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1 Games and solution concepts

1 Games and solution concepts

1.1 The strategic form

For a finite set N of players, a game in strategic form is described by a tuple

G =
(
(Si)i∈N , (ui)i∈N

)
with the following ingredients:

- a set Si of strategies (or actions) for each player i ∈ N , and

- a utility function ui : ×i∈NSi → R, for each player i ∈ N .

To play such a game, each player i chooses a strategy si ∈ Si. This yields the
outcome s = (si)i∈N . The utility of the outcome for Player j is the value uj(s).
Fundamentally, we assume that the players choose their actions independently
and simultaneously, and that each player seeks to maximise his utility.

When speaking about situations that involve the players in N , we refer to a
list of elements x = (xi)i∈N , one for each player, as a profile. We write x−i to
denote the list (xj)j∈N\{i} of elements in x for each player except i. Given an
element xi and a list x−i, we denote by (xi, x−i) the profile (xi)i∈N . For clarity,
we will always use subscripts to specify to which player an element belongs. If
not quantified otherwise, we usually refer to Player i to mean any player. Often,
but not always, we use the first natural numbers for naming the players and
assume N = {1, . . . , n}.

With this notation, a game is a pair G = (S, u) where S is a profile of strategy
sets and u is a profile of utility functions. We call S the strategy space of G. A
game is finite if its strategy space is finite.

A best response of Player i to a strategy profile s−i of the other players is a
strategy si that yields him the greatest utility, i.e.,

ui(si, s−i) ≥ ui(s′i, s−i) for all s′i ∈ Si.

We specify that si is the strongly best response, if the inequality is strict for all
s′i ∈ Si.

One main concern of game theory is to define an appropriate solution con-
cept, that is a function that maps any game to a subset of its strategy space
consisting of the outcomes that should be expected if the players would play
rationally. Ideally, a solution concept should return a single strategy profile and
thus predict the outcome of any (play of any) game. However, at present, there
is no definitive answer to what it means to play rationally and thus, no unfailing
solution concept.

We will discuss several proposals that are helpful for analysing particular
game situations.
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1.2 Dominance

Bimatrix representation. A game for two players, i ∈ {1, 2}, can conve-
niently be represented by a matrix where the rows are associated to the strate-
gies of Player 1 and the columns to those of Player 2. The matrix entry at the
intersection of the row for s1 ∈ S1 and the column for s2 ∈ S2 is the pair of util-
ities (u1(s), u2(s)), with s = (s1, s2). For an example of such a representation,
see Figure 1.

1.2 Dominance

Let G be a game with the usual notation and let ri, si ∈ Si be two strategies of
Player i. We say that ri dominates si, if

ui(ri, s−i) > ui(si, s−i) for all s−i ∈ S−i.

Informally, ri yields greater utility than si, no matter what the other players
choose. We say that si ∈ Si is dominated, if there exists a strategy ri ∈ Si that
dominates it. A strategy that ri dominates every other strategy si ∈ Si \ {ri}
is called dominant strategy. A dominant strategy equilibrium is a profile that
consists of each player’s dominating strategies.

In the Prisoner’s Dilemma game represented in Figure 1, the profile (Confess,
Confess) is a dominant strategy equilibrium.

Notice that in a dominant strategy equilibrium, each player plays his strongly
best response to all strategy profiles of other players. Moreover, if a dominant
strategy equilibrium exists, it is unique.

Rose

Colin

Deny Confess

Deny −1,−1 -10, 0

Confess 0,−10 -8, -8

Figure 1: Prisoner’s Dilemma

However, not all games admit a dominant strategy equilibrium. For instance,
in the game “Battle of the Bismarck Sea” represented in Figure 2 no strategy
is dominating, and no strategy is dominated. However, some strategies may be
considered dominated in a weaker sense.

For a pair of strategies ri, si ∈ Si, we say that ri weakly dominates si, if

ui(ri, s−i) ≥ ui(si, s−i) for all s−i ∈ S−i, and
ui(ri, s−i) > ui(si, s−i) for some s−i ∈ S−i.

Informally, no matter what the other players choose, ri is never worse than si,
and sometimes better.
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1.2 Dominance

As we did for the strict case, we call a strategy si ∈ Si weakly dominated if
there exists a strategy ri ∈ Si that weakly dominates it. In turn, a strategy is
weakly dominating if it weakly dominates all other strategies. A weakly dom-
inant equilibrium is a profile that consists of each player’s weakly dominating
strategies.

