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Abstract. We study observation-based strategies for two-player turn-
based games on graphs with omega-regular objectives. An observation-
based strategy relies on imperfect information about the history of a
play, namely, on the past sequence of observations. Such games occur
in the synthesis of a controller that does not see the private state of
the plant. Our main results are twofold. First, we give a fixed-point
algorithm for computing the set of states from which a player can win
with a deterministic observation-based strategy for any omega-regular
objective. The fixed point is computed in the lattice of antichains of
state sets. This algorithm has the advantages of being directed by the
objective and of avoiding an explicit subset construction on the game
graph. Second, we give an algorithm for computing the set of states from
which a player can win with probability 1 with a randomized observation-
based strategy for a Büchi objective. This set is of interest because in the
absence of perfect information, randomized strategies are more powerful
than deterministic ones. We show that our algorithms are optimal by
proving matching lower bounds.

1 Introduction

Two-player games on graphs play an important role in computer science. In
particular, the controller synthesis problem asks, given a model for a plant, to
construct a model for a controller such that the behaviors resulting from the
parallel composition of the two models respects a given specification (e.g., are
included in an ω-regular set). Controllers can be synthesized as winning strate-
gies in a graph game whose vertices represent the plant states, and whose players
represent the plant and the controller [18, 17]. Other applications of graph games

? This research was supported in part by the NSF grants CCR-0225610 and CCR-
0234690, by the SNSF under the Indo-Swiss Joint Research Programme, and by the
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include realizability and compatibility checking, where the players represent par-
allel processes of a system, or its environment [1, 11, 6].

Most results about two-player games played on graphs make the hypothesis
of perfect information. In this setting, the controller knows, during its interac-
tion with the plant, the exact state of the plant. In practice, this hypothesis is
often not reasonable. For example, in the context of hybrid systems, the con-
troller acquires information about the state of the plant using sensors with finite
precision, which return imperfect information about the state. Similarly, if the
players represent individual processes, then a process has only access to the
public variables of the other processes, not to their private variables [19, 2].

Two-player games of imperfect information are considerably more compli-
cated than games of perfect information. First, decision problems for imperfect-
information games usually lie in higher complexity classes than their perfect-
information counter-parts [19, 14, 2]. The algorithmic difference is often expo-
nential, due to a subset construction that, similar to the determinization of fi-
nite automata, turns an imperfect-information game into an equivalent perfect-
information game. Second, because of the determinization, no symbolic algo-
rithms are known to solve imperfect-information games. This is in contrast to
the perfect-information case, where (often) simple and elegant fixed-point algo-
rithms exist [12, 8]. Third, in the context of imperfect information, deterministic
strategies are sometimes insufficient. A game is turn-based if in every state one
of the players chooses a successor state. While deterministic strategies suffice
to win turn-based games of perfect information, turn-based games of imperfect
information require randomized strategies to win with probability 1 (see Exam-
ple 1). Fourth, winning strategies for imperfect-information games need memory
even for simple objectives such as safety and reachability (for an example see the
technical-report version of this paper). This is again in contrast to the perfect-
information case, where turn-based safety and reachability games can be won
with memoryless strategies.

The contributions of this paper are twofold. First, we provide a symbolic
fixed-point algorithm to solve games of imperfect information for arbitrary ω-
regular objectives. The novelty is that our algorithm is symbolic; it does not
carry out an explicit subset construction. Instead, we compute fixed points on
the lattice of antichains of state sets. Antichains of state sets can be seen as
a symbolic and compact representation for ⊆-downward-closed sets of sets of
states.4 This solution extends our recent result [10] from safety objectives to all
ω-regular objectives. To justify the correctness of the algorithm, we transform
games of imperfect information into games of perfect information while preserv-
ing the existence of winning strategies for every Borel objective. The reduction
is only part of the proof, not part of the algorithm. For the special case of parity
objectives, we obtain a symbolic Exptime algorithm for solving parity games of

4 We recently used this symbolic representation of ⊆-downward-closed sets of state sets
to propose a new algorithm for solving the universality problem of nondeterministic
finite automata. First experiments show a very promising performance; (see [9]).



imperfect information. This is optimal, as the reachability problem for games of
imperfect information is known to be Exptime-hard [19].

Second, we study randomized strategies and winning with probability 1 for
imperfect-information games. To our knowledge, for these games no algorithms
(symbolic or not) are present in the literature. Following [7], we refer to winning
with probability 1 as almost-sure winning (almost winning, for short), in contrast
to sure winning with deterministic strategies. We provide a symbolic Exptime

algorithm to compute the set of almost-winning states for games of imperfect
information with Büchi objectives (reachability objectives can be obtained as a
special case, and for safety objectives almost winning and sure winning coincide).
Our solution is again justified by a reduction to games of perfect information.
However, for randomized strategies the reduction is different, and considerably
more complicated. We prove our algorithm to be optimal, showing that comput-
ing the almost-winning states for reachability games of imperfect information is
Exptime-hard. The problem of computing the almost-winning states for coBüchi
objectives under imperfect information in Exptime remains an open problem.

Related work. In [17], Pnueli and Rosner study the synthesis of reactive mod-
ules. In their framework, there is no game graph; instead, the environment and
the objective are specified using an LTL formula. In [14], Kupferman and Vardi
extend these results in two directions: they consider CTL∗ objectives and im-
perfect information. Again, no game graph, but a specification formula is given
to the synthesis procedure. We believe that our setting, where a game graph
is given explicitly, is more suited to fully and uniformly understand the role of
imperfect information. For example, Kupferman and Vardi assert that imperfect
information comes at no cost, because if the specification is given as a CTL (or
CTL∗) formula, then the synthesis problem is complete for Exptime (resp., 2Ex-

ptime), just as in the perfect-information case. These hardness results, however,
depend on the fact that the specification is given compactly as a formula. In our
setting, with an explicit game graph, reachability games of perfect information
are Ptime-complete, whereas reachability games of imperfect information are
Exptime-complete [19]. None of the above papers provide symbolic solutions,
and none of them consider randomized strategies.

