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General context : verification of concurrent systems

Server
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Models of true concurrency

process 2

process 1

@ Petri nets [Petri 62]

@ progress graphs [Dijkstra 68]

@ trace theories [Mazurkiewicz 70s]

@ event structures [Winskel 80s]

@ higher dimensional automata (HDA) [Pratt 91]
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Plan

|. Geometry of true concurrency

[1. Classical homology

IIl. A candidate of directed homology : natural homology
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l.
Geometry of true concurrency
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A toy language : SU-programs [Afek et al. 90]

@ shared global memory \gfri;t)irr;gc:szn;
@ atomic operations : global
» S :scan ALL the memory memory_ - S
» U : update ONLY its OWN part of the memory f,”{';f;i;‘;"f 2’;';‘,’;%;52”:

@ synchronization e (rendez-vous)

@ S and U non independent

i/ 0

(S|U) e (U.S|U.S)
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Pospaces [Nachbin 65], dipaths, traces [Raussen 09]

@ X pospace = space + order

e dipath = increasing path = increasing continuous function p : [0,1] — X

= « execution with memory of the time between actions »

o dipath space : ?(X)(a, by={p:a— b}

@ trace (p) = dipath p modulo increasing reparametrization

= « execution where only organization of actions is significant »

@ trace space : ?(X)(a, b) = {{(p) with p: a — b}
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Dihomotopy

Dihomotopy :
f and g dipaths from a to b in X.
e H:[0,1] x [0,1] — X dihomotopy from f to g if :

H continuous and increasing in the second coordinate
H(0,.)=f, H(1,.) =g, H(.,0) = aet H(.,1)=b

e f and g dihomotopic if there exists a dihomotopy from one to the other

dihomotopic = « deforming continuously one to the other while staying a
dipath »
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Objective

@ study those concurrent systems through their geometry (dipaths, traces,
dihomotopies)
@ homology = essential notion, computable abstraction of homotopy

= defining a directed analogue of homology
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Classical homology
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Homology = counting holes

hole of dimension 1

no hole of dimension 1 ... ... but a hole of dimension 2

In first approximation . H,,(X) ~ Znumber of holes of dimension n

In general : H"(X) = HT,- hole of dimension nZ/k’Z
Particular case : Ho(X) ~ Znumber of path—connected components
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Properties of homology

(sound) invariant by homotopy, correction
(precis) not too much loss of information (Hurewicz), partial completeness

(Whitehead)

(mod) modularity = homology of a space expressible from homology of smaller
spaces (Mayer-Vietoris)

(calc) computability in the case of finitely presented spaces (simplicial, pre-cubical
sets)

Objective :
@ study those concurrent systems through their geometry (dipaths, traces,
dihomotopies)
@ homology = essential notion, computable abstraction of homotopy
— defining a directed analogue of homology with the same kind

of properties
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Existing works

(sound) (precis) (mod) (calc)

[Goubault 95]
[Grandis 04]
[Farhenberg 04]
[Kah! 13] (v)
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Existing works

(sound) (precis) (mod) (calc)

[Goubault 95]
[Grandis 04]
[Farhenberg 04]
[Kah! 13] (v)

=
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Existing works

(sound) (precis) (mod) (calc)

[Goubault 95]
[Grandis 04]
[Farhenberg 04]
[Kah! 13] (v)

[D.G.G.] v) I (V) e

=
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A candidate of directed homology : natural homology
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trace spaces vs evolution of trace spaces
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(geometric) Natural homology

—
Natural homology H ,(X) (n>1):
trace (p) =
p dipath from a to b — Hn—1(2(X)(a, b))
extension ({(a), (8)) . Ho—1(({(q) € ?(X)(a, b) —
a from &’ to a, 5 from b to b’ (a*xqgx*pB) e T(X)(d,b)))
ob’
(@) b (8)
(p)
)

%
H (X) = functor from the category of factorization of the category of traces to

Ab = natural system on the category of traces
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Example |

x Yy
S e |
0 1
[0,1] 7z
/ N\ Ha(o.11) /N
[0,y] [x,1] - 7 Z
AN /NN
0.x] [x.y] [y.1] z 7 z
N/ N/ SN/ NN
0 X oyl Z- T Lo L
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Example Il

/\y
<>
x' by
N "
a b 7Z[a, b] Z[a, b]
/,\ /N 1—a/t N\ f '\1»—>b

0,51 1] [0.y'] ¥, 1]

P S . I N /\/\

0,x] oyl bv,1] [0, [,y 1]

OW/\/\ SN/ \/\

X Xy A A/ zZ- 7L %
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Study of (mod)

Proposition :

_>
e H, is a functor from PoTop to the category of functors Fun(Ab).
e Fun(Ab) is not abelian but is homological in the sense of [Grandis 91].

Proof :
@ morphisms from F : C — Ab to G : D — Ab : pairs (®,0) where :
b:C—D
c:F—Go®

@ null morphisms : (®, o) with o, are zero
@ kernels : ¢ — Kero,
@ cokernels : a bit tricky (because colimits in Fun(Ab) are more complicated)

@ -+ some morphisms are exact (because Ab is abelian and its morphisms are
exact)
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Study of (mod)
Proposition :

° ﬁ,, is a functor from PoTop to the category of functors Fun(Ab).
e Fun(Ab) is not abelian but is homological in the sense of [Grandis 91].