In the game of Figure 2, the strategy North of Imamura weakly dominates
his strategy South. However, none of the strategies of Kenney is a-priori undom-
inated. Nevertheless, one may argue that Kenney can predict that Imamura will
not use his dominated strategy South and therefore reason as if the game would
only consist of the first column. In this smaller game Kenney would choose
North as it dominates South. This type of reasoning is formalised through the
notion of sequential elimination of (weakly) dominated strategies.

We say that a game G = (S, u) reduces to a game G′ = (S′, u) by a one-stage
elimination if, for some player i ∈ N ,

• S′i ( Si,

• every strategy si ∈ Si \ S′i is dominated in G,

and for every other player j 6= i, we have Sj = S′j . (Strictly speaking we should
restrict the utility function to the reduced strategy space, but we drop this detail
here.)

An elimination sequence for G is a sequence of games G0,G1, . . . ,G` starting
from G0 = G and with the property that every Gk reduces to Gk+1 by a one-stage
elimination, for every k < `. An elimination sequence that cannot be prolonged
is called maximal. If we set out with a finite game, every maximal elimination
sequence is obviously finite.

Proposition 1. For any finite game G, all maximal elimination sequences of
dominated strategies terminate at the same game.

For a game G = (S, u), a strategy profile s ∈ S is a solution obtained by
sequential elimination of dominated strategies, if there exists a maximal elim-
ination sequence G0,G1, . . . ,G` with G0 = G and G` = ({s}, u). In this case
we say that the game is solvable (through iterated elimination of dominated
strategies).

Proposition 1 implies that whenever a game is solvable, the solution is inde-
pendent of the witnessing elimination sequence.

Kenney

Imamura

North South

North 2,−2 2,−2

South 1,−1 3,−3

Figure 2: Battle of the Bismarck Sea
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1.3 Nash equilibrium

For the weak notion of dominance, we can define the concept of a solution
obtained by sequential elimination of weakly dominated strategies, analogously.
For the game of Figure 2, the profile (South,South) is such a solution.

Notice, however, that the statement of Proposition 1 does not hold for weak
dominance. Essentially, order dependence is due to the fact that the reason for
eliminating a strategy may itself be eliminated in a later step, as illustrated in
Figure 3. In this game, the strategy c1 which justifies dominance of r1 over r2
would be eliminated in the second step; at this point, Player 1 may reconsider
choosing r2. This phenomenon makes the concept difficult to justify.

c1 c2

r1 2, 2 3, 7

r2 0, 6 3,−2

Figure 3: Column c1 which justifies dominance of row r1 is eliminated

Due to order dependence a (single-profile) solution obtained through se-
quential elimination of weakly dominated strategies may not be unique. The
game represented in Figure 4 admits as elimination sequences r3, c3, c2, r2 and
r2, c2, c1, r3 which lead to two different solutions (r1, c1) and (r1, c3), respec-
tively.

In summary, the notion of sequential elimination of weakly dominated strate-
gies may appear to be of limited use for defining a general solution concept.
Nevertheless it can be relevant in particular situations.

c1 c2 c3

r1 2, 12∗ 1, 10 1, 12∗

r2 0, 12 0, 10 0, 11

r3 0, 12 1, 10 0, 13

Figure 4: Different solutions from different elimination sequences

1.3 Nash equilibrium

The dominance-based concepts we have seen so far are helpless in many concrete
cases. For instance, in the game of Figure 5, none of the strategies is even weakly
dominated. An alternative concept is that of Nash equilibrium.
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1.3 Nash equilibrium

Big

Small

Press Wait

Press 5, 1 4, 4∗

Wait 9,−1 0, 0

Figure 5: Big pig, small pig

Let G be a game with the usual notation. A profile s ∈ S is a Nash equilib-
rium if si is a best response to s−i, for every player i ∈ N . Likewise, we call a
profile s ∈ S is a strong Nash equilibrium, if si is the strongly best response to
s−i, for every player i ∈ N .

One argument in support of the Nash equilibrium concept is that it yields a
consistent prescription: when an equilibrium outcome is proposed, none of the
players has an incentive to deviate, provided he assumes that every other player
will follow the proposal. Furthermore, Nash equilibrium may provide a solution
to games when dominance-based concepts cannot, as it is the case in the game
of figure 5.