It is known that for Partially Observable Markov Decision Processes
(POMDPs) with boolean rewards and limit-average objectives the quantitative
analysis (whether the value is greater than a specified threshold) is Exptime-
complete [15]. However, almost winning is a qualitative question, and our hard-
ness result for almost winning of imperfect-information games does not follow
from the known results on POMDPs. We propose in Section 5 a new proof of
the hardness for sure winning of imperfect-information games with reachability
objectives, and we extend the proof to almost winning as well. To the best of
our knowledge, this is the first hardness result that applies to the qualitative
analysis of almost winning in imperfect-information games. A class of semiper-

fect-information games, where one player has imperfect information and the
other player has perfect information, is studied in [4]. That class is simpler than
the games studied here; it can be solved in NP ∩ coNP for parity objectives.



2 Definitions

A game structure (of imperfect information) is a tuple G = 〈L, l0, Σ, ∆,O, γ〉,
where L is a finite set of states, l0 ∈ L is the initial state, Σ is a finite alphabet,
∆ ⊆ L × Σ × L is a set of labeled transitions, O is a finite set of observations,
and γ : O → 2L\∅ maps each observation to the set of states that it represents.
We require the following two properties on G: (i) for all ` ∈ L and all σ ∈ Σ,
there exists `′ ∈ L such that (`, σ, `′) ∈ ∆; and (ii) the set {γ(o) | o ∈ O}
partitions L. We say that G is a game structure of perfect information if O = L

and γ(`) = {`} for all ` ∈ L. We often omit (O, γ) in the description of games
of perfect information. For σ ∈ Σ and s ⊆ L, let PostGσ (s) = {`′ ∈ L | ∃` ∈ s :
(`, σ, `′) ∈ ∆}.

Plays. In a game structure, in each turn, Player 1 chooses a letter in Σ, and
Player 2 resolves nondeterminism by choosing the successor state. A play in
G is an infinite sequence π = `0σ0`1 . . . σn−1`nσn . . . such that (i) `0 = l0,
and (ii) for all i ≥ 0, we have (`i, σi, `i+1) ∈ ∆. The prefix up to `n of the
play π is denoted by π(n); its length is |π(n)| = n + 1; and its last element is
Last(π(n)) = `n. The observation sequence of π is the unique infinite sequence
γ−1(π) = o0σ0o1 . . . σn−1onσn . . . such that for all i ≥ 0, we have `i ∈ γ(oi).
Similarly, the observation sequence of π(n) is the prefix up to on of γ−1(π).
The set of infinite plays in G is denoted Plays(G), and the set of corresponding
finite prefixes is denoted Prefs(G). A state ` ∈ L is reachable in G if there
exists a prefix ρ ∈ Prefs(G) such that Last(ρ) = `. For a prefix ρ ∈ Prefs(G),
the cone Cone(ρ) = { π ∈ Plays(G) | ρ is a prefix of π } is the set of plays
that extend ρ. The knowledge associated with a finite observation sequence τ =
o0σ0o1σ1 . . . σn−1on is the set K(τ) of states in which a play can be after this
sequence of observations, that is, K(τ) = {Last(ρ) | ρ ∈ Prefs(G) and γ−1(ρ) =
τ}. For σ ∈ Σ, ` ∈ L, and ρ, ρ′ ∈ Prefs(G) with ρ′ = ρ · σ · `, let o` ∈ O be the
unique observation such that ` ∈ γ(o`). Then K(γ−1(ρ′)) = PostGσ (K(γ−1(ρ))) ∩
γ(o`).

Strategies. A deterministic strategy in G for Player 1 is a function α : Prefs(G) →
Σ. For a finite set A, a probability distribution on A is a function κ : A → [0, 1]
such that

∑

a∈A κ(a) = 1. We denote the set of probability distributions on A

by D(A). Given a distribution κ ∈ D(A), let Supp(κ) = {a ∈ A | κ(a) > 0}
be the support of κ. A randomized strategy in G for Player 1 is a function
α : Prefs(G) → D(Σ). A (deterministic or randomized) strategy α for Player 1
is observation-based if for all prefixes ρ, ρ′ ∈ Prefs(G), if γ−1(ρ) = γ−1(ρ′), then
α(ρ) = α(ρ′). In the sequel, we are interested in the existence of observation-
based strategies for Player 1. A deterministic strategy in G for Player 2 is a
function β : Prefs(G) × Σ → L such that for all ρ ∈ Prefs(G) and all σ ∈ Σ,
we have (Last(ρ), σ, β(ρ, σ)) ∈ ∆. A randomized strategy in G for Player 2 is a
function β : Prefs(G)×Σ → D(L) such that for all ρ ∈ Prefs(G), all σ ∈ Σ, and
all ` ∈ Supp(β(ρ, σ)), we have (Last(ρ), σ, `) ∈ ∆. We denote by AG, AO

G, and
BG the set of all Player-1 strategies, the set of all observation-based Player-1
strategies, and the set of all Player-2 strategies in G, respectively. All results of



this paper can be proved also if strategies depend on state sequences only, and
not on the past moves of a play.

The outcome of two deterministic strategies α (for Player 1) and β (for
Player 2) in G is the play π = `0σ0`1 . . . σn−1`nσn . . . ∈ Plays(G) such that
for all i ≥ 0, we have σi = α(π(i)) and `i+1 = β(π(i), σi). This play is denoted
outcome(G, α, β). The outcome of two randomized strategies α (for Player 1) and
β (for Player 2) in G is the set of plays π = `0σ0`1 . . . σn−1`nσn . . . ∈ Plays(G)
such that for all i ≥ 0, we have α(π(i))(σi) > 0 and β(π(i), σi)(`i+1) > 0. This
set is denoted outcome(G, α, β). The outcome set of the deterministic (resp.
randomized) strategy α for Player 1 in G is the set Outcomei(G, α) of plays π

such that there exists a deterministic (resp. randomized) strategy β for Player 2
with π = outcome(G, α, β) (resp. π ∈ outcome(G, α, β)). The outcome sets for
Player 2 are defined symmetrically.

