) ∈ J<ϕK , h2 µ f ,

and thus, (e, f) ∈ Jλ ·<ϕ · µK.

Case (λ, µ) ∈ {(≥,≤), (>,≤), (≥, <), (>,<)}. Similarly to the previous case,
we have

(λ ·<ϕ · µ)c ≡ {¬〈λ ·<ϕ · µ〉}? · >+> · {¬〈(λ ·<ϕ · µ)−1〉}? .

Case (λ, µ) ∈ {(≤,≤), (<,≤), (≤, <), (<,<)}. We can first observe that

≤ ·<ϕ · ≤ ≡ ≤ · {〈<ϕ〉}? ·< . (3.1)

Indeed, if (e, f) ∈ J≤ ·<ϕ · ≤K, then there exist e ≤ g < h ≤ f such that (g, h) ∈
J<ϕK. We then have e ≤ g < f and g ∈ J〈<ϕ〉K, hence (e, f) ∈ J≤ · {〈<ϕ〉}? ·<K.
Conversely, if (e, f) ∈ J≤ · {〈<ϕ〉}? ·<K, then there exist g, h such that e ≤ g < f
and (g, h) ∈ J<ϕK. If e ≤ g < h ≤ f , then we are done. Otherwise, e ≤ g < f < h,
and we also have (g, f) ∈ J<ϕK, hence (e, f) ∈ J≤ ·<ϕ · ≤K.

By Lemma 3.43, we conclude that

(≤ ·<ϕ · ≤)c ≡ (≤ · {〈<ϕ〉}? ·<)c

is equivalent, over complete interval-preserving Σ-structures, to a finite union of
PDL<•sf [Σ] path formulas.

Since < ≡ < · ≤, Equation (3.1) also implies that

< ·<ϕ · ≤ ≡ < · {〈<ϕ〉}? ·< ,

and again, by Lemma 3.43, (< ·<ϕ · ≤)c is equivalent, over complete interval-
preserving Σ-structures, to a finite union of PDL<•sf [Σ] path formulas.

Finally, by Equation (3.1),

≤ ·<ϕ ·< ≡ ≤ · {〈<ϕ〉}? ·< ·< and < ·<ϕ ·< ≡ < · {〈<ϕ〉}? ·< ·< ,

and by Lemma 3.34, all we need to conclude is to check that for all λ ∈ {≤, <,≥, >},
the formula

(λ ·< ·<)c

is equivalent to a finite union of PDL<•sf [Σ] path formulas. This is straightforward:

(≤ ·< ·<)c ≡ ≥+<false (< ·< ·<)c ≡ ≥+<false +<false ·<false

(≥ ·< ·<)c ≡ > · {¬〈> ·>〉}? (> ·< ·<)c ≡ > · {¬〈> ·>〉}? + {¬〈>〉}? · > .

3.8. THE CASE OF COMPLETE LINEAR ORDERS 63

Case (λ, µ) ∈ {(≥,≥), (>,≥), (≥, >), (>,>)}. We have

(≥ ·<ϕ · ≥)c ≡ {¬Loop(≥ ·<ϕ · ≥)}? · ≤+< · {¬ϕ}? ·<+

{¬〈<ϕ〉 ∧ ¬〈>ϕ〉}? ·>¬〈>ϕ〉 · {¬〈>ϕ〉}?
(> ·<ϕ · ≥)c ≡ {¬Loop(> ·<ϕ · ≥)}? · ≤+≤ · {¬ϕ}? ·<+

{¬〈>ϕ〉}? ·>¬〈>ϕ〉 · {¬〈>ϕ〉}?
(≥ ·<ϕ ·>)c ≡ {¬Loop(≥ ·<ϕ ·>)}? · ≤+< · {¬ϕ ∨ ¬〈<ϕ〉}? · ≤+

{¬〈<ϕ〉 ∧ ¬〈>ϕ〉}? ·>¬〈>ϕ〉

(> ·<ϕ ·>)c ≡ {¬Loop(> ·<ϕ ·>)}? · ≤+≤ · {¬ϕ ∨ ¬〈<ϕ〉}? · ≤+

{¬〈>ϕ〉}? ·>¬〈>ϕ〉 .

We prove the first equivalence, the others are similar.
Let e ≤ f . If there is no f1 ≥ e such that (e, f1) ∈ J≥ ·<ϕ · ≥K, i.e., if (e, e) /∈

J≥ ·<ϕ · ≥K, then (e, f) ∈ J(≥ ·<ϕ · ≥)cK and (e, f) ∈ J{¬Loop(≥ ·<ϕ · ≥)}? · ≤K.
Now, assume that e ≤ f , and that e ∈ JLoop(≥ ·<ϕ · ≥)K. Let us show that in that
case, (e, f) ∈ J(≥ ·<ϕ · ≥)cK if and only if (e, f) ∈ J< · {¬ϕ}? ·<K, i.e.,

(e, f) ∈ J≥ ·<ϕ · ≥K ⇐⇒ ∀e′. (e < e′ < f =⇒ e′ ∈ JϕK) .

If e = f , then both are true since e ∈ JLoop(≥ ·<ϕ · ≥)K. If e < f , then the right-
to-left inclusion follows from the fact that J<ϕK ⊆ J≥ ·<ϕ · ≥K. Conversely, if e < f
and (e, f) ∈ J≥ ·<ϕ · ≥K, then there exist g, h such that

g ≤ e < f ≤ h and (g, h) ∈ J<ϕK .

Therefore, we also have (e, f) ∈ J<ϕK.
Finally, let us prove that if f < e, then (e, f) ∈ J(≥ ·<ϕ · ≥)cK if and only if

(e, f) ∈ J{¬〈<ϕ〉 ∧ ¬〈>ϕ〉}? ·>¬〈>ϕ〉 · {¬〈>ϕ〉}?K, i.e.,

(e, f) ∈ J≥ ·<ϕ · ≥K ⇐⇒


e ∈ J〈<ϕ〉K
or

∃h1, f ≤ h1 ≤ e ∧ h1 ∈ J〈>ϕ〉K .

Assume that (e, f) ∈ J≥ ·<ϕ · ≥K. There exist g, h such that

e ≥ g , (g, h) ∈ J<ϕK , h ≥ f .

If h ≤ e, then we can take h1 = h: we have

f ≤ h ≤ e and h ∈ J〈>ϕ〉K .

Otherwise, e < h, and since g ≤ e < h and (g, h) ∈ J<ϕK, we also have (e, h) ∈ J<ϕK.
Hence, e ∈ J〈<ϕ〉K.

64 CHAPTER 3. STAR-FREE PROPOSITIONAL DYNAMIC LOGIC

Conversely, if there exists h such that (e, h) ∈ J<ϕK, then we have

e ≥ e , (e, h) ∈ J<ϕK , h ≥ f ,

hence (e, f) ∈ J≥ ·<ϕ · ≥K. If there exist g1, h1 such that f ≤ h1 ≤ e and (g1, h1) ∈
J<ϕK, then

e ≥ g1 , (g1, h1) ∈ J<ϕK , h1 ≥ f ,

hence (e, f) ∈ J≥ ·<ϕ · ≥K.

3.8.5 Proof of Theorem 3.30

We now have all the ingredients to prove Theorem 3.30.

Proof of Theorem 3.30. We show that every PDLint
sf [Σ] path formula is equivalent,

over complete interval-preserving Σ-structures, to a finite union of PDL<•sf [Σ] path
formulas, which implies 1. and 2.

The only “missing” atomic path formula in PDL<•sf [Σ] is ≤, and we have

≤ ≡ {true}? +<true .

Moreover, finite unions of PDL<•sf [Σ] path formulas are closed (up to equivalence)
under converse and concatenation. Therefore, we only need to prove that for all
finite union π of PDL<•sf [Σ] path formulas, for all λ, µ ∈ {≤,≥},

(λ · π · µ)c

is equivalent, over complete interval-preserving Σ-structures, to a finite union of
PDL<•sf [Σ] path formulas. We generalize this to λ, µ ∈ {≤, <,≥, >}. By Lemma 3.36,
we only need to prove that this is the case for π ∈ PDL<•sf [Σ], rather than finite
union of PDL<•sf [Σ] formulas.

So, let us show by induction on π that for all π ∈ PDL<•sf [Σ], for all λ, µ ∈
{≤, <,≥, >},

(λ · π · µ)c

is equivalent, over complete interval-preserving Σ-structures, to a finite union of
PDL<•sf [Σ] path formulas.

For π = α, we apply Lemma 3.38. For π = inf (λ · α) or π = inf (λ · α), we
apply Lemma 3.39 or 3.41. For π = σ−1, we apply the induction hypothesis on σ,
and the fact that

(λ · σ−1 · µ)
c ≡

((
µ−1 · σ · λ−1

)c)−1
.

For π = {ϕ}?, we apply Lemma 3.43. For π = <ϕ, we apply Lemma 3.44. For
π = >ϕ, we apply the result for <ϕ, and the fact that >ϕ ≡ (<ϕ)−1. For π = π1 ·π2,
we apply Lemma 3.35.

Chapter 4

Communicating Finite-State Machines

This chapter provides preliminaries on communicating finite-state machines (CFMs).
In a CFM, a fixed number of finite-state processes communicate by exchanging mes-
sages through unbounded FIFO channels [14]. A CFM accepts/generates message-
sequence charts (MSCs), which are similar to UML’s sequence diagrams [4] and stan-
dardized by the International Telecommunication Union [52]. MSCs are equipped
with Lamport’s happened-before relation: an event e happens before an event f
if there is a “message flow” path from e to f [57]. Additional binary predicates
connect (i) the emission of a message with its reception, and (ii) successive events
executed by one and the same process.

We first define MSCs, then CFMs, and give an overview of known logic-automata
connections for CFMs.

4.1 Message Sequence Charts

4.1.1 Definition

We consider message-passing systems in which processes communicate through Set of

processes

Procs and of

channels Ch

unbounded FIFO channels. We fix a nonempty finite set of processes Procs and
a nonempty finite set of atomic propositions Prop, with Procs ∩ Prop = ∅. For all
p, q ∈ Procs such that p 6= q, there is a channel (p, q) that allows p to send messages
to q. The set of channels is denoted Ch.

The executions of these systems are represented by MSCs, which are labeled
graphs such as in Figure 4.1. Nodes of the graph are events executed by processes,
and partitioned according to their process location. In addition, each event is labeled
by a set of atomic propositions, which may provide more information such as “enter
critical section” or “output some value”. There are two types of edges, describing
causal dependencies between events: process edges and message edges. An MSC
also has to satisfy some conditions, such as FIFO behavior and acyclicity.

65

66 CHAPTER 4. COMMUNICATING FINITE-STATE MACHINES

e0

g0

e1

f0

e2

g1

f1

g2

e3

f2

f3

g3

e4

g5

e5

f4

f5

g4

e6

g6

e7

g7

e8

g8

p3

p2

p1

. . .

. . .

Figure 4.1: An (infinite) message sequence chart (MSC)

Definition 4.1. A message sequence chart (MSC) over Procs and Prop is a structureMessage Se-

quence Chart M = (E,→,C, loc, λ), where

• E is a nonempty, finite or countably infinite set of events,

• → ⊆ E × E is a set of process edges,

• C ⊆ E × E is a set of message edges,

• loc : E → Procs maps each event e ∈ E to its process location, that is, the
process which executes e,

• λ : E → 2Prop is a labeling function indicating the set of atomic propositions
which hold at a given event.

For a process p ∈ Procs, we denote by Ep := {e ∈ E | loc(e) = p} the set of
events located on p. We call ≤proc := →∗ the process order, and ≤ := (→ ∪ C)∗Relations

≤proc,≤ the happened-before relation. We also write <proc := →+ and < := (→∪C)+. We
require that the following holds:

• → connects successive events on a same process, that is,→ ⊆
⋃
p∈ProcsEp×Ep,

and each process is sequential: the restriction of ≤proc to Ep is a total order,
and → is its direct successor relation. In addition, every event e ∈ E has a
“finite past”, i.e., {f ∈ E | f ≤proc e} is finite.

• For all (e, f) ∈ C, we have (loc(e), loc(f)) ∈ Ch, and each event is part of at
most one message edge. If eC f , we call e a send event and f a receive event.
An event which is neither a send nor a receive event is called internal.

• Message edges respect a FIFO behavior: for all (p, q) ∈ Ch and (e, f), (e′, f ′) ∈FIFO

assumption C ∩ (Ep × Eq), we have e ≤ e′ if and only if f ≤ f ′.

• ≤ is a partial order (intuitively, messages cannot travel backwards in time).

4.1. MESSAGE SEQUENCE CHARTS 67

Let MSC(Procs,Prop) denote the set of MSCs over Procs and Prop. An MSC is
finite if its set of events E is finite, and infinite otherwise. We denote the set of finite
MSCs by MSCfin(Procs,Prop), and the set of infinite MSCs by MSCω(Procs,Prop).

Note than in an infinite MSC, at least one of the processes executes infinitely
many events, but some other process may execute finitely many, that is, Ep may be
finite or infinite.

It is worth noting that, when Procs is a singleton, an MSC with events e1 →
e2 → e3 → . . . can be identified with the (finite or infinite) word λ(e1)λ(e2)λ(e3) . . .
over 2Prop.

Example 4.2. Consider the (infinite) MSC from Figure 4.1 over Procs = {p1, p2, p3}
and Prop = {P,Q}. We denote labels λ(e) of events e with = {P,Q}, = {P},
and = ∅. For instance, λ(e3) = = {P}, while λ(f5) = ∅. Process locations are
indicated on the left: Ep1 = {ei | i ∈ N}, Ep2 = {f0, . . . , f5}, Ep3 = {gi | i ∈ N}.
The process relation is given by ei → ei+1 and gi → gi+1 for all i ∈ N, as well as
fi → fi+1 for all i ∈ {0, . . . , 4}. Concerning the message relation, we have e1 C f0,
e4 C g5, etc. Moreover, e2 ≤ f3, but neither e2 ≤ f1 nor f1 ≤ e2.

4.1.2 Logics for MSCs

For any set Rel ⊆ {C,→,≤proc,≤}, every MSC M = (E,→,C, loc, λ) induces a
(Procs ∪ Prop,Rel)-structure. We use the same symbols for the name and inter-
pretation of relations in Rel. The interpretation of unary predicates is given by
PM = {e ∈ E | P ∈ λ(e)} for P ∈ Prop, and pM = Ep for p ∈ Procs.

For each signature Σ = (Procs ∪ Prop,Rel) with Rel ⊆ {C,→,≤proc,≤}, we can
consider the logics MSO[Σ], PDLsf [Σ], etc. For readability, we write for instance
FO[Procs,Prop,C,→] instead of FO[Procs ∪ Prop, {C,→}], and similarly for other
logics. We also simply write M |= Φ or M,ν |= Φ to denote the fact that the
Σ-structure associated with M satisfies Φ, and define similarly JϕKM , JπKM for
PDLsf [Σ] or ICPDL[Σ] formulas ϕ and π. For a sentence Φ in MSO[Σ], ICPDL[Σ]
or PDLsf [Σ], we let L(Φ) = {M ∈ MSC(Procs,Prop) | M |= Φ} be the language
of Φ.

Given F ∈ {FO,EMSO,MSO,PDL, ICPDL,PDLsf} and Σ = (Procs∪Prop,Rel),
we denote by L(F [Σ]) = {L(Φ) | Φ ∈ F [Σ] is a sentence} the set of F [Σ]-definable
MSC languages.

It is easy to see that some of these logics have the same expressive power. For
instance, since transitive closure is definable in MSO,

L(MSO[Procs,Prop,→,C,≤proc,≤]) = L(MSO[Procs,Prop,→,C]) .

On the other hand, since FO[Prop,→] (FO[Prop,≤] already for words (which
correspond to the case |Procs| = 1), we have

L(FO[Procs,Prop,→,C]) (L(FO[Procs,Prop,≤,C]) .

68 CHAPTER 4. COMMUNICATING FINITE-STATE MACHINES

Moreover, it was shown in [13] that the message relation cannot be defined from
other predicates:

L(MSO[Procs,Prop,≤]) (L(MSO[Procs,Prop,≤,C]) .

It is worth noting that ≤proc can be recovered from ≤, and vice versa:

L(FO[Procs,Prop,≤,C]) = L(FO[Procs,Prop,≤proc,C]) .

More precisely, we have the following translations:

Lemma 4.3. Let k ∈ N.

1. For every formula Φ ∈ FOk[Procs,Prop,≤proc,C], there exists a formula Ψ ∈
FOk[Procs,Prop,≤,C] such that, over MSCs, Φ ≡ Ψ.

2. For every formula Φ ∈ FOk[Procs,Prop,≤,C], there exists a formula Ψ ∈
FOmax(3,k)[Procs,Prop,≤proc,C] such that, over MSCs, Φ ≡ Ψ.

Proof. The first translation is obtained by observing that over MSCs,

x ≤proc y ≡ x ≤ y ∧
∨

p∈Procs
p(x) ∧ p(y) .

For the other direction, notice that if there is a path from an event e to f , then
there is one which enters and leaves each process at most once. Therefore,

x ≤ y ≡
∨

1≤n≤|Procs|
∃x1, y1, . . . , xn, yn. x1 = x ∧ yn = y ∧

∧
1≤i≤n

xi ≤proc yi ∧
∧

1≤i<n
yi C xi+1 .

The latter formula can be easily rewritten into an FO3[Procs,Prop,≤proc,C] formula
(thus matching the number of variables claimed in Lemma 4.3), by alternating
quantifications over x and over a variable z /∈ {x, y}, instead of using a new name
for each of the variables x1, y1, . . . , xn, yn. For instance, if |Procs| = 2,

x ≤ y ≡ x ≤proc y ∨ ∃z. (x ≤proc z ∧ ∃x.(z C x ∧ x ≤proc y)) .

4.1.3 Bounded MSCs

Most decision problems related to MSCs, such as satisfiability or validity of a first-
order formula, or emptiness of communicating finite-state machines (defined in the
next section), are undecidable in the general case. It is then natural to consider
decidable restrictions of these problems. One possible restriction is to assume a

4.1. MESSAGE SEQUENCE CHARTS 69

e1

f1

e2

f2

e3

f3

e4

f4

e5

f5

p

q

Figure 4.2: An existentially 2-bounded MSC

bound on the channel capacities [60, 43, 34]. There are in fact two classes of MSCs
corresponding to this assumption: existentially-bounded and universally-bounded
MSCs.

Bounded MSCs are defined in terms of linearizations:

Definition 4.4. A linearization of an MSC M = (E,→,C, loc, λ) is a total order linearization

� ⊆ E × E extending ≤ and of order type at most ω, i.e., a total order such that
≤ ⊆ � and {e ∈ E | e � f} is finite for all e ∈ E. For B ∈ N, a linearization � is B-
bounded if, for all g ∈ E and (p, q) ∈ Ch, |{(e, f) ∈ C∩ (Ep×Eq) | e � g ≺ f}| ≤ B.

In other terms, a linearization� is B-bounded if the number of pending messages
in any channel (p, q) never exceeds B if events occur in the order defined by �. There
are (at least) two natural definitions of bounded MSCs:

Definition 4.5. An MSC M is existentially B-bounded (∃B-bounded) if M has ∃B/∀B-

bounded

MSC

some B-bounded linearization. It is universally B-bounded (∀B-bounded) if all its
linearizations are B-bounded.

The set of ∃B-bounded MSCs is denoted by MSC∃B(Procs,Prop), and the set
of ∀B-bounded MSCs by MSC∀B(Procs,Prop). Moreover, we let

MSCfin
∃B(Procs,Prop) := MSC∃B(Procs,Prop) ∩MSCfin(Procs,Prop)

MSCfin
∀B(Procs,Prop) := MSC∀B(Procs,Prop) ∩MSCfin(Procs,Prop)

MSCω∃B(Procs,Prop) := MSC∃B(Procs,Prop) ∩MSCfin(Procs,Prop)

MSCω∀B(Procs,Prop) := MSC∀B(Procs,Prop) ∩MSCfin(Procs,Prop) .

Example 4.6. The MSC from Figure 4.2 is ∃2-bounded, as witnessed by the
linearization e1 ≺ e2 ≺ f1 ≺ e3 ≺ f2 ≺ e4 ≺ f3 ≺ e5 ≺ f4 ≺ f5. It is also ∀3-
bounded, but not ∀2-bounded, since the linearization e1 ≺ e2 ≺ f1 ≺ f2 ≺ f3 ≺
f4 ≺ f5 ≺ e3 ≺ e4 ≺ e5 is not 2-bounded.

Example 4.7. The MSC from Figure 4.1 is ∃1-bounded, but it is not ∀B-bounded,
no matter what B is.

70 CHAPTER 4. COMMUNICATING FINITE-STATE MACHINES

4.2 Communicating finite-state machines

In a communicating finite-state machine [14], each process p ∈ Procs is represented
by a finite-state transition system. It can perform internal actions of the form 〈a〉,
where a ∈ 2Prop, or send/receive messages from a finite set of messages Msg . Aactions 〈a〉,

〈a, !qm〉,
〈a, ?qm〉

send action 〈a, !qm〉 of process p writes message m ∈ Msg to channel (p, q), and
performs a ∈ 2Prop. A receive action 〈a, ?qm〉 reads message m from channel (q, p).
Accordingly, we let

Actp(Msg) := {〈a〉 | a ∈ 2Prop} ∪ {〈a, !qm〉 | a ∈ 2Prop,m ∈ Msg , q ∈ Procs \ {p}}
∪ {〈a, ?qm〉 | a ∈ 2Prop,m ∈ Msg , q ∈ Procs \ {p}}

denote the set of possible actions of process p.

Definition 4.8. A communicating finite-state machine (CFM) over Procs and Propcommunicating

finite-state

machine

(CFM)

is a tuple A = ((Ap)p∈Procs,Msg ,Acc) consisting of a finite set of messages Msg
and a finite-state transition system Ap = (Sp, ιp,∆p) for each process p ∈ Procs,
with finite set of states Sp, initial state ιp ∈ Sp, and transition relation ∆p ⊆
Sp × Actp(Msg) × Sp. Moreover, we have an acceptance condition Acc, which is a
positive boolean combination of atomic conditions 〈p, s〉 or 〈p, s〉∞ where p ∈ Procs
and s ∈ Sp.

Intuitively, 〈p, s〉 requires that process p terminates in state s (and, thus, exe-
cutes only finitely many events), while 〈p, s〉∞ requires that process p enters state
s infinitely often (which implies that p executes infinitely many events). Thisacceptance

condition kind of “mixed” acceptance condition is quite convenient. Other, syntactically
different acceptance criteria have been adopted in the literature, like Büchi or Muller
conditions [55, 11]. However, they are all expressively equivalent. Note that here
we consider nondeterministic automata.

Given a transition t = (s, act , s′) ∈ ∆p, we let source(t) = s and target(t) = s′

denote the source and target states of t. In addition, if act = 〈a〉, then t is an
internal transition and we let label(t) = a. If act = 〈a, !qm〉, then t is a send
transition and we let label(t) = a, msg(t) = m, and receiver(t) = q. Finally, if
act = 〈a, ?qm〉, then t is a receive transition with label(t) = a, msg(t) = m, and
sender(t) = q.

A run ρ ofA on an MSCM = (E,→,C, loc, λ) ∈MSC(Procs,Prop) is a mappingrun of a CFM

associating with each event e ∈ Ep a transition ρ(e) ∈ ∆p, and satisfying the
following conditions:

1. for all events e ∈ E, we have label(ρ(e)) = λ(e),

2. for all →-minimal events e ∈ E, we have source(ρ(e)) = ιp, where p = loc(e),

3. for all process edges (e, f) ∈ →, we have target(ρ(e)) = source(ρ(f)),

4.2. COMMUNICATING FINITE-STATE MACHINES 71

4. for all internal events e ∈ E, ρ(e) is an internal transition, and

5. for all message edges e C f , ρ(e) and ρ(f) are respectively send and receive
transitions such that msg(ρ(e)) = msg(ρ(f)), receiver(ρ(e)) = loc(f), and
sender(ρ(f)) = loc(e).

We say that ρ is accepting if it satisfies the acceptance condition Acc, written
ρ |= Acc. The relation ρ |= Acc is defined inductively. Disjunction and conjunction
are interpreted as usual. Moreover, we let ρ |= 〈p, s〉 if either Ep = ∅ and s = ιp,
or Ep is a nonempty finite set and s = target(ρ(e)) where e is the last event of Ep.
Finally, ρ |= 〈p, s〉∞ if s = target(ρ(e)) for infinitely many events e ∈ Ep (which
implies that Ep is infinite).

The language L(A) of A is the set of MSCs M such that there exists an accepting
run of A on M . Moreover,

L(CFM[Procs,Prop]) := {L(A) | A is a CFM over Procs and Prop} .

Following [43, 35, 55], we call a CFM A = ((Ap)p∈Procs,Msg ,Acc) deterministic
if, for all processes p and transitions t1 = (s1, act1, s

′
1) and t2 = (s2, act2, s

′
2) of Ap

such that s1 = s2 and label(t1) = label(t2), the following hold:

• If t1 and t2 are internal transitions, then s′1 = s′2.

• If t1 and t2 are send transitions such that receiver(t1) = receiver(t2), then
s′1 = s′2 and msg(t1) = msg(t2).

• If t1 and t2 are receive transitions such that sender(t1) = sender(t2) and
msg(t1) = msg(t2), then s′1 = s′2.

In particular, this implies that, for each MSC, there is at most one run.

Example 4.9. Consider the simple (deterministic) CFM A depicted in Figure 4.3.
The set of processes is Procs = {p1, p2, p3}. Moreover, we have Msg = { , } and
{ , , } ⊆ 2Prop. Process p1 sends messages to p2 and p3. Each message can be
either or , and the message sent is made “visible” in the labeling of the MSC.
Process p2 simply forwards every message it receives to p3. In any case, the action
is . Finally, p3 receives and “outputs” messages from p1 and p2 in any order. Note
that, in this example, there are no local transitions, i.e., every transition is either
sending or receiving. As acceptance condition, we take Acc = 〈p, sp1〉∞, which says
that p1 executes infinitely many events. The MSC from Figure 4.1 is accepted by A.

72 CHAPTER 4. COMMUNICATING FINITE-STATE MACHINES

sp1

p1p1

〈 , !p2 〉
〈 , !p3 〉
〈 , !p2 〉
〈 , !p3 〉

s0
p2

p2p2

s1
p2

s2
p2

〈 , ?p1 〉

〈 , !p3 〉

〈 , ?p1 〉

〈 , !p3 〉

sp3

p3p3

〈 , ?p1 〉
〈 , ?p2 〉
〈 , ?p1 〉
〈 , ?p2 〉

Figure 4.3: A communicating finite-state machine

4.3 Logical characterizations of CFMs

This section gives an overview of known logic-automata relations for CFMs.

Theorem 4.10 ([15, 27, 89]). Suppose |Procs| = 1 (i.e., CFMs are essentially finite
automata). We have L(MSO[Procs,Prop,≤]) = L(CFM[Procs,Prop]).

This classical result is known as the Büchi-Elgot-Trakhtenbrot theorem. It was
first generalized to CFMs with universally bounded channels:

Theorem 4.11 ([43]). For all B ∈ N and L ⊆ MSCfin
∀B(Procs,Prop), the following

are equivalent:

1. L = L(A) for some CFM A;

2. L = L(A) for some deterministic CFM A;

3. L = L(Φ) for some MSO[Procs,Prop,≤,C] formula Φ.

Moreover, there is a deterministic CFM A such that L(A) = MSCfin
∀B(Procs,Prop).

Kuske generalized the theorem to infinite universally bounded MSCs, while
using a different proof technique.

Theorem 4.12 ([55]). For all B ∈ N and L ⊆ MSC∀B(Procs,Prop), the following
are equivalent:

1. L = L(A) for some CFM A;

2. L = L(A) for some deterministic CFM A;

3. L = L(Φ) for some MSO[Procs,Prop,≤,C] formula Φ.

In the case of finite MSCs, the logical characterization was lifted to existentially
bounded MSCs by Genest et al.

Theorem 4.13 ([34]). For all B ∈ N and L ⊆ MSCfin
∃B(Procs,Prop), the following

are equivalent:

4.3. LOGICAL CHARACTERIZATIONS OF CFMS 73

1. L = L(A) for some CFM A;

2. L = L(Φ) for some MSO[Procs,Prop,≤,C] formula Φ.

Moreover, there is a CFM A such that L(A) = MSCfin
∃B(Procs,Prop).

On the other hand, it turns out that deterministic CFMs are now strictly weaker:

Theorem 4.14 ([34]). CFMs are inherently non-deterministic: There is a CFM A
such that L(A) ⊆MSCfin

∃B(Procs,Prop) and, for all deterministic CFMs A′, we have
L(A) 6= L(A′).

The proofs of Theorems 4.11, 4.12, and 4.13 reduce message-passing systems
to finite-state shared-memory systems so that involved results from Mazurkiewicz
trace theory [24] can be applied. This generic approach is no longer applicable when
the restriction on the channel capacity is dropped. In fact, in general, CFMs do not
capture MSO logic:

Theorem 4.15 ([13]). For all L ⊆ MSCfin(Procs,Prop), the following are equiva-
lent:

1. L = L(A) for some CFM A;

2. L = L(Φ) for some sentence Φ ∈ EMSO[Procs,Prop,→,C];

However, MSO[Procs,Prop,→,C] is strictly more expressive than CFMs: There is
an MSO[Procs,Prop,→,C] sentence Φ such that L(Φ) ⊆ MSCfin(Procs,Prop) and,
for all CFMs A, we have L(Φ) 6= L(A).

The characterization from Theorem 4.15 was given for finite MSCs. Over infinite
MSCs, EMSO[Procs,Prop,→,C] is strictly weaker than CFMs as it cannot express
that there are infinitely many events to satisfy some property. This is already true
for one process, i.e., finite automata and words. However, CFMs can be charac-
terized by the logic EMSO∞[Procs,Prop,→,C], extending EMSO[Procs,Prop,→,C]
by the quantifier ∃∞x.Φ, which requires that there be infinitely many events x such
that Φ holds.

Theorem 4.16 ([11]). For all L ⊆MSC(Procs,Prop), the following are equivalent:

1. L = L(A) for some CFM A;

2. L = L(Φ) for some sentence Φ ∈ EMSO∞[Procs,Prop,→,C].

In terms of PDL, the following relations are known:

Theorem 4.17 ([12]). 1. For all sentence ξ ∈ PDL[Procs,Prop,→,C], there
exists a CFM A such that L(ξ) = L(A).