Finally, it turns out that Nash equilibrium subsumes the dominance-based
concepts, in a certain sense.

Proposition 2. (i) If a game has a solution s obtained by sequential elim-
ination of dominated strategies, then s is the unique Nash equilibrium of
the game.

(ii) If a game G has a solution s obtained by sequential elimination of weakly
dominated strategies, then s is a Nash equilibrium of G.

For (the strict version of) dominance, elimination sequences have the follow-
ing property which holds even for games that are not solvable.

Proposition 3. Let s be a Nash equilibrium of a game G = (S, u) and let
G0,G1, . . . ,G` be an elimination sequence of dominated strategies. Then s ∈ Sk,
for the strategy space Sk of any game Gk in the sequence.

However, the above property does not hold for elimination sequences of
weakly dominated strategies, as one can see in the game of Figure 6, where
the equilibrium (r2, c2) is eliminated in the first stage, because c2 is weakly
dominated by c1.

c1 c2

r1 2, 6 3, 2

r2 0, 2 3, 2∗

Figure 6: Nash equilibrium may be weakly dominated

6



1.3 Nash equilibrium

Worse, the process of eliminating weakly dominated strategies may delete
all Nash equilibria in a game, as shown in Figure 7.

c1 c2 c3

r1 1, 3 1, 3 2, 1

r2 0, 2 0, 2 2, 2

r3 7, 1 7, 1 0, 3

c1 c2

r1 1, 3 2, 1

r2 7, 1 0, 3

Figure 7: Iterated weak dominance may eliminate all equilibria

In turn, strong equilibria do survive under elimination of weakly dominated
strategies.

Nevertheless, Nash equilibrium is not the ultimate solution concept. On the
one hand, there are games with no equilibria, such as the Matching Pennies
game in Figure 8.

head tails

heads 1,−1 −1, 1

tails −1, 1 1,−1

Figure 8: Matching Pennies

On the other hand, there are games with multiple equilibria. Typical ex-
amples are coordination games such as Battle of Sexes or the Chicken game of
Figure 9. Here, the combination of equilibrium strategies can moreover result
in the worst possible outcome.

dove hawk

dove 1, 1 0, 2

hawk 2, 0 −1,−1

meat fish

red 2, 1 0, 0

white 0, 0 1, 2

Figure 9: Chicken and Battle of Sexes

One approach to dealing with the problem of multiple equilibria are refine-
ment concepts. For instance, in the modified version of the Prisoner’s Dilemma,
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1.4 Minimax

given in Figure 10, one could discard the equilibrium (Confess, Confess) by ar-
guing that the involved strategies are weakly dominated, or that the outcome
is of utility to both players than the equilibrium (Deny, Deny).

The nonexistence problem can be overcome by introducing randomisation in
the choice of strategies, as we will see in the next section.

Rose

Colin

Deny Confess

Deny 0, 0 -10, 0

Confess 0,−10 -8, -8

Figure 10: Prisoner’s Dilemma (modified)

1.4 Minimax

Minimax analysis is a decision-theoretic framework. Rather than relying on
predictions about choices of other players, it is concerned with minimising the
losses while maximising the gains for one particular player.

We refer in the following to a fixed game G. For a player i, we say that
a strategy si ∈ Si guarantees a utility value v ∈ R, if ui(si, s−i) ≥ v, for all
strategies s−i ∈ S−i. The safety level of strategy si is

Li(si) := min
s−i∈S−i

ui(si, s−i).

More generally, a player i can guarantee utility v in G, if he has a strategy
si ∈ Si such that Li(si) ≥ v. The safety level of Player i in the game G is

Li := max
si∈Si

Li(si) = max
si∈Si

min
s−i∈S−i

ui(si, s−i).

A safety strategy for Player i is a strategy that guarantees his safety level, i.e.,
a strategy si ∈ Si with Li(si) = Li.

Next, let s−i ∈ S−i be a strategy profile of the opponents of Player i. The
punishment level Hi(s−i ) is the greatest utility that Player i can achieve if his
opponents play s−i:

Hi(s−i) := max
si∈Si

ui(si, s−i).