Objectives. An objective for G is a set φ of infinite sequences of observations
and input letters, that is, φ ⊆ (O × Σ)ω. A play π = `0σ0`1 . . . σn−1`nσn . . . ∈
Plays(G) satisfies the objective φ, denoted π |= φ, if γ−1(π) ∈ φ. Objectives
are generally Borel measurable: a Borel objective is a Borel set in the Cantor
topology on (O × Σ)ω [13]. We specifically consider reachability, safety, Büchi,
coBüchi, and parity objectives, all of them Borel measurable. The parity objec-
tives are a canonical form to express all ω-regular objectives [20]. For a play
π = `0σ0`1 . . . , we write Inf(π) for the set of observations that appear infinitely
often in γ−1(π), that is, Inf(π) = {o ∈ O | `i ∈ γ(o) for infinitely many i’s}.

Given a set T ⊆ O of target observations, the reachability objective Reach(T )
requires that an observation in T be visited at least once, that is, Reach(T ) =
{ `0σ0`1σ1 . . . ∈ Plays(G) | ∃k ≥ 0 · ∃o ∈ T : `k ∈ γ(o) }. Dually, the safety

objective Safe(T ) requires that only observations in T be visited. Formally,
Safe(T ) = { `0σ0`1σ1 . . . ∈ Plays(G) | ∀k ≥ 0 · ∃o ∈ T : `k ∈ γ(o) }. The
Büchi objective Buchi(T ) requires that an observation in T be visited infinitely
often, that is, Buchi(T ) = { π | Inf(π) ∩ T 6= ∅ }. Dually, the coBüchi objective
coBuchi(T ) requires that only observations in T be visited infinitely often. For-
mally, coBuchi(T ) = { π | Inf(π) ⊆ T }. For d ∈ N, let p : O → { 0, 1, . . . , d }
be a priority function, which maps each observation to a nonnegative integer
priority. The parity objective Parity(p) requires that the minimum priority that
appears infinitely often be even. Formally, Parity(p) = { π | min{ p(o) | o ∈
Inf(π) } is even }. Observe that by definition, for all objectives φ, if π |= φ and
γ−1(π) = γ−1(π′), then π′ |= φ.

Sure winning and almost winning. A strategy λi for Player i in G is sure winning

for an objective φ if for all π ∈ Outcomei(G, λi), we have π |= φ. Given a game
structure G and a state ` of G, we write G` for the game structure that results
from G by changing the initial state to `, that is, if G = 〈L, l0, Σ, ∆,O, γ〉,
then G` = 〈L, `, Σ, ∆,O, γ〉. An event is a measurable set of plays, and given
strategies α and β for the two players, the probabilities of events are uniquely
defined [21]. For a Borel objective φ, we denote by Prα,β

` (φ) the probability φ is
satisfied in the game G` given the strategies α and β. A strategy α for Player 1
in G is almost winning for the objective φ if for all randomized strategies β for
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Fig. 1. Game structure G.

Player 2, we have Prα,β
l0

(φ) = 1. The set of sure-winning (resp. almost-winning)
states of a game structure G for the objective φ is the set of states ` such that
Player 1 has a deterministic sure-winning (resp. randomized almost-winning)
observation-based strategy in G` for the objective φ.

Theorem 1 (Determinacy). [16] For all perfect-information game structures

G and all Borel objectives φ, either there exists a deterministic sure-winning

strategy for Player 1 for the objective φ, or there exists a deterministic sure-

winning strategy for Player 2 for the complementary objective Plays(G) \ φ.

Notice that deterministic strategies suffice for sure winning a game: given
a randomized strategy α for Player 1, let αD be the deterministic strategy
such that for all ρ ∈ Prefs(G), the strategy αD(ρ) chooses an input letter from
Supp(α(ρ)). Then Outcome1(G, αD) ⊆ Outcome1(G, α), and thus, if α is sure
winning, then so is αD . The result also holds for observation-based strategies
and for perfect-information games. However, for almost winning, randomized
strategies are more powerful than deterministic strategies as shown by Exam-
ple 1.

Example 1. Consider the game structure shown in Fig. 1. The observations
o1, o2, o3, o4 are such that γ(o1) = {`1}, γ(o2) = {`2, `

′
2}, γ(o3) = {`3, `

′
3}, and

γ(o4) = {`4}. The transitions are shown as labeled edges in the figure, and the
initial state is `1. The objective of Player 1 is Reach({o4}), to reach state `4.
We argue that the game is not sure winning for Player 1. Let α be any deter-
ministic strategy for Player 1. Consider the deterministic strategy β for Player 2
as follows: for all ρ ∈ Prefs(G) such that Last(ρ) ∈ γ(o2), if α(ρ) = a, then in
the previous round β chooses the state `2, and if α(ρ) = b, then in the previous
round β chooses the state `′2. Given α and β, the play outcome(G, α, β) never
reaches `4. However, the game G is almost winning for Player 1. Consider the
randomized strategy that plays a and b uniformly at random at all states. Every
time the game visits observation o2, for any strategy for Player 2, the game visits
`3 and `′3 with probability 1

2 , and hence also reaches `4 with probability 1
2 . It

follows that against all Player 2 strategies the play eventually reaches `4 with
probability 1.



Remarks. First, the hypothesis that the observations form a partition of the
state space can be weakened to a covering of the state space, where observations
can overlap. In that case, Player 2 chooses both the next state of the game `

and the next observation o such that ` ∈ γ(o). The definitions related to plays,
strategies, and objectives are adapted accordingly. Such a game structure G with
overlapping observations can be encoded by an equivalent game structure G′ of
imperfect information, whose state space is the set of pairs (`, o) such that ` ∈
γ(o). The set of labeled transitions ∆′ of G′ is defined by ∆′ = {((`, o), σ, (`′, o′)) |
(`, σ, `′) ∈ ∆ } and γ′−1(`, o) = o. The games G and G′ are equivalent in the
sense that for every Borel objective φ, there exists a sure (resp. almost) winning
strategy for Player i in G forφ if and only if there exists such a winning strategy
for Player i in G′ for φ. Second, it is essential that the objective is expressed
in terms of the observations. Indeed, the games of imperfect information with
a nonobservable winning condition are more complicated to solve. For instance,
the universality problem for Büchi automata can be reduced to such games, but
the construction that we propose in Section 3 cannot be used.