2. There exists a sentence ξ ∈ ICPDL[Procs,Prop,→,C] such that L(ξ) 6= L(A)
for all CFMs A.

74 CHAPTER 4. COMMUNICATING FINITE-STATE MACHINES

Contributions. Theorem 4.15 shows that any sentence in FO[Procs,Prop,→,C]
or EMSO[Procs,Prop,→,C] can be translated into an equivalent CFM. However,
until recently, it was open whether such a translation was still possible when the
happened-before relation ≤ is added to the logic. We first answered this question
positively for two-variable logics:

Theorem 4.18 ([8]). For all L ⊆MSCfin(Procs,Prop), the following are equivalent:

1. L = L(A) for some CFM A;

2. L = L(Φ) for some sentence Φ ∈ EMSO2[Procs,Prop,→,C,≤].

We solved the general case in [9] for finite MSCs, and in [10] for infinite MSCs:

Theorem 4.19 ([9, 10]). For all L ⊆MSC(Procs,Prop) the following are equivalent:

1. L = L(A) for some CFM A;

2. L = L(Φ) for some sentence Φ ∈ EMSO[Procs,Prop,→,C,≤].

More precisely, we introduced a variant PDLMSC
sf [Procs,Prop] of PDL, that can

be seen both as a fragment of PDLsf [Procs,Prop,≤proc,C] or as a fragment of
ICPDL[Procs,Prop,≤proc,C], and we proved that

L(FO[Procs,Prop,→,C,≤]) = L(PDLMSC
sf [Procs,Prop]) ⊆ L(CFM[Procs,Prop]) .

The expressive power of PDLMSC
sf [Procs,Prop] and PDL[Procs,Prop,≤proc,C] are

incomparable, so this is orthogonal to what was previously known about the relation
between variants of PDL and CFMs (Theorem 4.17).

The proof of these results are spread over Chapters 5 and 6. We will not give
more details about Theorem 4.18, since it is generalized by Theorem 4.19.

Another contribution concerns the case of existentially-bounded MSCs. Using
Theorem 4.19, we give a new proof of Theorem 4.13, and extend it to infinite MSCs:

Theorem 4.20 ([10]). For all B ∈ N and L ⊆ MSC∃B(Procs,Prop), the following
are equivalent:

1. L = L(A) for some CFM A;

2. L = L(Φ) for some MSO[Procs,Prop,≤,C] formula Φ.

The proof of Theorem 4.20 is presented in Chapter 6, Section 6.4.

Chapter 5

Logics for Message Sequence Charts

This chapter investigates the expressive power of several logics for MSCs. Our aim
is to identify alternatives to first-order logic as a specification language, of similar
expressive power but with better complexities. While these logics are interesting
on their own, this is also a key step towards the translation from first-order logic to
communicating finite-state machines presented in the next chapter.

We first show that results from Chapter 3 can be applied to MSCs. We then
prove that the syntax of the resulting variant of star-free PDL can be simplified to
remove all boolean operators from path formulas, including implicit intersections in
the form of Loop formulas. Up to projection, the resulting logic is still equivalent to
first-order logic; this is the main result of the chapter. Finally, we present an(other)
extension of LTL to MSCs, based on classical temporal modalities for partial orders,
and give a direct translation from this logic into star-free PDL.

5.1 MSCs as interval-preserving structures

Contrarily to interval-preserving structures which are linearly ordered, MSCs are
naturally seen as partial orders, ordered by the happened-before relation ≤. In
order to apply the results from Chapter 3, we need to equip MSCs with a linear
order. To do so, we simply put one after the other, in a fixed, arbitrary order, the
total orders induced by ≤proc on each process. Note that the resulting linear order
is not a very meaningful relation for MSCs: it is simply a technical tool which, in a
way, allows us to reason about the process order as if it were a linear order.

Extension of the process order into a total order. Let us define more formally this extension of

≤proc into vlinear order. We fix an arbitrary total order vProcs on Procs with strict part @Procs.
For all MSCs M = (E,→,C, loc, λ) ∈ MSC(Procs,Prop), we then define a total

75

76 CHAPTER 5. LOGICS FOR MESSAGE SEQUENCE CHARTS

e1 e2 e3 e4

f1 f2

g1 g2

p

q

r

v

v

Figure 5.1: A possible extension of ≤proc into a linear order v

order v over E as follows: given two events e, f ∈ E, we let

e v f if e ≤proc f or loc(e) @Procs loc(f) .

We denote by @ the strict part of v.
Note that v is not compatible with ≤: in general, there may be events e, f such

that e ≤ f but f @ e. For instance, in the MSC from Figure 5.1, with the ordering
p @Procs q @Procs r, we have g1 ≤ e1 but e1 @ g1. Note also that we use the same
order @Procs for all MSCs in MSC(Procs,Prop).

Interval-preserving message relations. The message relation C is not always
interval-preserving with respect to v. For instance, in the MSC from Figure 5.1,
and using the ordering p @Procs q @Procs r, we have

f1 v f2 v g2 , (e3, f1), (e2, g2) ∈ C , f2 ∈ C−1(E) , but f2 /∈ C([e2, e3]) .

However, the restriction of C to a particular channel is interval-preserving, thanks
to the FIFO assumption. Given an MSC M = (E,→,C, loc, λ) and a channel
(p, q) ∈ Ch, we let

Cp,q = C ∩ (Ep × Eq) .

Lemma 5.1. For all M = (E,→,C, loc, λ) ∈ MSC(Procs,Prop) and (p, q) ∈ Ch,
Cp,q is interval-preserving (with respect to v).

Proof. Since the channels are FIFO, for all events e, f, g, e′, f ′, g′ such that eCp,q e
′,

f Cp,q f
′, and g Cp,q g

′, we have:

• if e′ v f ′ v g′, then e v f v g. Therefore, for all intervals I of (E,�), Cp,q(I)
is an interval of (Cp,q(E),v).

• if e v f v g, then e′ v f ′ v g′. Therefore, for all intervals I of (E,�), C−1
p,q(I)

is an interval of (C−1
p,q(E),v).

5.1. MSCS AS INTERVAL-PRESERVING STRUCTURES 77

Alternative signature for MSCs. We denote by Σint
MSC(Procs,Prop) the signature Σint

MSC(Procs,Prop)

Σint
MSC(Procs,Prop) := (Procs ∪ Prop, {v} ∪ {Cp,q | (p, q) ∈ Ch}) .

As an immediate consequence of Lemma 5.1, we have:

Lemma 5.2. For all MSCs M = (E,→,C, loc, λ) ∈MSC(Procs,Prop), the induced
Σint
MSC(Procs,Prop)-structure

(
E, (Ep)p∈Procs, (JP KM)P∈Prop,v, (Cp,q)(p,q)∈Ch

)
is a complete interval-preserving Σint

MSC(Procs,Prop)-structure.

Note that≤proc (and therefore, by Lemma 4.3, ≤) can easily be recovered fromv,
and vice versa:

Lemma 5.3. Let k ∈ N.

1. For every formula Φ ∈ FOk[Procs,Prop,≤proc,C], there exists a formula Ψ ∈
FOk

[
Σint
MSC(Procs,Prop)

]
such that over MSCs, Φ ≡ Ψ.

2. For every formula Φ ∈ FOk
[
Σint
MSC(Procs,Prop)

]
, there exists a formula Ψ ∈

FOk[Procs,Prop,≤proc,C] such that over MSCs, Φ ≡ Ψ.

Proof. Over MSC(Procs,Prop), we have

x ≤proc y ≡ x v y ∧
∨

p∈Procs
p(x) ∧ p(y)

and

x v y ≡ x ≤proc y ∨
∨

p,q∈Procs
p@Procsq

p(x) ∧ q(y) .

For the message relation,

xC y ≡
∨

(p,q)∈Ch

xCp,q y

and

xCp,q y ≡ xC y ∧ p(x) ∧ q(y) .

78 CHAPTER 5. LOGICS FOR MESSAGE SEQUENCE CHARTS

Strong 3-variable properties for MSCs. As a direct application of Theorem 3.16,
we have:

Corollary 5.4. Over MSCs, any formula in FO
[
Σint
MSC(Procs,Prop)

]
is equivalent to

a finite boolean combination of formulas in FO3
[
Σint
MSC(Procs,Prop)

]
.

Recall that the translations given in Lemmas 5.3 and 4.3 between the log-
ics FO

[
Σint
MSC(Procs,Prop)

]
, FO[Procs,Prop,≤proc,C], and FO[Procs,Prop,≤,C] do not

increase the number of variables used in a formula beyond 3. Together with
Corollary 5.4, this implies that MSCs also have the strong 3-variable property when
seen as (Procs ∪ Prop, {≤proc,C})- or (Procs ∪ Prop, {≤,C})-structures:

Corollary 5.5. Over MSCs, any formula in FO[Procs,Prop,≤proc,C] is equivalent
to a finite boolean combination of formulas in FO3[Procs,Prop,≤proc,C].

Corollary 5.6. Over MSCs, any formula in FO[Procs,Prop,≤,C] is equivalent to
a finite boolean combination of formulas in FO3[Procs,Prop,≤,C].

Alternatively, this can be formulated in terms of PDLsf :

Corollary 5.7. Over MSCs, every formula Φ ∈ FO[Procs,Prop,≤proc,C] with at
least one free variable is equivalent to a finite boolean combination of formulas of
the form π̃(x, y), where x, y ∈ Free(Φ) and π ∈ PDLsf [Procs,Prop,≤proc,C].

Proof. We first translate the formula Φ into a FO
[
Σint
MSC(Procs,Prop)

]
formula, then

apply Theorem 3.14. Each PDLsf

[
Σint
MSC(Procs,Prop)

]
path formula is then translated

into PDLsf [Procs,Prop,≤proc,C] as before:

Cp,q ≡ {p}? ·C · {q}?

v ≡ ≤proc +
∑

p@Procsq

{p}? · > · {q}? ,

where > = {true}? + ({true}?)c.

5.2 Fragment of star-free PDL for MSCs

We have seen in Corollary 5.7 that first-order logic and star-free PDL have the same
expressive power over MSCs. In addition, v is a complete order, so we could also
apply Theorem 3.30 to obtain an equivalent logic without a complement operator.
In fact, we can use an even simpler fragment, defined below.

5.2. FRAGMENT OF STAR-FREE PDL FOR MSCS 79

5.2.1 Syntax

We define a fragment of PDLsf [Procs,Prop,≤proc,C] where the complement of path
formulas is not allowed (though we still have Loop(π) formulas). Instead, we add
path formulas (<proc)ϕ and (>proc)ϕ which are similar to LTL until and since
modalities, and local to a given process. This fragment can be seen as a variant
of the logic PDL<•sf defined in Section 3.8, where formulas <ϕ are defined with
respect to the process order ≤proc rather than the total order v. To maintain the
possibility to move from one process to another, we also explicitly include > in the
syntax of path formulas. We choose to restrict the converse operation to atomic
path formulas, though the converses of other formulas are still expressible.

Definition 5.8. Let PDLMSC
sf [Procs,Prop] be the set of formulas PDLMSC

sf

ξ ::= Eϕ | ξ ∨ ξ | ¬ξ
ϕ ::= true | p | P | ϕ ∨ ϕ | ¬ϕ | 〈π〉ϕ | Loop(π)

π ::= > | Cp,q | C−1
p,q | {ϕ}? | (<proc)ϕ | (>proc)ϕ | π · π ,

where p ∈ Procs, P ∈ Prop, (p, q) ∈ Ch.

The semantics of PDLMSC
sf [Procs,Prop] is inherited from the semantics of

PDLsf [Procs,Prop, (Cp,q)(p,q)∈Ch], with additionally

r
(<proc)ϕ

zM
=
{

(e, f) | e <proc f ∧ ∀e <proc g <proc f, g ∈ JϕKM
}

r
(>proc)ϕ

zM
=
{

(e, f) | f <proc e ∧ ∀f <proc g <proc e, g ∈ JϕKM
}
.

We use the abbreviations <proc := (<proc)true and >proc := (>proc)true , as well as
≤proc := {true}? + <proc, and ≥proc := {true}? + >proc. Note that ≤proc and ≥proc

are not in PDLMSC
sf [Procs,Prop], but they are finite unions of PDLMSC

sf [Procs,Prop]
path formulas. We also use formulas → := (<proc)false and ← := (>proc)false to
express the process successor relation → and its converse.

Remark 5.9. The logic PDLMSC
sf [Procs,Prop] can indeed be seen as a fragment of

PDLsf [Procs,Prop,≤proc,C], since

Cp,q ≡ {p}? ·C · {q}? and (<proc)ϕ ≡ <proc ∩ (<proc · {¬ϕ}? ·<proc)
c ,

where <proc ≡ ≤proc ∩ ({true}?)c.
It is also closely related to PDL<•sf

[
Σint
MSC(Procs,Prop)

]
: the main difference between

the two logics is that PDL<•sf
[
Σint
MSC(Procs,Prop)

]
uses formulas @ϕ and Aϕ defined in

terms of the total order v, whereas (<proc)ϕ and (>proc)ϕ are defined in terms of
≤proc. In a way, (<proc)ϕ and (>proc)ϕ can be seen as restrictions of @ϕ and Aϕ:

(<proc)ϕ ≡
∑

p∈Procs
@ϕ∧p and (>proc)ϕ ≡

∑
p∈Procs

Aϕ∧p .

80 CHAPTER 5. LOGICS FOR MESSAGE SEQUENCE CHARTS

In addition, PDL<•sf
[
Σint
MSC(Procs,Prop)

]
also contains path formulas inf (λ · α) and

sup (λ · α), where λ ∈ {v,v,w,A} and α ∈ {Cp,q,C−1
p,q | (p, q) ∈ Ch}. However,

over MSCs, these formulas are redundant.

Remark 5.10. Any PDLMSC
sf [Procs,Prop] formula constructed without > is ex-

pressible in ICPDL[Procs,Prop,C,→]. Indeed, we have

(<proc)ϕ ≡ (→ · {ϕ}?)∗· → and (>proc)ϕ ≡ (→−1 · {ϕ}?)
∗ · →−1 .

However, with the formula >, it is possible to move from one connected compo-
nent of the MSC to another, which is not possible with ICPDL[Procs,Prop,C,→]
path formulas. On the other hand, at the level of sentences, one can also talk
about several connected components of the MSC in ICPDL[Procs,Prop,C,→]. In
fact, every sentence ξ ∈ PDLMSC

sf [Procs,Prop] is equivalent to some sentence ξ′ ∈
ICPDL[Procs,Prop,C,→]. To eliminate every occurrence of > in ξ, we can first
observe that

〈π1 · > · π2〉ϕ ≡ 〈π1〉 ∧ 〈>〉 〈π2〉ϕ and Loop(π1 · > · π2) ≡ 〈π1〉 ∧ 〈π−1
2 〉 .

Therefore, at the level of event formulas, we only need > in subformulas of the form
〈>〉ϕ. Moreover, the value of 〈>〉ϕ is the same at every event, and is the same as
the value of the sentence Eϕ. So, at the level of sentences, we can enumerate all
possible values of subformulas 〈>〉ϕ and, in each case, replace them within event
formulas by true or false.

Size of a formula. There are several ways to measure the size of a formula. Here,
we choose not to count duplicates of sentence or event subformulas. This will give us
more precise complexities in the logic-to-automata translations of the next chapter,
since the important parameter for such constructions is the number of subformulas
in the input formula, rather than the size of the formula seen as a character string.

The sets S(ξ), S(ϕ) or S(π) of (sentence or event) subformulas of a formula inset of sub-

formulas S(ξ) PDLMSC
sf [Procs,Prop] is defined inductively as follows:

S(Eϕ) = {Eϕ} ∪ S(ϕ) S(ξ1 ∨ ξ2) = {ξ1 ∨ ξ2} ∪ S(ξ1) ∪ S(ξ2)

S(¬ξ) = {¬ξ} ∪ S(ξ)

S(true) = {true} S(>) = ∅
S(p) = {p} S(Cp,q) = ∅
S(P) = {P} S(C−1

p,q) = ∅
S(ϕ1 ∨ ϕ2) = {ϕ1 ∨ ϕ2} ∪ S(ϕ1) ∪ S(ϕ2) S({ϕ}?) = S(ϕ)

S(¬ϕ) = {¬ϕ} ∪ S(ϕ) S((<proc)ϕ) = S(ϕ)

S(〈π〉ϕ) = {〈π〉ϕ} ∪ S(π) ∪ S(ϕ) S((>proc)ϕ) = S(ϕ)

S(Loop(π)) = {Loop(π)} ∪ S(π) S(π1 · π2) = S(π1) ∪ S(π2)

5.2. FRAGMENT OF STAR-FREE PDL FOR MSCS 81

Another parameter to the size of a formula is the length of the path formulas
occurring in it. The length length(π) of a path formulas π is defined inductively as length(π)

follows:

length(>) = length(Cp,q) = length(C−1
p,q) = length({ϕ}?)

= length((<proc)ϕ) = length((>proc)ϕ) = 1

length(π1 · π2) = length(π1) + length(π2) .

The “size” ‖ξ‖ of a formula ξ is then defined as follows.

Definition 5.11. Given a set F ⊆ PDLMSC
sf [Procs,Prop] of sentences and event

formulas, we write

‖F‖ = |F|+
∑

〈π〉ϕ∈F or
Loop(π)∈F

length(π) .

For a formula ξ, ϕ or π in PDLMSC
sf [Procs,Prop], let ‖ξ‖, ‖ϕ‖, ‖π‖

‖ξ‖ = ‖S(ξ)‖ ‖ϕ‖ = ‖S(ϕ)‖ ‖π‖ = ‖S(π)‖+ length(π) .

Remark 5.12. We do not have ‖ϕ‖ = ‖{ϕ}‖. For instance, if

ϕ = P ∨ 〈(<proc)Q〉R ,

We have S(ϕ) = {ϕ, P, 〈(<proc)Q〉R,Q,R} and ‖ϕ‖ = |S(ϕ)|+length((<proc)Q) = 6,
but ‖{ϕ}‖ = 1.

Converse of a formula. Note that while the converse operation is not explicitly
in the syntax of PDLMSC

sf [Procs,Prop], it is easily expressible.

Lemma 5.13. For all path formulas π ∈ PDLMSC
sf [Procs,Prop], there exists a path

formula π′ ∈ PDLMSC
sf [Procs,Prop] such that for all M ∈MSC(Procs,Prop),

q
π′

yM
=
(
JπKM

)−1
.

Moreover, length(π′) = length(π) and S(π′) = S(π).

Proof. This follows from the fact that

>−1 ≡ > , (<proc)
−1
ϕ ≡ (>proc)ϕ and (π1 · π2)−1 ≡ π−1

2 · π
−1
1 .

When it is clear from the context that we are considering PDLMSC
sf [Procs,Prop]

formulas, we simply denote the formula given by Lemma 5.13 by π−1.

82 CHAPTER 5. LOGICS FOR MESSAGE SEQUENCE CHARTS

Compatible pairs of processes. Every path formula π ∈ PDLMSC
sf [Procs,Prop]

induces a binary relation on Procs, composed of pairs (p, q) such that in some MSC,
there is a path from process p to process q matching π. We define below a simple
syntactic over-approximation of this relation.

Definition 5.14. For all path formulas π ∈ PDLMSC
sf [Procs,Prop], the set Comp(π) ⊆Comp(π)

Procs× Procs of compatible pairs of π is defined as follows:

Comp(>) = Procs× Procs

Comp(Cp,q) = {(p, q)}
Comp(C−1

p,q) = {(q, p)}
Comp({ϕ}?) = Comp((<proc)ϕ) = Comp((>proc)ϕ) = IdProcs

Comp(π1 · π2) = Comp(π1) · Comp(π2) ,

where IdProcs = {(p, p) | p ∈ Procs}.

Example 5.15. Consider π = <proc ·Cp,q · ← ·Cq,r. We have Comp(π) = {(p, r)}.

As explained above, Comp(π) contains all pairs of processes (p, q) such that there
might exist events e on process p and f on process q with (e, f) ∈ JπK:

Lemma 5.16. For all π ∈ PDLMSC
sf [Procs,Prop] and M = (E,→,C, loc, λ) ∈

MSC(Procs,Prop),

JπKM ⊆
⋃

(p,q)∈Comp(π)

Ep × Eq .

Proof. This follows from a trivial induction on π.

A useful observation is that, except for formulas using > as an atomic step,
Comp(π) is either empty, a singleton, or IdProcs. In particular, it is deterministic, in
the sense that for all process p, there is at most one process q with (p, q) ∈ Comp(π).
Note that this is true even if > occurs in some event subformulas of π; we only need
to exclude formulas of the form π1 · > · π2.

Definition 5.17. A formula π ∈ PDLMSC
sf [Procs,Prop] is >-free if any occurrence>-free

formula of > in π occurs within an event subformula ϕ of π.

Example 5.18. The formula

(<proc)〈>〉P · {〈>〉Q}? · (<proc)P

is >-free, but {P}? · > is not.

Lemma 5.19. For all >-free formulas π ∈ PDLMSC
sf [Procs,Prop] and p ∈ Procs,

|Comp(π)| ≤ 1 or Comp(π) = IdProcs .

5.2. FRAGMENT OF STAR-FREE PDL FOR MSCS 83

Proof. We prove by induction on π that if π is >-free, then Comp(π) is either empty,
IdProcs or a singleton. This is true for all base cases. For concatenation, if Comp(π1)
or Comp(π2) is empty, then so is Comp(π1) · Comp(π2). If Comp(π1) = IdProcs, then
Comp(π1) ·Comp(π2) = Comp(π2), and similarly if Comp(π2) = IdProcs. If Comp(π1)
and Comp(π2) are singletons, then Comp(π1) ·Comp(π2) is empty or a singleton.

5.2.2 Monotonicity

MSCs enjoy stronger monotonicity properties than arbitrary interval-preserving
structures. This allows us to derive stronger properties for PDLMSC

sf [Procs,Prop]
path formulas as well.

Lemma 5.20. Let π ∈ PDLMSC
sf [Procs,Prop], and (e1, f1), (e2, f2) ∈ JπK such that

e1 ≤proc e2 and f2 ≤proc f1:

e1 e2

f1f2

≤proc

≤proc

ππ

Then (e1, f2) ∈ JπK and (e2, f1) ∈ JπK.

Proof. We first consider the case where π is not >-free, that is, π ≡ π1 · > · π2 for
some π1, π2. We then have (e, f) ∈ JπK if and only if e ∈ J〈π1〉K and f ∈ J〈π−1

2 〉K.
Therefore, (e1, f2) ∈ JπK and (e2, f1) ∈ JπK.

We now prove the result by induction for >-free path formulas π. The cases
π = Cp,q and π = C−1

p,q are consequences of the FIFO assumption. If π = {ϕ}?, we
have e1 ≤proc e2 = f2 ≤proc f1 = e1, hence the four events are equal.

Assume π = (<proc)ϕ. We have

e1 ≤proc e2 <proc f2 ≤proc f1 , and ∀e1 <proc g <proc f1 , g ∈ JϕK .

Therefore, (e1, f2) ∈
r

(<proc)ϕ

z
and (e2, f1) ∈

r
(<proc)ϕ

z
. The case π = (>proc)ϕ

is symmetric.
Finally, assume π = π1 ·π2, where π1 and π2 are >-free. There exist g1 such that

(e1, g1) ∈ Jπ1K and (g1, f1) ∈ Jπ2K, and g2 such that (e2, g2) ∈ Jπ1K and (g2, f2) ∈
Jπ2K. Since loc(e1) = loc(e2) and π1 is >-free, Lemma 5.19 implies loc(g1) = loc(g2).
Therefore, we have either g1 ≤proc g2 or g2 ≤proc g1:

e1

g1

f1

e2

g2

f2

≤proc

≤proc

≤proc

π1

π2

π1

π2

e1

g1

f1

e2

g2

f2

≤proc

≤proc

≤proc

π1

π2

π1

π2

84 CHAPTER 5. LOGICS FOR MESSAGE SEQUENCE CHARTS

In the first case, we apply the induction hypothesis for π2: we have g1 ≤proc g2 and
f2 ≤proc f1, hence (g1, f2) ∈ Jπ2K and (g2, f1) ∈ Jπ2K. Therefore, (e1, f2) ∈ Jπ1 · π2K
and (e2, f1) ∈ Jπ1 · π2K. Similarly, in the case g2 ≤proc g1, we apply the induction
hypothesis for π1.

Lemma 5.20 implies that every path formula is, in a sense, interval-preserving.
In particular, PDLMSC

sf [Procs,Prop] path formulas satisfy the following property.

Lemma 5.21. Let π ∈ PDLMSC
sf [Procs,Prop].

1. For all (e, f1), (e, f2) ∈ JπK and f ∈ J〈π−1〉K such that f1 ≤proc f ≤proc f2, we
have (e, f) ∈ JπK.

2. For all (e1, f), (e2, f) ∈ JπK and e ∈ J〈π〉K such that e1 ≤proc e ≤proc e2, we
have (e, f) ∈ JπK.

Proof. We prove the first part of the Lemma, the second one is symmetric. If π is
not >-free, that is, π ≡ π1 · > · π2 for some π1 and π2, then we have e |= 〈π1〉 and
f |= 〈π−1

2 〉, which implies (e, f) ∈ JπK.
Assume π is >-free. Since f ∈ J〈π−1〉K, there exists e′ such that (e′, f) ∈ JπK.

By Lemma 5.19, we must have loc(e) = loc(e′), hence e ≤proc e
′ or e′ ≤proc e:

e

ff1 f2

e′

≤proc ≤proc

≤proc e

ff1 f2

e′

≤proc ≤proc

≤proc

In the first case, we apply Lemma 5.20 to e, e′, f, f2, and in the second case, to
e′, e, f1, f . In both cases, we obtain (e, f) ∈ JπK.

For a >-free formula π, Lemma 5.19 implies that the image JπK(e) of an event e
is always included in some process p. In particular, JπK(e) is completely ordered
by ≤proc. If JπK(e) 6= ∅, we denote by minJπK(e) its minimal element with respect
to ≤proc. The partial function mapping e to minJπK(e) is monotone:

Lemma 5.22. For all >-free path formulas π ∈ PDLMSC
sf [Procs,Prop] and events

e, f such that JπK(e) 6= ∅ and JπK(f) 6= ∅, we have

e ≤proc f =⇒ minJπK(e) ≤proc minJπK(f) .

Proof. Since π is >-free and loc(e) = loc(f), minJπK(e) and minJπK(f) are well-
defined and located on a same process. Therefore, we have minJπK(e) ≤proc minJπK(f)
or minJπK(f) <proc minJπK(e).

Suppose towards a contradiction that minJπK(f) <proc minJπK(e):

5.2. FRAGMENT OF STAR-FREE PDL FOR MSCS 85

e f

minJπK(e)minJπK(f)

≤proc

<proc

ππ

We have (e,minJπK(e)) ∈ JπK and (f,minJπK(f)) ∈ JπK, and, by Lemma 5.20, we
obtain (e,minJπK(f)) ∈ JπK. This contradicts the minimality of minJπK(e).

In addition, this partial function mapping e to minJπK(e) can be defined in
PDLMSC

sf [Procs,Prop].

Lemma 5.23. For all >-free path formulas π ∈ PDLMSC
sf [Procs,Prop], one can

construct a formula min π ∈ PDLMSC
sf [Procs,Prop] such that

Jmin πK = {(e, f) | f = minJπK(e)}

and satisfying the following:

• If π contains no Loop(π′) subformulas, then neither does min π.

• length(min π) = O(length(π)).

• ‖S(min π) \ S(π)‖ = O(length(π)).

In particular, ‖min π‖ = O(‖π‖).

Proof. A detailed proof of the lemma is given below. As a quick summary, the idea
is to apply Lemma 5.22, and define min π inductively:

min (r · π) = r ·min π for r = Cp,q, r = C−1
p,q or r = {ϕ}?

min ((<proc)ϕ · π) = (<proc)ϕ∧¬〈π〉 ·min π

min ((>proc)ϕ · π) = (>proc)ϕ · {¬ϕ ∨ ¬〈(>proc)ϕ · π〉}? ·min π .

Let us move on to the detailed proof. Since concatenation of binary relations is
associative, we can assume that π is of the form π = r1 · (r2 · · · (rn) · · ·), where each
ri is of the form Cp,q, C−1

p,q , {ϕ}?, (<proc)ϕ, or (>proc)ϕ. We take the convention
of right associativity, and simply write this formula as π = r1 · · · rn. Note that
bringing π into this form has no impact on length(π) or S(π), nor therefore ‖π‖
(cf. Definition 5.11).

Without loss of generality, we assume that the last atomic step rn of the path
formula is {true}?. Again, this increases length(π) and |S(π)| by at most one, and
has no impact on the results concerning the size of min π.

We define min π by induction on the length n of the sequence π = r1 · · · rn.
According to the previous assumption, the basis of the induction is π = {true}?, in

86 CHAPTER 5. LOGICS FOR MESSAGE SEQUENCE CHARTS

which case we let min π = {true}?. For the inductive cases, we first define min π,
and then discuss its size.

Case 1: π = r · π′, with r = Cp,q, r = C−1
p,q , or r = {ϕ}?. Notice that r is

deterministic, in the sense that for all e, there is at most one f such that (e, f) ∈ JrK.
Therefore, we can define min π as

min (r · π′) = r ·min π′ .

Case 2: π = (<proc)ϕ · π
′. We let

min
(

(<proc)ϕ · π
′
)

= (<proc)ϕ∧¬〈π′〉 ·min π′ .

Let us show that (e, f) ∈ Jmin πK if and only if f = minJπK(e). Let (e, f) ∈
Jmin πK. There exists g such that (e, g) ∈ J(<proc)ϕ∧¬〈π′〉K and (g, f) ∈ Jmin π′K.
Note that we also have (e, g) ∈ J(<proc)ϕK and (g, f) ∈ Jπ′K, hence f ∈ JπK(e). Let

us show that f is minimal. Let f ′ ∈ JπK(e). There exists g′ such that (e, g′) ∈
J(<proc)ϕK, and (g′, f ′) ∈ Jπ′K.

e g

f

g′

f ′minJπ′K(g′)

<proc

ϕ ∧ ¬〈π′〉

ϕ

≤proc

≤proc

≤proc

min π′ π′

Since g′ |= 〈π′〉, we cannot have e <proc g
′ <proc g, which means that g ≤proc g

′. By
Lemma 5.22, we then have

f = min
q
π′

y
(g) ≤proc min

q
π′

y
(g′) ≤proc f

′ ,

hence f ≤proc f
′.