The punishment level for Player i in the game G is

Hi := min
s−i∈S−i

Hi(s−i) = min
s−i∈S−i

max
si∈Si

ui(si, s−i).

A punishment strategy (of the opponents) against Player i is a strategy s−i ∈ S−i
which ensures that he cannot get more than his punishment level: Hi(s−i) = Hi.
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2 Mixed strategies

Proposition 4. In any finite game, Li ≤ Hi, for all players i.

Proposition 5. Let G be a finite game and let s ∈ S be a Nash equilibrium.
Then, Hi ≤ ui(s), for all players i.

2 Mixed strategies

As long as we restrict our attention to choosing individual strategies, we may not
be able to tell anything relevant about certain games. Consider for instance,
the Matching Pennies game of Figure 8. There are no (weakly) dominated
strategies, and no Nash equilibria; the safety level is −1 and the punishment
level is +1, for both players. The situation changes, however, if we allow a
player to randomise over his strategies. If, e.g., Player 1 tosses a fair coin and
chooses his strategy according to the outcome, this would guarantee him utility
0 (in expectation).

2.1 The mixed extension of a game

Let G = (S, u) be a finite game. For every player i ∈ N , we denote by Ŝi
the set ∆(Si) of probability distributions over Si, that is, the set of functions
σi : Si → [0, 1] with ∑

si∈Si

σ(si) = 1.

Let Ŝ be the profile (Ŝi)i∈N . If we assume that each player i plays according to
a distribution σi, independently of the others, the probability to obtain a fixed
profile s ∈ S as an outcome is:

σ(s) :=
∏
i∈N

σi(si).

Thus, the expected utility when playing according to σ is, for each player i,

ûi(σ) :=
∑
s∈S

σ(s) · ui(s).

The mixed extension of a game G for a set N of players is the game Ĝ :=
(Ŝ, û), that is, the game with strategy set Ŝi and utility function ûi, for each
player i ∈ N . With an abuse of terminology, we call the strategies σi ∈ Ŝi
mixed strategies of G.

Notice that the basic concepts that we defined so far – best response, domi-
nance, equilibrium, safety/punishment level – are not necessarily meaningful if
we consider games with infinite strategy spaces. However the mixed extension of
a finite game has a particular structure: the strategy space is a compact metric
space and the utility functions are continuous – such games are called regular.
Regular games behave in many ways like finite games.
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2.1 The mixed extension of a game

Proposition 6. Let G be a regular game.

(i) For any s−i ∈ S−i there exists a best response si ∈ Si.

(ii) All elimination sequences terminates in finitely many steps, and all max-
imal elimination sequences terminate at the same game.

(iii) Safety punishment levels are well defined by:

L̂i = max
σi∈Ŝi

min
σ−i∈Ŝ−i

ûi(σi, σ−i), Ĥi = min
σ−i∈Ŝ−i

max
σi∈Ŝi

ûi(σi, σ−i),

and there exist safety and punishment strategies.

The support of a mixed strategy σi ∈ Ŝi is the set of all strategies si with
σ(si) > 0. If the support of a strategy σi consists of a single element si, we say
that σi is a pure strategy and often identify it with si.

The following remark shows that if a strategy σi can guarantee a value v
against all pure opponent strategies, then it can also guarantee this value against
all mixed opponent strategies. Similarly, if the opponent of i have a strategy
σ−i to prevent him from receiving more than v by using pure strategies, then
this strategy will also prevent him from receiving more than v by using mixed
strategies.

Proposition 7. For a finite game G, fix a player i ∈ N , and a value v ∈ R.

(i) For every strategy σi ∈ Ŝi,

if ûi(σi, s−i) ≥ v for all s−i ∈ S−i, then

ûi(σi, σ−i) ≥ v for all σ−i ∈ Ŝ−i.

(ii) For every strategy profile σ−i ∈ Ŝ−i,

if ûi(si, σ−i) ≥ v, for all si ∈ Si, then

ûi(σi, σ−i) ≥ v, for all σi ∈ Ŝi.

Corollary 8.

L̂i = max
σi∈Ŝi

min
s−i∈S−i

ûi(σi, s−i) and Ĥi = min
σ−i∈Ŝ−i

max
si∈Si

ûi(σi, s−i).

