Natural homology HOMOTOPY IN CONCURRENCY AND REWRITING

Jérémy Dubut

joint work with
Eric GOUBAULT - LIX, Ecole Polytechnique
Jean GOUBAULT-LARRECQ - LSV, ENS Cachan

11th June, 2015

General context: verification of concurrent systems

Models of true concurrency

- Petri nets [Petri 62]
- progress graphs [Dijkstra 68]
- trace theories [Mazurkiewicz 70s]
- event structures [Winskel 80s]
- higher dimensional automata (HDA) [Pratt 91]

Plan

I. Geometry of true concurrency

II. Classical homology

III. A candidate of directed homology: natural homology

I. Geometry of true concurrency

A toy language: SU-programs [Afek et al. 90]

- shared global memory
- atomic operations :
 - ▶ *S* : scan ALL the memory
 - ▶ *U* : update ONLY its OWN part of the memory
- synchronization (rendez-vous)
- \bullet S and U non independent

Pospaces [Nachbin 65], dipaths, traces [Raussen 09]

- X pospace = space + order
- **di**path = **increasing** path = **increasing** continuous function $p:[0,1] \longrightarrow X$ = « execution with memory of the time between actions »
- **di**path space : $\overrightarrow{\mathfrak{P}}(X)(a,b) = \{p : a \longrightarrow b\}$
- trace $\langle p \rangle =$ **di**path p modulo **increasing** reparametrization = « execution where only organization of actions is significant »
- trace space : $\overrightarrow{\mathfrak{T}}(X)(a,b) = \{\langle p \rangle \text{ with } p : a \longrightarrow b\}$

Dihomotopy

Dihomotopy:

f and g dipaths from a to b in X.

- $H: [0,1] \times [0,1] \longrightarrow X$ dihomotopy from f to g if :
 - H continuous and increasing in the second coordinate
 - H(0,.) = f, H(1,.) = g, H(.,0) = a et H(.,1) = b
- f and g dihomotopic if there exists a dihomotopy from one to the other

 $\operatorname{dihomotopic} =$ « $\operatorname{deforming}$ continuously one to the other while staying a dipath »

Objective

- study those concurrent systems through their geometry (dipaths, traces, dihomotopies)
- homology = essential notion, computable abstraction of homotopy
 - ⇒ defining a directed analogue of homology

II. Classical homology

Homology = counting holes

hole of dimension 1

no hole of dimension 1 ... but a hole of dimension 2

In first approximation : $H_n(X) \simeq \mathbb{Z}^{number\ of\ holes\ of\ dimension\ n}$

In general : $H_n(X) \simeq \prod_{T_i \text{ hole of dimension } n} \mathbb{Z}/k_i\mathbb{Z}$

Particular case : $H_0(X) \simeq \mathbb{Z}^{number\ of\ path-connected\ components}$

Properties of homology

- (sound) invariant by homotopy, correction
- (precis) not too much loss of information (Hurewicz), partial completeness (Whitehead)
 - (mod) modularity = homology of a space expressible from homology of smaller spaces (Mayer-Vietoris)
 - (calc) computability in the case of finitely presented spaces (simplicial, pre-cubical sets)

Objective:

- study those concurrent systems through their geometry (dipaths, traces, dihomotopies)
- homology = essential notion, computable abstraction of homotopy
 - ⇒ defining a directed analogue of homology with the same kind of properties

Existing works

	(sound)	(precis)	(mod)	(calc)
[Goubault 95]	-	×	-	\checkmark
[Grandis 04]	\checkmark	×	-	-
[Farhenberg 04]	\checkmark	×	-	-
[Kahl 13]	(√)	×	-	-

Existing works

[Goubault 95]
[Grandis 04]
[Farhenberg 04]
[Kahl 13]

(sound)	(precis)	(mod)	(calc)
-	×	-	\checkmark
\checkmark	×	-	-
\checkmark	×	-	-
(√)	×	-	-

Existing works

	(sound)	(precis)	(mod)	(calc)
[Goubault 95]	-	×	-	\checkmark
[Grandis 04]	✓	×	-	-
[Farhenberg 04]	\checkmark	×	-	-
[Kahl 13]	(√)	×	-	-
[D.G.G.]	(√)	\checkmark	(√)	\checkmark

Ш.