Conversely, suppose that f = minJπK(e). We have JπK(e) 6= ∅, which implies
J(<proc)ϕ · {〈π

′〉}?K(e) 6= ∅. Thus, g = minJ(<proc)ϕ · {〈π
′〉}?K(e) is well-defined. For

all e <proc h <proc g, we have h ∈ JϕK since (e, g) ∈ J(<proc)ϕK, and h /∈ J〈π′〉K by

minimality of g. Therefore, (e, g) ∈ J(<proc)ϕ∧¬〈π′〉K. In addition, we have Jπ′K(g) 6=
∅, hence there exists f ′ such that (g, f ′) ∈ Jmin π′K. Then (e, f ′) ∈ Jmin πK, and by
the previous implication, f = f ′. Therefore, (e, f) ∈ Jmin πK.
Case 3: π = (>proc)ϕ · π

′. We let

min
(

(>proc)ϕ · π
′
)

= (>proc)ϕ · {¬ϕ ∨ ¬〈(>proc)ϕ · π
′〉}? ·min π′ .

We prove that (e, f) ∈ Jmin πK if and only if f = minJπK(e) similarly to the
previous case. Assume that (e, f) ∈ Jmin πK. There exists g such that (e, g) ∈

5.2. FRAGMENT OF STAR-FREE PDL FOR MSCS 87

J(>proc)ϕK, g ∈ J¬ϕ ∨ ¬〈(>proc)ϕ · π
′〉K, and (g, f) ∈ Jmin π′K. In particular, we have

f ∈ JπK(e). Let us show that f is minimal. Let g′, f ′ such that (e, g′) ∈ J(>proc)ϕK
and (g′, f ′) ∈ Jπ′K. Suppose towards a contradiction that g′ <proc g:

egg′

ff ′

¬ϕ ∨ ¬〈(>proc)ϕ · π
′〉

<proc<proc

ϕ

ϕ
min π′π′

We then have g′ <proc g <proc e, which implies g ∈ JϕK and (g, g′) ∈ J(>proc)ϕK. Then

(g, f ′) ∈ J(>proc)ϕ · π
′K, which contradicts the fact that g ∈ J¬ϕ ∨ ¬〈(>proc)ϕ · π

′〉K.
Therefore, g ≤proc g

′. By Lemma 5.22,

f = minJπ′K(g) ≤proc minJπ′K(g′) ≤proc f
′ ,

which proves the minimality of f .
Conversely, suppose that f = minJπK(e). Then g = minJ(>proc)ϕ · {〈π

′〉}?K(e) is

well-defined, and (e, g) ∈ J(>proc)ϕK. Let us show that g ∈ J¬ϕ ∨ ¬〈(>proc)ϕ · π
′〉K.

Suppose towards a contradiction that this is not the case, i.e., g ∈ JϕK and there
exists g′ such that (g, g′) ∈ J(>proc)ϕ · {〈π

′〉}?K. Then g′ <proc g <proc e, and for all

g′ <proc h <proc e, h ∈ JϕK, hence (e, g′) ∈ J(>proc)ϕ · {〈π
′〉}?K, which contradicts

the minimality of g. Hence

(e, g) ∈ J(>proc)ϕ · {¬ϕ ∨ ¬〈(>proc)ϕ · π
′〉}?K .

In addition, Jπ′K(g) 6= ∅, hence there exists f ′ such that (g, f ′) ∈ Jmin π′K. Then
(e, f ′) ∈ Jmin πK, and by the previous implication, f = f ′.

Regarding the size of min π, notice that in all cases

length(min (r · π′)) ≤ 2 + length(min (π′)) ,

which proves that length(min π) ≤ 2 · length(π). Besides, at every step, we have

S(min (ri · · · rn)) ⊆ S(π) ∪ {〈ri · · · rn〉 | 1 ≤ i ≤ n} ∪ S(min (ri+1 · · · rn)) ∪ Fi ,

for some set of formulas Fi such that ‖Fi‖ ≤ C for some constant C. For instance,
if ri = (>proc)ϕ,

Fi = {¬ϕ,¬〈ri · · · rn〉,¬ϕ ∨ ¬〈ri · · · rn〉} and ‖Fi‖ = 3 .

This proves that

S(min π) \ S(π) ⊆ {〈ri · · · rn〉 | 1 ≤ i ≤ n} ∪ F ,

88 CHAPTER 5. LOGICS FOR MESSAGE SEQUENCE CHARTS

for some F such that ‖F‖ = O(n). Furthermore, we can expand every formula
〈ri · · · rn〉 in min π into 〈ri〉 〈ri+1〉 · · · 〈rn〉, and

‖{〈ri〉 · · · 〈rn〉 | 1 ≤ i ≤ n}‖ = O(n) .

We then have
‖S(min π) \ S(π)‖ = O(n) = O(length(π)) .

5.2.3 Expressive completeness

Let us prove that PDLMSC
sf [Procs,Prop] is as expressive as FO[Procs,Prop,≤,C] or

FO[Procs,Prop,≤proc,C].
One possible way to prove this would be to use PDL<•sf

[
Σint
MSC(Procs,Prop)

]
as an

intermediate language. Indeed, by Theorems 3.14 and 3.30, it is as expressive as
FO
[
Σint
MSC(Procs,Prop)

]
(i.e., as expressive as FO[Procs,Prop,≤,C]). It would then not

be very difficult to prove that any PDL<•sf
[
Σint
MSC(Procs,Prop)

]
can be expressed as a

positive boolean combination of PDLMSC
sf [Procs,Prop] formulas; we would only need

to translate formulas

@ϕ , Aϕ , inf (λ ·Cp,q) , inf (λ ·C−1
p,q) , sup (λ ·Cp,q) , sup (λ ·C−1

p,q) ,

where λ ∈ {v,@,w,A}.
However, the rather technical proof that PDL<•sf [Σ] is expressively complete over

arbitrary complete interval-preserving Σ-structures becomes much simpler in the
special case of MSCs. To illustrate this, we choose a different approach than the
one described above, and give a direct translation from FO[Procs,Prop,≤proc,C]
to PDLMSC

sf [Procs,Prop] which does not rely on Theorem 3.30. We proceed by
induction, exactly as in the translation from FO[Σ] to PDLint

sf [Σ] over arbitrary
Σ-structures (Theorem 3.14). All we need is to adapt Lemmas 3.17 and 3.19,
which were used in the proof of Theorem 3.14 to deal with negation and existential
quantification, respectively. We do so in the next two lemmas.

Lemma 5.24. For all π ∈ PDLMSC
sf [Procs,Prop], πc is equivalent, over MSCs, to a

finite union of PDLMSC
sf [Procs,Prop] formulas.

Proof. If π is not >-free, i.e., is of the form π ≡ π1 · > · π2, then as observed before,

JπK = J〈π1〉K×
q
〈π−1

2 〉
y
,

therefore
JπcK = (J〈π1〉Kc × E) ∪

(
E ×

q
〈π−1

2 〉
yc)

,

that is,
πc ≡ {¬〈π1〉}? · >+> · {¬〈π−1

2 〉}? .

5.2. FRAGMENT OF STAR-FREE PDL FOR MSCS 89

Assume now that π is >-free. Let us show that πc is equivalent to

π′ = {¬〈π〉}? · >+> · {¬〈π−1〉}? +
∑

(p,q)/∈Comp(π)

{p}? · > · {q}? +

(min π) ·>proc + (min (π−1) ·>proc)
−1
.

Clearly,

J{¬〈π〉}? · >K ⊆ JπcK and
q
> · {¬〈π−1〉}?

y
⊆ JπcK .

According to Lemma 5.16, we also have, for all (p, q) /∈ Comp(π),

J{p}? · > · {q}?K ⊆ JπcK .

And by definition of min π,

J(min π) ·>procK ⊆ JπcK and
r

(min (π−1) ·>proc)
−1

z
⊆
(q
π−1

yc)−1
= JπcK .

Therefore, Jπ′K ⊆ JπcK.
Conversely, let (e, f) /∈ Jπ′K. We have e ∈ J〈π〉K and f ∈ J〈π−1〉K, hence

f ′ = minJπK(e) and e′ = minJπ−1K(f)

are well-defined. Moreover, (e, f) /∈ J{p}? · > · {q}?K for any (p, q) /∈ Comp(π) means
that (loc(e), loc(f)) ∈ Comp(π). By Lemma 5.19, we then have loc(f ′) = loc(f) and
loc(e′) = loc(e). Since (e, f) /∈ J(min π) ·>procK, i.e., f 6<proc f

′, we must have
f ′ ≤proc f . Similarly, since (f, e) /∈ Jmin (π−1) ·>procK, we have e′ ≤proc e:

eminJπ−1K(f) = e′

fminJπK(e) = f ′

≤proc

≤proc

π π

Then

e′ ≤proc e , f ′ ≤proc f , (e′, f) ∈ JπK , and (e, f ′) ∈ JπK .

Applying Lemma 5.20, we obtain (e, f) ∈ JπK. Therefore,

π′ ≡ πc .

For a path formula π or an event formula ϕ in PDLMSC
sf [Procs,Prop], we denote

by ϕ̃(x) or π̃(x, y) the translation of π into FO[Procs,Prop,≤proc,C]. The next
lemma is similar to Lemma 3.19.

90 CHAPTER 5. LOGICS FOR MESSAGE SEQUENCE CHARTS

Lemma 5.25. Let n ≥ 1. For all path formulas π1, . . . , πn and all event formulas
ϕ in PDLMSC

sf [Procs,Prop], the FO[Procs,Prop,≤proc,C] formula

Φ(x1, . . . , xn) = ∃x.

ϕ̃(x) ∧
∧

1≤i≤n
π̃i(xi, x)

 (xi 6= x for all i)

is equivalent, over MSCs, to a finite positive boolean combination of formulas of the
form π̃(xj , xk), with 1 ≤ j, k ≤ n and π ∈ PDLMSC

sf [Procs,Prop].

Proof. The proof is very similar to the proof of Lemma 3.19. Let ψ = ϕ ∧∧
1≤i≤n 〈π

−1
i 〉, and

Ψ(x1, . . . , xn) =
∧

1≤i,j≤n

˜(πi · {ψ}? · π−1
j)(xi, xj) .

Let us show that Φ(x1, . . . , xn) = Ψ(x1, . . . , xn).
Let M ∈ MSC(Procs,Prop), and ν : {x1, . . . , xn} → E. For all 1 ≤ i ≤ n, let

Ii = JπiK(ν(xi)) ∩ JψK. Notice that

M,ν |= Φ(x1, . . . , xn) ⇐⇒
⋂

1≤i≤n
Ii 6= ∅

M,ν |= Ψ(x1, . . . , xn) ⇐⇒ ∀1 ≤ i, j ≤ n, Ii ∩ Ij 6= ∅ .

Moreover, each Ii is:

• an interval of (JψK∩Ep,≤proc) for some process p, if πi is >-free. This follows
from Lemmas 5.19 and 5.21.

• equal to JψK, if πi is not >-free and JπiK(ν(xi)) 6= ∅. Indeed, in that case,
JπiK(ν(xi)) =

q
〈π−1
i 〉

y
⊇ JψK.

• empty, if JπiK(ν(xi)) = ∅.

By Lemma 3.18, it is not difficult to see that the intersection of these sets is non-
empty if and only if all pairwise intersections are non-empty. Thus,

M,ν |= Φ(x1, . . . , xn) ⇐⇒
⋂

1≤i≤n
Ii 6= ∅

⇐⇒ ∀1 ≤ i, j ≤ n, Ii ∩ Ij 6= ∅
⇐⇒ M,ν |= Ψ(x1, . . . , xn) .

Theorem 5.26. Every formula Φ ∈ FO[Procs,Prop,≤proc,C] with at least one free
variable is equivalent, over MSCs, to a positive boolean combination of formulas of
the form π̃(x, y), where x, y ∈ Free(Φ) and π ∈ PDLMSC

sf [Procs,Prop].

5.3. FRAGMENT WITHOUT LOOP FORMULAS 91

Proof. Apart from atomic formulas, for which we have already given a translation,
the proof is exactly the same as the proof of Theorem 3.14, applying Lemma 5.24
instead of Lemma 3.17, and Lemma 5.25 instead of Lemma 3.19.

As in Corollary 3.15, this also implies that:

Theorem 5.27. L(FO[Procs,Prop,≤,C]) = L(PDLMSC
sf [Procs,Prop]).

5.3 Fragment without Loop formulas

In this section, we show that any PDLMSC
sf [Procs,Prop] formula is equivalent, modulo

projection, to one which has no Loop(π) subformula. This is defined more precisely
in the next subsection.

5.3.1 Main result and sketch of proof

Let M = (E,→,C, loc, λ) ∈ MSC(Procs,Prop), and Prop′ ⊆ Prop. The projection
of M to Prop′ is the MSC PrProp′(M) ∈MSC(Procs,Prop′) defined as

PrProp′(M) = (E,→,C, loc, λ′) , where λ′(e) = λ(e) ∩ Prop′ .

The projection of a language of MSCs L ⊆MSC(Procs,Prop) to Prop′ is then

PrProp′(L) = {PrProp′(M) |M ∈ L} .

Conversely, given M ∈ MSC(Procs,Prop) and Prop ⊆ Prop′, an extension of M
to Prop′ is an MSC M ′ ∈MSC(Procs,Prop′) such that M = PrProp(M ′).

The aim of this section is to prove the following:

Elimination

of Loop

Theorem 5.28. For all ξ ∈ PDLMSC
sf [Procs,Prop], there exist Prop′ ⊇ Prop and

ξ′ ∈ PDLMSC
sf [Procs,Prop′] such that ξ′ contains no occurrence of Loop, and

L(ξ) = PrProp(L(ξ′)) .

Moreover, |Prop′| = O(|Prop|+ ‖ξ‖) and ‖ξ′‖ = O(‖ξ‖).

The removal of loop formulas as in Theorem 5.28 is done in several steps, which
are explained informally below. This summary should contain all the main ideas of
the proof. Further technical details for each step can be found in the next sections.

Step 1. First, one can remove some simple occurrences of the Loop operator: for
instance, formulas which can never be satisfied, such as Loop(<proc ·Cp,q ·<proc ·Cq,r)
for p 6= r, or formulas such as Loop(π1·>·π2) which can be replaced with 〈π1〉∧〈π−1

2 〉.
After these simplifications, described in Section 5.3.2, we obtain a formula where

each occurrence of Loop is applied to a >-free path formula π such that we always
have JπK(e) ⊆ Eloc(e), which slightly simplifies the next steps.

92 CHAPTER 5. LOGICS FOR MESSAGE SEQUENCE CHARTS

Step 2. The second step consists in putting all remaining Loop(π) formulas in a
normal form, so that the Loop operator only occurs in subformulas of the form

A(P =⇒ Loop(≤proc · π · ≤proc)) ,

where P is a new atomic proposition, and π is a PDLMSC
sf [Procs,Prop] path formula

without any occurrence of Loop.
This transformation relies on the following ideas:

• For each subformula Loop(π), we introduce a new atomic proposition P , which
is meant to be interpreted in the same manner as Loop(π). To ensure that
this is the case, we add to the formula the conditions

A(P =⇒ Loop(π)) and A(¬P =⇒ ¬Loop(π)) .

Every other occurrence of Loop(π) is then replaced with the proposition P .

• Conditions of the form A(¬P =⇒ ¬Loop(π)) can be removed by adding
further atomic propositions and conditions of the form A(P =⇒ Loop(π)).
Indeed, negative occurrences of Loop(π) can be replaced using positive occur-
rences of formulas Loop(π′). More precisely, we prove in Lemma 5.31 that

¬Loop(π) ≡ ¬〈π〉∨¬〈π−1〉∨Loop ((min π) ·>proc)∨Loop
(
min

(
π−1

)
·>proc

)
.

Intuitively, ¬Loop(π) ≡ Loop(πc), and this can be seen as a special case of
Lemma 5.24.

We are left with a formula where all occurrences of Loop are in subformulas
of the form

A(P =⇒ Loop(π)) ,

where P is a new atomic proposition, and π is a PDLMSC
sf [Procs,Prop] path

formula without any occurrence of Loop.

• Finally, we prove that we can restrict the form of formulas π appearing in
such formulas, so that they are all of the form ≤proc · π · ≤proc. This is done
in Lemma 5.32, which shows that

Loop(π) ≡ 〈π〉 ∧ 〈π−1〉 ∧ Loop(≤proc · π · ≤proc) ∧ Loop(≤proc · π−1 · ≤proc) .

Intuitively, this is similar to Lemma 3.11 (notice that Loop(≤proc ·π−1 ·≤proc) ≡
Loop(≥proc · π · ≥proc)). We obtain a simpler formula because of the stronger
monotonicity properties of MSCs.

The normal form obtained after Steps 1 and 2 is given by Lemma 5.33. Note
that in the actual proof of that lemma, the three ideas above are combined rather
than applied one after the other.

5.3. FRAGMENT WITHOUT LOOP FORMULAS 93

Step 3. To remove the last occurrences of Loop, all that remains to be done is to
rewrite formulas of the form

ξ = A(P =⇒ Loop(≤proc · π · ≤proc)) ,

where π is a PDLMSC
sf [Procs,Prop] path formula without any occurrence of Loop, into

equivalent formulas which do not use the operator Loop but may contain additional
atomic propositions.

First, notice that an event satisfies the formula Loop(≤proc · π · ≤proc) if and
only if it belongs to an interval of the form [min π(e), e] (Lemma 5.35). Therefore,
formula ξ simply says that the set of all such intervals covers the set of all P -labeled
events.

Now, there may be a lot of overlapping between intervals of the form [min π(e), e].
However, it is always possible to identify two sequences of such intervals such
that: (i) the union of all intervals in the two sequences covers all intervals of the
form [min π(e), e]; and (ii) within each sequence, the intervals are disjoint and not
adjacent. Technically, one may need to add unbounded intervals [e,+∞) obtained
as the limit of increasing intervals [e, f1], [e, f2], . . . such that e = minJπK(fi) for all
i ∈ N.

This results in Lemma 5.36, which says that a necessary condition for the
satisfaction of ξ is the existence of two sequences of intervals of the form [min π(e), e]
(or limit intervals) which cover all P -labeled events.

This is refined in Lemma 5.37, which says that to ensure that ξ is satisfied,
we only need to find two sequences of intervals such that for each interval [e, f],
there exists some interval [e′, f ′] (which may or may not be the same) such that
e = minJπK(f ′). An induction proves that the interval [e′, f ′] has to be to the right
of [e, f], and therefore both are contained in [e, f ′], which is of the expected form
[minJπK(f ′), f ′].

This gives us a characterization of when formula ξ holds which is easier to
express in PDLMSC

sf [Procs,Prop] without using the Loop operator. The equivalent
(up to projection) Loop-free formula is constructed as follows:

• We use two additional atomic propositions to identify two sequences of disjoint
(and non adjacent) intervals.

• The formula states that for all leftmost event e of an interval, there exists
an event f such that (e, f) ∈ Jmin πK and f is the rightmost event of some
interval.

• A similar condition has to be checked for unbounded (limit) intervals.

Step 3 results in Lemma 5.38, which says that every formula

A(P =⇒ Loop(≤proc · π · ≤proc))

94 CHAPTER 5. LOGICS FOR MESSAGE SEQUENCE CHARTS

is equivalent, up to projection, to a formula without Loop.

We can apply Lemma 5.38 to remove all occurrences of Loop from the formula
in normal form obtained with Lemma 5.33, thus proving Theorem 5.28.

5.3.2 Simple cases

Some occurrences of Loop can easily be removed. This is for instance the case for
Loop formulas which are not >-free:

Lemma 5.29. For all path formulas π1, π2 ∈ PDLMSC
sf [Procs,Prop],

Loop(π1 · > · π2) ≡ 〈π1〉 ∧ 〈π−1
2 〉 .

Proof. We have

e ∈ JLoop(π1 · > · π2)K iff ∃f, g. (e, f) ∈ Jπ1K ∧ (f, g) ∈ J>K ∧ (g, e) ∈ Jπ2K

iff ∃f, g. (e, f) ∈ Jπ1K ∧ (e, g) ∈
q
π−1

2

y

iff e ∈
q
〈π1〉 ∧ 〈π−1

2 〉
y
.

Another case where Loop can be easily removed are formulas such as

π = <proc ·Cp,q ·<proc ·Cq,r (p 6= r) ,

where it can be seen syntactically that JLoop(π)K is always empty: in this example,
for all (e, f) ∈ JπK, e must be on process p and f on process r, hence e 6= f . This
can be formalized in terms of Comp(π).

Lemma 5.30. For all π ∈ PDLMSC
sf [Procs,Prop], if Comp(π) ∩ IdProcs = ∅ then,

over MSCs,

Loop(π) ≡ false .

Proof. If Comp(π) ∩ IdProcs = ∅, then by Lemma 5.16,

{(e, e) | e ∈ JLoop(π)K} ⊆ JπKM ∩ {Ep × Ep | p ∈ Procs} = ∅ ,

hence JLoop(π)K = ∅.

By Lemma 5.19, in all remaining cases, that is, if π is >-free and Comp(π) ∩
IdProcs 6= ∅, then Comp(π) ⊆ IdProcs, and JπK(e) is always included in the process
of e, which slightly simplifies the situation.

5.3. FRAGMENT WITHOUT LOOP FORMULAS 95

5.3.3 A normal form for Loop formulas

This subsection establishes a normal form for PDLMSC
sf [Procs,Prop] sentences (Step 2),

in which Loop operators occur only in subformulas of the form

A(P =⇒ Loop(≤proc · π · ≤proc)) ,

where P is a new atomic proposition, and π is a PDLMSC
sf [Procs,Prop] path formula

without any occurrence of Loop.

Note that the formulas ≤proc and therefore Loop(≤proc · π · ≤proc) are not in
PDLMSC

sf [Procs,Prop]. We could still expand A(P =⇒ Loop(≤proc · π · ≤proc)) into
a PDLMSC

sf [Procs,Prop] formula, using the fact that

Loop(≤proc · π · ≤proc) ≡ Loop(π) ∨ Loop(<proc · π ·<proc) ∨
Loop(π ·<proc) ∨ Loop(<proc · π) .

However, this normal form will be used only as intermediate step, so this expansion
is not necessary.

As explained in the outline of the proof in Section 5.3.1, the normal form relies
on the two results below, showed in the next two lemmas:

• negative occurrences of Loop formulas can be replaced with positive ones.

• formulas of the form Loop(≤proc ·π ·≤proc) suffice to express all other Loop(π′)
formulas.

Lemma 5.31. Let π ∈ PDLMSC
sf [Procs,Prop] be a >-free formula such that Comp(π) ⊆

IdProcs. Over MSCs,

¬Loop(π) ≡ ¬〈π〉 ∨ ¬〈π−1〉 ∨ Loop ((min π) ·>proc) ∨ Loop
(
min

(
π−1

)
·>proc

)
.

Proof. We have

¬Loop(π) ≡ Loop(πc) .

In addition, we showed in the proof of Lemma 5.24 that

πc ≡ {¬〈π〉}? · >+> · {¬〈π−1〉}? +
∑

(p,q)/∈Comp(π)

{p}? · > · {q}? +

(min π) ·>proc + (min (π−1) ·>proc)
−1
.

We also have JLoop({p}? · > · {q}?)K ⊆ J¬〈π〉K for all (p, q) /∈ Comp(π). Indeed,
if e ∈ JLoop({p}? · > · {q}?)K, then p = q = loc(e). And since (p, p) /∈ Comp(π)
and Comp(π) ⊆ IdProcs, Lemma 5.19 implies that there is no q′ such that (p, q′) ∈
Comp(π). Therefore, e ∈ J¬〈π〉K.

96 CHAPTER 5. LOGICS FOR MESSAGE SEQUENCE CHARTS

We then have

¬Loop(π) ≡ Loop (πc)

≡ Loop ({¬〈π〉}? · >) ∨ Loop
(
> · {¬〈π−1〉}?

)
∨∨

(p,q)/∈Comp(π)

Loop ({p}? · > · {q}?) ∨

Loop ((min π) ·>proc) ∨ Loop
(

(min (π−1) ·>proc)
−1
)

≡ ¬〈π〉 ∨ ¬〈π−1〉 ∨ Loop ((min π) ·>proc) ∨ Loop
(
min

(
π−1

)
·>proc

)
.

Lemma 5.32. Let π ∈ PDLMSC
sf [Procs,Prop]. Over MSCs,

Loop(π) ≡ 〈π〉 ∧ 〈π−1〉 ∧ Loop(≤proc · π · ≤proc) ∧ Loop(≤proc · π−1 · ≤proc) .

Proof. The left-to-right implication is immediate. Conversely, let

e ∈
q
〈π〉 ∧ 〈π−1〉 ∧ Loop(≤proc · π · ≤proc) ∧ Loop(≤proc · π−1 · ≤proc)

y
.

Since e ∈ JLoop(≤proc · π · ≤proc)K, there exist f1 ≤proc e ≤proc e1 such that (e1, f1) ∈
JπK. And since e ∈

q
Loop(≤proc · π−1 · ≤proc)

y
, there exist e2 ≤proc e ≤proc f2 such

that (e2, f2) ∈ JπK:

e

e

e1

f1

e2

f2

≤proc ≤proc

≤proc ≤proc

We have

(e1, f1) ∈ JπK , (e2, f2) ∈ JπK , e2 ≤proc e1 and f1 ≤proc f2 ,

thus, by Lemma 5.20,

(e2, f1) ∈ JπK and (e1, f2) ∈ JπK .

Then

(e2, f1) ∈ JπK , (e2, f2) ∈ JπK , e ∈
q
〈π−1〉

y
and f1 ≤ e ≤ f2 ,

and by Lemma 5.21, we obtain (e2, e) ∈ JπK. Similarly, considering e1, f1, e, f2, we
obtain (e1, e) ∈ JπK. So we have

(e2, e) ∈ JπK , (e1, e) ∈ JπK , e ∈ J〈π〉K and e2 ≤ e ≤ e1 ,

and applying again Lemma 5.21 yields (e, e) ∈ JπK, that is, e ∈ JLoop(π)K.

5.3. FRAGMENT WITHOUT LOOP FORMULAS 97

We are now ready to construct normal forms of formulas ξ ∈ PDLMSC
sf [Procs,Prop].

Lemma 5.33. Let ξ ∈ PDLMSC
sf [Procs,Prop]. There exist n ≥ 0, Prop′ = Prop]

{P1, . . . , Pn}, and formulas π1, . . . , πn and ξ′ such that:

• ξ′ is a sentence of PDLMSC
sf [Procs,Prop′] with no occurrence of Loop.

• For all i, πi is a >-free path formula of PDLMSC
sf [Procs,Prop′] with no occur-

rence of Loop, and such that Comp(πi) ⊆ IdProcs.

• L(ξ) = PrProp(L(ξ′′)), where

ξ′′ = ξ′ ∧
∧

1≤i≤n
A (Pi =⇒ Loop(≤proc · πi · ≤proc)) .

• ‖ξ′′‖ = O(‖ξ‖). In particular, n = O(‖ξ‖).

Proof. First, we apply Lemma 5.30 to replace every subformula Loop(π) ∈ S(ξ)
such that Comp(π) ∩ IdProcs = ∅ with the equivalent formula false. We then apply
Lemma 5.29 to replace every remaining subformula Loop(π) such that π is not >-
free, that is, π = π1 ·> ·π2 for some π1, π2, with the equivalent formula 〈π1〉∧〈π−1

2 〉.
Each such substitution introduces a constant number of new subformulas, and does
not increase the sum of the lengths of the path formulas occurring in ξ. So, in
total, this increases ‖ξ‖ by a linear factor at most. For any remaining subformula
Loop(π), π is >-free and Comp(π)∩ IdProcs 6= ∅, which implies, by Lemma 5.19, that
Comp(π) ⊆ IdProcs.

So in the remainder of the proof, we can assume that for all Loop(π) ∈ S(ξ),
π is >-free and Comp(π) ⊆ IdProcs. We proceed by induction on the number of
formulas Loop(π) ∈ S(ξ). If there are none, we take n = 0 and ξ′ = ξ. Otherwise,
let Loop(π) ∈ S(ξ) such that π contains no occurrence of Loop.

Based on Lemma 5.31 and 5.32, we first define formulas π1, . . . , π6 such that
Loop(π) and ¬Loop(π) can be expressed as positive boolean combinations of formu-
las Loop(≤proc · πi · ≤proc) and formulas without Loop. We let

π1 = π π2 = π−1

π3 = min (π) ·>proc π4 = π−1
3

π5 = min (π−1) ·>proc π6 = π−1
5 .

Note that all the πi are Loop free. By Lemma 5.32, we have

Loop(π) ≡ 〈π1〉 ∧ 〈π2〉 ∧ Loop(≤proc · π1 · ≤proc) ∧ Loop(≤proc · π2 · ≤proc) (5.1)

Loop(π3) ≡ 〈π3〉 ∧ 〈π4〉 ∧ Loop(≤proc · π3 · ≤proc) ∧ Loop(≤proc · π4 · ≤proc) (5.2)

Loop(π5) ≡ 〈π5〉 ∧ 〈π6〉 ∧ Loop(≤proc · π5 · ≤proc) ∧ Loop(≤proc · π6 · ≤proc) (5.3)

98 CHAPTER 5. LOGICS FOR MESSAGE SEQUENCE CHARTS

and by Lemma 5.31,

¬Loop(π) ≡ ¬〈π1〉 ∨ ¬〈π2〉 ∨ Loop(π3) ∨ Loop(π5) (5.4)

We now introduce, for each πi, a new atomic proposition Pi which, intuitively, is
meant to be interpreted in the same way as Loop(≤proc · πi · ≤proc). In fact, though,
we will ensure that JPiK ⊆ JLoop(≤proc · πi · ≤proc)K, but not necessarily the converse
inclusion. Accordingly, we let

γ =
∧

1≤i≤6

A (Pi =⇒ Loop(≤proc · πi · ≤proc)) .

Notice that γ respects the desired normal form.
Let ξ̃ be the formula obtained by replacing every occurrence of Loop(π) in ξ

with the formula

ϕ = 〈π1〉 ∧ 〈π2〉 ∧ P1 ∧ P2 .

Note that in the special case where JPiK = JLoop(≤proc · πi · ≤proc)K, ϕ is equivalent
to Loop(π) and therefore, ξ̃ is equivalent to ξ. On the other hand, if we only assume
that JPiK ⊆ JLoop(≤proc · πi · ≤proc)K, we only have JϕK ⊆ JLoop(π)K. We show below
that we can recover the second inclusion by adding the condition

δ = A

¬ϕ =⇒

 ¬〈π1〉 ∨ ¬〈π2〉
∨
(
〈π3〉 ∧ 〈π4〉 ∧ P3 ∧ P4

)
∨
(
〈π5〉 ∧ 〈π6〉 ∧ P5 ∧ P6

)

 .