Proof. For all σi ∈ Ŝi,

min
σ−i∈Ŝ−i

ui(σi, σ−i) = min
s−i∈S−i

ui(σi, s−i),

Theorem 9. For any finite game, Li ≤ L̂i ≤ Ĥi ≤ Hi, for every player i ∈ N .

10



2.2 Zero-sum games: von Neumann Theorem

If, for a player i in a game G, we have Li = Hi = v, then the utility v is
called value of the game for player i. In this case, any safety strategy is called
optimal strategy.

Theorem 10 (Minimax). Every game with two players has a value L̂i = Ĥi,
for each player i ∈ 1, 2.

The original formulation of this theorem is due to von Neumann – we will
see it in the next section; the proof is not straightforward.

Corollary 11. Let v ∈ R. If, for all σ2 ∈ Ŝ2, there exists a pure strategy
s1 ∈ S1 such that û1(s1, σ2) ≥ v, then there exists a mixed strategy σ1 ∈ Ŝ1 such
that, for all σ2 ∈ Ŝ2, we have û1(σ1, σ2) ≥ v.

2.2 Zero-sum games: von Neumann Theorem

Situations of strict competition are modeled by zero-sum games. These are
games with two players, say i ∈ {1, 2}, with u1(s) = −u2(s) for all outcomes s.
That is, one player wins what the other loses. In zero-sum games, the safety
and punishment levels of the two players are (additive) inverse to each other,
respectively.

Proposition 12. In every two player zero-sum game, we have:

L2 = −H1 and H2 = −L1.

As a direct consequence of the Minimax Theorem 10, we obtain the original
formulation of the Minimax Principle by von Neumann.

Theorem 13. (von Neumann) For the mixed extension of any two-player zero-
sum game, we have: L̂1 = Ĥ1 = −L̂2 = −Ĥ2

In a two-player zero sum game, if optimal strategies exist, they are also Nash
equilibria.

Proposition 14. Let G be a finite or regular zero-sum two-player game.

(i) G has a value if, and only if, G has a Nash equilibrium.

(ii) Assume G has a value. Then, a profile s ∈ S is a Nash equilibrium if, and
only if, si is optimal, for every player i.

(iii) Assume G has a value. Then, a profile s ∈ S is in Nash equilibrium if,
and only if, ui(s) = Li, for every player i.

For the particular case of mixed extensions of finite games, we know that
values, and thus optimal strategies, always exist.

Corollary 15. Let s be a mixed strategy profile of a finite two-player zero-sum
game. Then,
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2.3 Computing values and optimal strategies

(i) s is a Nash equilibrium if, and only if, si is optimal, for every player i.

(ii) s is in Nash equilibrium if, and only if ui(s) = Li, for every player i.

Thus, in the case of two-player zero-sum games, the notion of Nash equilib-
rium can also be justified in terms of minimax optimality. This is an important
robustness argument.

2.3 Computing values and optimal strategies

To compute the value v of a two-player game, together with optimal strategies
σ1, σ2, let us assume Si = {1, . . . , ni} for each player i ∈ {1, 2}. We represent
strategies σ1 ∈ Ŝ1 by a vector x = (x1, . . . , xn1) with xi = σ1(i), and likewise
σ2 ∈ Ŝ2 by a vector y. Finally, the utility function u1(i, j) is represented as a
n1xn2- matrix (uij)(i,j)∈S . The maxmin condition defining the safety level can
be formulated as the following linear program.

Maximise v

subject to



n1∑
i=1

xiuij ≥ v for all j ∈ {1, . . . , n2}
n1∑
i=1

xi = 1

xj ≥ 0 for all j ∈ {1, . . . , n1}

The solution to this LP will yield the value v for player 1 together with a
vector x representing an optimal strategy.

3 Nash Theorem

3.1 Equilibrium existence

A fundamental result at the basis of game theory is that Nash equilibria exist
in every finite game, provided randomisation is allowed.

Theorem 16 (Nash). Every finite game has a Nash equilibrium in mixed strate-
gies.

Proofs of this theorem can be found in many places on the web. They
typically rely on Brower’s fixed-point theorem and are otherwise not difficult
to follow. Interestingly, Brower’s theorem can also be derived from a game-
theoretic result – the determinacy of the HEX game. (See David Gale, The
game of HEX and the Brower Fixed-Point Theorem, American Mathematical
Monthly 86(10):818-827, 1979.)