A candidate of directed homology : natural homology

trace spaces vs evolution of trace spaces

(geometric) Natural homology

Natural homology $\overrightarrow{H}_n(X)$ $(n \ge 1)$:

trace $\langle p \rangle$ p dipath from a to b $H_{n-1}(\overrightarrow{\mathfrak{T}}(X)(a,b))$ extension $(\langle \alpha \rangle, \langle \beta \rangle)$ α from a' to a, β from b to b' $H_{n-1}((\langle q \rangle \in \overrightarrow{\mathfrak{T}}(X)(a,b) \mapsto \langle \alpha \star q \star \beta \rangle \in \overrightarrow{\mathfrak{T}}(X)(a',b')))$

 $\overrightarrow{H}_n(X)$ = functor from the category of factorization of the category of traces to \mathbf{Ab} = natural system on the category of traces

Example I

Example II

 $\overrightarrow{H}_1(X)$

Study of (mod)

Proposition:

- \overrightarrow{H}_n is a functor from **PoTop** to the category of functors **Fun(Ab)**.
- Fun(Ab) is not abelian but is homological in the sense of [Grandis 91].

Proof:

- morphisms from $F:\mathcal{C}\longrightarrow \mathbf{Ab}$ to $G:\mathcal{D}\longrightarrow \mathbf{Ab}$: pairs (Φ,σ) where :
 - $\quad \quad \Phi: \mathcal{C} \longrightarrow \mathcal{D}$
 - $\sigma: F \longrightarrow G \circ \Phi$
- null morphisms : (Φ, σ) with σ_c are zero
- kernels : $c \mapsto Ker\sigma_c$
- cokernels: a bit tricky (because colimits in Fun(Ab) are more complicated)
- + some morphisms are exact (because **Ab** is abelian and its morphisms are exact)

Study of (mod)

Proposition:

- \overrightarrow{H}_n is a functor from **PoTop** to the category of functors **Fun(Ab)**.
- Fun(Ab) is not abelian but is homological in the sense of [Grandis 91].

Theorem (mod) [Grandis 91]:

Let A be a homological category.

For every short exact sequence in $C_{ullet}(\mathcal{A})$:

$$\bigcup \xrightarrow{m} \bigvee \xrightarrow{p} \bigvee$$

there exists a long sequence of order two in $\ensuremath{\mathcal{A}}$:

$$\cdots \longrightarrow H_n(V) \xrightarrow{H_n(p)} H_n(W) \xrightarrow{\partial_n} H_{n-1}(U) \xrightarrow{H_{n-1}(m)} H_{n-1}(V) \longrightarrow \cdots$$

natural in the short exact sequence.

Moreover, there are conditions to turn the long sequence to an exact sequence.

Study of (precis)

$$H_0(\overrightarrow{\mathfrak{T}}(X)(\alpha\beta,\gamma\delta))\simeq \mathbb{Z}^2$$

- \Rightarrow there exists two dipaths that are not dihomotopic
- \Rightarrow we can see it in $\overrightarrow{H}_1(X)$!

Theorem (precis) [D.G.G.]:

- if X 0-diconnected, $\overrightarrow{H}_1(X) \simeq \mathit{Free} \circ \overrightarrow{\Pi}_1(X)$
- ullet if X 1-diconnected, $\overrightarrow{H}_2(X) \simeq Ab \circ \overrightarrow{\Pi}_2(X)$
- if X (n-1)-diconnected $(n \ge 3)$, $\overrightarrow{H}_n(X) \simeq \overrightarrow{\Pi}_n(X)$

Computability

Theorem (calc) [D.G.G. 15]:

Given a finite pre-cubical complex, there exists $\overrightarrow{h}_n(X)$ (discrete natural homology) :

- computable
- equivalent to $\overrightarrow{H}_n(X)$

Proof (construction)

X a pre-cubical complex

- a discrete trace from $x \in X$ to $y \in X$: sequence $c_0, ..., c_n \in X$ such that $c_0 = x$, $c_n = y$ and for all i :
 - either c_{i-1} is of the form $\delta_{i_k}^0 \circ \cdots \circ \delta_{i_0}^0(c_i)$
 - either c_i is of the form $\delta^1_{i_k} \circ \cdots \circ \delta^1_{i_0}(c_{i-1})$
- we map each discrete trace to a geometric one :

• $\overrightarrow{h}_n(X)$ is the restriction of $\overrightarrow{H}_n(X)$ to those traces

Example I

Example II

Proof (computability)

- enumeration of discrete traces
- construction of a finite representation (prod-simplical complex) of each trace space [Raussen 09]
- computation of classical homology

Which notion of equivalence?

problem : $\overrightarrow{h}_n(X)$ and $\overrightarrow{H}_n(X)$ non isomorphic by cardinality

solution: existence of a morphism with some lifting properties

equivalence: existence of a span of such morphisms

\mathcal{P} -open maps [Joyal et al. 94]