Intuitively, the right-hand side of δ is obtained by unfolding (5.2) and (5.3) in (5.4),
and replacing Loop(≤proc · πi · ≤proc) with Pi.

Note that for all i ∈ {1, . . . , 6}, by Lemma 5.13 and 5.23, ‖S(πi) \ S(ξ)‖ =
O(length(π)). Therefore,

‖ξ̃ ∧ δ ∧ γ‖ = ‖ξ‖+O(length(π)) (5.5)

Claim 5.34. L(ξ) = PrProp(L(ξ̃ ∧ δ ∧ γ)).

Proof. Let M = (E,→,C, loc, λ) ∈ L(ξ). Let M ′ = (E,→,C, loc, λ′) be the exten-
sion of M to Prop′ defined by Pi ∈ λ′(e) if and only if e ∈ JLoop(≤proc · πi · ≤proc)KM .

By definition, M ′ |= γ. Moreover, applying the definitions of JP1KM
′

and JP2KM
′

and (5.1),

JϕKM
′

= J〈π1〉 ∧ 〈π2〉 ∧ Loop(≤proc · π1 · ≤proc) ∧ Loop(≤proc · π2 · ≤proc)KM
′

= JLoop(π)KM
′

= JLoop(π)KM .

5.3. FRAGMENT WITHOUT LOOP FORMULAS 99

In particular, since M |= ξ, and since ξ̃ is obtained by replacing Loop(π) with ϕ
in ξ, we have M ′ |= ξ̃. Using (5.2) and (5.3), we also have

JLoop(π3)KM
′

= J〈π3〉 ∧ 〈π4〉 ∧ P3 ∧ P4KM
′

JLoop(π5)KM
′

= J〈π5〉 ∧ 〈π6〉 ∧ P5 ∧ P6KM
′
.

Then, JϕKM
′

= JLoop(π)KM
′

also implies, with (5.4),

J¬ϕKM
′

= J¬Loop(π)KM
′

= J¬〈π1〉 ∨ ¬〈π2〉 ∨ Loop(π3) ∨ Loop(π5)KM
′

= J¬〈π1〉 ∨ ¬〈π2〉 ∨ (〈π3〉 ∧ 〈π4〉 ∧ P3 ∧ P4) ∨ (〈π5〉 ∧ 〈π6〉 ∧ P5 ∧ P6)KM
′
.

Therefore, M ′ |= δ and M ′ |= ξ̃ ∧ δ ∧ γ.

Conversely, let M ′ = (E,→,C, loc, λ′) ∈ L(ξ̃ ∧ δ ∧ γ), and denote its projection
on Prop by M = (E,→,C, loc, λ). Since M ′ |= ξ̃, a sufficient condition for M |= ξ
is again

JLoop(π)KM = JϕKM
′
.

Let us prove that this equality holds. Since M ′ |= γ, for all i ∈ {1, . . . , 6}, we have

JPiKM
′
⊆ JLoop(≤proc · πi · ≤proc)KM

′
. In particular, using this and (5.1),

JϕKM
′

= J〈π1〉 ∧ 〈π2〉 ∧ P1 ∧ P2KM
′

⊆ J〈π1〉 ∧ 〈π2〉 ∧ Loop(≤proc · π1 · ≤proc) ∧ Loop(≤proc · π2 · ≤proc)KM
′

⊆ JLoop(π)KM
′

= JLoop(π)KM .

Conversely,

J¬ϕKM
′
⊆ J¬〈π1〉 ∨ ¬〈π2〉 ∨ (〈π3〉 ∧ 〈π4〉 ∧ P3 ∧ P4) ∨ (〈π5〉 ∧ 〈π6〉 ∧ P5 ∧ P6)KM

′

(since M ′ |= δ)

⊆

u

w
v

¬〈π1〉 ∨ ¬〈π2〉
∨ (〈π3〉 ∧ 〈π4〉 ∧ Loop(≤proc · π3 · ≤proc) ∧ Loop(≤proc · π4 · ≤proc))

∨ (〈π5〉 ∧ 〈π6〉 ∧ Loop(≤proc · π5 · ≤proc) ∧ Loop(≤proc · π6 · ≤proc))

}

�
~

M ′

(since M ′ |= γ)

⊆ J¬Loop(π)KM
′

(using (5.2), (5.3) and (5.4))

Hence

JϕKM
′

= JLoop(π)KM and M |= ξ .

100 CHAPTER 5. LOGICS FOR MESSAGE SEQUENCE CHARTS

Note that S(ξ̃) contains one less Loop formula than S(ξ). To conclude the proof
of the lemma, we apply the induction hypothesis to ξ̃. We obtain a formula ξ1 over
Prop] {P1, . . . , P6}] {P7, . . . , Pn} such that

L
(
ξ̃
)

= PrProp∪{P1,...,P6} (L (ξ1 ∧ γ1)) ,

where

γ1 =
∧

7≤i≤n
A (Pi =⇒ Loop(≤proc · πi · ≤proc)) .

We can then define ξ′ as

ξ′ = ξ1 ∧ δ ,

and

ξ′′ = ξ′ ∧ (γ ∧ γ1) = ξ1 ∧ δ ∧ γ ∧ γ1 .

We then have

PrProp(L(ξ′′)) = PrProp(PrProp∪{P1,...,P6}(L(ξ1 ∧ γ1 ∧ δ ∧ γ)))

= PrProp(L(ξ̃ ∧ δ ∧ γ)) ,

since the evaluation of δ and γ does not depend on the interpretation of atomic
propositions outside of Prop ∪ {P1, . . . , P6}. Then, by Claim 5.34,

PrProp(L(ξ′′)) = L(ξ) .

Regarding the size of ξ′′, we obtain ‖ξ′′‖ = O(‖ξ‖) from Equation (5.5).

5.3.4 The case of Loop formulas in normal form

We now move on to Step 3: our goal is to prove that any formula of the form
A(P =⇒ Loop(≤proc · π · ≤proc)) can be translated into an equivalent formula (up
to projection) without Loop.

A first observation is that the formula Loop(≤proc · π · ≤proc) can be replaced
with Loop(≤proc ·min π · ≤proc):

Lemma 5.35. Let π ∈ PDLMSC
sf [Procs,Prop] be a >-free path formula. Over

MSC(Procs,Prop),

Loop(≤proc · π · ≤proc) ≡ Loop(≤proc ·min π · ≤proc) .

Proof. The right-to-left implication is immediate, as Jmin πK ⊆ JπK. Conversely,
suppose that e ∈ JLoop(≤proc · π · ≤proc)K. There exist f1 ≤proc e ≤proc f2 such that
(f2, f1) ∈ JπK. Then f ′1 := minJπK(f2) is well-defined, and f ′1 ≤proc f1:

5.3. FRAGMENT WITHOUT LOOP FORMULAS 101

ef1 f2f ′1 ≤proc ≤proc≤proc

π

min π

We then have e ∈ JLoop(≤proc ·min π · ≤proc)K, since f ′1 ≤proc e ≤proc f2 and
(f2, f

′
1) ∈ Jmin πK.

We say that a set I of events is a ≤proc-interval (or interval when there is no
ambiguity) if it is an interval of (Ep,≤proc) for some process p. Given an event e,
we denote by [e,+∞) the interval {f | e ≤proc f}.

Lemma 5.35 implies that the formula A(P =⇒ Loop(≤proc ·π ·≤proc)) is satisfied
if and only if every P -labeled event belongs to an interval of the form [minJπK(e), e].
The next two lemmas give necessary and sufficient conditions for this to hold, which
are easier to express in PDLMSC

sf [Procs,Prop] without using Loop.
First, from the set of all intervals [minJπK(e), e], we can extract two sequences

of disjoint (and non-adjacent) intervals which cover all intervals [minJπK(e), e]. In
the case where infinitely many intervals [minJπK(e), e] overlap in a same event, then
all but a finite number of them must share a same left endpoint f , and in that case,
we replace those with the limit interval [f,+∞).

Having non-adjacent intervals will later allow us to identify them by labeling
them with two extra atomic propositions (one for each sequence), and describe
more easily the properties they should satisfy in PDLMSC

sf [Procs,Prop].

Lemma 5.36. Let π ∈ PDLMSC
sf [Procs,Prop] be a >-free path formula such that

Comp(π) ⊆ IdProcs, and ξ = A(P =⇒ Loop(≤proc · π · ≤proc)). For all MSCs M =
(E,→,C, loc, λ) ∈ L(ξ), there exist two sets I and J of ≤proc-intervals such that:

1. The union of all intervals in I and J covers all P -labeled events, that is,
JP KM ⊆

⋃
I∈I I ∪

⋃
J∈J .

2. For all I, J ∈ I or I, J ∈ J such that I 6= J , the intervals I and J are disjoint
and non adjacent, that is, I ∪ J is not a ≤proc-interval.

3. Every bounded interval I ∈ I or I ∈ J is of the form [minJπK(e), e].

4. Every unbounded interval I ∈ I or I ∈ J is of the form [e,+∞) with e =
minJπK(f) for infinitely many f .

Proof. Let us prove that for all processes p, we can define two (finite or infinite) se-
quences I1, I2, . . . and J1, J2, . . . of intervals of (Ep,≤proc) such that Ip = {I1, I2, . . .}
and Jp = {J1, J2, . . .} satisfy conditions 2, 3 and 4, and such that

JP KM ∩ Ep ⊆
⋃
I∈Ip

I ∪
⋃
J∈Jp

J (5.6)

102 CHAPTER 5. LOGICS FOR MESSAGE SEQUENCE CHARTS

We can then simply take I =
⋃
p∈Procs Ip and J =

⋃
p∈Procs Jp to conclude.

Fix p ∈ Procs. Let H denote the set of intervals

H = {[minJπK(e), e] | e ∈ Ep ∧minJπK(e) ≤ e} .

By Lemma 5.35, for every f ∈ Ep, we have f ∈ JLoop(≤proc · π · ≤proc)K if and only
if f ∈ JLoop(≤proc ·min π · ≤proc)K, that is, if and only if there exist e, g such that
e ≤proc f ≤proc g and e = minJπK(g), i.e., f ∈

⋃
I∈H I. Since M |= ξ, we have

JP K ∩ Ep ⊆ JLoop(≤proc · π · ≤proc)K ∩ Ep =
⋃
I∈H

I (5.7)

So we only need to define two sequences of intervals satisfying conditions 2, 3
and 4 and covering exactly

⋃
I∈H I. To do so, we simply define alternately intervals

I1, J1, I2, J2, . . . from left to right, choosing at each step the largest interval I ∈ H
covering the next event e ∈

⋃
I∈H I which is not already covered. If there is no such

“largest” interval, we add an unbounded interval instead.
Let us define this more formally. Given two intervals I and J , we write I � J

if the right endpoint of J is larger or equal to the right endpoint of I, that is,
J = [e,+∞), or I = [e, f] and J = [e′, f ′] for some f ≤proc f

′. Assume that
intervals I1, J1, . . . , Ii, Ji are defined. If

⋃
1≤j≤i Ij ∪

⋃
1≤j≤i Jj =

⋃
I∈H I, we stop

both sequences. Otherwise, let

e = min
(⋃

I∈H I
)
\
(⋃

1≤j≤i Ij ∪
⋃

1≤j≤i Jj
)
.

We define Ii+1 as follows:

• If there are finitely many intervals I ∈ H such that e ∈ I, we define Ii+1 as
their maximum with respect to �.

• If there are infinitely many intervals I ∈ H such that e ∈ I, then infinitely
many of them share a same left endpoint, i.e., are of the form [f, e1], [f, e2], . . .,
with f = minJπK(ei) for all i ∈ N. We then let Ii+1 = [f,+∞).

If I1, J1, . . . , Ii are defined, Ji is defined exactly as above.
Note that Ii ⊆

⋃
I∈H and Ji ⊆

⋃
I∈H I for all i, and that the set of events

covered after each step is strictly increasing:

I1 (I1 ∪ J1 (I1 ∪ J1 ∪ I2 (· · ·

Moreover, by minimality of the event e considered at each step, these sets are all
intervals of

(⋃
I∈H I,≤proc

)
. Therefore, for the complete sequences,⋃

i

Ii ∪
⋃
i

Ji =
⋃
I∈H

I .

5.3. FRAGMENT WITHOUT LOOP FORMULAS 103

By (5.7), this means that (5.6) is satisfied.

Condition 2 follows from the maximality of Ii+1 and Ji+1 at each step. Suppose
towards a contradiction that there exist i < j such that Ii ∪ Ij is an interval. Let

e = min
(⋃

I∈H I
)
\
(⋃

1≤k≤i Ik ∪
⋃

1≤k<i Jk
)

be the event considered for the definition of Ji. We have

Ii <proc e ≤proc sup Ji <proc sup Ij

(with the convention f <proc +∞ for all events f), and since Ii ∪ Ij is an interval,
e ∈ Ij . This contradicts the maximality of Ji.

Finally, conditions 3 and 4 follow from the definition of the intervals Ii and Ji.

Condition 3 in Lemma 5.36 is difficult to express in PDLMSC
sf [Procs,Prop] without

using the Loop operator. The next lemma provides an alternative condition, which
will be easier to formalize in the logic, and which suffices to ensure that the formula
A(P =⇒ Loop(≤proc · π · ≤proc)) holds. Namely, instead of requiring that for all
intervals [e, f], we have e = minJπK(f), we only require that e = minJπK(f ′) for
some (possibly other) interval [e′, f ′].

Lemma 5.37. Let π ∈ PDLMSC
sf [Procs,Prop] be a >-free path formula such that

Comp(π) ⊆ IdProcs and M = (E,→,C, loc, λ) ∈ MSC(Procs,Prop). Assume that
there exist two sets I and J of ≤proc-intervals such that:

1. JP KM ⊆
⋃
I∈I I ∪

⋃
J∈J J .

2. For all I, J ∈ I or I, J ∈ J such that I 6= J , I ∪ J is not a ≤proc-interval.

3. For every bounded interval I = [e, f] in I (resp. in J), there exists J = [e′, f ′]
in I (resp. in J) such that e = minJπK(f ′).

4. Every unbounded interval I ∈ I or I ∈ J is of the form [e,+∞) with e =
minJπK(f) for infinitely many f .

Then M |= A(P =⇒ Loop(≤proc · π · ≤proc)).

Proof. We first prove that we can strengthen condition 3, namely, that for every
bounded interval I = [e, f] ∈ I, there exists J = [e′, f ′] ∈ I such that e =
minJπK(f ′) and I = J or I <proc J (by symmetry, the same also holds for J).

According to condition 2, for each process p, the set of intervals in I on process p
forms a (finite or infinite) sequence I1 <proc I2 <proc · · · . Since Comp(π) ⊆ IdProcs,
condition 3 implies that for all Ii = [ei, fi], there exists Ij = [ej , fj] such that

104 CHAPTER 5. LOGICS FOR MESSAGE SEQUENCE CHARTS

ei = minJπK(fj). Let us prove by induction on i that we can require that in addition,
j ≥ i (i.e., I = J or Ii <proc Ij).

For i = 1, this is immediate since j ≥ i for all j. Suppose that Ii = [ei, fi],
and that the result holds for all i′ < i. There exists j such that Ij = [ej , fj] and
ei = minJπK(fj). Suppose towards a contradiction that j < i. Then, by induction,
there exists Ik = [ek, fk] such that j ≤ k and ej = minJπK(fk):

ei fiej fj ek fk

min πmin π

Since Ij <proc Ii and (j = k or Ij <proc Ik), we have

fj ≤proc fk and minJπK(fk) = ej <proc ei = minJπK(fj) ,

a contradiction with Lemma 5.22.

We are now ready to prove that M |= A(P =⇒ Loop(≤proc · π · ≤proc)). By
condition 1, we only need to show that all intervals I ∈ I ∪ J are included in
JLoop(≤proc · π · ≤proc)K. We assume without loss of generality that I ∈ I.

If I is bounded, i.e., I = [e, f] for some e, f , then (as proved above) there exists
an interval J = [e′, f ′] ∈ I such that e = minJπK(f ′) and I = J or I <proc J .
For all g ∈ I, we then have e ≤proc g ≤proc f

′. Moreover, (f ′, e) ∈ JπK, hence
g ∈ JLoop(≤proc · π · ≤proc)K.

If I is unbounded, then by condition 4, for all f ∈ I = [e,+∞), there exists
g ≥proc f such that e = minJπK(g). Then e ≤proc f ≤proc g and (g, e) ∈ JπK, hence
f ∈ JLoop(≤proc · π · ≤proc)K.

The next lemma shows how to transform the PDLMSC
sf [Procs,Prop] formula

A(P =⇒ Loop(≤proc · π · ≤proc)) into one without any occurrence of Loop. As
explained above, the idea is to use two additional atomic propositions to identify
sets of intervals satisfying the conditions of Lemma 5.37.

Lemma 5.38. Let π ∈ PDLMSC
sf [Procs,Prop] be a >-free path formula such that

Comp(π) ⊆ IdProcs and π has no occurrence of Loop. Let P ∈ Prop and

ξ = A(P =⇒ Loop(≤proc · π · ≤proc)) .

There exists a formula ξ′ ∈ PDLMSC
sf [Procs,Prop] {I, J}] with no occurrence of

Loop such that

L(ξ) = PrProp(L(ξ′)) , and ‖S(ξ′) \ S(π)‖ = O(length(π)) .

5.3. FRAGMENT WITHOUT LOOP FORMULAS 105

Proof. We define event formulas Ileft , Iright , Jleft and Jright to describe leftmost
and rightmost events of maximal intervals (with respect to ≤proc) of I-labeled or
J-labeled events:

Ileft := I ∧ ¬ 〈←〉 I Jleft := J ∧ ¬ 〈←〉 J
Iright := I ∧ ¬ 〈→〉 I Jright := J ∧ ¬ 〈→〉 J .

To distinguish between leftmost events of bounded and unbounded intervals, we
also introduce

Ifin
left = Ileft ∧ (Iright ∨ 〈<proc〉 Iright) Jfin

left = Jleft ∧ (Jright ∨ 〈<proc〉 Jright)

Iinfleft = Ileft ∧ ¬(Iright ∨ 〈<proc〉 Iright) J infleft = Jleft ∧ ¬(Jright ∨ 〈<proc〉 Jright) .

We also let

〈(min π)−1〉∞ := 〈(min π)−1〉 ∧ ¬〈<proc · (min π)−1〉 ∧ [<proc] 〈<proc · π〉 ,

where, as defined before, [π]ϕ = ¬ 〈π〉 ¬ϕ.

Recall that

‖S((min π)−1) \ S(π)‖ = ‖S(min π) \ S(π)‖ (Lemma 5.13)

= O(length(π)) (Lemma 5.23)

and

length((min π)−1) = length(min π) = O(length(π)) .

Therefore,

‖S(〈(min π)−1〉∞) \ S(π)‖ = O(length(π)) .

Claim 5.39. We have e ∈
q
〈(min π)−1〉∞

y
if and only if e = minJπK(f) for infinitely

many f .

Proof. Assume e = min JπK (f) for infinitely many f . Note that since Comp(π) ⊆
IdProcs, all such f are located on process loc(e). So we have e ∈

q
〈(min π)−1〉

y
, and

for all f >proc e, there exists g >proc f such that e = minJπK(g). In particular,
f ∈ J〈<proc · π〉K. Hence e ∈ J[<proc] 〈<proc · π〉K. Finally, suppose towards a
contradiction that e /∈

q
¬〈<proc · (min π)−1〉

y
, i.e., there exist e′ >proc e and f ′

such that e′ = minJπK(f ′). Since e = minJπK(f) for infinitely many f , we can find
one such f with f >proc f

′:

e e′ f ′ f<proc <proc

min π

min π

106 CHAPTER 5. LOGICS FOR MESSAGE SEQUENCE CHARTS

We then have

f ′ <proc f and minJπK(f) = e <proc e
′ = minJπK(f ′) ,

which contradicts Lemma 5.22.
Conversely, assume that e ∈

q
〈(min π)−1〉∞

y
. Since e ∈ J〈(min π)−1〉K, there

exists f such that e = minJπK(f). Since e ∈ J[<proc] 〈<proc · π〉K, there exists an
infinite sequence f <proc f1 <proc f2 <proc · · · such that fi ∈ J〈π〉K for all i ∈ N, that
is, ei = minJπK(fi) is well-defined. Moreover, by Lemma 5.22, f ≤proc fi implies
e ≤proc ei. Since e ∈ J¬〈<proc · (min π)−1〉K, we cannot have e <proc ei. Therefore,
e = ei for all i. That is, e = minJπK(fi) for infinitely many fi.

Let
ξ′ := A(P =⇒ I ∨ J) ∧

A(Ifin
left =⇒ 〈(min π)−1〉 Iright) ∧

A(Iinfleft =⇒ 〈(min π)−1〉∞) ∧

A(Jfin
left =⇒ 〈(min π)−1〉 Jright) ∧

A(J infleft =⇒ 〈(min π)−1〉∞) .

As explained above, ‖S(〈(min π)−1〉∞) \ S(π)‖ = O(length(π)). Similarly, we also
have ‖S(〈(min π)−1〉 Iright) \ S(π)‖ = O(length(π)). Therefore,

‖S(ξ′) \ S(π)‖ = O(length(π)) .

The two claims below prove that

L(ξ) = PrProp(L(ξ′)) .

Claim 5.40. For all M ∈ L(ξ), there exists M ′ ∈ L(ξ′) such that M = PrProp(M ′).

Proof. Let I and J be the two sets of intervals given by Lemma 5.36. We define
an extension M ′ of M to Prop] {I, J} by setting

• e ∈ JIKM
′

if and only if e is part of some interval in I, and

• e ∈ JJKM
′

if and only if e is part of some interval in J .

By condition 1 of Lemma 5.36, we have

M ′ |= A(P =⇒ I ∨ J) .

Moreover, by condition 2 of Lemma 5.36, the intervals of I are exactly the maximal
intervals of I-labeled events in M ′, and similarly for J . Then by condition 3,

M ′ |= A(Ifin
left =⇒ 〈(min π)−1〉 Iright)

M ′ |= A(Jfin
left =⇒ 〈(min π)−1〉 Jright) ,

5.3. FRAGMENT WITHOUT LOOP FORMULAS 107

and by condition 4,

M ′ |= A(Iinfleft =⇒ 〈(min π)−1〉∞)

M ′ |= A(J infleft =⇒ 〈(min π)−1〉∞) .

Hence, M ′ |= ξ′.

Claim 5.41. For all M ′ ∈ L(ξ′), PrProp(M ′) ∈ L(ξ).

Proof. Let M = PrProp(M ′). Let I and J be the sets of maximal ≤proc-intervals of
I- and J-labeled events. Let us show that these two sets satisfy the conditions of
Lemma 5.37, which implies that M |= ξ.

Condition 1 follows from the fact that

M ′ |= A(P =⇒ I ∨ J) .

Condition 2 comes from the definition of the two sequences. Condition 3 is a
consequence of

M ′ |= A(Ifin
left =⇒ 〈(min π)−1〉 Iright) ∧

A(Jfin
left =⇒ 〈(min π)−1〉 Jright) ,

and condition 4 of

M ′ |= A(Iinfleft =⇒ 〈(min π)−1〉∞) ∧

A(J infleft =⇒ 〈(min π)−1〉∞) .

5.3.5 Proof of Theorem 5.28

We can now combine results from the previous subsections to prove Theorem 5.28.

Theorem 5.28. For all ξ ∈ PDLMSC
sf [Procs,Prop], there exist Prop′ ⊇ Prop and

ξ′ ∈ PDLMSC
sf [Procs,Prop′] such that ξ′ contains no occurrence of Loop, and

L(ξ) = PrProp(L(ξ′)) .

Moreover, |Prop′| = O(|Prop|+ ‖ξ‖) and ‖ξ′‖ = O(‖ξ‖).

Proof of Theorem 5.28. Let ξ ∈ PDLMSC
sf [Procs,Prop].

We first apply Lemma 5.33. We obtain a formula

ξ′′ = ξ′ ∧
∧

1≤i≤n
A (Pi =⇒ Loop(≤proc · πi · ≤proc))

108 CHAPTER 5. LOGICS FOR MESSAGE SEQUENCE CHARTS

in PDLMSC
sf [Procs,Prop′′], where Prop′′ = Prop] {Pi | 1 ≤ i ≤ n}, such that

‖ξ′′‖ = O(‖ξ‖) and L(ξ) = PrProp(L(ξ′′)) .

Moreover, ξ′ and each of the πi contains no occurrence of Loop, and for all i, πi is
>-free and Comp(πi) ⊆ IdProcs.

Next, we apply Lemma 5.38 to each subformula

ξi = A(Pi =⇒ Loop(≤proc · πi · ≤proc)) .

Let

Propi = Prop′′] {Ii, Ji} = Prop] {Pj | 1 ≤ j ≤ n}] {Ii, Ji} .

By Lemma 5.38, for all i, there exists a formula ξ′i ∈ PDLMSC
sf [Procs,Propi] with no

occurrence of Loop such that ‖S(ξ′i) \ S(πi)‖ = O(length(πi)) and

L(ξi) = PrProp′′(L(ξ′i)) .

Finally, let Prop′ = Prop] {Pi, Ii, Ji | 1 ≤ i ≤ n}, and ξ̂ ∈ PDLMSC
sf [Procs,Prop]

be the formula

ξ̂ = ξ′ ∧ ξ′1 ∧ · · · ∧ ξ′n .

When evaluating ξ̂ in a given MSC, the interpretation of each pair of atomic
propositions (Ii, Ji) affects only the evaluation of ξ′i, and not other conjuncts.
Therefore,

PrProp′′
(
L
(
ξ̂
))

= L
(
ξ′ ∧ ξ1 ∧ · · · ∧ ξn

)
= L

(
ξ′′
)
,

and

PrProp

(
L
(
ξ̂
))

= PrProp
(
L
(
ξ′′
))

= L(ξ) .

Regarding the size of ξ̂, we have

‖S(ξ̂) \ S(ξ′′)‖ = O(length(π1) + · · ·+ length(πn)) = O(‖ξ′′‖) ,

hence

‖ξ̂‖ = O(‖ξ′′‖) = O(‖ξ‖) .

5.4 Temporal logics

Event formulas of PDLMSC
sf [Procs,Prop] constructed without the Loop operator

constitute a simple temporal logic extending LTL from words to MSCs: any such
formula is equivalent to one over the syntax

ϕ ::= true | p | P | ϕ∨ϕ | ¬ϕ | 〈Cp,q〉ϕ | 〈C−1
p,q〉ϕ | 〈(<proc)ϕ〉ϕ | 〈(>proc)ϕ〉ϕ | 〈>〉ϕ ,

5.4. TEMPORAL LOGICS 109

where P ∈ Prop and p ∈ Procs. In the case of words, that is, for |Procs| = 1, there
are no formulas 〈Cp,q〉ϕ or 〈C−1

p,q〉ϕ, and the formula 〈>〉ϕ becomes equivalent to
ϕ∨〈<proc〉ϕ∨〈>proc〉ϕ. Moreover, 〈(<proc)ϕ〉ψ is the usual “ϕ strict until ψ” from
LTL, while 〈(>proc)ϕ〉ψ corresponds to the strict since modality. Therefore, for
|Procs| = 1, this logic corresponds exactly to LTL over words.

While this logic is quite expressive, as shown in the previous section, it has one
major drawback: it does not allow to easily express properties of the happened-
before relation ≤. Consider for instance the mutual exclusion property, which could
be expressed in FO[Procs,Prop,≤] with the formula

¬(∃x.∃y. x ‖ y ∧ CS (x) ∧ CS (y)) , where x ‖ y := ¬(x ≤ y) ∧ ¬(y ≤ x) ,

assuming the predicate CS denotes the fact that the current process is in the
critical section. It is not clear whether it can be defined in the temporal logic de-
scribed above (PDLMSC

sf [Procs,Prop] without Loop). Moreover, while Theorems 5.26
and 5.28 tell us that it becomes expressible when we add either the Loop operator, or
existential unary predicate quantification, the resulting formula is far from simple.

We define below another temporal logic for MSCs, based on the happened-before
relation ≤ rather than on the process order ≤proc. It is adapted from classical logics
for partial orders which have been studied for Mazurkiewicz traces [84, 23, 33]. It
uses universal versions of the (strict) until and (strict) since modalities, as well as
a Co modality which jumps to a concurrent event: we say that two events e and f
are concurrent, written e ‖ f , if e 6≤ f and f 6≤ e.

Definition 5.42. Let TL[Procs,Prop, 〈C〉, 〈C−1〉,Co, SU, SS] be the set of formulas Temporal

logic for

MSCs
ϕ ::= true | p | P | ϕ ∨ ϕ | ¬ϕ | 〈C〉ϕ | 〈C−1〉ϕ | Coϕ | ϕ SU ϕ | ϕ SS ϕ

where p ∈ Procs and P ∈ Prop.

A formula ϕ ∈ TL[Procs,Prop, 〈C〉, 〈C−1〉,Co, SU, SS] is interpreted over events
of MSCs. Given M = (E,→,C, loc, λ) ∈MSC(Procs,Prop) and e ∈ E,

M, e |= true

M, e |= p if loc(e) = p

M, e |= P if P ∈ λ(e)

M, e |= ϕ ∨ ψ if M, e |= ϕ or M, e |= ψ

M, e |= ¬ϕ if M, e 6|= ϕ

M, e |= 〈C〉ϕ if there exists f ∈ E such that (e, f) ∈ C and M,f |= ϕ

M, e |= 〈C−1〉ϕ if there exists f ∈ E such that (f, e) ∈ C and M,f |= ϕ

M, e |= Coϕ if there exists f ∈ E such that e ‖ f and M,f |= ϕ

M, e |= ϕ SU ψ if there exists f ∈ E such that e < f and M,f |= ψ

and, for all e < g < f, M, g |= ϕ

M, e |= ϕ SS ψ if there exists f ∈ E such that f < e and M,f |= ψ

and, for all f < g < e, M, g |= ϕ .