An important argument in this proof, which will be useful for the compu-
tation of equilibria is the insight that a mixed strategy is a best response to a
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3.2 Computing equilibria

profile of (mixed) opponent strategies if, and only if, it puts nonzero weight on
those pure strategies that are themselves the best responses to the profile.

Proposition 17. Let σ ∈ Ŝ be a mixed strategy profile. The following state-
ments are equivalent, for any i ∈ N :

(i) σi is a best response to σ−i;

(ii) a strategy si ∈ Si is a best response to σ−i if, and only if, σi(si) ≥ 0.

3.2 Computing equilibria

Assume that the support of (a profile of) equilibrium strategies is given as a
subset supporti ⊆ Si for every player i. With an appropriate notation, we
use Proposition 17 to describe a vector of Nash equilibrium outcomes v and
strategies σi (described by vectors xi of dimension ni, respectively). This leads
to a system consisting of the following constraints, for each player i ∈ N .



ui(s
j
i , x−i) = vi for each sji ∈ supporti

ui(s
j
i , x−i) ≤ vi for each sji 6∈ supporti

ni∑
j=1

xi(j) = 1

xi(j) ≥ 0 for each sji ∈ supporti

xi(j) = 0 for each sji 6∈ supporti

For the case n = 2, the resulting system is linear and can be solved with LP
methods; the coefficient of equilibrium strategies are rational.

However, recall that the construction of the system relies on knowing support
sets for the mixed strategy of each player. As these are not given beforehand,
one approach is to try all possible support profiles, set up the system and verify
whether the solution is correct. This yields an algorithm that is exponential in
the strategy space. There exist better approaches, but nevertheless there are
strong reasons to believe that the computational complexity of finding Nash
equilibrium is intrinsically high (PPAD-complete), and that no tractable solu-
tions may exist already for the two-player case.

For more than two players, precise solutions may not be computable at all.
There are examples of three-player games where the only Nash equilibrium has
irrational coefficients.

4 Potential games

The previous section suggests that finding equilibria of a game is computa-
tionally hard in the general case. In the following, we discuss games where
pure-strategy equilibria exist and are moreover easy to calculate.
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4 Potential games

a b

c d

e f

a b

c d

e f

Figure 11: A MaxCut game instance and a play outcome

To start with, let us consider the following game called MaxCut. Such a
game is described by a finite undirected graph G = (V,E). Each player is
associated with a vertex and has two strategies • and ◦. That is, N = V and
Sv = {•, ◦}, for all v ∈ V . The utility of player v is the number of neighbours
in G that choose a different strategy:

uv = |{w : (v, w) ∈ E and sv 6= sw}|.

The story tells that the players in V need to join a team, Black or White and
the edges represent conflicts between players. Thus, everyone prefers to have
more neighbours in the other team than in his own. The setting can be easily
extended to graphs with weights on edges, reflecting how strong the conflict is.
Figure 11 represents a game instance and a possible outcome of a play.

Notice that the outcome s of a play induces a cut in the graph via the
partition (V•, V◦) with V• := {v ∈ V : sv = •} and V◦ := {v ∈ V : sv = ◦}.
The cutsize of such a partition is the number of edges that link vertices from
different sets: cutsize(s) = cutsize(V•, V◦) := |V• × V◦ ∩ E|.

Proposition 18. For every graph, the associate MaxCut game has a pure equi-
librium.

We show this with arguments of two kinds, a global and a local one.

A global argument. Let (X,Y ) be a partition of V such that cutsize(X,Y )
is maximal, and consider the strategy profile s with

sv :=

{
• if v ∈ X;
◦ if v ∈ Y.

Then, s is a Nash equilibrium: if a player v deviates, say from • to ◦, his
utility increases by

uv(◦, s−v)− uv(•, s−v) = |{vE ∩ V•}| − |{vE ∩ V◦}|
= cutsize(V• ∪ {v}, V◦ \ {v})− cutsize(V•, V◦)

which cannot greater than 0, because cutsize(V•, V◦) is maximal.
An optimal solution, and thus a pure equilibrium, for our example game is

depicted in Figure 12.
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Figure 12: An optimal solution

A local argument. Let us consider Algorithm 1 that starts with an arbitrary
partition and moves any node that has more neighbours in his own partition,
to the other partition.