 $\mathcal{P} = \mathsf{sub\text{-}category} = \mathsf{category}$ of paths

paths: $G_1 \xrightarrow{f_1} G_2 \xrightarrow{f_2} \cdots \xrightarrow{f_{n-1}} G_n$

extensions of paths:

$$G_{1} \xrightarrow{f_{1}} G_{2} \xrightarrow{f_{2}} \cdots \xrightarrow{f_{k-1}} G_{k}$$

$$id \downarrow \qquad \qquad id \downarrow \qquad \qquad id \downarrow$$

$$G_{1} \xrightarrow{f_{1}} G_{2} \xrightarrow{f_{2}} \cdots \xrightarrow{f_{k-1}} G_{k} \xrightarrow{f_{k}} \cdots \xrightarrow{f_{n-1}} G_{n}$$

 \mathcal{P} -open = has the lifting property with respect to those extensions :

Bisimilarity - Computer science point of view

Two functors $F: \mathcal{C} \longrightarrow \mathbf{Ab}$ and $G: \mathcal{D} \longrightarrow \mathbf{Ab}$ are bisimilar if there exists a set

$$R \subseteq \{(c,f,d) \mid c \in \mathcal{C} \land d \in \mathcal{D} \land f \in Ab(F(c),G(d)) \text{ isomorphism}\}$$

such that :

- for all $c \in C$, there exists d, f such that $(c, f, d) \in R$
- for all $d \in \mathcal{D}$, there exists c, f such that $(c, f, d) \in R$
- for all $(c, f, d) \in R$ and $i : c \longrightarrow c'$ there exists $j : d \longrightarrow d'$ and $g : F(c') \longrightarrow G(d')$ iso such that $(c', g, d') \in R$ and $f \circ F(i) = G(j) \circ g$
- for all $(c, f, d) \in R$ and $j : d \longrightarrow d'$ there exists $i : c \longrightarrow c'$ and $g : F(c') \longrightarrow G(d')$ iso such that $(c', g, d') \in R$ and $f \circ F(i) = G(j) \circ g$

Bisimilarity

A open map from $H: E \longrightarrow Ab$ to $G: D \longrightarrow Ab$ is :

- a functor $\Phi: E \longrightarrow D$ satisfying :
 - Φ is surjective on objects
 - ▶ Φ has the lifting property for any morphism of D: for every morphism $j: d \longrightarrow d'$ of D and every object e of E such that $\Phi(e) = d$ there exists a morphism $i: e \longrightarrow e'$ such that $\Phi(i) = j$
- a natural isomorphism $\sigma: H \longrightarrow G \circ \Phi$

We say that $F: C \longrightarrow Ab$ and $G: D \longrightarrow Ab$ are bisimilar if there exists a span of open maps between them.

Proposition:

There exists an open map $Carrier : \overrightarrow{H}_n(X) \longrightarrow \overrightarrow{h}_n(X)$.

Proof (construction):

construction a functor

 $\textit{Carrier}: \texttt{geometric traces} \longrightarrow \texttt{discrete traces}$

Carrier(trace) =« the sequence of hypercubes crossed by this trace »

Example

Proposition:

There exists an open map $Carrier : \overrightarrow{H}_n(X) \longrightarrow \overrightarrow{h}_n(X)$.

Proof (lifting property):

Proposition:

Il existe une open map $Carrier : \overrightarrow{H}_n(X) \longrightarrow \overrightarrow{h}_n(X)$.

Proof (lifting property):

Proposition:

There exists an open map $Carrier : \overrightarrow{H}_n(X) \longrightarrow \overrightarrow{h}_n(X)$.

Corollary:

If X' is a barycentric subdivision of X, $\overrightarrow{h}_n(X)$ and $\overrightarrow{h}_n(X')$ are \mathcal{P} -bisimilar.

Results and future works

Results:

- (sound) invariance by dihomeomorphism, subdivision (action refinement)
- (precis) Hurewicz-like theorem
- (mod) existence of long sequence in homology by the theory of homological category of [Grandis 91]
 - (calc) notion of bisimulation of functors, equivalence with a discrete computable natural homology

Future works:

- link with bisimulations [Fahrenberg, Legay 13], observational equivalences [Plotkin, Pratt 90], temporal properties [Baldan, Crafa 10] in true concurrency
- improve the algorithmic
 - better representation of trace spaces
 - decidability of bisimilarity using matrix algorithmic
- link with persistence homology [Carlsson 09]
- applications in higher order rewriting