110 CHAPTER 5. LOGICS FOR MESSAGE SEQUENCE CHARTS

With the modalities SU and SS, we can define various derived modalities, such
as the non-strict until U and since S, or process-based modalities Xp, Yp and Up,
with the following meaning: Xp moves to the first event on process p that is in the
strict future of the current event, while Yp moves to the last event on process p that
is in the strict past of the current event; finally, Up is the usual LTL (non-strict)
until for a single process p, evaluated at the current event if it is on process p, or
the first event of its future that is on process p otherwise:

ϕ U ψ := ψ ∨ (ϕ ∧ (ϕ SU ψ)) ϕ S ψ := ψ ∨ (ϕ ∧ (ϕ SS ψ))

Xp ϕ := ¬p SU (p ∧ ϕ) Yp ϕ := ¬p SS (p ∧ ϕ)

ϕ1 Up ϕ2 := (¬p ∨ ϕ1) U (p ∧ ϕ2) .

Temporal logics over traces based on the modalities SU, U, Xp and Up and
expressively complete for first-order logic were defined in [23]. The modality Co has
been used e.g. in [2, 94]. The logic introduced by Thiagarajan in [84] uses an until
modality similar to Up, except that if the current event is not on process p, the
evaluation starts at the latest event on process p in the past of the current event (or
the first event of process p if none exists), instead of the first in its future. The second
temporal modality of this logic is a unary modality Op interpreted as follows: Op ϕ
holds at e if the first event on process p that is not in the past of e satisfies ϕ. Both
can similarly be expressed in TL[Procs,Prop, 〈C〉, 〈C−1〉,Co,SU,SS]. An overview
of temporal logics over Mazurkiewicz traces based on the modalities presented here
and others is given in [33].

Example 5.43. The mutual exclusion property as defined above holds when all
events satisfy the formula

CS =⇒ ¬CoCS .

As another example, the formula

(p ∧ 〈C〉 q) =⇒ Xq
(
〈C−1〉 p

)
says that if the current event e is a write to channel (p, q), then the first event on
process q in the future of e is the matching receive event. In other terms, messages
sent through channel (p, q) travel faster than information sent indirectly through
other processes.

Complexity. All TL[Procs,Prop, 〈C〉, 〈C−1〉,Co, SU, SS] formulas can be translated
in a straightforward way into FO[Procs,Prop,≤,C], and then, by Theorem 5.26, into
event formulas of PDLMSC

sf [Procs,Prop]. However, the translation from first-order
logic to PDLMSC

sf [Procs,Prop] is non-elementary (each negation causing an exponen-
tial blow-up), so this approach is not efficient. Instead, we give a direct translation
from TL[Procs,Prop, 〈C〉, 〈C−1〉,Co,SU,SS] to PDLMSC

sf [Procs,Prop]. This will be

5.4. TEMPORAL LOGICS 111

particularly useful when combined with the results from the next chapter, which
gives a translation from PDLMSC

sf [Procs,Prop] to CFMs. While we need to be careful
to obtain a better complexity, this direct translation still uses the same ideas as in
the translation from first-order logic to star-free PDL.

As expected, we say that a formula ϕ ∈ TL[Procs,Prop, 〈C〉, 〈C−1〉,Co, SU, SS]
is equivalent to an event formula ψ ∈ PDLMSC

sf [Procs,Prop], or, more generally,
ψ ∈ PDLsf [Procs,Prop,≤proc,C], if for all MSCs M ∈MSC(Procs,Prop) and events
e in M , we have M, e |= ϕ if and only if M, e |= ψ. This is written ϕ ≡ ψ.

Let us explain how the modalities Coϕ, ϕSUψ and ϕSSψ based on the happened-
before relation ≤ can be defined in PDLMSC

sf [Procs,Prop]. First, ≤ can be expressed
in PDLMSC

sf [Procs,Prop] in a similar way as in FO[Procs,Prop,C,≤proc].

Definition 5.44. Let Π be the set of path formulas π ∈ PDLMSC
sf [Procs,Prop] of

the form
π = π1 ·Cp1,p2 ·<proc ·Cp2,p3 · · ·<proc ·Cpn−1,pn · π2 ,

where π1, π2 ∈ {{true}?, <proc}, 1 ≤ n ≤ |Procs|, p1, . . . , pn ∈ Procs and pi 6= pj for
i 6= j.

We also denote by Π+ the set of formulas in Π which additionally satisfy n > 1
or π1 = <proc or π2 = <proc (i.e., such that π 6≡ {true}?).

Remark 5.45. All path formulas π ∈ Π are >-free (cf. Definition 5.17).

Formulas in Π describe all possible direct paths (not going twice through a same
process) from one process to another. Formulas in Π+ additionally require the path
to be nonempty. This leads to the following lemma:

Lemma 5.46. Let M = (E,→,C, loc, λ) ∈ MSC(Procs,Prop), and e, f ∈ E. The
following are equivalent:

1. e ≤ f (resp. e < f).

2. There exists π ∈ Π (resp. π ∈ Π+) such that (e, f) ∈ JπK.

3. There exists π ∈ Π (resp. π ∈ Π+) such that (e, f) ∈ J≤proc · π · ≤procK.

4. There exists π ∈ Π (resp. π ∈ Π+) such that (e, f) ∈ J≤proc · πK.

5. There exists π ∈ Π (resp. π ∈ Π+) such that (e, f) ∈ Jπ · ≤procK.

As a first step towards expressing Coϕ, ϕSUψ, or ϕSSψ in PDLMSC
sf [Procs,Prop],

we can start with formulas in PDLsf [Prop,Prop,≤proc,C]. We could define Coϕ as〈
(≤+≤−1)

c〉
ϕ ≡

〈(∑
π∈Π≤proc · π · ≤proc +

∑
π∈Π≥proc · π−1 · ≥proc

)c〉
ϕ

≡
〈⋂

π∈Π (≤proc · π · ≤proc)
c ∩ (≥proc · π−1 · ≥proc)

c〉
ϕ .

112 CHAPTER 5. LOGICS FOR MESSAGE SEQUENCE CHARTS

Similarly, we could define ϕ SU ψ as

〈< ∩ (< · {¬ϕ}? ·<)c〉ψ

≡

〈 (∑
π∈Π+ ≤proc · π · ≤proc

)
∩
((∑

π∈Π+ ≤proc · π
)
· {¬ϕ}? ·

(∑
π∈Π+ π · ≤proc

))c
〉
ψ

≡
∨

π∈Π+

〈
(≤proc · π · ≤proc)

∩
⋂
π′,π′′∈Π+ (≤proc · π′ · {¬ϕ}? · π′′ · ≤proc)

c

〉
ψ ,

and ϕ SS ψ as

〈> ∩ (> · {¬ϕ}? ·>)c〉ψ

≡

〈 (∑
π∈Π+ ≥proc · π−1 · ≥proc

)
∩
((∑

π∈Π+ ≥proc · π−1
)
· {¬ϕ}? ·

(∑
π∈Π+ π−1 · ≥proc

))c
〉
ψ

≡
∨

π∈Π+

〈 (
≥proc · π−1 · ≥proc

)
∩
⋂
π′,π′′∈Π+ (≥proc · (π′)−1 · {¬ϕ}? · (π′′)−1 · ≥proc)

c

〉
ψ ,

The motivation for using extra occurrences of ≤proc in these formulas is to obtain
simpler complements at no cost, and be able to apply the next lemma.

Lemma 5.47. Let ϕ be an event formula of PDLMSC
sf [Procs,Prop], and π1, . . . , πn

path formulas of the form

≤proc · π · ≤proc , ≥proc · π · ≥proc , (≤proc · π · ≤proc)
c or (≥proc · π · ≥proc)

c ,

where π ∈ PDLMSC
sf [Procs,Prop]. Then

〈π1 ∩ · · · ∩ πn〉ϕ ≡
∨

p∈Procs

∧
1≤i,j≤n

Loop
(
πi · {ϕ ∧ p}? · π−1

j

)
.

Proof. Note that

〈π1 ∩ · · · ∩ πn〉ϕ ≡
∨

p∈Procs
〈π1 ∩ · · · ∩ πn〉 (ϕ ∧ p)

and
Loop

(
πi · {ϕ ∧ p}? · π−1

j

)
≡ 〈πi ∩ πj〉 (ϕ ∧ p) .

Thus, the left-to-right implication holds.
The proof for the right-to-left implication is extremely similar to the proof of

Lemma 3.19, and relies on the following observation:

Claim 5.48. For all 1 ≤ i ≤ n, for all M ∈ MSC(Procs,Prop) and all events e
in M , for all processes p ∈ Procs, the set Ep ∩ JπiK (e) is an interval of (Ep,≤proc).

5.4. TEMPORAL LOGICS 113

Proof. For all path formulas π, Ep∩J≤proc · π · ≤procK(e) is an upward-closed interval
of (Ep,≤proc), and therefore

Ep ∩ J(≤proc · π · ≤proc)
cK(e) = Ep \ (Ep ∩ J≤proc · π · ≤procK(e))

is a (downward-closed) interval of (Ep,≤proc). The case of ≥proc · π · ≥proc and
(≥proc · π · ≥proc)

c are similar, switching upward-closed and downward-closed.

Suppose that

M, e |=
∧

1≤i,j≤n
Loop

(
πi · {ϕ ∧ p}? · π−1

j

)
,

and let us show that

M, e |= 〈π1 ∩ · · · ∩ πn〉 (ϕ ∧ p) .

For all p ∈ Procs and 1 ≤ i ≤ n, we let Ii = JπiK(e) ∩ Jϕ ∧ pK. By Claim 5.48,
Ii is an interval of (Jϕ ∧ pK,≤proc). Besides, for all i, j,

M, e |= Loop
(
πi · {ϕ ∧ p}? · π−1

j

)
implies Ii ∩ Ij 6= ∅. By Lemma 3.18, we obtain

I1 ∩ · · · ∩ In 6= ∅ ,

that is,

M, e |= 〈π1 ∩ · · · ∩ πn〉 (ϕ ∧ p) .

All that remains to be done for the translation to PDLMSC
sf [Procs,Prop] is to ex-

press formulas Loop (πi · {ϕ ∧ p}? · πj), for path formulas πi and πj as in Lemma 5.47,
in PDLMSC

sf [Procs,Prop]. To do so, we first express all formulas πi as unions of
PDLMSC

sf [Procs,Prop] formulas. Note that we cannot apply directly Lemma 5.24
to formulas containing ≤proc, which is not in the syntax of PDLMSC

sf [Procs,Prop].
However, the next lemma is similar.

Lemma 5.49. For all >-free path formula π ∈ PDLMSC
sf [Procs,Prop], over MSCs,

(≤proc · π · ≤proc)
c ≡ {¬〈π〉 ∧ ¬〈<proc · π〉}? · >+

∑
(p,q)/∈Comp(π)

{p}? · > · {q}?+

(min (π) ·>proc) + ({¬〈π〉}? ·min (<proc · π) ·>proc) .

Proof. For e such that J≤proc · πK(e) = ∅, i.e., e ∈ J¬〈π〉 ∧ ¬〈<proc · π〉K, we have

J(≤proc · π · ≤proc)
cK (e) = E = J{¬〈π〉 ∧ ¬〈<proc · π〉}? · >K(e) .

114 CHAPTER 5. LOGICS FOR MESSAGE SEQUENCE CHARTS

Now, let e such that J≤proc · πK(e) 6= ∅. Since π is >-free, f = minJ≤proc · πK(e)
is well-defined. We then have

J(≤proc · π · ≤proc)
cK(e) = {g ∈ E | g <proc f} ∪

⋃
(loc(e),q)/∈Comp(π)

Eq

Finally, notice that by monotonicity of Jmin πK, for all e′, f ′, we have

f ′ = minJ≤proc · πK(e′) ⇐⇒ (e′, f ′) ∈ Jmin π + {¬〈π〉}? ·min (<proc · π)K .

Thus,

{g ∈ E | g <proc f} = Jmin (π) ·>proc + {¬〈π〉}? ·min (<proc · π) ·>procK (e) ,

and

J(≤proc · π · ≤proc)
cK (e) =

u

w
v

min (π) ·>proc +

{¬〈π〉}? ·min (<proc · π) ·>proc +∑
(p,q)/∈Comp(π){p}? · > · {q}?

}

�
~ (e) .

For ϕ SU ψ, we obtain:

Lemma 5.50. For all ϕ,ψ ∈ PDLMSC
sf [Procs,Prop], there exists an event formula

in PDLMSC
sf [Procs,Prop], denoted ϕ SU ψ, such that for all M = (E,→,C, loc, λ) ∈

MSC(Procs,Prop),

Jϕ SU ψK = {e ∈ E | ∃f ∈ JψK, e < f ∧ ∀g ∈ E, e < g < f =⇒ g ∈ JϕK} ,

and
‖S(ϕ SU ψ) \ (S(ϕ) ∪ S(ψ))‖ = 2O(|Procs|·log |Procs|) .

Proof. Denote by π1, . . . , πN all path formulas of the form

(≤proc · π · {¬ϕ}? · π′ · ≤proc)
c
,

where π, π′ ∈ Π+. Note that N = |Π+|2 = 2O(|Procs|·log |Procs|).
As explained page 112, the formula ϕ SU ψ should be equivalent to

ϕ1 =
∨

π0∈{≤proc·π·≤proc|π∈Π+}
〈π0 ∩ π1 ∩ · · · ∩ πN 〉ψ .

By Lemma 5.47, ϕ1 is equivalent to

ϕ2 =
∨

π0∈{≤proc·π·≤proc|π∈Π+}

∨
p∈Procs

∧
0≤i,j≤N

Loop
(
πi · {ψ ∧ p}? · π−1

j

)
.

5.4. TEMPORAL LOGICS 115

Moreover, for all 0 ≤ i ≤ N , we can construct path formulas πi,1, . . . , πi,ni ∈
PDLMSC

sf [Procs,Prop] such that

πi ≡ πi,1 + · · ·+ πi,ni

ni = O(|Procs|2)

length(πi,j) = O(|Procs|)
‖S(πi,j) \ S(ϕ)‖ = O(|Procs|) .

Indeed, for i = 0 and π0 = ≤proc · π · ≤proc, we can simply take

πi ≡ π + (<proc · π) + (π ·<proc) + (<proc · π ·<proc) .

For i ≥ 1 and πi = (≤proc · π · {¬ϕ}? · π′ · ≤proc)
c , we apply Lemma 5.49 to the

formula π · {¬ϕ}? · π′. Recall from Lemma 5.23 that, in general,

length(min π) = O(length(π)) and ‖S(min π) \ S(π)‖ = O(length(π)) .

So we obtain length(πi,j) = O(|Procs|) and ‖S(πi,j) \ S(ϕ)‖ = O(|Procs|) from the
fact that length(π · {¬ϕ}? · π′) = O(|Procs|) and S(π · {¬ϕ}? · π′) = S(¬ϕ).

We then let

ϕ SU ψ =
∨

π0∈{≤proc·π·≤proc|π∈Π+}

∨
p∈Procs

∧
0≤i,j≤N

∨
1≤k≤ni
1≤`≤nj

Loop
(
πi,k · {ψ ∧ p}? · π−1

j,`

)
≡ ϕ2 ≡ ϕ1 .

We then have

‖S(ϕ SU ψ) \ (S(ϕ) ∪ S(ψ))‖ = O(|Π+| × |Procs| × |Π+|4 × |Procs|4 × |Procs|)
= 2O(|Procs|·log |Procs|) .

Symmetrically, we also have:

Lemma 5.51. For all ϕ,ψ ∈ PDLMSC
sf [Procs,Prop], there exists an event formula

in PDLMSC
sf [Procs,Prop], denoted ϕ SS ψ, such that for all M = (E,→,C, loc, λ) ∈

MSC(Procs,Prop),

Jϕ SS ψK = {e ∈ E | ∃f ∈ JψK, f < e ∧ ∀g ∈ E, f < g < e =⇒ g ∈ JϕK} ,

and
‖S(ϕ SS ψ) \ (S(ϕ) ∪ S(ψ))‖ = 2O(|Procs|·log |Procs|) .

Proof. The proof is the same as the proof of Lemma 5.50, except we consider the
converses of the formulas πi and πi,j defined for SU.

116 CHAPTER 5. LOGICS FOR MESSAGE SEQUENCE CHARTS

Similarly, for Coϕ, we obtain:

Lemma 5.52. For all ϕ ∈ PDLMSC
sf [Procs,Prop], there exists an event formula

in PDLMSC
sf [Procs,Prop], denoted Coϕ, such that for all M = (E,→,C, loc, λ) ∈

MSC(Procs,Prop),
JCoϕK = {e ∈ E | ∃f ∈ JϕK, e ‖ f} ,

and
‖S(Coϕ) \ S(ϕ)‖ = 2O(|Procs|·log |Procs|) .

Proof. The proof is essentially the same as the proof for ϕSUψ (Lemma 5.50). This
time, π1, . . . , πN denote the set of all path formulas of the form (≤proc · π · ≤proc)

c

or (≥proc · π−1 · ≥proc)
c
, for π ∈ Π. We apply Lemmas 5.47 and 5.49 to obtain a

PDLMSC
sf [Procs,Prop] formula Coϕ equivalent to

〈π1 ∩ · · · ∩ πN 〉ϕ

and such that ‖S(Coϕ) \ S(ϕ)‖ = 2O(|Procs|·log |Procs|).

Lemmas 5.50, 5.51 and 5.52 lead to an efficient translation from the tempo-
ral logic TL[Procs,Prop, 〈C〉, 〈C−1〉,Co, SU,SS] to PDLMSC

sf [Procs,Prop]. Given a
formula ϕ ∈ TL[Procs,Prop, 〈C〉, 〈C−1〉,Co, SU, SS] we denote by S(ϕ) the set of
subformulas of ϕ, and we let ‖ϕ‖ = |S(ϕ)|.

Proposition 5.53. For all formula ϕ ∈ TL[Procs,Prop, 〈C〉, 〈C−1〉,Co,SU, SS],
there exists an equivalent formula ϕ′ ∈ PDLMSC

sf [Procs,Prop] such that ‖ϕ′‖ =
2O(|Procs| log |Procs|)‖ϕ‖.

Proof. We construct ϕ′ by induction on ϕ, in such a way that∥∥∥S(ϕ′) \
⋃
ψ∈S(ϕ)\{ϕ} S(ψ′)

∥∥∥ = 2O(|Procs|·log |Procs|) ,

which implies ‖ϕ′‖ = 2O(|Procs| log |Procs|)‖ϕ‖.
The cases ϕ = true, ϕ = p, ϕ = P , ϕ = ϕ1∨ϕ2 and ϕ = ¬ϕ are straightforward.

If ϕ = 〈C〉ψ, we let

ϕ′ =
∨

(p,q)∈Ch

〈Cp,q〉ψ′ ,

and similarly for ϕ = 〈C−1〉ψ. If ϕ = ϕ1 SU ϕ2, we apply Lemma 5.50. If ϕ =
ϕ1 SS ϕ2, we apply Lemma 5.51. If ϕ = Coψ, we apply Lemma 5.52.

Chapter 6

From logic to CFMs

This chapter presents one of the main result of the thesis: namely, that every
FO[Procs,Prop,≤,C] formula can be translated into an equivalent CFM. This proves
that CFMs are exactly as expressive as EMSO[Procs,Prop,≤,C]. As expected, this
translation uses PDLMSC

sf [Procs,Prop] as an intermediate step. It is worth noting
that, while the translation from first-order logic to automata is non-elementary, it is
only exponential in the size of the formula for PDLMSC

sf [Procs,Prop] or for temporal
logics.

In contrast with some of the results cited in Section 4.3, our translation from
FO[Procs,Prop,≤,C] to CFMs applies even in the case of unbounded channels.
However, it also has interesting consequences for the case of bounded MSCs. In
Section 6.4, we apply it to obtain a new proof of the equivalence, for languages of ex-
istentially B-bounded MSCs, of the notions of recognizability by a CFM, definability
in MSO, and regularity of the corresponding (word) language of linearizations. This
was initially proven in [34] for finite MSCs. We also extends the result to infinite
MSCs.

6.1 Star-free PDL

Let us first prove that every PDLMSC
sf [Procs,Prop] formula can be translated into an

equivalent CFM. Using the Loop elimination procedure from Chapter 5, this comes
down to a problem very similar to the translation of LTL into automata.

Theorem 6.1. For every PDLMSC
sf [Procs,Prop] sentence ξ, one can construct a

CFM Aξ with 2O(‖ξ‖) states per process such that L(Aξ) = L(ξ).

Proof. By Theorem 5.28, it is sufficient to consider the case where ξ does not
contain any occurrence of Loop. Indeed, for all other formulas ξ, we can first apply
Theorem 5.28 to obtain Prop′ ⊇ Prop and a formula ξ′ ∈ PDLMSC

sf [Procs,Prop′]

117

118 CHAPTER 6. FROM LOGIC TO CFMS

without occurrences of Loop such that

L(ξ) = PrProp(L(ξ′)) and ‖ξ′‖ = O(‖ξ‖) .

The CFM Aξ is then obtained by projection from the CFM Aξ′ : Aξ guesses an
interpretation of Prop′ \ Prop, and simulates Aξ′ .

So, suppose that ξ contains no occurrence of Loop. We further assume that every
model of ξ is nonempty. If that is not the case, we obtain the CFM Aξ by a simple
modification of Aξ∧E true : assuming the initial states have no incoming transitions,
we simply change the accepting condition to accept runs where all processes end in
their initial states, that is, the unique run over the empty MSC.

Over nonempty MSCs, we have

Eϕ ≡ A(〈>〉ϕ) , Aϕ ∨ Aψ ≡ A([>]ϕ ∨ [>]ψ) , ¬Aϕ ≡ A(〈>〉¬ϕ) ,

so we can rewrite ξ into a formula of the form Aϕ and of linear size. Using the
equivalences 〈π1 · π2〉ϕ ≡ 〈π1〉 (〈π2〉ϕ) and 〈{ϕ}?〉ψ ≡ ϕ∧ψ, we can further assume
that ϕ follows the syntax

ϕ ::= true | p | P | ϕ ∨ ϕ | ¬ϕ |
〈Cp,q〉ϕ | 〈C−1

p,q〉ϕ | 〈(<proc)ϕ〉ϕ | 〈(>proc)ϕ〉ϕ | 〈>〉ϕ ,

where p ∈ Procs, P ∈ Prop, (p, q) ∈ Ch. Note that after these rewritings, we still
have ‖Aϕ‖ = O(‖ξ‖).

We construct Aξ = AAϕ = ((Ap)p∈Procs,Msg ,Acc) similarly to classic trans-
lations from LTL over words to automata. Intuitively, the states of each process
contain subsets of S(ϕ), and the state of the CFM after reaching event e is the set
s of subformulas satisfied by e. In addition, each process also remembers, for every
subformula 〈>〉ψ ∈ S(ϕ), whether the formula ψ has already been satisfied on that
process, that is, the value of 〈>proc〉ψ. Finally, in order for the CFM to be able to
check the value of subformulas 〈Cp,q〉ϕ or 〈C−1

p,q〉ϕ, at each send event, the process
sends its current state to the receiving process. A process receiving a message from
channel (p, q) then sets the value for formulas ψ such that 〈Cp,q〉ψ ∈ S(ϕ) and for
formulas 〈C−1

p,q〉ψ′ according to whether 〈Cp,q〉ψ or ψ′ are contained in the message
received.

For all p ∈ Procs, let Sp be the set consisting of an initial state ιp, and all sets
of subformulas

s ⊆ S(ϕ) ∪ {〈>proc〉ψ | 〈>〉ψ ∈ S(ϕ)}

satisfying the following conditions:

1. ϕ ∈ s.

2. If true ∈ S(ϕ), then true ∈ s.

6.1. STAR-FREE PDL 119

3. For all q ∈ S(ϕ) ∩ Procs, q ∈ s if and only if q = p.

4. For all ϕ1 ∨ ϕ2 ∈ S(ϕ), ϕ1 ∨ ϕ2 ∈ s if and only if ϕ1 ∈ s or ϕ2 ∈ s.

5. For all ¬ψ ∈ S(ϕ), ¬ψ ∈ s if and only if ψ /∈ s.

6. For all 〈>〉ψ ∈ S(ϕ), ψ ∈ s or 〈>proc〉ψ ∈ s implies 〈>〉ψ ∈ s.

7. For all 〈Cq,r〉ψ ∈ S(ϕ) such that q 6= p, 〈Cq,r〉ψ /∈ s.

8. For all 〈C−1
q,r〉ψ ∈ S(ϕ) such that r 6= p, 〈C−1

q,r〉ψ /∈ s.

Let also
Msg =

⋃
p∈Procs

Sp .

For each process p, we let Ap = (Sp, ιp,∆p), where ∆p is the set of all t ∈
Sp ×Actp(Msg)× Sp such that:

9. target(t) 6= ιp.

10. For all P ∈ S(ϕ) ∩ Prop, P ∈ target(t) if and only if P ∈ label(t).

11. For all 〈Cp,q〉ψ ∈ S(ϕ), if t is an internal transition, a receive transition, or a
send transition such that receiver(t) 6= q, then 〈Cp,q〉ψ /∈ target(t).

12. For all 〈C−1
q,p〉ψ ∈ S(ϕ), if t is an internal transition, a send transition, or a

receive transition such that sender(t) 6= q, then 〈C−1
q,p〉ψ /∈ target(t).

13. If t is a send transition, then msg(t) = target(t).

14. If t is a receive transition and sender(t) = q, then for all 〈Cq,p〉ψ ∈ S(ϕ),
ψ ∈ target(t) if and only if 〈Cq,p〉ψ ∈ msg(t).

15. If t is a receive transition and sender(t) = q, then for all 〈C−1
q,p〉ψ ∈ S(ϕ),

〈C−1
q,p〉ψ ∈ target(t) if and only if ψ ∈ msg(t).

16. If source(t) 6= ιp, then for all 〈>〉ψ ∈ S(ϕ), 〈>〉ψ ∈ target(t) if and only if
〈>〉ψ ∈ source(t).

17. If source(t) 6= ιp, then for all 〈(<proc)ψ〉ψ
′ ∈ S(ϕ), 〈(<proc)ψ〉ψ

′ ∈ source(t) if

and only if ψ′ ∈ target(t) or ψ ∈ target(t) and 〈(<proc)ψ〉ψ
′ ∈ target(t).

18. For all 〈(>proc)ψ〉ψ
′ ∈ S(ϕ), 〈(>proc)ψ〉ψ

′ ∈ target(t) if and only if ψ′ ∈
source(t) or ψ ∈ source(t) and 〈(>proc)ψ〉ψ

′ ∈ source(t). In particular, if

source(t) = ιp, then 〈(>proc)ψ〉ψ
′ /∈ target(t).

Finally, Acc is defined so that a run is accepting if and only if:

120 CHAPTER 6. FROM LOGIC TO CFMS

19. For all 〈>〉ψ ∈ S(ϕ), either (i) all processes go infinitely often through or
end in a state containing 〈>〉ψ, or end in their initial state, and at least one
process goes infinitely often or ends in a state containing ψ or 〈>proc〉ψ, or
(ii) all processes go infinitely often through or end in a state not containing
〈>〉ψ.

20. For all 〈(<proc)ψ〉ψ
′ ∈ S(ϕ), all processes either go infinitely often through or

end in a state containing ψ′, or go infinitely often through or end in a state
not containing 〈(<proc)ψ〉ψ

′ ∈ S(ϕ). In addition, no process ends in a state

containing 〈(<proc)ψ〉ψ
′.

It is easy to check that for all M ∈ L(Aϕ), there is an accepting run ρ of AAϕ

on M , defined by setting target(ρ(e)) to be the set of formulas satisfied by e, for all
events e.

Conversely, for all runs ρ of AAϕ on an MSC M , we can prove by induction
on ψ that for all ψ ∈ S(ϕ) ∪ {〈>proc〉ψ | 〈>〉ψ ∈ S(ϕ)}, for all events e, we have
ψ ∈ target(ρ(e)) if and only if M, e |= ψ.

For ψ = true, it follows from condition 2. For ψ = p, it follows from condition 3,
and for ψ = P , from condition 10. For ψ = ψ1 ∨ ψ2, it follows from the induction
hypothesis and condition 4, and for ψ = ¬ψ′, condition 5.

For ψ = 〈Cp,q〉ψ′, if e is not a send on channel (p, q), then M, e 6|= ψ and by
conditions 7 and 11, ψ is not in target(ρ(e)). Otherwise, by conditions 13 and 14,
we have ψ ∈ target(ρ(e)) if and only if ψ′ ∈ target(ρ(f)) for the matching receive
event f , and we apply the induction hypothesis to ψ′.

Similarly, for ψ = 〈C−1
p,q〉ψ′, the result follows from conditions 8 and 12 if e is

not a receive from channel (p, q), and from conditions 13 and 15 otherwise.

For ψ = 〈>〉ψ′, by condition 16, the value guessed by the CFM for 〈>〉ψ′ is the
same for all events along a given process. By condition 19, it is also the same on
all processes. If 〈>〉ψ′ holds, then by condition 6, we have ψ ∈ target(ρ(e)) for all
events e. Conversely, if ψ ∈ target(ρ(e)) for all events e, then by condition 19, at
least one process must contain an event satisfying ψ′.

For ψ = 〈(>proc)ψ′〉ψ
′′, the result follows from condition 18 and the fact that

〈(>proc)ψ′〉ψ
′′ ≡ 〈←〉ψ′′ ∨ 〈←〉

(
ψ′ ∧ 〈(>proc)ψ′〉ψ

′′
)
.

For ψ = 〈(<proc)ψ′〉ψ
′′, the result follows from conditions 17 and 20 and the fact

that

〈(<proc)ψ′〉ψ
′′ ≡ 〈→〉ψ′′ ∨ 〈→〉

(
ψ′ ∧ 〈(<proc)ψ′〉ψ

′′
)
.

Since ψ ∈ target(ρ(e)) if and only if M, e |= ψ, then in particular, for ψ = ϕ,
condition 1 implies that for all events, M, e |= ϕ. Thus, M |= Aϕ.

6.2. FIRST-ORDER LOGIC AND EMSO 121

6.2 First-order logic and EMSO

As an immediate consequence of Theorems 5.27 and 6.1, we obtain:

Proposition 6.2. L(FO[Procs,Prop,≤,C]) ⊆ L(CFM[Procs,Prop]).

Since L(CFM[Procs,Prop]) is closed under projection, Proposition 6.2 implies
that L(EMSO[Procs,Prop,≤,C]) ⊆ L(CFM[Procs,Prop]). Conversely, CFMs can
be translated into EMSO[Procs,Prop,≤,C] in a standard way [11].

Theorem 6.3. L(EMSO[Procs,Prop,≤,C]) = L(CFM[Procs,Prop]).