3 Sure Winning

We show that a game structure G of imperfect information can be encoded by
a game structure GK of perfect information such that for all Borel objectives φ,
there exists a deterministic observation-based sure-winning strategy for Player 1
in G for φ if and only if there exists a deterministic sure-winning strategy for
Player 1 in GK for φ. We obtain GK by a subset construction. Each state in GK is
a set of states of G which represents the knowledge of Player 1. In the worst case,
the size of GK is exponentially larger than the size of G. Second, we present a
fixed-point algorithm based on antichains of set of states [10], whose correctness
relies on the subset construction, but avoids the explicit construction of GK.

3.1 Subset construction for sure winning

Given a game structure of imperfect information G = 〈L, l0, Σ, ∆,O, γ〉, we
define the knowledge-based subset construction of G as the following game
structure of perfect information: GK = 〈L, {l0}, Σ, ∆K〉, where L = 2L\{∅},
and (s1, σ, s2) ∈ ∆K iff there exists an observation o ∈ O such that s2 =
PostGσ (s1) ∩ γ(o) and s2 6= ∅. Notice that for all s ∈ L and all σ ∈ Σ, there
exists a set s′ ∈ L such that (s, σ, s′) ∈ ∆K.

A (deterministic or randomized) strategy in GK is called a knowledge-based

strategy. For all sets s ∈ L that are reachable in GK, and all observations o ∈
O, either s ⊆ γ(o) or s ∩ γ(o) = ∅. By an abuse of notation, we define the
observation sequence of a play π = s0σ0s1 . . . σn−1snσn . . . ∈ Plays(GK) as the
infinite sequence γ−1(π) = o0σ0o1 . . . σn−1onσn . . . of observations such that for
all i ≥ 0, we have si ⊆ γ(oi); this sequence is unique. The play π satisfies an
objective φ ⊆ (O × Σ)ω if γ−1(π) ∈ φ. The proof of the following theorem can
be found in the technical-report version for this paper.



Theorem 2 (Sure-winning reduction). Player 1 has a deterministic

observation-based sure-winning strategy in a game structure G of imperfect in-

formation for a Borel objective φ if and only if Player 1 has a deterministic

sure-winning strategy in the game structure GK of perfect information for φ.

3.2 Two interpretations of the µ-calculus

Form the results of Section 3.1, we can solve a game G of imperfect information
with objective φ by constructing the knowledge-based subset construction GK

and solving the resulting game of perfect information for the objective φ using
standard methods. For the important class of ω-regular objectives, there exists
a fixed-point theory —the µ-calculus— for this purpose [8]. When run on GK,
these fixed-point algorithms compute sets of sets of states of the game G. An
important property of those sets is that they are downward closed with respect
to set inclusion: if Player 1 has a deterministic strategy to win the game G when
her knowledge is a set s, then she also has a deterministic strategy to win the
game when her knowledge is s′ with s′ ⊆ s. And thus, if s is a sure-winning
state of GK, then so is s′. Based on this property, we devise a new algorithm for
solving games of perfect information.

An antichain of nonempty sets of states is a set q ⊆ 2L \ ∅ such that for all
s, s′ ∈ q, we have s 6⊂ s′. Let C be the set of antichains of nonempty subsets of
L, and consider the following partial order on C: for all q, q′ ∈ C, let q v q′ iff
∀s ∈ q · ∃s′ ∈ q′ : s ⊆ s′. For q ⊆ 2L \ ∅, define the set of maximal elements of
q by dqe = {s ∈ q | s 6= ∅ and ∀s′ ∈ q : s 6⊂ s′}. Clearly, dqe is an antichain.
The least upper bound of q, q′ ∈ C is q t q′ = d{s | s ∈ q or s ∈ q′}e, and their
greatest lower bound is q u q′ = d{s ∩ s′ | s ∈ q and s′ ∈ q′}e. The definition of
these two operators extends naturally to sets of antichains, and the greatest
element of C is > = {L} and the least element is ⊥ = ∅. The partially ordered
set 〈C,v,t,u,>,⊥〉 forms a complete lattice. We view antichains of state sets
as a symbolic representation of ⊆-downward-closed sets of state sets.

A game lattice is a complete lattice V together with a predecessor operator

CPre : V → V . Given a game structure G = 〈L, l0, Σ, ∆,O, γ〉 of imperfect
information, and its knowledge-based subset construction GK = 〈L, {l0}, Σ, ∆K〉,
we consider two game lattices: the lattice of subsets 〈S,⊆,∪,∩,L, ∅〉, where S =
2L and CPre : S → S is defined by CPre(q) = {s ∈ L | ∃σ ∈ Σ · ∀s′ ∈ L :
if (s, σ, s′) ∈ ∆K, then s′ ∈ q}; and the lattice of antichains 〈C,v,t,u, {L}, ∅〉,

with the operator dCPree : C → C defined by dCPree(q) = d{s ∈ L | ∃σ ∈ Σ ·∀o ∈
O · ∃s′ ∈ q : Postσ(s) ∩ γ(o) ⊆ s′}e.

The µ-calculus formulas are generated by the grammar

ϕ ::= o | x | ϕ ∨ ϕ | ϕ ∧ ϕ | pre(ϕ) | µx.ϕ | νx.ϕ

for atomic propositions o ∈ O and variables x. We can define ¬o as a shortcut
for

∨

o′∈O\{o} o′. A variable is free in a formula ϕ if it is not in the scope of a
quantifier µx or νx. A formula ϕ is closed if it contains no free variable. Given
a game lattice V , a valuation E for the variables is a function that maps every
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variable x to an element in V . For q ∈ V , we write E [x 7→ q] for the valuation
that agrees with E on all variables, except that x is mapped to q. Given a game
lattice V and a valuation E , each µ-calculus formula ϕ specifies an element [[ϕ]]VE
of V , which is defined inductively by the equations shown in the two tables. If ϕ

is a closed formula, then [[ϕ]]V =[[ϕ]]VE for any valuation E . The following theorem
recalls that perfect-information games can be solved by evaluating fixed-point
formulas in the lattice of subsets.