We claim that this algorithm terminates in polynomial time with an output
that corresponds to a pure Nash equilibrium, and that the cutsize of the output
is at most double of the optimal cutsize.

To see this, notice that, whenever a node v is moved, this improves the
cutsize of (V•, V◦) by a value corresponding to the improvement in the utility of
Player v. Since the size of a cut is at most |E|, the algorithm terminates after
at most |E| many steps with a partition outcome where no player can improve
his utility, i.e., a pure Nash equilibrium. At this point, every node has more
neighbours in the other partition than in its own, i.e., more incident edges are
in the cut than outside. Hence, the cutsize of the outcome is at least |E|2 . As the
maximal cutsize is at most |E|, this means that the outcome yields guarantees
a 2-approximation to a maximal cut.

Algorithm 1: A local improvement algorithm
Input: an undirected graph G = (V,E)
Output: a partition (V•, V◦) that corresponds to a Nash equilibrium

Choose V• ⊆ V , arbitrary
V◦ = V \ V•
repeat pick unhappy player and improve his choice

if exists v ∈ V• with |vE ∩ V•| > |vE ∩ V◦| then
V• = V• \ {v}; V◦ = V◦ ∪ {v}

if exists v ∈ V◦ with |vE ∩ V◦| > |vE ∩ V•| then
V◦ = V◦ \ {v}; V• = V• ∪ {v}

until nochange

15
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Figure 13: Improvement

4.1 Inefficiency of equilibria

The moral of the MaxCut example is twofold: it shows

(i) a family of games for which (pure) equilibria are easy to find, and

(ii) an optimisation problem that can be solved (up to a certain approxima-
tion) by viewing it as a game, that is by distributing it to a set of players
and looking at what choices they make to maximise their utility.

When discussing optimisation problems in terms of games, we usually have a
global objective in mind. For instance, maximising the social welfare – the sum
of utilities off all players –, or the global fairness – the minimum utility of a player
in the game. More generally, an objective function is a mapping f : S → R. The
optimisation objective consists in either maximising or minimising this function.

When we model an optimisation problem as a game, we generally assume
that the players will play a Nash equilibrium. Here, we restrict our attention
to pure equilibria. One basic question is how far from the global optimum such
an outcome may be, or, how much efficiency is lost when we let players follow
their individual maximisation objective rather than imposing a behaviour that
is globally optimal. To quantify this loss, we consider different coordination
ratios.

The price of stability PoS of a game is the ratio between the best equilibrium
and the global optimum. For a maximisation objective, e.g.:

PoS =
max{f(s) : s ∈ S is a Nash equilibrium }

max{f(s) : s ∈ S}
.

Intuitively, the price of stability reflect the cost of restringing to solutions from
which players have no incentive to deviate.

The price of anarchy PoA of a game is the ratio between the worst equilib-
rium and the global optimum. For a maximisation objective, e.g.:

PoA =
min{f(s) : s ∈ S is a Nash equilibrium }

max{f(s) : s ∈ S}
.

Intuitively, the price of anarchy reflect the cost of letting the players choose a
solution (of which we assume that it is an equilibrium) rather than imposing
one.
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4.2 Potential games

For a successful game approach to optimisation problems, it will be helpful
if the underlying games are simple, i.e., if finding equilibria is computationally
easy. In the following we study some classes of such games.

4.2 Potential games

A finite game G is a potential game if there exists a function φ : S → R such
that for all strategy profiles s ∈ S, all players i ∈ N , and all strategies s′i ∈ Si,

ui(si, s−i) > ui(s′i, s−i) implies φ(si, s−i) > φ(s′i, s−i).

In this case, we say that φ is a potential function. The game is called exact
potential game, if moreover

ui(si, s−i)− ui(s′i, s−i) = φ(si, s−i)− φ(s′i, s−i),

in which case, we say that φ is an exact potential function.
The MaxCut game from the previous section is an exact potential game with

the cutsize as a potential function.

The following observation follows from the definition of potential functions.

Proposition 19. Let G be a potential game and let φ be a potential function.
Then, the set of pure Nash equilibria coincides with the set of local minima of φ:

s ∈ S is a Nash equilibrium if, and only if,
φ(si, s−i) ≤ φ(s′i, s−i), for all i ∈ N, s′i ∈ Si.