Remark 6.4. Our translation from FO[Procs,Prop,≤,C] to PDLMSC
sf [Procs,Prop],

and therefore from EMSO[Procs,Prop,≤,C] to CFMs, is non-elementary. This is
unavoidable, already when |Procs| = 1 [79].

6.3 Temporal logics

Combining Proposition 5.53 and Theorem 6.1, we also obtain a translation from
TL[Procs,Prop, 〈C〉, 〈C−1〉,Co, SU,SS] to CFMs. Contrarily to the translation from
first-order logic to CFMs, the size of the resulting CFM is only exponential in
the size of the formula, and doubly exponential in the number of processes. In
particular, for |Procs| = 1, it corresponds to the complexity of the translation from
LTL to automata.

More precisely, given a formula ϕ ∈ TL[Procs,Prop, 〈C〉, 〈C−1〉,Co, SU, SS], the
language we want to recognize is the set of MSCs extended with an extra labeling
indicating the value of ϕ at each event. For all M ∈ MSC(Procs,Prop), we denote
by Mϕ ∈MSC(Procs,Prop] {Pϕ}) the extension of M to Prop] {Pϕ} defined by

e ∈ JPϕKMϕ if M, e |= ϕ .

Theorem 6.5. For every ϕ ∈ TL[Procs,Prop, 〈C〉, 〈C−1〉,Co, SU, SS], one can con-

struct a CFM Aϕ with 2‖ϕ‖·2
O(|Procs| log |Procs|)

states per process such that

L(Aϕ) = {Mϕ |M ∈MSC(Procs,Prop)} .

Proof. Let ϕ′ ∈ PDLMSC
sf [Procs,Prop] be the formula given by Proposition 5.53, and

ξ = A(Pϕ ⇐⇒ ϕ′). We have ‖ξ‖ = ‖ϕ‖ · 2O(|Procs| log |Procs|), and by Theorem 6.1,
we can construct a CFM accepting L(ξ) = {Mϕ | M ∈ MSC(Procs,Prop)}, with

2‖ϕ‖·2
O(|Procs| log |Procs|)

states per process.

122 CHAPTER 6. FROM LOGIC TO CFMS

6.4 Existentially-bounded MSCs

As mentioned in Section 4.3, many results from the literature have been concerned
with the case of bounded channels. In particular, under that assumption, a transla-
tion from logical formulas to CFMs is possible not only for EMSO, but for the full
MSO logic.

In this section, we show that some difficult results for bounded CFMs can be
obtained as corollaries of our translation from first-order logic to CFMs. We also
extend them to infinite MSCs.

Recall that the basic definitions and notations related to B-bounded lineariza-
tions and existentially B-bounded MSCs are given in Chapter 4, Section 4.1.3.

6.4.1 Known results

For existentially bounded sets of MSCs, the notions of recognizability by a CFM,
definability in MSO, and regularity of the language of linearizations coincide [34].
This is stated more formally below. The original proof of this result [34] relies on
the theory of Mazurkiewicz traces, and the construction of a CFM recognizing the
set MSC∃B(Procs,Prop) of ∃B-bounded MSCs.

Definition 6.6. With every MSC M = (E,→,C, loc, λ) ∈ MSC(Procs,Prop) andLinearizations

as words M� linearization e1 ≺ e2 ≺ e3 ≺ · · · of M , we associate a word as follows. Given e ∈ E,
we write type(e) = p if e is an internal event on process p, type(e) = p!q if e is a
write on channel (p, q), and type(e) = q?p if e is a read from channel (p, q). We
denote by M� the (finite or infinite, depending on M) word

M� = (λ× type)(e1) · (λ× type)(e2) · (λ× type)(e3) · · · ∈ A∗lin ∪Aωlin
where Alin = 2Prop × (Procs ∪ {p?q, p!q | (p, q) ∈ Ch}). We also let

LinB(M) = {M� | � is a B-bounded linearization of M} .

Remark 6.7. M can be retrieved from any of its linearizations M�.

The result cited above can be stated formally as follows:

Theorem 6.8 ([34, Theorem 4.1]). Let B ∈ N and L ⊆ MSCfin
∃B(Procs,Prop). The

following are equivalent:

1. L = L(A) for some CFM A.

2. L = L(Φ) for some MSO[Procs,Prop,≤,C] formula Φ.

3. LinB(L) is a regular language (of finite words).

In [34], Theorem 6.8 was proved for finite MSCs. In the remainder of the section,
we give a new, direct (not relying on reductions to Mazurkiewicz traces) proof of
the difficult direction, which is (3) =⇒ (1), and extend the result to infinite MSCs.

6.4. EXISTENTIALLY-BOUNDED MSCS 123

p1

p2

p3

p4

Figure 6.1: The relation revB for B = 1.

6.4.2 A CFM for existentially-bounded MSCs

An important part of the original proof of Theorem 6.8 [34] is the construction
of a CFM recognizing the set MSCfin

∃B(Procs,Prop) of finite ∃B-bounded MSCs.
Here, we show that such a CFM can be obtained very easily as an application of
Proposition 6.2, both for finite or infinite MSCs. Indeed, the set of ∃B-bounded
MSCs is FO[Procs,Prop,≤,C]-definable. This follows from a characterization of
∃B-bounded MSCs dating back from [60], explained below.

Let M = (E,→,C, loc, λ) ∈MSC(Procs,Prop). We denote by revB ⊆ E×E the revB

relation consisting of the set of pairs (f, g) such that f is a receive event from some
channel (p, q) with corresponding send event eCf , and g is the B-th send on channel
(p, q) after event e. The relation revB is illustrated in Figure 6.1 (represented
by the dotted edges) for B = 1 and an ∃1-bounded MSC. It can be defined in
FO[Procs,Prop,≤proc,C] as follows:

revB(x, y) := ∃x0, x1, . . . , xB, y0, y1, . . . , yB.

x0 = x ∧ yB = y ∧
∧

0≤i≤B
yi C xi ∧

∧
0≤i<B

(
xi <proc xi+1 ∧ zi <proc zi+1

∧ ¬(∃x′, y′. xi <proc x
′ <proc xi+1 ∧ yi <proc y

′ <proc yi+1 ∧ y′ C x′)
)
.

Lemma 6.9 ([60, Lemma 3.1]). A linearization � of an MSC M is B-bounded if
and only if it contains revB. In particular, M is ∃B-bounded if and only if the
relation (< ∪ revB) is acyclic.

The following proposition generalizes [34, Proposition 5.14], stating that the set
of finite ∃B-bounded MSCs is recognizable by a CFM, to arbitrary (finite or infinite)
MSCs.

Proposition 6.10. MSC∃B(Procs,Prop) ∈ L(CFM[Procs,Prop]).

Proof. If (<∪revB) contains a cycle, then it contains one of length at most 2|Procs|
(entering and leaving each process at most once). Therefore, by Lemma 6.9, M is

124 CHAPTER 6. FROM LOGIC TO CFMS

∃B-bounded if and only if it satisfies the following formula:

Φ∃B =
∧

1≤n≤2|Procs|
¬
(
∃x0, . . . , xn. x0 = xn ∧

∧
0≤i<n

xi < xi+1 ∨ revB(xi, xi+1)
)
.

Applying Theorem 6.3, we can construct a CFM A∃B such that

L(A∃B) = MSC∃B(Procs,Prop) .

Remark 6.11. We could also express revB and the acyclicity of (<∪revB) directly
in PDLMSC

sf [Procs,Prop] instead of going through first-order logic: the relation revB
can be expressed by the path formula

revB =
∑

(p,q)∈Ch

C−1
p,q ·

(
(<proc)¬〈Cp,q〉 · {〈Cp,q〉}?

)B
and the set of ∃B-bounded MSCs, that is, MSCs such that (<∪ revB) is acyclic, by
the sentence ∧

1≤n≤|Procs|
¬ELoop (((C + revB) ·<)n) ,

where C :=
∑

(p,q)∈Ch Cp,q. Note that, strictly speaking, these formulas are not in

PDLMSC
sf [Procs,Prop] since + is not allowed in the syntax. However, the latter Loop

formula can easily be expanded into a formula of PDLMSC
sf [Procs,Prop].

6.4.3 FO-definable linearizations for existentially-bounded MSCs

The second ingredient to the new proof of Theorem 6.8 is the definition of a canonical
B-bounded linearization for finite ∃B-bounded MSCs, definable in first-order logic.
We choose one adapted from [85, Definition 13], where the definition was given
for traces. It is based on the following lemma. Though it is stated for a special
case in [85], the proof can be taken almost verbatim. We only provide a proof for
completeness.

Lemma 6.12 ([85, Lemma 14]). Let (E,≤) be a partially ordered set, and v ⊆ E×E
a well-founded linear order. For e, f ∈ E, we write e ‖ f when e 6≤ f and f 6≤ e,
and we let ↑e = {f ∈ E | e ≤ f}. Then the relation � ⊆ E × E defined by

e � f ⇐⇒

(
e ≤ f

∨ e ‖ f ∧ min
v

(↑e \ ↑f) @ min
v

(↑f \ ↑e)

)

is a linear order extending ≤.

6.4. EXISTENTIALLY-BOUNDED MSCS 125

Proof. The relation � is clearly reflexive, since ≤ is. Notice also that, for all e 6= f ,
we have either e ≺ f or f ≺ e, but not both. Indeed, we have ↑e \ ↑f ∩ ↑f \ ↑e = ∅,
and if e ‖ f , then the two sets are nonempty as e ∈ ↑e \ ↑f and f ∈ ↑f \ ↑e.

It remains to show that ≺ is transitive. Let e1, e2, e3 ∈ E such that e1 ≺ e2 ≺ e3.
Note that e1, e2, e3 are pairwise distinct. For distinct i, j ∈ {1, 2, 3}, if ↑ei \ ↑ej 6= ∅,
we let eij = minv ↑ei \ ↑ej .

To prove e1 ≺ e3, we distinguish several cases.

Case e1 < e2 < e3: As < is transitive, we get e1 < e3.

Case e1 < e2 ‖ e3: This implies e3 6≤ e1. If e1 < e3, we are done. So suppose
e1 ‖ e3. Since e2 ≺ e3, we have e23 @ e32. From ↑e2 ⊆ ↑e1, we deduce
↑e2 \ ↑e3 ⊆ ↑e1 \ ↑e3. Thus, e13 v e23. Similarly, e32 v e31. We obtain
e13 v e23 @ e32 v e31.

Case e1 ‖ e2 < e3: This case is very similar to the previous one.

Case e1 ‖ e2 ‖ e3: Since e1 ≺ e2 ≺ e3, we have e12 @ e21 and e23 @ e32. Suppose
e1 6≤ e3 (otherwise, we are done). We have e3 6≤ e1, since e3 < e1 implies
e32 v e12 @ e21 v e23, a contradiction.

So we can assume e1 ‖ e3. It remains to show e13 @ e31. First, one shows that

e13 v e12 . (6.1)

If e12 6∈ ↑e3, then (6.1) is immediate. So suppose e12 ∈ ↑e3, i.e., e12 ∈ ↑e3\↑e2.
Then,

e23 @ e32 v e12 . (6.2)

Let us consider two cases. If e23 6∈ ↑e1 then e21 v e23. By (6.2), we obtain
e21 @ e12, which contradicts e1 ≺ e2. Hence e23 ∈ ↑e1 and we get e13 v e23.
We deduce that (6.1) holds.

To conclude the proof, we distinguish once more two cases:

Case e31 ∈ ↑e2: Then, e12 @ e21 v e31. Applying (6.1), we obtain e13 @ e31.

Case e31 6∈ ↑e2: Then, e23 @ e32 v e31. If e23 ∈ ↑e1, then e13 v e23 @ e31

and we are done. If e23 6∈ ↑e1, then e21 v e23, which implies e12 @ e31.
By (6.1), we obtain e13 @ e31.

This concludes the proof of Lemma 6.12.

126 CHAPTER 6. FROM LOGIC TO CFMS

p1

p2

p3

p4

e

f

↑Be

↑Bf

g

Figure 6.2: The sets ↑Be and ↑Bf

We can now associate with each ∃B-bounded MSC M = (E,→,C, loc, λ) ∈
MSC(Procs,Prop) a canonical linear order �B extending ≤. We will see that if M
is finite, �B is a B-bounded linearization of M , but if M is infinite, �B might be
of order type greater than ω, and therefore not a linearization. The total order �B
is defined by applying Lemma 6.12 with a linear extension v of ≤proc defined as in
Chapter 5: We fix some linear order vProcs on Procs, and let

e v f if e ≤proc f or loc(e) @Procs loc(f) .

Define also≤B

≤B = (< ∪ revB)∗ .

Recall that, by Lemma 6.9, if M is ∃B-bounded, then ≤B is a partial order.
Therefore, the following is well-defined:

Definition 6.13. Given M = (E,→,C, loc, λ) ∈ MSC∃B(Procs,Prop), we denote�B

by �B the linear order obtained by applying Lemma 6.12 to (E,≤B) and v.

Example 6.14. Consider the MSC M in Figure 6.2 and suppose p1 @Procs p2 @Procs

p3 @Procs p4. We have min@(↑e \ ↑f) = g and min@(↑f \ ↑e) = f . Since g @ f , we
obtain e ≺B f .

In general, �B need not be of order type at most ω, i.e., it is not necessarily
a linearization. For instance, with two processes p @Procs q, infinitely many local
events on both p and q, and no communication between p and q, the order type of
�B is ω + ω.

On the other hand, when �B is a linearization (i.e., is of order type at most ω),
then it is a B-bounded one since it contains ≤B. This applies in particular to all
finite MSCs.

Lemma 6.15. For all M ∈MSCfin
∃B(Procs,Prop), �B is a B-bounded linearization

of M .

6.4. EXISTENTIALLY-BOUNDED MSCS 127

An important observation is that the canonical linear order �B associated with
an ∃B-bounded MSC is definable in FO[Procs,Prop,≤,C] (independently of whether
the MSC is finite or infinite).

Lemma 6.16. There exists a formula x �B y ∈ FO[Procs,Prop,≤,C] such that
for all ∃B-bounded MSC M = (E,→,C, loc, λ) ∈ MSC∃B(Procs,Prop) and events
e, f ∈ E, we have

M, [x 7→ e, y 7→ f] |= x �B y if and only if e �B f .

Proof. Recall that if there is a path from event e to event f using relations < and
revB, there is one of length at most 2|Procs|. So we can define the relation ≤B in
FO[Procs,Prop,≤,C] as follows:

x ≤B y :=
∨

0≤n≤2|Procs|
∃x0, . . . , xn. x0 = x∧xn = y∧

∧
0≤i<n

xi < xi+1∨revB(xi, xi+1) .

We also let

x @ y := x <proc y ∨
∨

p,q∈Procs
p@Procsq

p(x) ∧ q(y) .

The condition minv(↑x\↑y) @ minv(↑y\↑x) can then be expressed with the formula

Φ(x, y) := ∃z.x ≤B z ∧ ¬(y ≤B z) ∧ ∀z′.(y ≤B z′ ∧ ¬(x ≤B z′)) =⇒ z @ z′ .

Finally, following the definition of �B, we let

x �B y = x ≤B y ∨ (¬(x ≤B y) ∧ ¬(y ≤B x) ∧ Φ(x, y)) .

6.4.4 Logic for linearizations

Theorem 6.8 establishes a relation between (E)MSO definability of languages of
linearizations (i.e., words over Alin), and of languages of MSCs. Before moving on to
the proof of Theorem 6.8, let us fix some notations regarding MSO for linearizations.

Let Proptype denote the extension of Prop with the set of possible event types:

Proptype = Prop ∪ Procs ∪ {p!q | (p, q) ∈ Ch} ∪ {p?q | (p, q) ∈ Ch} .

We assume that Prop ∩ (Procs ∪ {p!q | (p, q) ∈ Ch} ∪ {p?q | (p, q) ∈ Ch}) = ∅.
We can see words w ∈ A∗lin ∪ Aωlin as

(
Proptype , {�}

)
-structures in which � is

interpreted as a linear order of order type at most ω, and every element is in the
interpretation of exactly one of the propositions of the form p, p!q or p?q. Recall
that the standard MSO logic MSO[Proptype ,�] over this signature has the following
syntax: MSO[Proptype ,�]

128 CHAPTER 6. FROM LOGIC TO CFMS

Φ ::= P (x) | p(x) | (p!q)(x) | (p?q)(x) | x � y |
x = y | x ∈ X | Φ ∨ Φ | ¬Φ | ∃x.Φ | ∃X.Φ ,

where P ∈ Prop, p ∈ Procs, and (p, q) ∈ Ch.

For a sentence Φ ∈ MSO[Proptype ,�] and B ∈ N, we denote by LB(Φ) the set
of all words w ∈ A∗lin ∪ Aωlin that correspond to a B-bounded linearization of some
MSC, and satisfy Φ:

LB(Φ) = {w ∈ LinB(MSC∃B(Procs,Prop)) | w |= Φ} .

We also write

Lfin
B (Φ) = {w ∈ LinB(MSCfin

∃B(Procs,Prop)) | w |= Φ} = LB(Φ) ∩A∗lin
LωB(Φ) = {w ∈ LinB(MSCω∃B(Procs,Prop)) | w |= Φ} = LB(Φ) ∩Aωlin .

Let us recall two known results:

Proposition 6.17. A language L ⊆ LinB(MSCfin
∃B(Procs,Prop)) is regular if and

only if there exists Φ ∈ MSO[Proptype ,�] such that L = Lfin
B (Φ).

A language L ⊆ LinB(MSCω∃B(Procs,Prop)) is ω-regular if and only if there
exists Φ ∈ MSO[Proptype ,�] such that L = LωB(Φ).

Proof. Suppose L ⊆ LinB(MSCfin
∃B(Procs,Prop)) (the infinite case is similar). If L

is regular, then according to Büchi-Elgot-Trakhtenbrot theorem, there is a sentence
Φ ∈ MSO[Proptype ,�] such that L = {w ∈ A∗lin | w |= Φ}. Since L contains only

words in LinB(MSCfin
∃B(Procs,Prop)), we also have Lfin

B (Φ) = L.

Conversely, if L = Lfin
B (Φ) for some Φ ∈ MSO[Proptype ,�], then it is the inter-

section of {w ∈ A∗lin | w |= Φ}, which is regular, with LinB(MSCfin
∃B(Procs,Prop)).

The set LinB(MSCfin
∃B(Procs,Prop)) is also regular: it can be recognized by an

automaton that remembers the number of pending messages (between 0 and B) in
every channel, and checks that every read and write can be performed. Therefore,
L is regular.

Proposition 6.18. Let Φ ∈ MSO[Procs,Prop,≤,C] be a formula over MSCs. There
exists a formula Φ̃ ∈ MSO[Proptype ,�], with Free(Φ̃) = Free(Φ), such that for all
M ∈MSC∃B(Procs,Prop) and all interpretations ν of the free variables of Φ in M ,
for all w ∈ LinB(M), we have

M,ν |= Φ if and only if w, ν̃ |= Φ̃ ,

where ν̃ is the interpretation that maps each free variable x (resp. X) of Φ̃ to the
position (resp. set of positions) in w corresponding to the event ν(x) (resp. set of
events ν(X)) in M .

6.4. EXISTENTIALLY-BOUNDED MSCS 129

Proof. We prove this for Φ ∈ MSO[Procs,Prop,≤proc,C], the predicates ≤proc and

≤ being inter-definable. We construct Φ̃ by induction on Φ. The inductive cases
are straightforward. We let

P̃ (x) = P (x) and p̃(x) = p(x) ∨
∨

(p,q)∈Ch

(p!q)(x) ∨ (p?q)(x) .

We can then define the translation of x ≤proc y as

x � y ∧
∨

p∈Procs
p̃(x) ∧ p̃(y) .

Finally, the translation of xC y states that, for some channel (p, q) ∈ Ch, (i) x is a
write on channel (p, q), (ii) y is a receive from channel (p, q), (iii) between x and y,
there are less than B messages sent, and read, on channel (p, q), (iv) the count
modulo B of messages sent on channel (p, q) up until x, and of messages read from
channel (p, q) up until y, are equal.

6.4.5 A new proof of Theorem 6.8

The FO definitions of finite ∃B-bounded MSCs and their canonical linearizations
are all we need to prove direction (3) =⇒ (1) of Theorem 6.8, which is the difficult
part of the proof. We recall here the theorem:

Theorem 6.8 ([34, Theorem 4.1]). Let B ∈ N and L ⊆ MSCfin
∃B(Procs,Prop). The

following are equivalent:

1. L = L(A) for some CFM A.

2. L = L(Φ) for some MSO[Procs,Prop,≤,C] formula Φ.

3. LinB(L) is a regular language (of finite words).

Proof. The translation (1) =⇒ (2) is standard [13]: the formula guesses an
assignment of transitions to events in terms of existentially quantified second-order
variables (one for each transition) and then checks, in its first-order kernel, that the
assignment is indeed an accepting run.

Implication (2) =⇒ (3) follows from Proposition 6.18: if L = L(Φ), then
LinB(L) = Lfin

B (Φ̃). By Proposition 6.17, LinB(L) is regular.

Let us now prove that (3) =⇒ (1). Let L be a set of finite ∃B-bounded MSCs
such that LinB(L) is regular. There exists an EMSO[Proptype ,�] sentence Φlin such

that LinB(L) = Lfin
B (Φlin). Using the formula from Lemma 6.16, we can translate

Φlin into an EMSO[Procs,Prop,≤,C] formula Φ such that, for all finite ∃B-bounded
MSCs M , we have M |= Φ if and only if M�B |= Φlin . Recall also that there exists

130 CHAPTER 6. FROM LOGIC TO CFMS

an FO[Procs,Prop,≤,C] formula Φfin
∃B characterizing the set of finite ∃B-bounded

MSCs. Applying Proposition 6.2, we obtain a CFM A such that L(A) = L(Φ∧Φfin
∃B).

Then, for all M ∈ L, M is ∃B-bounded and M�B |= Φlin , hence M |= Φ ∧ Φfin
∃B,

i.e., M ∈ L(A). Conversely, if M ∈ L(A), then M is ∃B-bounded and �B is a
linearization of M . Moreover, M�B ∈ LinB(L), hence M ∈ L.

6.4.6 Extension to infinite MSCs

Our proof of Theorem 6.8 can be adapted to infinite MSCs. However, there is one
major difference: the canonical linear order �B associated with an infinite ∃B-
bounded MSC is not necessarily of order type ω, which means that for M ∈ L, it
does not directly define a linearization M�B ∈ LinB(L), contrarily to the finite case.
In fact, as observed in [55], there are no canonical FO-definable linearizations for
infinite MSCs. In other settings (Mazurkiewicz traces in [85], universally bounded
MSCs in [55]), this issue has been resolved by decomposing infinite behaviors
into one finite part, and boundedly many infinite disconnected parts whose shape
guarantees that the FO-definable linear order �B is of order type at most ω in each
part. We follow the same approach, our aim being to prove the following extension
of Theorem 6.8 to infinite ∃B-bounded MSCs:

Theorem 6.19. Let B ∈ N and L ⊆ MSCω∃B(Procs,Prop). The following are
equivalent:

1. L = L(A) for some CFM A.

2. L = L(Φ) for some MSO[Procs,Prop,≤,C] formula Φ.

3. LinB(L) is ω-regular.

The proofs of directions (1) =⇒ (2) and (2) =⇒ (3) are as in the finite
case (Theorem 6.8), so we focus on (3) =⇒ (1). The outline of the proof is as
follows. We first define a decomposition of ∃B-bounded MSCs into one finite part
Mfin, which contains all types of actions that occur only finitely many times, and
boundedly many infinite parts M1, . . . ,Mn, defined as the connected components
of the remainder of the MSC. We show that in each M j , �B is of order type ω,
i.e., we can define canonical linearizations for each part of the decomposition. The
decomposition of an MSC M into Mfin,M1, . . . ,Mn induces a decomposition of any
of its linearizations w ∈ LinB(M) into subwords wfin, w1, . . . , wn. We prove that
if LinB(L) is ω-regular, we can find a finite family of tuples of regular languages
(K,L1, . . . , Ln) such that w ∈ LinB(L) if and only if wfin ∈ K,w1 ∈ L1, . . . , wn ∈
Ln for one of the tuples (K,L1, . . . , Ln). Each language in these tuples can be
defined by an EMSO[Proptype ,�] formula over linearizations. Since each language

talks only about one of the components Mfin,M1, . . . ,Mn, and since we have FO-
definable canonical linearizations for all these components, we can translate the

6.4. EXISTENTIALLY-BOUNDED MSCS 131

EMSO[Proptype ,�] formulas over words into formulas over MSCs. Finally, we apply
again Theorem 6.3 to obtain a CFM for L.

Notations. We use standard notations from formal language theory. The empty
word is denoted by ε. Given L ⊆ Aωlin , u ∈ A∗lin , and K ⊆ A∗lin , we write u−1L =
{v ∈ Aωlin | uv ∈ L} and K−1L = {v ∈ L | ∃u ∈ K,uv ∈ L}. For words u, v ∈
A∗lin ∪ Aωlin , we denote by u� v the shuffle of u and v, i.e., the set of words w ∈
A∗lin ∪ Aωlin that are possible interleavings of u and v. This extends to languages
K,L ⊆ A∗lin ∪Aωlin with K � L =

⋃
u∈K,v∈L u� v.

MSC decompositions. The first step of the decomposition consists in dividing
MSCs M = (E,→,C, loc, λ) ∈MSCω∃B(Procs,Prop) into one downward-closed finite
part Mfin containing all the action types that occur only finitely many times in M ,
and one infinite part M inf in which all actions are repeated infinitely often. We let

Typesfin(M) = {type(e) | e ∈ E ∧ {f ∈ E | type(e) = type(f)} is finite}
Types inf(M) = {type(e) | e ∈ E ∧ {f ∈ E | type(e) = type(f)} is infinite} .

We define Efin as the downward-closure, with respect to ≤B, of all events whose
type is in Typesfin(M), and Einf as the set of remaining events:

Efin = {e ∈ E | ∃f ∈ E, type(f) ∈ Typesfin(M) ∧ e ≤B f}
Einf = E \ Efin .

The MSC M can then be split into one MSC Mfin, and one MSC M inf, defined
respectively as the restriction of M to events in Efin or Einf. Note that Efin and Einf

are not necessarily C-closed: there may be some send events in Efin whose matching
receive events are in Einf (the converse is not possible, since Efin is downward
closed). So some message edges are present neither in Mfin nor in M inf, and the
corresponding events become internal events rather than send or receive events. In
order to not lose any information in the decomposition of M , we add to the labeling
of Mfin and M inf the (former) type of every event. More formally, we define the
MSCs Mfin,M inf ∈MSC(Procs,Proptype) as follows:

Mfin =
(
Efin,→∩ Efin × Efin,C ∩ Efin × Efin, loc|Efin , (λ ∪ type)|Efin

)
M inf =

(
Einf,→∩ Einf × Einf,C ∩ Einf × Einf, loc|Einf , (λ ∪ type)|Einf

)
,

where λ ∪ type denotes the function which maps e to λ(e) ∪ {type(e)}.
In a second step, we further decompose M inf according to its (weakly) connected

components. Consider the undirected communication graph at infinity, where ver-
tices are the processes p such that Ep is infinite, and two processes p, q are connected

132 CHAPTER 6. FROM LOGIC TO CFMS

by an edge if they communicate infinitely often, that is, Types inf(M)∩{p!q, q!p} 6= ∅.
Let P 1, . . . , Pn denote the maximal connected components of this graph. Note that
the set {P 1, . . . , Pn} is entirely determined by Types inf(M). For all 1 ≤ j ≤ n, we
let

Ej = Einf ∩
⋃
p∈P j

Ep

and
M j =

(
Ej ,→∩ Ej × Ej ,C ∩ Ej × Ej , loc|Ej , (λ ∪ type)|Ej

)
.

The purpose of this decomposition is that, contrarily to arbitrary infinite MSCs,
all parts in the decomposition have canonical FO-definable linearizations. This is
what will allow us to translate formulas over word linearizations into formulas over
MSCs, as we did in the proof of Theorem 6.8.

Lemma 6.20. For all M j with 1 ≤ j ≤ n, the linear order �B is of order type ω.

Proof. This is in fact true of any linear extension of ≤B, and not just the canonical
one �B. We want to prove that for every e ∈ Ej , the set {f ∈ Ej | f �B e} is
finite. To do so, it suffices to prove that for all p ∈ P j , there exists f ∈ Ejp such that
e ≤B f (and thus e �B f). By definition of P j , there exists a path p1, . . . , p` such
that p1 = loc(e), p` = p, and for all 1 ≤ i < `, M j contains infinitely many events of
type pi!pi+1 or pi?pi+1. If M j contains infinitely many events of type pi!pi+1, then
for all e′ on process pi, there exist f ′ on process pi and g′ on process pi+1 such that
e′ ≤proc f

′ and f ′Cg′, hence e′ ≤B g′. If M j contains infinitely many events of type
pi?pi+1, then for all e′ on process pi, there exist f ′ on process pi and g′ on process
pi+1 such that e′ ≤proc f

′ and f ′ revB g′, hence e′ ≤B g′. Therefore, we obtain
events e2, . . . , e` on processes p2, . . . , p` = p such that e ≤B e2 ≤B · · · ≤B e`.

Decomposition of linearizations. The decomposition of M into Mfin,M1, . . . ,Mn

induces a decomposition of every linearization w ∈ LinB(M) ⊆ Aωlin . We define
subalphabets Afin, Ainf, A1, . . . , An ⊆ Alin as follows:

Afin = 2Prop × Typesfin(M)

Ainf = 2Prop × Types inf(M)

Aj = 2Prop ×
(

Types inf(M) ∩
{
p, p!q, p?q | p, q ∈ P j

})
.

For every linearization w ∈ LinB(M), we denote by

wfin ∈ A∗linAfin ∪ {ε} , winf ∈
(
Ainf

)ω
, wj ∈

(
Aj
)ω

(for 1 ≤ j ≤ n)

the scattered subwords of w induced by the set of positions corresponding re-
spectively to events in Mfin, M inf, or M j . Notice that w ∈ wfin

� winf, and
winf ∈�1≤j≤nw

j .

6.4. EXISTENTIALLY-BOUNDED MSCS 133

In general, it is not necessary that w = wfin · winf. However, wfin · winf is
always also a valid linearization of M . More generally, we can always construct a
B-bounded linearization of M from two B-bounded linearizations of Mfin and M inf:

Lemma 6.21. For all u, v ∈ LinB(M), we have ufinvinf ∈ LinB(M).