Theorem 3 (Symbolic solution of perfect-information games). [8] For

every ω-regular objective φ, there exists a closed µ-calculus formula µForm(φ),
called the characteristic formula of φ, such that for all game structures G of

perfect information, the set of sure-winning states of G for φ is [[µForm(φ)]]S .

Downward closure. Given a set q ∈ S, the downward closure of q is the set
q↓ = {s ∈ L | ∃s′ ∈ q : s ⊆ s′}. Observe that in particular, for all q ∈ S, we
have ∅ 6∈ q↓ and dqe↓ = q↓. The sets q↓, for q ∈ S, are the downward-closed sets.
A valuation E for the variables in the lattice S of subsets is downward closed if
every variable x is mapped to a downward-closed set, that is, E(x) = E(x)↓.

Lemma 1. For all downward-closed sets q, q′ ∈ S, we have dq ∩ q′e = dqeu dq′e
and dq ∪ q′e = dqe t dq′e.

Lemma 2. For all µ-calculus formulas ϕ and all downward-closed valuations E
in the lattice of subsets, the set [[ϕ]]SE is downward closed.

Lemma 3. For all µ-calculus formulas ϕ, and all downward-closed valuations

E in the lattice of subsets, we have
⌈

[[ϕ]]SE
⌉

=[[ϕ]]CdEe, where dEe is a valuation in

the lattice of antichains defined by dEe(x) = dE(x)e for all variables x.

Consider a game structure G of imperfect information and a parity objective φ.
From Theorems 2 and 3 and Lemma 3, we can decide the existence of a deter-
ministic observation-based sure-winning strategy for Player 1 in G for φ without
explicitly constructing the knowledge-based subset construction GK, by instead
evaluating a fixed-point formula in the lattice of antichains.

Theorem 4 (Symbolic solution of imperfect-information games). Let

G be a game structure of imperfect information with initial state l0. For every



ω-regular objective φ, Player 1 has a deterministic observation-based strategy in

G for φ if and only if {l0} v[[µForm(φ)]]C .

Corollary 1. Let G be a game structure of imperfect information, let p be a

priority function, and let ` be a state of G. Whether ` is a sure-winning state in

G for the parity objective Parity(p) can be decided in Exptime.

Corollary 1 is proved as follows: for a parity objective φ, an equivalent µ-calculus
formula ϕ can be obtained, where the size and the fixed-point quantifier alter-
nations of ϕ is polynomial in φ. Thus given G and φ, we can evaluate ϕ in GK

in Exptime.

4 Almost Winning

Given a game structure G of imperfect information, we first construct a game
structure H of perfect information by a subset construction (different from the
one used for sure winning), and then establish certain equivalences between
randomized strategies in G and H . Finally, we show how the reduction can be
used to obtain a symbolic Exptime algorithm for computing almost-winning
states in G for Büchi objectives. An Exptime algorithm for almost winning for
coBüchi objectives under imperfect information remains unknown.

4.1 Subset construction for almost winning

Given a game structure of imperfect information G = 〈L, l0, Σ, ∆,O, γ〉, we
construct game structure of perfect information H = Pft(G) = 〈Q, q0, Σ, ∆H〉
as follows: Q = { (s, `) | ∃o ∈ O : s ⊆ γ(o) and ` ∈ s }; the initial state is q0 =
({l0}, l0); the transition relation ∆H ⊆ Q×Σ×Q is defined by ((s, `), σ, (s′, `′)) ∈
∆H iff there is an observation o ∈ O such that s′ = PostGσ (s)∩γ(o) and (`, σ, `′) ∈
∆. Intuitively, when H is in state (s, `), it corresponds to G being in state ` and
the knowledge of Player 1 being s. Two states q = (s, `) and q′ = (s′, `′) of H

are equivalent, written q ≈ q′, if s = s′. Two prefixes ρ = q0σ0q1 . . . σn−1qn and
ρ′ = q′0σ

′
0q

′
1 . . . σ′

n−1q
′
n of H are equivalent, written ρ ≈ ρ, if for all 0 ≤ i ≤ n,

we have qi ≈ q′i, and for all 0 ≤ i ≤ n − 1, we have σi = σ′
i. Two plays

π, π′ ∈ Plays(H) are equivalent, written πH ≈ π′
H , if for all i ≥ 0, we have

π(i) ≈ π′(i). For a state q ∈ Q, we denote by [q]≈ = { q′ ∈ Q | q ≈ q′ } the
≈-equivalence class of q. We define equivalence classes for prefixes and plays
similarly.

Equivalence-preserving strategies and objectives. A strategy α for Player 1 in
H is positional if it is independent of the prefix of plays and depends only on
the last state, that is, for all ρ, ρ′ ∈ Prefs(H) with Last(ρ) = Last(ρ′), we have
α(ρ) = α(ρ′). A positional strategy α can be viewed as a function α : Q → D(Σ).
A strategy α for Player 1 in H is equivalence-preserving if for all ρ, ρ′ ∈ Prefs(H)
with ρ ≈ ρ′, we have α(ρ) = α(ρ′). We denote by AH , AP

H , and A≈
H the set of

all Player-1 strategies, the set of all positional Player-1 strategies, and the set



of all equivalence-preserving Player-1 strategies in H , respectively. We write

A
≈(P )
H = A≈

H ∩ AP
H for the set of equivalence-preserving positional strategies.

An objective φ for H is a subset of (Q × Σ)ω, that is, the objective φ is a
set of plays. The objective φ is equivalence-preserving if for all plays π ∈ φ, we
have [π]≈ ⊆ φ.