Another interesting property of potential games are that individual strategy
improvement leads to equilibrium. For a game G, an improvement path is a
(finite or infinite) sequence s1, s2, . . . such that successive profiles sk and sk+1

are the same except for one player i for which ski is replaced by a better response
to sk−i, that is, a strategy sk+1

i with

ui(sk+1
i , sk−i) > ui(ski , s

k
−i).

Clearly, if an improvement path cannot be prolonged, it ends at a pure Nash
equilibrium. It turns out that potential games are precisely those games where
all improvement paths are finite.

Theorem 20. A game G is a potential game if, and only if, all improvement
paths for G are finite.

Another useful property is that, for potential games, the price of stability can
be bounded in terms of the ratio range between potential and social objective.

Proposition 21. If α, β ∈ R are such that

1
α
f(s) ≤ φ(s) ≤ βf(s), for all s ∈ S,

then PoS ≤ αβ.

17
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4.3 Examples

4.3.1 Load balancing

In a Load Balancing game, we have n players, each of which has a task of a
certain duration: t1, . . . , tn, respectively. There are m machines and each player
can choose a machine to run his task on, i.e., si ∈ {1, . . . ,m}. The utility of
player i is the total load of the machine that he has chosen:

ui(s) = −
∑
sj=si

tj .

This is a potential game. An example of a potential function is,

φ(s) =
m∑
k=1

(∑
si=k

ti
)2

that is, the sum of squares of machine loads. (Verify this.)

4.3.2 Connection games

A connection game is described by a directed graph G = (V,E) with weighted
edges w : E → R+ representing non-negative connection costs. There are n
players, i ∈ {1, . . . , n} each of which has a source and a target node: (si, ti) ∈
V ×V . In a play, each player i chooses a path πi from si to ti. The cost of each
edge is shared between the players who choose it; edges that are not taken are
discarded. The utility of player i is:

ui(π) = −
∑
e∈πi

w(e)
ne(π)

with ne(π) := {i ∈ N : e ∈ πi} being the number of players that choose the
edge e ∈ E in π.

As a social objective, we wish to maximise the social welfare f(π) := σiui(π),
which also corresponds to the negative sum of weights of all taken edges.

Figure 14 illustrates a simple routing game for n players with common source
and target node . Observe that we have two pure equilibria in this game: all n
players choose the upper edge or all choose the lower edge. Thus, the price of
anarchy is – PoA = n – this is also an upper bound.

Routing games are potential games. A potential function is

φ(π) =
∑
e∈π

w(e)
(

1 +
1
2

+ · · ·+ 1
ne(π)

)
.

Exercise: Verify that φ is an exact potential function.

The sum Hn :=
∑n

1
1
n is the n-th harmonic number. We can verify that, for

any connection game, we have

f(π) ≤ φ(π) ≤ Hnf(s).
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Figure 14: Tight upper bound for PoA
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Figure 15: Tight upper bound for PoS

From Proposition 21 it then follows that the price of stability in a connection
game for n-players is at most Hn. As Hn grows as fast as log n, this gives us
an asymptotic bound for the price of stability of log n. The game in Figure 15
shows that this bound is tight (with ε being a vanishing positive number).

4.3.3 Congestion games

In a congestion game, we have n players i = {1, . . . , n} and a set E of resources.
For each resource e ∈ E, we have a latency function `e : {1 . . . , n} → R.
Each player i can choose among certain subsets of resources: Si ⊆ 2E . For an
outcome s, the congestion of a resource is the number of players that use it:
ne = |{i : e ∈ si}|, and it determines the latency of the resource. Finally, the
utility of player i is the (inverse of the) aggregated latency of the resources he
chose:

ui(s) = −
∑
e∈Si

`e(ne).

Proposition 22. Every congestion game is a potential game.

To see this, we take

φ(s) =
∑
e∈E

ne∑
k=1

`e(k).

Surprisingly, the converse holds as well. We call two games equivalent, if
they are isomorphic up to removal of duplicate strategies for each player, i.e.,
strategies that yield the same utility regardless of the choice of other players.
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Theorem 23. For every potential game there exists an equivalent congestion
game.

The original proof was published in (Rosenthal, R. W., A Class of Games
Possessing Pure-Strategy Nash Equilibria, Int. Journal of Game Theory (2),
6567, 1973). It is not straightforward, but easy to follow.
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