Proof. Let �u and �v be the B-bounded linearizations of M associated respectively
with u and v, and let � be the concatenation of their restrictions to Efin and Einf,
respectively. That is, e � f if e ∈ Efin and f ∈ Einf, or e �u f and e, f ∈ Efin,
or e �v f and e, f ∈ Einf. Clearly, � is a total order on E, and of order type
ω (like �v). Let us show that for all e ≤B f , we have e � f . This implies that
� contains ≤, i.e., is a linearization of M , and that it contains revB, i.e., it is
B-bounded (by Lemma 6.9). We can first observe that for all e ≤B f , we have
e �u f and e �v f since �u and �v are B-bounded. Therefore, if e and f are both
in Efin or both in Einf, then e � f . If e ∈ Efin and f ∈ Einf, we have e � f by
definition. Finally, we cannot have e ∈ Einf and f ∈ Efin since Efin is downward-
closed with respect to ≤B. We conclude that � is a B-bounded linearization of M .
The corresponding word w ∈ LinB(L) is precisely w = ufinvinf.

Another important observation is that, since there are no causal dependencies
between events in distinct infinite parts M j , any interleaving of a set of B-bounded
linearizations for each M j yields a B-bounded linearization of M inf. In terms of
LinB(M), this is reflected as follows:

Lemma 6.22. For all w ∈ LinB(M), we have wfin ·�n
j=1w

j ⊆ LinB(M).

Proof. By Lemma 6.21, we have wfinwinf ∈ LinB(M). Moreover, every wj corre-
sponds to a B-bounded linearization of M j . As observed above, any interleaving of
the linearizations w1, . . . , wn, that is, every word v ∈�n

j=1w
j , thus corresponds

to a linearization of M inf. Therefore, we also have wfinv ∈ LinB(M).

Main proof. We are now ready to start the proof of Theorem 6.19.

Proof of Theorem 6.19. We prove (3) =⇒ (1), the proof for the other directions is
as in Theorem 6.8.

Let L ⊆MSCω∃B(Procs,Prop) be a set of MSCs such that LinB(L) is ω-regular.
Without loss of generality, we can assume that all MSCs M ∈ L have the same
set T = Types inf(M) of types at infinity. Indeed, properties (3) and (1) hold for L
if and only if they hold for every restriction of L to a particular set T of types at
infinity. Fixing this set T allows us to uniformly use the notations we introduced
in the definition of MSC decompositions (P 1, . . . , Pn, etc.), for all MSCs M ∈ L.

We first show that LinB(L) can be decomposed into regular languages describing
partial linearizations wfin or winf:

134 CHAPTER 6. FROM LOGIC TO CFMS

Lemma 6.23. There is a finite sequence of pairs of regular languages (Ki, Li)1≤i≤k,
with Ki ⊆ A∗lin and Li ⊆ Aωlin , such that{(

wfin, winf
)
| w ∈ LinB(L)

}
=

⋃
1≤i≤k

Ki × Li .

Moreover, the languages Li are closed under permutation of letters in distinct sub-
alphabets Aj: for all 1 ≤ i ≤ k and tuples (v1, . . . , vn) ∈

(
A1
)ω × · · · × (An)ω, if

Li ∩�n
j=1 vj 6= ∅ then�

n
j=1 vj ⊆ Li.

Proof. Observe that the set Efin is definable in MSO[Procs,Prop,≤,C]. Using
the translation of Proposition 6.18 from MSO[Procs,Prop,≤,C] formulas over ∃B-
bounded MSCs to MSO[Proptype ,�] formulas over B-bounded linearizations, we

can define an MSO[Proptype ,�] formula fĩn(x) such that for all w ∈ LinB(L), the

formula fĩn(x) holds precisely at positions corresponding to events in Efin.

Let K ⊆ A∗lin be the regular language defined by the formula ∀x.fĩn(x). Notice
that K contains all finite parts wfin of words w ∈ LinB(L).

Let ∼ ⊆ K ×K be the equivalence relation defined by u ∼ v if u−1LinB(L) =
v−1LinB(L). Since LinB(L) is regular, ∼ has finitely many equivalence classes
K1, . . . ,Kk ⊆ K. For all 1 ≤ i ≤ k, we let Li =

(
K−1
i LinB(L)

)
∩
(
Ainf

)ω
. Let us

show that {(
wfin, winf

)
| w ∈ LinB(L)

}
=

⋃
1≤i≤k

Ki × Li .

Let w ∈ LinB(L). We have wfin ∈ K, so there exists i such that wfin ∈ Ki.
Moreover, by Lemma 6.21, wfinwinf ∈ LinB(L). Thus, winf ∈ K−1

i LinB(L)∩
(
Ainf

)ω
,

and (wfin, winf) ∈ Ki × Li.
Conversely, if (u, v) ∈ Ki × Li, then u′v ∈ LinB(L) for some u′ ∈ Ki. Since

u ∼ u′, we also have w = uv ∈ LinB(L). In addition, v contains only letters from
Ainf, so u contains all positions from wfin. Since u is in K, it also contains only
positions from wfin, that is, u = wfin. It follows that v = winf.

Finally, we prove that each Li is closed under commutation of letters in distinct
subalphabets Aj . Let (v1, . . . , vn) ∈

(
A1
)ω × · · · × (An)ω such that there exists

some v ∈ Li ∩�n
j=1 vj . Since v ∈ Li, there exist u ∈ Ki and w ∈ LinB(L)

such that u = wfin and v = winf. Since the alphabets Aj are disjoint, this implies
vj = wj for all j. By Lemma 6.22, this means that u ·�n

j=1 vj ⊆ LinB(L), hence,

�
n
j=1 vj ⊆ u−1LinB(L) ∩

(
Ainf

)ω
= Li.

To further decompose each Li according to the partition of winf into w1, . . . , wn,
we apply the lemma below, proven e.g. in [55, Theorem 4.11].

Lemma 6.24. Let R be an ω-regular language over a finite alphabet Σ =
⋃k
i=1 Σi,

where Σi ∩ Σj = ∅ for i 6= j. Suppose that all words w ∈ R contain infinitely

6.4. EXISTENTIALLY-BOUNDED MSCS 135

many letters from each alphabet Σi, and that for all (u1, . . . , uk) ∈ Σω
1 × · · · × Σω

k ,
R ∩�k

i=1 ui 6= ∅ implies�
k
i=1 ui ⊆ R. Then R is a finite union of languages of

the form�1≤i≤k Ri, where Ri is an ω-regular language over Σi.

Combining Lemmas 6.23 and 6.24, we obtain:

Lemma 6.25. There is a finite sequence (K ′i, L
1
i , . . . , L

n
i)1≤i≤` of tuples of regular

languages, with K ′i ⊆ A∗lin and Lji ⊆ (Aj)
ω

, such that{(
wfin, w1, . . . , wn

)
| w ∈ LinB(L)

}
=

⋃
1≤i≤`

K ′i × L1
i × · · · × Lni .

Proof. We apply Lemma 6.23 and then Lemma 6.24 to each Li. We obtain a finite
family (K ′i, L

1
i , . . . , L

n
i)1≤i≤` such that all K ′i ⊆ A∗lin are regular languages and all

Lji ⊆ (Aj)
ω

are ω-regular languages, and{(
wfin, winf

)
| w ∈ LinB(L)

}
=

⋃
1≤i≤`

K ′i ×
n

�
j=1

Lji .

Moreover, for all w ∈ LinB(L), (w1, . . . , wn) is the unique decomposition of winf as a
shuffle of words in the subalphabets A1, . . . , An, which means that winf ∈�n

j=1 L
j
i

if and only if (w1, . . . , wn) ∈ L1
i × · · · × Lni . We obtain{(

wfin, w1, . . . , wn
)
| w ∈ LinB(L)

}
=

⋃
1≤i≤`

K ′i × L1
i × · · · × Lni .

All languages K ′i and Lji in Lemma 6.25 are regular or ω-regular, which means

that they can be defined by EMSO[Proptype ,�] formulas Φ̂i, Ψ̂
1
i , . . . , Ψ̂

n
i . As in the

case of finite MSCs, we can interpret these formulas into the MSCsMfin,M1, . . . ,Mn

using their canonical linearizations �B: we define EMSO[Procs,Proptype ,≤,C] for-

mulas Φi,Ψ
1
i , . . . ,Ψ

n
i by replacing in Φ̂i, Ψ̂

1
i , . . . , Ψ̂

n
i every predicate x � y with the

FO[Procs,Proptype ,≤,C] formula x �B y defined in Lemma 6.16.

Lemma 6.26. For all M ∈ MSCω∃B(Procs,Prop) with Types inf(M) = T , we have
M ∈ L if and only if there exists i such that Mfin |= Φi and M j |= Ψj

i for all
1 ≤ j ≤ n.

Proof. We can define a B-bounded linearization w of M as follows. Let u ∈ A∗lin be
the canonical linearization of Mfin, and v1 ∈ (A1)

ω
, . . . , vn ∈ (An)ω the canonical

linearizations of the MSCs M1, . . . ,Mn (by Lemma 6.20, this is well-defined). Let
w ∈ u ·�n

j=1 vj . Then w ∈ LinB(M).
We have M ∈ L if and only if w ∈ LinB(L), or equivalently, if and only if there

exists i such that u = wfin |= Φ̂i and vj = wj |= Ψ̂j
i for all j, that is, if and only if

there exists i such that M inf |= Φi and M j |= Ψj
i for all j.

136 CHAPTER 6. FROM LOGIC TO CFMS

Finally, by combining formulas Φi and Ψj
i , we can construct a formula Φ ∈

EMSO[Procs,Prop,≤,C] such that, for all M ∈ MSCω∃B(Procs,Prop) such that
Types inf(M) = T , we have M |= Φ if and only if there exists i such that Mfin |= Φi

and M j |= Ψj
i for all 1 ≤ j ≤ n. First, there are FO[Procs,Prop,≤,C] formulas

fin(x), inf 1(x), . . . , inf n(x) that hold precisely at events in Mfin,M1, . . . ,Mn, re-
spectively. Let Φ̃i be the EMSO[Procs,Prop,C,≤] formula obtained from Φi by
(i) restricting every quantification to events in Mfin, for instance, replacing ∃x.ξ
with ∃x.fin(x)∧ ξ, and (ii) replacing Proptype predicates with FO[Procs,Prop,C,≤]
formulas, for instance, the formula (p?q)(x) is replaced with p(x)∧∃y.(q(y)∧yCx).
We define similarly formulas Ψ̃j

i relativized to M j . We then let

Φ =
∨

1≤i≤`

Φ̃i ∧
∧

1≤j≤n
Ψ̃j
i

 .

The language L is then the intersection of L(Φ) with the set of MSCs M ∈
MSCω∃B(Procs,Prop) such that Types inf(M) = T . By Theorem 6.3, both of these
languages are recognizable, and therefore, so is L.

Chapter 7

Conclusion

We studied the expressive power of first-order logic and star-free PDL over ordered
structures, and in the special case of MSCs, compared them to CFMs. Let us recall
the two main results of the thesis:

Interval-preserving structures have the 3-variable property. In Chapter 3, we
proved that, given a signature Σ with only unary and binary relation symbols
(including a special symbol ≤), the logics FO[Σ], FO3[Σ] and PDLsf [Σ] are all
expressively equivalent over any class of Σ-structures in which

• ≤ is interpreted as a linear order, and

• binary relation symbols are interpreted as interval-preserving relations.

This applies to various classes, including linear orders, real-time signals, polynomial
functions over the reals, Mazurkiewicz traces, or MSCs.

CFMs are expressively equivalent to existential monadic second-order logic.
Based on successive simplifications of star-free PDL formulas over MSCs, presented
in Chapter 5, we proved in Chapter 6 that any star-free PDL or FO formula over
MSCs can be translated into an equivalent CFM. This shows that CFMs have the
same expressive power as EMSO over MSCs.

While both results answer questions related purely to first-order logic and CFMs,
star-free PDL is at the center of all our constructions. Besides being a convenient
tool in the proofs, star-free PDL is also an interesting logic on its own. It combines
features from classic formalisms (PDL, the calculus of relations, star-free regular
expressions), and captures various temporal logics. Over MSCs, the fragment
PDLMSC

sf of star-free PDL (without complement of path formulas, and with path
constructs similar to LTL until and since modalities) has the same expressive power

137

138 CHAPTER 7. CONCLUSION

as first-order logic, but the translation to CFMs is only exponential in the size of
the formula, while it is non-elementary for FO.

Of course, many questions related to the expressivity of logics and automata over
ordered structures remain open, offering interesting directions for further research.

7.1 The k-variable property

The fact that interval-preserving structures have the 3-variable property generalizes
several known results. Besides applications to new classes of structures, this unified
proof helps us understand the common features of classes for which the 3-variable
property was already known. However, it fails to cover other typical examples for
which the bounded variable hierarchy collapses: trees.

Immerman and Kozen [51] established k-variable properties for several classes
of bounded-degree trees. Another related result is the equivalence of conditional
XPath and first-order logic [63], over finite trees of unbounded degree equipped
with a descendant relation and a total order on siblings. In fact, to prove that FO
and conditional XPath are equivalent, Marx first showed that such trees (as well as
ordered binary trees) have the 3-variable property.

Interestingly, conditional XPath is very similar to the fragment PDLMSC
sf we

defined for MSCs. (The main difference is that it does not contain a Loop operator,
which would be redundant over trees.) In a way, our approach is dual to [63]: we
go from FO to star-free PDL to FO3, while [63] goes from FO to FO3 to conditional
XPath. Yet, the equivalence of star-free PDL, FO3 and FO over MSCs can be seen
as analogous to the equivalence of conditional XPath, FO3 and FO over trees. This
raises the question of whether a unified proof of both results can be found.

More generally, it would be interesting to find a more general set of sufficient
conditions for a class of structures to have the k-variable property, which would
apply both to interval-preserving structures and some tree orders. This is not as
simple as it may seem: first, it is not completely clear what a good definition
of “interval-preserving” relations would be for trees, and, secondly, the proofs in
Chapter 3 rely in several places on the fact that the order is linear.

While our result provides sufficient conditions for a class of structures to have
the k-variable property, it could also be interesting to find necessary conditions. The
absence of a k-variable property can be very difficult to establish: for instance, the
question of whether finite ordered graphs have the k-variable property for some k
remained open for over 25 years [49, 20] before being answered in the negative by
Rossman [74].

7.2. SUCCINCTNESS 139

7.2 Succinctness

Over arbitrary interval-preserving structures, our translations from first-order logic
to star-free PDL, and thus from FO to FO3, may produce formulas of non-elementary
size. Over MSCs, the translation from FO to CFMs is non-elementary as well.

However, we only have matching lower bounds for the translation from FO to
CFMs, and the translation from PDLsf to CFMs. These lower bounds are inherited
from the case of words, where the translation from first-order logic, as well as from
star-free regular expressions, into automata produces automata of non-elementary
size [79, 71].

To the best of our knowledge, the question of whether the non-elementary blow-
up can be avoided in the translation from FO to FO3 is open. In [39], Grohe and
Schweikardt prove that over words, FO4 is at least exponentially more succinct than
FO3, but mention that what happens beyond 4 variables is unknown.

We are also missing a lower bound in the complexity of the translation from the
temporal logic TL[Procs,Prop, 〈C〉, 〈C−1〉,Co, SU, SS] into CFMs. Recall that the
number of states of the CFM we construct is exponential in the size of the formula,
and doubly exponential in the number of processes. The complexity with respect
to the input formula is optimal, since it is the same as for LTL. However, we do not
know if the double exponential in the number of processes is necessary.

7.3 Expressive completeness of temporal logics

Star-free PDL can be seen as a two-dimensional temporal logic. In that sense, the
results of Chapter 3 establish the existence of expressively complete (w.r.t. first-
order logic) two-dimensional temporal logics over all classes of interval-preserving
structures. For MSCs, the logic PDLMSC

sf is also a two-dimensional expressively
complete temporal logic, and benefits from others of the properties one might
look for in a temporal logic: it is somewhat closer to LTL, and the complexity
of translating PDLMSC

sf formulas into CFMs is reasonable.

However, much remains open regarding the expressive completeness of one-
dimensional temporal logics.

Temporal logics for MSCs. In Section 5.4, we presented a one-dimensional tem-
poral logic TL[Procs,Prop, 〈C〉, 〈C−1〉,Co,SU,SS] over MSCs, based on classic tem-
poral connectives for partial orders. We conjecture that this logic is strictly less
expressive than first-order logic. This leaves us with the following open question:

Over MSCs, does there exist a finite set of (one-dimensional) FO-definable
modalities which is expressively complete w.r.t. first-order logic?

140 CHAPTER 7. CONCLUSION

Criteria for the existence of an expressively complete temporal logic. Similarly
to how the 3-variable property for interval-preserving structures generalizes several
known results, it would be very interesting, though particularly challenging, to
find general conditions ensuring the existence of an expressively complete (one-
dimensional) temporal logic over a given class of structures.

A first variant of this question would be to find sufficient conditions for a class of
structures to admit an expressively complete temporal logic consisting of a a finite
set of one-dimensional FO-definable modalities. Here we are only interested in the
existence of such a logic, and not the particular modalities used. Note that while
having the 3-variable property ensures the existence of two-dimensional expressively
complete temporal logics [30], this is not the case in the one-dimensional case [45].
Being interval-preserving would not be a strong enough requirement either [44].

Another approach would be to fix a generic, “natural” temporal logic (possibly
with an infinite set of modalities, as is the case for MTL), and find conditions for
its expressive completeness. Section 3.8 is a first step in this direction, though Loop
formulas are still not very satisfactory.

7.4 Expressive power of CFMs

There are still a number of questions worth investigating regarding the expressive
power of CFMs.

PDL with converse. Propositional dynamic logic is an interesting specification
language, allowing intuitive definitions of many of the classic properties studied
in verification, and typically associated with lower complexities than logics such
as FO or MSO. The known relations between the expressive power of variants
of PDL and CFMs are illustrated in Figure 7.1. For the most general variant,
ICPDL[Procs,Prop,C,→] (PDL with converse and intersection), there exists a sen-
tence which is not equivalent to any CFM [12]. However, in the fragment without
intersection and complement, PDL[Procs,Prop,C,→], every sentence can be trans-
lated into an equivalent CFM [12]. We saw that such a translation is also possible
for the logic PDLMSC

sf defined in Chapter 5, which can be seen as another fragment
of ICPDL[Procs,Prop,C,→].

One important question remains open: in the fragment CPDL[Procs,Prop,C,→]
with converse but without intersection, can every sentence be translated into an
equivalent CFM?

CFMs over restrictions of MSCs. Recall that in general, CFMs are not closed
under complement [13], which means that while equivalent to EMSO, they are
strictly weaker than MSO. However, under several classic restrictions of MSCs,
such as universally or existentially bounded MSCs, CFMs become equivalent to full

7.4. EXPRESSIVE POWER OF CFMS 141

MSO[Procs,Prop,→,C]

EMSO[Procs,Prop,≤,C]

= CFMs

ICPDL[Procs,Prop,→,C]

FO[Procs,Prop,≤,C]

= PDLMSC
sf [Procs,Prop]

PDL[Procs,Prop,→,C]

Figure 7.1: Expressive power of logic and automata over MSCs

MSO [43, 55, 34, 35]. This means that over the considered class C of MSCs, for
every MSO sentence Φ, there exists a CFM AΦ such that

L(Φ) ∩ C = L(AΦ) ∩ C .

It would be interesting to have a better understanding of what are the classes
of MSCs over which CFMs (i.e., EMSO) are equivalent to MSO. Most of the usual
restrictions of MSCs studied in the literature have bounded tree-width, so a first
question might be:

Over MSCs of bounded tree-width, are CFMs expressively equivalent
to MSO?

Note that the question of whether EMSO is equivalent to MSO over arbitrary graphs
of bounded tree-width has already been studied, with a negative answer [75].

Beyond CFMs. Relations between logic and automata are also worth investigating
for slightly different models of message-passing systems. One possibility is to
consider recursive (rather than finite-state) processes, which can be modeled by
adding well-nested call-return relations to MSCs. We could also include dynamic
creations of processes.

Interestingly, the equivalence of EMSO and CFMs also has consequences for
parameterized communicating automata, which are similar to CFMs but can be

142 CHAPTER 7. CONCLUSION

run over any number of processes rather than having a fixed communication net-
work. In [7], the equivalence of EMSO[Procs,Prop,→,C] and CFMs [13] is used
as a black box to study the expressive power of parameterized communicating
automata. Our result, about the logic EMSO[Procs,Prop,≤proc,C] rather than
EMSO[Procs,Prop,→,C], could be used instead to obtain stronger results.

Bibliography

[1] R. Alur and P. Madhusudan. Adding nesting structure to words. Journal of
the ACM, 56(3):16:1–16:43, 2009. doi:10.1145/1516512.1516518. (Cited on
page 3.)

[2] R. Alur, D. A. Peled, and W. Penczek. Model-checking of causality properties.
In LICS’95, pages 90–100. IEEE Computer Society, 1995. doi:10.1109/LICS.
1995.523247. (Cited on page 110.)

[3] T. Antonopoulos, P. Hunter, S. Raza, and J. Worrell. Three variables suffice
for real-time logic. In FoSSaCS’15, volume 9034 of LNCS, pages 361–374.
Springer, 2015. doi:10.1007/978-3-662-46678-0_23. (Cited on pages 5, 9,
19, 23, and 37.)

[4] J. Araújo. Formalizing sequence diagrams. In Proceedings of the OOPSLA’98
Workshop on Formalizing UML. Why? How?, volume 33, 10 of ACM
SIGPLAN Notices, New York, 1998. ACM Press. (Cited on page 65.)

[5] A. Arnold. An extension of the notions of traces and of asynchronous automata.
RAIRO – Informatique Théorique et Applications, 25:355–393, 1991. doi:

10.1051/ita/1991250403551. (Cited on page 40.)

[6] M. Bojańczyk, C. David, A. Muscholl, T. Schwentick, and L. Segoufin. Two-
variable logic on data words. ACM Transactions on Computational Logic,
12(4):27:1–27:26, 2011. doi:10.1145/1970398.1970403. (Cited on page 3.)

[7] B. Bollig. Logic for communicating automata with parameterized topology. In
CSL-LICS’14, pages 18:1–18:10. ACM, 2014. doi:10.1145/2603088.2603093.
(Cited on page 142.)

[8] B. Bollig, M. Fortin, and P. Gastin. Communicating finite-state machines
and two-variable logic. In STACS’18, volume 96 of LIPIcs, pages 17:1–

143

http://dx.doi.org/10.1145/1516512.1516518
http://dx.doi.org/10.1109/LICS.1995.523247
http://dx.doi.org/10.1109/LICS.1995.523247
http://dx.doi.org/10.1007/978-3-662-46678-0_23
http://dx.doi.org/10.1051/ita/1991250403551
http://dx.doi.org/10.1051/ita/1991250403551
http://dx.doi.org/10.1145/1970398.1970403
http://dx.doi.org/10.1145/2603088.2603093

144 BIBLIOGRAPHY

17:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. doi:10.4230/
LIPIcs.STACS.2018.17. (Cited on page 74.)

[9] B. Bollig, M. Fortin, and P. Gastin. It is easy to be wise after the event:
Communicating finite-state machines capture first-order logic with ”happened
before”. In CONCUR’18, volume 118 of LIPIcs, pages 7:1–7:17. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.

CONCUR.2018.7. (Cited on pages 13, 24, and 74.)

[10] B. Bollig, M. Fortin, and P. Gastin. Communicating finite-state machines, first-
order logic, and star-free propositional dynamic logic. Journal of Computer and
System Sciences, to appear. (Cited on pages 13 and 74.)

[11] B. Bollig and D. Kuske. Muller message-passing automata and logics.
Information and Computation, 206(9-10):1084–1094, 2008. doi:10.1016/j.

ic.2008.03.010. (Cited on pages 6, 7, 70, 73, and 121.)

[12] B. Bollig, D. Kuske, and I. Meinecke. Propositional dynamic logic for message-
passing systems. Logical Methods in Computer Science, 6(3), 2010. doi:10.

2168/LMCS-6(3:16)2010. (Cited on pages 7, 11, 73, and 140.)

[13] B. Bollig and M. Leucker. Message-passing automata are expressively
equivalent to EMSO logic. Theoretical Computer Science, 358(2-3):150–172,
2006. doi:10.1016/j.tcs.2006.01.014. (Cited on pages 6, 7, 68, 73, 129,
140, and 142.)

[14] D. Brand and P. Zafiropulo. On communicating finite-state machines. Journal
of the ACM, 30(2):323–342, 1983. doi:10.1145/322374.322380. (Cited on
pages 6, 65, and 70.)

[15] J. R. Büchi. Weak second order arithmetic and finite automata. Zeitschrift für
Mathematische Logik und Grundlagen der Mathematik, 6:66–92, 1960. doi:

10.1002/malq.19600060105. (Cited on pages 2 and 72.)

[16] J. R. Büchi. On a decision method in restricted second order arithmetic. In
E. Nagel, P. Suppes, and A. Tarski, editors, LMPS’60, pages 1–11. Stanford
University Press, 1962. (Cited on page 3.)

[17] A. Church. Logic, arithmetic, and automata. In ICM’62, pages 23–35, 1963.
(Cited on page 1.)

[18] E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization
skeletons using branching-time temporal logic. In Proceedings of the Workshop
on Logics of Programs, volume 131 of LNCS, pages 52–71. Springer, 1981.
doi:10.1007/BFb0025774. (Cited on page 2.)

http://dx.doi.org/10.4230/LIPIcs.STACS.2018.17
http://dx.doi.org/10.4230/LIPIcs.STACS.2018.17
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2018.7
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2018.7
http://dx.doi.org/10.1016/j.ic.2008.03.010
http://dx.doi.org/10.1016/j.ic.2008.03.010
http://dx.doi.org/10.2168/LMCS-6(3:16)2010
http://dx.doi.org/10.2168/LMCS-6(3:16)2010
http://dx.doi.org/10.1016/j.tcs.2006.01.014
http://dx.doi.org/10.1145/322374.322380
http://dx.doi.org/10.1002/malq.19600060105
http://dx.doi.org/10.1002/malq.19600060105
http://dx.doi.org/10.1007/BFb0025774

BIBLIOGRAPHY 145

[19] R. Danecki. Nondeterministic propositional dynamic logic with intersection
is decidable. In SCT’84, volume 208 of LNCS, pages 34–53. Springer, 1985.
doi:10.1007/3-540-16066-3_5. (Cited on page 10.)

[20] A. Dawar. How many first-order variables are needed on finite ordered
structures? In We Will Show Them! Essays in Honour of Dov Gabbay,
Volume One, pages 489–520. College Publications, 2005. (Cited on pages 5, 9,
19, and 138.)

[21] G. De Giacomo and M. Lenzerini. Boosting the correspondence between
description logics and propositional dynamic logics. In AAAI’94 (vol. 1), pages
205–212. AAAI Press / The MIT Press, 1994. URL: http://www.aaai.org/
Library/AAAI/1994/aaai94-032.php. (Cited on pages 10 and 20.)

[22] V. Diekert. A partial trace semantics for petri nets. Theoretical Computer
Science, 134(1):87–105, 1994. doi:10.1016/0304-3975(94)90280-1. (Cited
on page 40.)

[23] V. Diekert and P. Gastin. Pure future local temporal logics are expres-
sively complete for mazurkiewicz traces. Information and Computation,
204(11):1597–1619, 2006. doi:10.1016/j.ic.2006.07.002. (Cited on pages 4,
9, 38, 109, and 110.)

[24] V. Diekert and G. Rozenberg, editors. The Book of Traces. World Scientific,
1995. doi:10.1142/2563. (Cited on pages 38 and 73.)

[25] J. Doner. Tree acceptors and some of their applications. Journal of Computer
and System Sciences, 4(5):406–451, 1970. doi:10.1016/S0022-0000(70)

80041-1. (Cited on page 3.)

[26] M. Droste, P. Gastin, and D. Kuske. Asynchronous cellular automata for
pomsets. Theoretical Computer Science, 247(1-2):1–38, 2000. doi:10.1016/

S0304-3975(00)00166-3. (Cited on page 40.)

[27] C. C. Elgot. Decision problems of finite automata design and related
arithmetics. Transactions of the American Mathematical Society, 98:21–52,
1961. doi:10.2307/1993511. (Cited on pages 2 and 72.)

[28] M. J. Fischer and R. E. Ladner. Propositional Dynamic Logic of regular
programs. Journal of Computer and System Sciences, 18(2):194–211, 1979.
doi:10.1016/0022-0000(79)90046-1. (Cited on pages 2, 10, 20, and 22.)

[29] M. Fortin. FO = FO3 for linear orders with monotone binary relations.
In ICALP’19, volume 132 of LIPIcs, pages 116:1–116:13. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.ICALP.2019.

116. (Cited on pages 13 and 24.)

http://dx.doi.org/10.1007/3-540-16066-3_5
http://www.aaai.org/Library/AAAI/1994/aaai94-032.php
http://www.aaai.org/Library/AAAI/1994/aaai94-032.php
http://dx.doi.org/10.1016/0304-3975(94)90280-1
http://dx.doi.org/10.1016/j.ic.2006.07.002
http://dx.doi.org/10.1142/2563
http://dx.doi.org/10.1016/S0022-0000(70)80041-1
http://dx.doi.org/10.1016/S0022-0000(70)80041-1
http://dx.doi.org/10.1016/S0304-3975(00)00166-3
http://dx.doi.org/10.1016/S0304-3975(00)00166-3
http://dx.doi.org/10.2307/1993511
http://dx.doi.org/10.1016/0022-0000(79)90046-1
http://dx.doi.org/10.4230/LIPIcs.ICALP.2019.116
http://dx.doi.org/10.4230/LIPIcs.ICALP.2019.116

146 BIBLIOGRAPHY

[30] D. M. Gabbay. Expressive functional completeness in tense logic. In
U. Mönnich, editor, Aspects of Philosophical Logic: Some Logical Forays
into Central Notions of Linguistics and Philosophy, pages 91–117. Springer
Netherlands, Dordrecht, 1981. doi:10.1007/978-94-009-8384-7_4. (Cited
on pages 4, 5, 19, and 140.)

[31] D. M. Gabbay, I. Hodkinson, and M. A. Reynolds. Temporal Logic:
Mathematical Foundations and Computational Aspects, vol. 1. Oxford
University Press, 1994. (Cited on page 4.)

[32] D. M. Gabbay, I. M. Hodkinson, and M. A. Reynolds. Temporal expressive
completeness in the presence of gaps, volume 2 of Lecture Notes in Logic, pages
89–121. Springer-Verlag, 1993. (Cited on pages 4 and 37.)