Relating prefixes and plays. We define a mapping h : Prefs(G) → Prefs(H) that
maps prefixes in G to prefixes in H as follows: given ρ = `0σ0`1σ1 . . . σn−1`n,
let h(ρ) = q0σ0q1σ1 . . . σn−1qn, where for all 0 ≤ i ≤ n, we have qi = (si, `i),
and for all 0 ≤ i ≤ n − 1, we have si = K(γ−1(ρ(i))). The following properties
hold: (i) for all ρ, ρ′ ∈ Prefs(G), if γ−1(ρ) = γ−1(ρ′), then h(ρ) ≈ h(ρ′); and
(ii) for all ρ, ρ′ ∈ Prefs(H), if ρ ≈ ρ′, then γ−1(h−1(ρ)) = γ−1(h−1(ρ′)). The
mapping h : Plays(G) → Plays(H) for plays is defined similarly, and has similar
properties.

Relating strategies for Player 1. We define two strategy mappings h : AH → AG

and g : AG → AH . Given a Player-1 strategy αH in H , we construct a Player-1
strategy αG = h(αH) in G as follows: for all ρ ∈ Prefs(G), let αG(ρ) = αH(h(ρ)).
Similarly, given a Player-1 strategy αG in G, we construct a Player-1 strategy
αH = g(αG) in H as follows: for all ρ ∈ Prefs(H), let αH(ρ) = αG(h−1(ρ)). The
following properties hold: (i) for all strategies αH ∈ AH , if αH is equivalence-
preserving, then h(αH) is observation-based; and (ii) for all strategies αG ∈ AG,
if αG is observation-based, then g(αG) is equivalence-preserving.

Relating strategies for Player 2. Observe that for all q ∈ Q, all σ ∈ Σ, and
all ` ∈ L, we have |{ q′ = (s′, `) | (q, σ, q′) ∈ ∆H }| ≤ 1. Given a Player-2
strategy βH in H , we construct a Player-2 strategy βG = h(βH) as follows: for
all ρ ∈ Prefs(G), all σ ∈ Σ, and all ` ∈ L, let βG(ρ, σ)(`) = βH(h(ρ), σ)(s, `),
where (s, `) ∈ PostHσ (Last(h(ρ))). Similarly, given a Player-2 strategy βG in G, we
construct a Player-2 strategy βH = g(βG) in H as follows: for all ρ ∈ Prefs(H),
all σ ∈ Σ, and all q ∈ Q with q = (s, `), let βH(ρ, σ)(q) = βG(h−1(ρ), σ)(`).

Lemma 4. For all ρ ∈ Prefs(H), for every equivalence-preserving strategy

α of Player 1 in H, and for every strategy β of Player 2 in H, we have

Prα,β
q0

(Cone(ρ)) = Pr
h(α),h(β)
l0

(h−1(Cone(ρ))).

Lemma 5. For all ρ ∈ Prefs(G), for every observational strategy α of Player 1

in G, and for every strategy β of Player 2 in G, we have Prα,β
l0

(Cone(ρ)) =

Prg(α),g(β)
q0

(h(Cone(ρ))).

Theorem 5 (Almost-winning reduction). Let G be a game structure of im-

perfect information, and let H = Pft(G) be the game structure of perfect infor-

mation. For all Borel objectives φ for G, all observation-based Player-1 strategies

α in G, and all Player-2 strategies β in G, we have Prα,β
l0

(φ) = Prg(α),g(β)
q0

(h(φ)).
Dually, for all equivalence-preserving Borel objectives φ for H, all equivalence-

preserving Player-1 strategies α in H, and all Player-2 strategies β in H, we

have Prα,β
q0

(φ) = Pr
h(α),h(β)
l0

(h−1(φ)).



The proof is as follows: by the Caratheódary unique-extension theorem, a prob-
ability measure defined on cones has a unique extension to all Borel objectives.
The theorem then follows from Lemma 4.

Corollary 2. For every Borel objective φ for G, we have ∃αG ∈ AO
G · ∀βG ∈

BG : PrαG,βG

`0
(φ) = 1 if and only if ∃αH ∈ A≈

H · ∀βH ∈ BH : PrαH ,βH

q0
(h(φ)) = 1.

4.2 Almost winning for Büchi objectives

Given a game structure G of imperfect information, let H = Pft(G) be the game
structure of perfect information. Given a set T ⊆ O of target observations, let
BT = {(s, l) ∈ Q | ∃o ∈ T : s ⊆ γ(o)}. Then h(Buchi(T )) = Buchi(BT ) = {πH ∈
Plays(H) | Inf(πH) ∩ BT 6= ∅ }. We first show that almost winning in H for the
Büchi objective Buchi(BT ) with respect to equivalence-preserving strategies is
equivalent to almost winning with respect to equivalence-preserving positional
strategies. Formally, for BT ⊆ Q, let Q≈

AS
= { q ∈ Q | ∃α ∈ A≈

H · ∀β ∈ BH · ∀q′ ∈

[q]≈ : Prα,β
q′ (Buchi(BT )) = 1 }, and Q

≈(P )
AS

= { q ∈ Q | ∃α ∈ A
≈(P )
H · ∀β ∈

BH · ∀q′ ∈ [q]≈ : Prα,β
q′ (Buchi(BT )) = 1 }. We will prove that Q≈

AS
= Q

≈(P )
AS

.
Lemma 6 follows from the construction of H from G.

Lemma 6. Given an equivalence-preserving Player-1 strategy α ∈ AH , a prefix

ρ ∈ Prefs(H), and a state q ∈ Q, if there exists a Player-2 strategy β ∈ BH

such that Prα,β
q (Cone(ρ)) > 0, then for every prefix ρ′ ∈ Prefs(H) with ρ ≈

ρ′, there exist a Player-2 strategy β′ ∈ BH and a state q′ ∈ [q]≈ such that

Prα,β′

q′ (Cone(ρ′)) > 0.

Observe that Q \ Q≈
AS

= { q ∈ Q | ∀α ∈ A≈
H · ∃β ∈ BH · ∃q′ ∈ [q]≈ :

Prα,β
q′ (Buchi(BT )) < 1 }. It follows from Lemma 6 that if a play starts in Q≈

AS

and reaches Q\Q≈
AS

with positive probability, then for all equivalence-preserving
strategies for Player 1, there is a Player 2 strategy that ensures that the Büchi
objective Buchi(BT ) is not satisfied with probability 1.