Theorem (mod) [Grandis 91] :

Let A be a homological category.
For every short exact sequence in C,(A) :

u—"m oy P W

there exists a long sequence of order two in A :

H, On Hy,—1(m
) 2 by 2 (0) b () —

natural in the short exact sequence.
Moreover, there are conditions to turn the long sequence to an exact sequence.

v
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Study of (precis)

Ho(T (X) (0B, 49))
= there exists two ipaths that are not dihomotopic
= we can see it in Hq(X)!

Theorem (precis) [D.G.G.] :
e if X 0-diconnected, ﬁl(X) ~ Free o ﬁl(X)
o if X 1-diconnected, ﬁg(X) ~ Abo ﬁz(X)
e if X (n— 1)-diconnected (n > 3), ﬁ,,(X) ~ ﬁ,,(X)
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Computability

Theorem (calc) [D.G.G. 15]

Given a finite pre-cubical complex, there exists h ,(X) (discrete natural

homology) :

@ computable

_>
@ equivalent to H ,(X)
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Proof (construction)

X a pre-cubical complex

@ a discrete trace from x € X to y € X : sequence ¢, ..., ¢, € X such that
C =X, ¢, =y and for all j :
> either ¢j_1 is of the form §) o0 dp(ci)
> either ¢ is of the form & o--- 0 &} (ci—1)

@ we map each discrete trace to a geometric one :

— -
@ h p(X) is the restriction of H,(X) to those traces
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Example |

0 : 1
0,a,1
Oa/ \31 Ha([0,1]) /\
VEVAN VAVAN
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Example Il
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Proof (computability)

@ enumeration of discrete traces

@ construction of a finite representation (prod-simplical complex) of each trace
space [Raussen 09]

@ computation of classical homology
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Which notion of equivalence?

— —
problem : h ,(X) and H,(X) non isomorphic by cardinality
solution : existence of a morphism with some lifting properties

equivalence : existence of a span of such morphisms
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P-open maps [Joyal et al. 94]

P = sub-category = category of paths
£
paths : G; A, Gy LN G,

extensions of paths :

fi f fi—1
G — G = =G

idl idl idl

e s e G s
Crp G 2 G 2 G

P-open = has the lifting property with respect to those extensions :
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Bisimilarity - Computer science point of view

Two functors F : C — Ab and G : D — Ab are bisimilar if there exists a set
RC{(c,f,d)|ceCAndeDAF e Ab(F(c), G(d)) isomorphism}

such that :
e for all ¢ € C, there exists d, f such that (¢,f,d) € R
o for all d € D, there exists ¢, f such that (c,f,d) € R
e for all (c,f,d) € Rand i:c— ¢’ there exists j : d — d’ and
g: F(¢’) — G(d') iso such that (¢’,g,d’) € Rand fo F(i) = G(j)og
o forall (c,f,d) € Rand j:d — d’ there exists i : ¢ — ¢’ and
g: F(¢') — G(d') iso such that (¢’,g,d’) € Rand fo F(i) = G(j)o g
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Bisimilarity

A open map from H: E— Abto G: D — Abiis :
@ a functor & : E — D satisfying :

> @ is surjective on objects

» & has the lifting property for any morphism of D : for every morphism
j:d—>d" of D and every object e of E such that ®(e) = d there exists a
morphism i : e — €’ such that ®(i) =

@ a natural isomorphism o : H — Go ®

We say that F: C — Ab and G : D — Ab are bisimilar if there exists a span of
open maps between them.
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Proof (equivalence)

Proposition :

There exists an open map Carrier : ﬁ,,(X) — 7,,(X).

Proof (construction) :

construction a functor
Carrier : geometric traces —» discrete traces

Carrier(trace) = « the sequence of hypercubes crossed by this trace »
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Example

]‘ N - "7 0,a,1
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Proof (equivalence)

Proposition :
_ = —
There exists an open map Carrier : H,(X) — h ,(X).
Proof (lifting property) :
Carrier
ext E ext
+
2 _ Carrier | |

v
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Proof (equivalence)

Proposition :

Il existe une open map Carrier : ﬁ,,(X) — ?,,(X).
Proof (lifting property) :
Carrier
ext ext
Carrier
ey —
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Proof (equivalence)

Proposition :

There exists an open map Carrier : ﬁ,,(X) — 7,,(X).

Corollary :

If X’ is a barycentric subdivision of X, 7,,(X) and ?,,(X’) are P-bisimilar.
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Results and future works

Results :

(sound) invariance by dihomeomorphism, subdivision (action refinement)
(precis) Hurewicz-like theorem
(mod) existence of long sequence in homology by the theory of homological category
of [Grandis 91]
(calc) notion of bisimulation of functors, equivalence with a discrete computable
natural homology

Future works :

@ link with bisimulations [Fahrenberg, Legay 13], observational equivalences
[Plotkin, Pratt 90], temporal properties [Baldan, Crafa 10] in true
concurrency

@ improve the algorithmic

> better representation of trace spaces
> decidability of bisimilarity using matrix algorithmic

o link with persistence homology [Carlsson 09]

@ applications in higher order rewriting
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