[33] P. Gastin and D. Kuske. Uniform satisfiability in PSPACE for local temporal
logics over Mazurkiewicz traces. Fundamenta Informaticae, 80(1-3):169–197,
2007. (Cited on pages 109 and 110.)

[34] B. Genest, D. Kuske, and A. Muscholl. A Kleene theorem and model checking
algorithms for existentially bounded communicating automata. Information
and Computation, 204(6):920–956, 2006. doi:10.1016/j.ic.2006.01.005.
(Cited on pages 6, 7, 11, 13, 69, 72, 73, 117, 122, 123, 129, and 141.)

[35] B. Genest, D. Kuske, and A. Muscholl. On communicating automata with
bounded channels. Fundamenta Informaticae, 80(1-3):147–167, 2007. URL:
http://content.iospress.com/articles/fundamenta-informaticae/

fi80-1-3-09. (Cited on pages 6, 7, 71, and 141.)

[36] S. Givant. The calculus of relations as a foundation for mathematics.
Journal of Automated Reasoning, 37(4):277–322, 2006. doi:10.1007/

s10817-006-9062-x. (Cited on page 25.)

[37] S. Göller, M. Lohrey, and C. Lutz. PDL with intersection and converse:
satisfiability and infinite-state model checking. Journal of Symbolic Logic,
74(1):279–314, 2009. doi:10.2178/jsl/1231082313. (Cited on pages 10, 20,
and 22.)

[38] M. Grohe. Finite variable logics in descriptive complexity theory. Bulletin of
Symbolic Logic, 4(4):345–398, 1998. doi:10.2307/420954. (Cited on page 4.)

[39] M. Grohe and N. Schweikardt. The succinctness of first-order logic on linear
orders. Logical Methods in Computer Science, 1(1), 2005. doi:10.2168/

LMCS-1(1:6)2005. (Cited on page 139.)

http://dx.doi.org/10.1007/978-94-009-8384-7_4
http://dx.doi.org/10.1016/j.ic.2006.01.005
http://content.iospress.com/articles/fundamenta-informaticae/fi80-1-3-09
http://content.iospress.com/articles/fundamenta-informaticae/fi80-1-3-09
http://dx.doi.org/10.1007/s10817-006-9062-x
http://dx.doi.org/10.1007/s10817-006-9062-x
http://dx.doi.org/10.2178/jsl/1231082313
http://dx.doi.org/10.2307/420954
http://dx.doi.org/10.2168/LMCS-1(1:6)2005
http://dx.doi.org/10.2168/LMCS-1(1:6)2005

BIBLIOGRAPHY 147

[40] J. Y. Halpern and Y. Moses. A guide to completeness and complexity for
modal logics of knowledge and belief. Artificial Intelligence, 54(2):319–379,
1992. doi:10.1016/0004-3702(92)90049-4. (Cited on pages 10 and 20.)

[41] L. Hella, M. Järvisalo, A. Kuusisto, J. Laurinharju, T. Lempiäinen, K. Luosto,
J. Suomela, and J. Virtema. Weak models of distributed computing, with
connections to modal logic. Distributed Computing, 28(1):31–53, 2015. doi:

10.1007/s00446-013-0202-3. (Cited on page 3.)

[42] L. Henkin. Logical Systems Containing Only a Finite Number of Symbols.
Séminaire de Mathématiques Supérieures: Publications. Presses de l’Université
de Montréal, 1967. (Cited on page 23.)

[43] J. G. Henriksen, M. Mukund, K. N. Kumar, M. A. Sohoni, and P. S.
Thiagarajan. A theory of regular MSC languages. Information and
Computation, 202(1):1–38, 2005. doi:10.1016/j.ic.2004.08.004. (Cited
on pages 6, 7, 69, 71, 72, and 141.)

[44] Y. Hirshfeld and A. Rabinovich. Expressiveness of metric modalities for
continuous time. Logical Methods in Computer Science, 3(1), 2007. doi:

10.2168/LMCS-3(1:3)2007. (Cited on pages 4, 46, and 140.)

[45] I. M. Hodkinson. Finite H-dimension does not imply expressive complete-
ness. Journal of Philosophical Logic, 23(5):535–573, 1994. doi:10.1007/

BF01049409. (Cited on pages 4, 5, and 140.)

[46] I. M. Hodkinson and A. Simon. The k -variable property is stronger than H-
dimension k. Journal of Philosophical Logic, 26(1):81–101, 1997. doi:10.1023/
A:1017951631048. (Cited on pages 5 and 19.)

[47] P. Hunter. When is metric temporal logic expressively complete? In CSL’13,
volume 23 of LIPIcs, pages 380–394. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2013. doi:10.4230/LIPIcs.CSL.2013.380. (Cited on pages 4
and 46.)

[48] P. Hunter, J. Ouaknine, and J. Worrell. Expressive completeness for metric
temporal logic. In LICS’13, pages 349–357. IEEE Computer Society, 2013.
doi:10.1109/LICS.2013.41. (Cited on pages 4 and 46.)

[49] N. Immerman. Upper and lower bounds for first order expressibility.
Journal of Computer and System Sciences, 25(1):76–98, 1982. doi:10.1016/

0022-0000(82)90011-3. (Cited on pages 5 and 138.)

[50] N. Immerman. Descriptive complexity. Graduate texts in computer science.
Springer, 1999. doi:10.1007/978-1-4612-0539-5. (Cited on page 4.)

http://dx.doi.org/10.1016/0004-3702(92)90049-4
http://dx.doi.org/10.1007/s00446-013-0202-3
http://dx.doi.org/10.1007/s00446-013-0202-3
http://dx.doi.org/10.1016/j.ic.2004.08.004
http://dx.doi.org/10.2168/LMCS-3(1:3)2007
http://dx.doi.org/10.2168/LMCS-3(1:3)2007
http://dx.doi.org/10.1007/BF01049409
http://dx.doi.org/10.1007/BF01049409
http://dx.doi.org/10.1023/A:1017951631048
http://dx.doi.org/10.1023/A:1017951631048
http://dx.doi.org/10.4230/LIPIcs.CSL.2013.380
http://dx.doi.org/10.1109/LICS.2013.41
http://dx.doi.org/10.1016/0022-0000(82)90011-3
http://dx.doi.org/10.1016/0022-0000(82)90011-3
http://dx.doi.org/10.1007/978-1-4612-0539-5

148 BIBLIOGRAPHY

[51] N. Immerman and D. Kozen. Definability with bounded number of bound
variables. Information and Computation, 83(2):121–139, 1989. doi:10.1016/

0890-5401(89)90055-2. (Cited on pages 5, 19, 23, 37, and 138.)

[52] ITU-TS. ITU-TS Recommendation Z.120: Message Sequence Chart 1999
(MSC99). Technical report, ITU-TS, Geneva, 1999. (Cited on page 65.)

[53] H. Kamp. Tense Logic and the Theory of Linear Order. PhD thesis, University
of California, Los Angeles, 1968. (Cited on pages 2, 19, and 37.)

[54] D. Kozen. Results on the propositional mu-calculus. Theoretical Computer
Science, 27:333–354, 1983. doi:10.1016/0304-3975(82)90125-6. (Cited on
page 2.)

[55] D. Kuske. Regular sets of infinite message sequence charts. Information
and Computation, 187:80–109, 2003. doi:10.1016/S0890-5401(03)00123-8.
(Cited on pages 6, 7, 70, 71, 72, 130, 134, and 141.)

[56] A. Kuusisto. Modal logic and distributed message passing automata. In
CSL’13, volume 23 of LIPIcs, pages 452–468. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2013. doi:10.4230/LIPIcs.CSL.2013.452. (Cited
on page 3.)

[57] L. Lamport. Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, 21(7):558–565, 1978. doi:10.1145/359545.

359563. (Cited on pages 6 and 65.)

[58] M. Lange. Model checking propositional dynamic logic with all extras. Journal
of Applied Logic, 4(1):39–49, 2006. doi:10.1016/j.jal.2005.08.002. (Cited
on pages 10 and 20.)

[59] M. Lange and C. Lutz. 2-ExpTime lower bounds for propositional dynamic
logics with intersection. Journal of Symbolic Logic, 70(4):1072–1086, 2005.
doi:10.2178/jsl/1129642115. (Cited on pages 10 and 20.)

[60] M. Lohrey and A. Muscholl. Bounded MSC communication. Information and
Computation, 189(2):160–181, 2004. doi:10.1016/j.ic.2003.10.002. (Cited
on pages 69 and 123.)

[61] C. Lutz, U. Sattler, and F. Wolter. Modal logic and the two-variable fragment.
In CSL’01, volume 2142 of LNCS, pages 247–261. Springer, 2001. doi:10.

1007/3-540-44802-0_18. (Cited on page 28.)

[62] C. Lutz and D. Walther. PDL with negation of atomic programs. Journal of
Applied Non-Classical Logics, 15(2):189–213, 2005. doi:10.3166/jancl.15.

189-213. (Cited on page 10.)

http://dx.doi.org/10.1016/0890-5401(89)90055-2
http://dx.doi.org/10.1016/0890-5401(89)90055-2
http://dx.doi.org/10.1016/0304-3975(82)90125-6
http://dx.doi.org/10.1016/S0890-5401(03)00123-8
http://dx.doi.org/10.4230/LIPIcs.CSL.2013.452
http://dx.doi.org/10.1145/359545.359563
http://dx.doi.org/10.1145/359545.359563
http://dx.doi.org/10.1016/j.jal.2005.08.002
http://dx.doi.org/10.2178/jsl/1129642115
http://dx.doi.org/10.1016/j.ic.2003.10.002
http://dx.doi.org/10.1007/3-540-44802-0_18
http://dx.doi.org/10.1007/3-540-44802-0_18
http://dx.doi.org/10.3166/jancl.15.189-213
http://dx.doi.org/10.3166/jancl.15.189-213

BIBLIOGRAPHY 149

[63] M. Marx. Conditional xpath. ACM Transactions on Database Systems,
30(4):929–959, 2005. doi:10.1145/1114244.1114247. (Cited on pages 4
and 138.)

[64] B. Meenakshi and R. Ramanujam. Reasoning about layered message passing
systems. Computer Languages, Systems and Structures, 30(3-4):171–206, 2004.
doi:10.1016/j.cl.2004.02.003. (Cited on page 7.)

[65] R. Mennicke. Propositional dynamic logic with converse and repeat for
message-passing systems. Logical Methods in Computer Science, 9(2), 2013.
doi:10.2168/LMCS-9(2:12)2013. (Cited on page 7.)

[66] D. A. Peled. Specification and verification of message sequence charts. In
Formal Techniques for Distributed System Development, FORTE/PSTV 2000,
volume 183 of IFIP Conference Proceedings, pages 139–154. Kluwer, 2000.
(Cited on page 7.)

[67] A. Pnueli. The temporal logic of programs. In FOCS’77, pages 46–57. IEEE
Computer Society, 1977. doi:10.1109/SFCS.1977.32. (Cited on page 2.)

[68] A. Pnueli and R. Rosner. On the synthesis of a reactive module. In POPL’89,
pages 179–190. ACM Press, 1989. doi:10.1145/75277.75293. (Cited on
page 1.)

[69] B. Poizat. Deux ou trois choses que je sais de Ln. Journal of Symbolic Logic,
47(3):641–658, 1982. doi:10.2307/2273594. (Cited on pages 5, 19, and 23.)

[70] M. O. Rabin. Decidability of second-order theories and automata on infinite
trees. Transactions of the American Mathematical Society, 141:1–35, 1969.
doi:10.1090/S0002-9947-1969-0246760-1. (Cited on page 3.)

[71] K. Reinhardt. The complexity of translating logic to finite automata. In
Automata, Logics, and Infinite Games: A Guide to Current Research [outcome
of a Dagstuhl seminar, February 2001], volume 2500 of LNCS, pages 231–238.
Springer, 2001. doi:10.1007/3-540-36387-4_13. (Cited on page 139.)

[72] F. Reiter. Distributed graph automata. In LICS’15, pages 192–201. IEEE
Computer Society, 2015. doi:10.1109/LICS.2015.27. (Cited on page 3.)

[73] F. Reiter. Asynchronous distributed automata: A characterization of the modal
mu-fragment. In ICALP’17, volume 80 of LIPIcs, pages 100:1–100:14. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPIcs.

ICALP.2017.100. (Cited on page 3.)

http://dx.doi.org/10.1145/1114244.1114247
http://dx.doi.org/10.1016/j.cl.2004.02.003
http://dx.doi.org/10.2168/LMCS-9(2:12)2013
http://dx.doi.org/10.1109/SFCS.1977.32
http://dx.doi.org/10.1145/75277.75293
http://dx.doi.org/10.2307/2273594
http://dx.doi.org/10.1090/S0002-9947-1969-0246760-1
http://dx.doi.org/10.1007/3-540-36387-4_13
http://dx.doi.org/10.1109/LICS.2015.27
http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.100
http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.100

150 BIBLIOGRAPHY

[74] B. Rossman. On the constant-depth complexity of k-clique. In STOC’08, pages
721–730. ACM, 2008. doi:10.1145/1374376.1374480. (Cited on pages 5, 9,
19, and 138.)

[75] I. Schiering. A hierarchical approach to monadic second-order logic over graphs.
In CSL’97, volume 1414 of LNCS, pages 424–440. Springer, 1997. doi:10.

1007/BFb0028029. (Cited on page 141.)

[76] B. Schlingloff. Expressive completeness of temporal logic of trees. Journal
of Applied Non-Classical Logics, 2(2):157–180, 1992. doi:10.1080/11663081.
1992.10510780. (Cited on page 4.)

[77] A. P. Sistla and E. M. Clarke. The complexity of propositional linear temporal
logics. Journal of the ACM, 32(3):733–749, 1985. doi:10.1145/3828.3837.
(Cited on pages 2 and 40.)

[78] P. H. Starke. Processes in petri nets. Elektronische Informationsverarbeitung
und Kybernetik, 17(8/9):389–416, 1981. (Cited on page 40.)

[79] L. J. Stockmeyer. The Complexity of Decision Problems in Automata Theory
and Logic. PhD thesis, MIT, 1974. (Cited on pages 2, 3, 7, 40, 121, and 139.)

[80] R. S. Streett. Propositional dynamic logic of looping and converse. In STOC’81,
pages 375–383. ACM, 1981. doi:10.1145/800076.802492. (Cited on pages 10
and 20.)

[81] A. Tarski. On the calculus of relations. Journal of Symbolic Logic, 6(3):73–89,
1941. doi:10.2307/2268577. (Cited on page 25.)

[82] A. Tarski and S. R. Givant. A formalization of set theory without variables.
American Mathematical Society Providence, R.I, 1987. (Cited on pages 10
and 25.)

[83] J. W. Thatcher and J. B. Wright. Generalized finite automata theory with an
application to a decision problem of second-order logic. Mathematical Systems
Theory, 2(1):57–81, 1968. doi:10.1007/BF01691346. (Cited on page 3.)

[84] P. S. Thiagarajan. A trace based extension of linear time temporal logic. In
LICS’94, pages 438–447. IEEE Computer Society, 1994. doi:10.1109/LICS.

1994.316047. (Cited on pages 109 and 110.)

[85] P. S. Thiagarajan and I. Walukiewicz. An expressively complete linear
time temporal logic for Mazurkiewicz traces. Information and Computation,
179(2):230–249, 2002. doi:10.1006/inco.2001.2956. (Cited on pages 4, 124,
and 130.)

http://dx.doi.org/10.1145/1374376.1374480
http://dx.doi.org/10.1007/BFb0028029
http://dx.doi.org/10.1007/BFb0028029
http://dx.doi.org/10.1080/11663081.1992.10510780
http://dx.doi.org/10.1080/11663081.1992.10510780
http://dx.doi.org/10.1145/3828.3837
http://dx.doi.org/10.1145/800076.802492
http://dx.doi.org/10.2307/2268577
http://dx.doi.org/10.1007/BF01691346
http://dx.doi.org/10.1109/LICS.1994.316047
http://dx.doi.org/10.1109/LICS.1994.316047
http://dx.doi.org/10.1006/inco.2001.2956

BIBLIOGRAPHY 151

[86] W. Thomas. On logical definability of trace languages. In Proceedings of
Algebraic and Syntactic Methods in Computer Science (ASMICS), Report
TUM-I9002, Technical University of Munich, pages 172–182, 1990. (Cited on
page 3.)

[87] W. Thomas. On logics, tilings, and automata. In ICALP’91, volume 510 of
LNCS, pages 441–454. Springer, 1991. doi:10.1007/3-540-54233-7_154.
(Cited on page 3.)

[88] W. Thomas. Elements of an automata theory over partial orders. In Partial
Order Methods in Verification, Proceedings of a DIMACS Workshop, volume 29
of DIMACS, pages 25–40. AMS, 1996. doi:10.1090/dimacs/029/02. (Cited
on page 3.)

[89] B. A. Trakhtenbrot. Finite automata and monadic second order logic. Siberian
Mathematical Journal, 3:103–131, 1962. In Russian; English translation in
Amer. Math. Soc. Transl. 59, 1966, 23–55. (Cited on pages 2 and 72.)

[90] M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic
program verification. In LICS’86, pages 332–344. IEEE Computer Society,
1986. (Cited on pages 2, 3, and 40.)

[91] Y. Venema. Two-dimensional modal logics for relation algebras and temporal
logic of intervals. ITLI prepublication series, LP-1989-03, 1989. URL: https:
//eprints.illc.uva.nl/id/eprint/1140. (Cited on page 10.)

[92] Y. Venema. Expressiveness and completeness of an interval tense logic. Notre
Dame Journal of Formal Logic, 31(4):529–547, 1990. (Cited on pages 5 and 9.)

[93] Y. Venema. A modal logic for chopping intervals. Journal of Logic and
Computation, 1(4):453–476, 1991. doi:10.1093/logcom/1.4.453. (Cited on
page 10.)

[94] I. Walukiewicz. Local logics for traces. Journal of Automata, Languages and
Combinatorics, 7(2):259–290, 2002. doi:10.25596/jalc-2002-259. (Cited on
page 110.)

[95] W. Zielonka. Notes on finite asynchronous automata. RAIRO – Infor-
matique Théorique et Applications, 21(2):99–135, 1987. doi:10.1051/ita/

1987210200991. (Cited on page 3.)

http://dx.doi.org/10.1007/3-540-54233-7_154
http://dx.doi.org/10.1090/dimacs/029/02
https://eprints.illc.uva.nl/id/eprint/1140
https://eprints.illc.uva.nl/id/eprint/1140
http://dx.doi.org/10.1093/logcom/1.4.453
http://dx.doi.org/10.25596/jalc-2002-259
http://dx.doi.org/10.1051/ita/1987210200991
http://dx.doi.org/10.1051/ita/1987210200991

Overview of logics

MSO[Σ] (Monadic Second-Order Logic) p.17

Φ ::= P (x) | α(x, y) | x = y | x ∈ X | Φ ∨ Φ | ¬Φ | ∃x.Φ | ∃X.Φ

and FO[Σ] ((Monadic) First-Order Logic) p.18

Φ ::= P (x) | α(x, y) | x = y | x ∈ X | Φ ∨ Φ | ¬Φ | ∃x.Φ

P ∈ Prop, α ∈ Rel, x, y first-order variables, X a second-order variable.

PDL[Σ] (Propositional Dynamic Logic) p.20

ξ ::= Eϕ | ξ ∨ ξ | ¬ξ (sentences)

ϕ ::= P | true | ϕ ∨ ϕ | ¬ϕ | 〈π〉ϕ (event formulas)

π ::= α | {ϕ}? | π · π | π + π | π∗ (path formulas)

and ICPDL[Σ] (PDL with converse and intersection) p.20

ξ ::= Eϕ | ξ ∨ ξ | ¬ξ (sentences)

ϕ ::= P | true | ϕ ∨ ϕ | ¬ϕ | 〈π〉ϕ (event formulas)

π ::= α | {ϕ}? | π · π | π + π | π∗ | π ∩ π | π−1 (path formulas)

P ∈ Prop, α ∈ Rel.

153

154 OVERVIEW OF LOGICS

PDLsf [Σ] (Star-free PDL) p.24

ξ ::= Eϕ | ξ ∨ ξ | ¬ξ
ϕ ::= true | P | ϕ ∨ ϕ | ¬ϕ | 〈π〉ϕ
π ::= α | {ϕ}? | π−1 | π · π | π + π | πc

P ∈ Prop, α ∈ Rel.

PDLint
sf [Σ] (Interval-preserving fragment of star-free PDL) p.33

ξ ::= Eϕ | ξ ∨ ξ | ¬ξ
ϕ ::= true | P | ϕ ∨ ϕ | ¬ϕ | 〈π〉ϕ | Loop(π)

π ::= α | {ϕ}? | π−1 | π · π | (λ · π · µ)c

P ∈ Prop, α ∈ Rel, λ, µ ∈ {≤,≥}.

PDL<•sf [Σ] (A fragment of star-free PDL without complement) p.42

ξ ::= Eϕ | ξ ∨ ξ | ¬ξ
ϕ ::= true | P | ϕ ∨ ϕ | ¬ϕ | 〈π〉ϕ | Loop(π)

σ ::= α | inf (λ · α) | sup (λ · α)

π ::= σ | σ−1 | {ϕ}? | <ϕ | >ϕ | π · π

P ∈ Prop, α ∈ Rel \ {≤}, λ ∈ {≤, <,≥, >}.

PDLMSC
sf [Procs,Prop] (A simpler fragment of PDLsf for MSCs) p.79

ξ ::= Eϕ | ξ ∨ ξ | ¬ξ
ϕ ::= true | p | P | ϕ ∨ ϕ | ¬ϕ | 〈π〉ϕ | Loop(π)

π ::= > | Cp,q | C−1
p,q | {ϕ}? | (<proc)ϕ | (>proc)ϕ | π · π

p ∈ Procs, P ∈ Prop, (p, q) ∈ Ch.

TL[Procs,Prop, 〈C〉, 〈C−1〉,Co, SU,SS] (A temporal logic for MSCs) p.109

ϕ ::= true | p | P | ϕ ∨ ϕ | ¬ϕ | 〈C〉ϕ | 〈C−1〉ϕ | Coϕ | ϕ SU ϕ | ϕ SS ϕ

p ∈ Procs, P ∈ Prop.

Index

Actp(Msg), 70

Ch, 65

Comp(π), 82

Free(Φ), 17

Proptype , 127

L, 67

LinB(M), 122

Loop(π), 21

Msg , 70

Procs, 65

Prop, 15

Rel, 15

Σ, 15

Σint
MSC(Procs,Prop), 77

Alin , 122

S(ξ), S(ϕ), S(π), 80

>, 24

>-free formula, 82

�B, 126

〈π〉, 21

λ, 66

v, 76

length(π), 81

≤proc, 66

C, 66

Cp,q, 76

loc, 66

→, 66

〈a, ?qm〉, 70
revB, 123
(<proc)ϕ , (>proc)ϕ, 79
<ϕ, >ϕ, 41

JπKM , 20
JϕKM , 20
〈a, !qm〉, 70
‖ξ‖, ‖ϕ‖, ‖π‖, 81
M�, 122

acceptance condition, 70

bounded linearization, 69

calculus of relations, 25
communicating finite-state machine (CFM),

70
deterministic CFM, 71

complete Σ-structure, 40

event, 15, 66
internal event, 66
receive event, 66
send event, 66

existentially bounded, 69
extension, 91

FIFO, 66
first-order logic, 18

FOk[Σ], 18

155

156 INDEX

monadic first-order logic, 18
non-monadic first-order logic, 18

happened-before, 65, 66

interval, 29
≤proc-interval, 101

interval-preserving
interval-preserving formula, 31
interval-preserving relation, 29
interval-preserving structure, 30

k-variable property, 19
strong k-variable property, 19

language
L(A), 71
L(Φ), 67

length, 81
linearization, 69, 122

Mazurkiewicz trace, 38
message sequence chart (MSC), 66

MSC(Procs,Prop), 67
MSC∃B(Procs,Prop), 69
MSCfin(Procs,Prop), 67
MSCfin

∃B(Procs,Prop), 69
MSCfin

∀B(Procs,Prop), 69
MSCω(Procs,Prop), 67
MSC∀B(Procs,Prop), 69

monadic second-order logic, 17
existential monadic second-order

logic, 18

order
complete linear order, 40
linear order, 28
partial order, 28
total order, 28

projection, 91
propositional dynamic logic, 20

star-free, 24
with converse and intersection, 20

run, 70
accepting run, 71

signature, 15
size of a formula, 81
Σ-structure, 15
subformula, 80

temporal logic, 4, 45, 109

universally bounded, 69

Titre: Expressivité de la logique du premier ordre, de la logique dynamique propositionnelle sans étoile
et des automates communicants

Mots clés: logique du premier ordre, logique avec k variables, logique dynamique propositionnelle,
logiques temporelles, automates communicants

Résumé: Cette thèse porte sur l’expressivité de
la logique du premier ordre et d’autres formalismes
sur différentes classes de structures ordonnées, parmi
lesquelles les MSC (Message Sequence Charts), un
modèle standard pour les exécutions de systèmes
concurrents avec échange de messages. Cette étude
est motivée par deux questions classiques : celle de
l’équivalence, pour certaines classes de structures,
entre la logique du premier ordre et son fragment
avec k variables, et celle de la comparaison entre
automates et logique, dans l’esprit du théorème de
Büchi-Elgot-Trakhtenbrot. Notre approche repose
sur la logique dynamique propositionnelle sans étoile
(PDL sans étoile), une variante de PDL équivalente
à la logique du premier ordre avec 3 variables.

On étudie d’abord l’expressivité de PDL sans
étoile sur des structures linéairement ordonnées avec
des prédicats unaires et binaires. On montre que
sous certaines conditions de monotonie, PDL sans
étoile devient aussi expressive que la logique du pre-
mier ordre. Cela implique que toute formule de la
logique du premier ordre peut alors être réécrite en
une formule équivalente qui utilise au plus 3 vari-

ables. Ce résultat s’applique, directement ou indi-
rectement, à un certain nombre de classes naturelles,
généralisant des résultats connus et répondant à des
questions ouvertes.

On se concentre ensuite sur les MSC, auxquels
ce premier résultat s’applique également. PDL sans
étoile nous permet d’aborder un autre problème im-
portant: celui de la synthèse d’automates communi-
cants à partir de spécifications écrites en logique du
premier ordre. Les automates communicants sont un
modèle de systèmes concurrents dans lequel un nom-
bre fixé d’automates finis échangent des messages
via des canaux FIFO. Ils définissent des langages de
MSC. Bien que des caractérisations de l’expressivité
des automates communicants aient déjà été établies
pour certaines restrictions (borne sur la taille des
canaux de communications, ou omission de la rela-
tion “arrivé-avant” au niveau de la logique), la ques-
tion suivante restait ouverte dans le cas général :
toute formule du premier ordre sur les MSC peut-elle
être traduite en un automate communicant équiva-
lent ? On montre que c’est le cas, en utilisant PDL
sans étoile comme langage intermédiaire.

Title: Expressivity of first-order logic, star-free propositional dynamic logic and communicating automata

Keywords: first-order logic, k-variable property, propositional dynamic logic, temporal logics, commu-
nicating finite-state machines

Abstract: This thesis is concerned with the expres-
sive power of first-order logic and other formalisms
over different classes of ordered structures, among
which MSCs (Message Sequence Charts), a stan-
dard model for executions of message-passing sys-
tems. This study is motivated by two classic prob-
lems: the k-variable property, that is, the equiva-
lence of first-order logic and its k-variable fragment
over certain classes of structures, and the study of
logic-automata connections, in the spirit of Büchi-
Elgot-Trakhtenbrot theorem. Our approach relies
on star-free propositional dynamic logic (star-free
PDL), a variant of PDL with the same expressive
power as the 3-variable fragment of first-order logic.

We start by studying the expressive power of
star-free PDL over linearly ordered structures with
unary and binary predicates. We show that under
certain monotonicity conditions, star-free PDL be-
comes as expressive as first-order logic. This implies
that any first-order formula can then be rewritten
into an equivalent formula with at most 3 variables.

This result applies to various natural classes of struc-
tures, generalizing several known results and answer-
ing some open questions.

We then focus on MSCs, to which this first re-
sult also applies. We use star-free PDL to address
another important problem: the synthesis of com-
municating finite-state machines (CFMs) from first-
order specifications. CFMs are a model of concur-
rent systems in which a fixed number of finite-state
automata communicate through unbounded FIFO
channels. They accept languages of MSCs. While
logical characterizations of the expressive power of
CFMs have been established under different restric-
tions (bounding the size of the communication chan-
nels, or removing the “happened-before” relation
from the logic), the following question had remained
open in the general case: can every first-order for-
mula over MSCs be translated into an equivalent
CFM? We prove that this is the case, using star-free
PDL as an intermediate language.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

	Résumé
	Abstract
	Contents
	Introduction
	Motivations
	Ordered structures and message-passing systems
	Star-free propositional dynamic logic
	Outline

	Logical background
	Models
	Monadic Second-Order Logic
	Bounded-variable fragments
	Propositional Dynamic Logic

	Star-free Propositional Dynamic Logic
	Monadic variables
	Syntax and semantics
	Equivalence of star-free PDL and FO3
	Interval-preserving relations
	Interval-preserving fragment of star-free PDL
	Equivalence of FO and PDLsf
	Applications
	The case of complete linear orders
	A fragment of PDLsf[] without complement
	Main result
	Splitting formulas with complement operators
	Complements for base path formulas
	Proof of Theorem 3.30

	Communicating Finite-State Machines
	Message Sequence Charts
	Definition
	Logics for MSCs
	Bounded MSCs

	Communicating finite-state machines
	Logical characterizations of CFMs

	Logics for Message Sequence Charts
	MSCs as interval-preserving structures
	Fragment of star-free PDL for MSCs
	Syntax
	Monotonicity
	Expressive completeness

	Fragment without Loop formulas
	Main result and sketch of proof
	Simple cases
	A normal form for Loop formulas
	The case of Loop formulas in normal form
	Proof of Theorem 5.28

	Temporal logics

	From logic to CFMs
	Star-free PDL
	First-order logic and EMSO
	Temporal logics
	Existentially-bounded MSCs
	Known results
	A CFM for existentially-bounded MSCs
	FO-definable linearizations for existentially-bounded MSCs
	Logic for linearizations
	A new proof of Theorem 6.8
	Extension to infinite MSCs

	Conclusion
	The k-variable property
	Succinctness
	Expressive completeness of temporal logics
	Expressive power of CFMs

	Bibliography
	Overview of logics
	Index