Notation. For a state q ∈ Q and Y ⊆ Q, let Allow(q, Y ) = { σ ∈ Σ | PostH
σ (q) ⊆

Y }. For a state q ∈ Q and Y ⊆ Q, let Allow([q]≈, Y ) =
⋂

q′∈[q]≈
Allow(q′, Y ).

Lemma 7. For all q ∈ Q≈
AS

, we have Allow([q]≈, Q≈
AS

) 6= ∅.

Lemma 8. Given a state q ∈ Q≈
AS

, let α ∈ AH be an equivalence-preserving

Player-1 strategy such that for all Player-2 strategies β ∈ BH and all states

q′ ∈ [q]≈, we have Prα,β
q′ (Buchi(BT )) = 1. Let ρ = q0σ0q1 . . . σn−1qn be a prefix

in Prefs(H) such that for all 0 ≤ i ≤ n, we have qi ∈ Q≈
AS

. If there is a Player-

2 strategy β ∈ BH and a state q′ ∈ [q]≈ such that Prα,β
q′ (Cone(ρ)) > 0, then

Supp(α(ρ)) ⊆ Allow([q]≈, Q≈
AS

).

Notation. We inductively define the ranks of states in Q≈
AS

as follows: let
Rank(0) = BT ∩ Q≈

AS
, and for all j ≥ 0, let Rank(j + 1) = Rank(j) ∪ { q ∈ Q≈

AS
|

∃σ ∈ Allow([q]≈, Q≈
AS

) : PostHσ (q) ⊆ Rank(j) }. Let j∗ = min{ j ≥ 0 | Rank(j) =
Rank(j + 1) }, and let Q∗ = Rank(j∗). We say that the set Rank(j + 1) \Rank(j)
contains the states of rank j + 1, for all j ≥ 0.



Lemma 9. Q∗ = Q≈
AS

.

Equivalence-preserving positional strategy. Consider the equivalence-preserving
positional strategy αp for Player 1 in H , which is defined as follows: for a state
q ∈ Q≈

AS
, choose all moves in Allow([q]≡, Q≈

AS
) uniformly at random.

Lemma 10. For all states q ∈ Q≈
AS

and all Player-2 strategies β in H, we have

Prαp,β
q (Safe(Q≈

AS
)) = 1 and Prαp,β

q (Reach(BT ∩ Q≈
AS

)) = 1.

Proof. By Lemma 9, we have Q∗ = Q≈
AS

. Let z = |Q∗|. For a state q ∈ Q≈
AS

,

we have PostHσ (q) ⊆ Q≈
AS

for all σ ∈ Allow([q]≈, Q≈
AS

). It follows for all states

q ∈ Q≈
AS

and all strategies β for Player 2, we have Prαp,β
q (Safe(Q≈

AS
)) = 1.

For a state q ∈ (Rank(j +1)\Rank(j)), there exists σ ∈ Allow([q]≈, Q≈
AS

) such

that PostHσ (q) ⊆ Rank(j). For a set Y ⊆ Q, let ♦j(Y ) denote the set of prefixes
that reach Y within j steps. It follows that for all states q ∈ Rank(j + 1) and all

strategies β for Player 2, we have Prαp,β
q (♦1(Rank(j))) ≥ 1

|Σ| . Let B = BT ∩Q≈
AS

.

By induction on the ranks it follows that for all states q ∈ Q∗ and all strategies

β for Player 2: Prαp,β
q (♦z(Rank(0))) = Prαp,β

q (♦z(B)) ≥
(

1
|Σ|

)z

= r > 0. For

m > 0, we have Prαp,β
q (♦m·z(B)) ≥ 1 − (1 − r)m. Thus:

Prαp,β
q (Reach(B)) = lim

m→∞
Prαp,β

q (♦m·z(B)) ≥ lim
m→∞

1 − (1 − r)m = 1. �

Lemma 10 implies that, given the Player-1 strategy αp, the set Q≈
AS

is never
left, and the states in BT ∩Q≈

AS
are reached with probability 1. Since this happens

for every state in Q≈
AS

, it follows that the set BT ∩ Q≈
AS

is visited infinitely
often with probability 1, that is, the Büchi objective Buchi(BT ) is satisfied with
probability 1. This analysis, together with the fact that [q0]≈ is a singleton and

Corollary 2, proves that Q≈
AS

= Q
≈(P )
AS

. Theorem 6 follows.

Theorem 6 (Positional almost winning for Büchi objectives under im-
perfect information). Let G be a game structure of imperfect information,

and let H = Pft(G) be the game structure of perfect information. For all sets

T of observations, there exists an observation-based almost-winning strategy for

Player 1 in G for the objective Buchi(T ) iff there exists an equivalence-preserving

positional almost-winning strategy for Player 1 in H for the objective Buchi(BT ).

Symbolic algorithm. We present a symbolic quadratic-time (in the size of H) algo-
rithm to compute the set Q≈

AS
. For Y ⊆ Q and X ⊆ Y , let Apre(Y, X) = {q ∈ Y |

∃σ ∈ Allow([q]≈, Y ) : PostHσ (q) ⊆ X } and Spre(Y ) = { q ∈ Y | Allow([q]≈, Y ) 6=
∅ }. Note that Spre(Y ) = Apre(Y, Y ). Let φ = νY.µX.

(

Apre(Y, X) ∨ (BT ∧

Spre(Y )
)

and let Z =[[φ]]. It can be shown that Z = Q≈
AS

.

Theorem 7 (Complexity of almost winning for Büchi objectives under
imperfect information). Let G be a game structure of imperfect information,

let T be a set of observations, and let ` be a state of G. Whether ` is an almost-

winning state in G for the Büchi objective Buchi(T ) can be decided in Exptime.



The facts that Z = Q≈
AS

and that H is exponential in the size of G yield
Theorem 7. The arguments for the proofs of Theorem 6 and 7 do not directly
extend to coBüchi or parity objectives. In fact, Theorem 6 does not hold for
parity objectives in general, for the following reason: in concurrent games with
parity objectives with more than two priorities, almost-winning strategies may
require infinite memory; for an example, see [5]. Such concurrent games are re-
ducible to semiperfect-information games [4], and semiperfect-information games
are reducible to the imperfect-information games we study. Hence a reduction
to finite game structures of perfect information in order to obtain randomized
positional strategies is not possible with respect to almost winning for general
parity objectives. Theorem 6 and Theorem 7 may hold for coBüchi objectives,
but there does not seem to be a simple extension of our arguments for Büchi
objectives to the coBüchi case. The results that correspond to Theorems 6 and 7
for coBüchi objectives are open.

Direct symbolic algorithm. As in Section 3.2, the subset structure H does not have
to be constructed explicitly. Instead, we can evaluate a fixed-point formula on a
well-chosen lattice. The fixed-point formula to compute the set Q≈

AS
is evaluated

on the lattice 〈2Q,⊆,∪,∩, Q, ∅〉. It is easy to show that the sets computed by
the fixed-point algorithm are downward closed for the following order on Q:
for (s, `), (s′, `′) ∈ Q, let (s, `) � (s′, `′) iff ` = `′ and s ⊆ s′. Then, we can
define an antichain over Q as a set of pairwise �-incomparable elements of Q,
and compute the almost-sure winning states in the lattice of antichains over Q,
without explicitly constructing the exponential game structure H .

5 Lower Bounds

We show that deciding the existence of a deterministic (resp. randomized)
observation-based sure-winning (resp. almost-winning) strategy for Player 1 in
games of imperfect information is Exptime-hard already for reachability objec-
tives. The result for sure winning follows from [19], but our new proof extends
to almost winning as well.

Sure winning. To show the lower bound, we use a reduction from the member-
ship problem for polynomial-space alternating Turing machines. An alternating

Turing machine (ATM) is a tuple M = 〈Q, q0, g, Σi, Σt, δ, F 〉, where Q is a finite
set of control states; q0 ∈ Q is the initial state; g : Q → {∧,∨}; Σi = {0, 1} is the
input alphabet; Σt = {0, 1, 2} is the tape alphabet and 2 is the blank symbol;
δ ⊆ Q × Σt × Q × Σt × {−1, 1} is the transition relation; and F ⊆ Q is the set
of accepting states. We say that M is a polynomial-space ATM if there exists a
polynomial p(·) such that for every word w, the tape space used by M on input
w is bounded by p(|w|). Without loss of generality, we assume that the initial
control state of the machine is a ∨-state, and that transitions connect ∨-states
to ∧-states, and vice versa. A word w is accepted by the ATM M if there exists
a run tree of M on w all of whose leaf nodes are accepting configurations (i.e.,
configurations containing an accepting state); see [3] for details. The membership



problem is to decide if a given word w is accepted by a given polynomial-space
ATM (M, p). This problem is Exptime-hard [3].

Sketch of the reduction. Given a polynomial-space ATM M and a word w, we
construct a game structure of imperfect information, of size polynomial in the
size of (M, w), to simulate the execution of M on w. Player 1 makes choices in
∨-states, and Player 2 makes choices in ∧-states. Player 1 is responsible for main-
taining the symbol under the tape head. His objective is to reach an accepting
configuration of the ATM.

Each turn proceeds as follows. In an ∨-state, by choosing a letter (t, a) in
the alphabet of the game, Player 1 reveals (i) the transition t of the ATM that
he has chosen (this way he also reveals the symbol that is currently under the
tape head), and (ii) the symbol a under the next position of the tape head. If
Player 1 lies about the current or the next symbol under the tape head, then he
should lose the game; otherwise the game proceeds. The machine is now in an ∧-
state and Player 1 has no choice: he announces a special symbol ε and Player 2,
by resolving the nondeterminism on ε, chooses a transition of the ATM that is
compatible with the current symbol under the tape head revealed by Player 1
at the previous turn. The state of the ATM is updated and the game proceeds.
The transition chosen by Player 2 is visible in the next state of the game, and
thus Player 1 can update his knowledge about the configuration of the ATM.
Player 1 wins whenever an accepting configuration of the ATM is reached.

The difficulty is to ensure that Player 1 loses when he announces a wrong
symbol under the tape head. As the number of configurations of the polynomial-
space ATM is exponential, we cannot directly encode the full configuration of
the ATM in the states of the game. To overcome this difficulty, we use the
power of imperfect information as follows. Initially, Player 2 chooses a position
k, where 1 ≤ k ≤ p(|w|), on the tape. The chosen number k, as well as the
symbol σ ∈ {0, 1, 2} that lies in the tape cell with number k, are maintained all
along the game in the nonobservable portion of the game states. The pair (σ, k)
is thus private to Player 2, and invisible to Player 1. Thus, at any point in the
game, Player 2 can check whether Player 1 is lying when announcing the content
of cell number k, and go to a sink state if Player 1 cheats (no other states can
be reached from there). Since Player 1 does not know which cell is monitored by
Player 2 (since k is private), to avoid losing, he must not lie about any of the
tape cells, and thus he must faithfully simulate the machine. Then, he wins the
game if and only if the ATM accepts the words w.

Almost winning. To establish the lower bound for almost winning, we can use
the same reduction. Randomization cannot help Player 1 in this game. Indeed,
at any point in the game, if Player 1 takes a chance in either not faithfully
simulating the ATM or lying about the symbol under the tape head, then the
sink state is reached. In these cases, the probability to reach the sink state is
positive, and so the probability to win the game is strictly less than one.

Theorem 8 (Lower bounds). Let G be a game structure of imperfect informa-

tion, let T be a set of observations, and let ` be a state of G. Deciding whether `



is a sure-winning state in G for the reachability objective Reach(T ) is Exptime-

hard. Deciding whether ` is an almost-winning state in G for Reach(T ) is also

Exptime-hard.
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