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Abstract11

We consider multiple-environment Markov decision processes (MEMDP), which consist of a finite12
set of MDPs over the same state space, representing different scenarios of transition structure and13
probability. The value of a strategy is the probability to satisfy the objective, here a parity objective,14
in the worst-case scenario, and the value of an MEMDP is the supremum of the values achievable by15
a strategy.16

We show that deciding whether the value is 1 is a PSPACE-complete problem, and even in P17
when the number of environments is fixed, along with new insights to the almost-sure winning18
problem, which is to decide if there exists a strategy with value 1. Pure strategies are sufficient for19
theses problems, whereas randomization is necessary in general when the value is smaller than 1. We20
present an algorithm to approximate the value, running in double exponential space. Our results are21
in contrast to the related model of partially-observable MDPs where all these problems are known22
to be undecidable.23
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1 Introduction34

We consider Markov decision processes (MDP), a well-established state-transition model35

for decision making in a stochastic environment. The decisions involve choosing an action36

from a finite set, which together with the current state determine a probability distribution37

over the successor state. The question of constructing a strategy that maximizes the38

probability to satisfy a logical specification is a classical synthesis problem with a wide range39

of applications [19, 11, 3, 20].40

The stochastic transitions in MDPs capture the uncertainty in the effect of an action.41

Another form of uncertainty arises when the states are (partially) hidden to the decision-42

maker, as in the classical model of partially-observable MDPs (POMDP) [15, 18]. Recently,43
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Figure 1 Multiple-environment MDP for the missing card (over 3-card deck). Each M [ei]
represents the behavior of the MEMDP under environment ei where card i has been removed. The
environment can be identified almost-surely (with probability 1).

an alternative model of MDPs with partial information has attracted attention, the multiple-44

environment MDPs (MEMDP) [21], which consists of a finite set of MDPs over the same45

state space. Each MDP represents a possible environment, but the decision-maker does not46

know in which environment they are operating. The synthesis problem is then to construct a47

single strategy that can be executed in all environments to ensure the objective be satisfied48

independently of the environment. This model is natural in applications where the structure49

of the transitions and their probability are uncertain such as in robust planning or population50

models with individual variability [4, 6, 1, 23, 22].51

In contrast to what previous work suggest, the two models of POMDP and MEMDP52

are (syntactically) incomparable: the choice of the environment in MEMDP is adversarial,53

which cannot be expressed in a POMDP, and the partial observability of POMDP can occur54

throughout the execution, whereas the uncertainty in MEMDP is only initial. In particular,55

MEMDP are not a subclass of POMDP since pure strategies are sufficient in POMDPs [17, 7]56

while randomization is necessary in general in MEMDPs [21, Lemma 3].57

The synthesis problem has been considered for traditional ω-regular objectives, defined58

as parity [21] or Rabin [22] condition, in three variants: the almost-sure problem is to decide59

whether there exists a strategy that is winning with probability 1 in all environments, the60

limit-sure problem is to decide whether, for every ε > 0, there exists a strategy that is61

winning with probability at least 1− ε in all environments, and the gap problem, which is62

an approximate version of the quantitative problem to decide, given a threshold 0 < λ ≤ 1,63

whether there exists a strategy that is winning with probability at least λ in all environments.64

The limit-sure problem is also called the value-1 problem, where the value of an MEMDP is65

defined as the supremum of the values achievable by a strategy. The value is 1 if and only if66

the answer to the limit-sure problem is Yes.67

A classical example to illustrate the difference between almost-sure and limit-sure winning68

is to consider an environment consisting of 51 cards, obtained by removing one card from a69

standard 52-card deck (see Figure 1). The decision-maker has two possible actions: the action70

sample reveals the top card of the deck and then shuffles the cards (including the top card,71

which remains in the deck); the action guess(x), where 1 ≤ x ≤ 52 is a card, stops the game72

with a win if x is the missing card, and a lose otherwise. If no guess is ever made, the game73

is also losing. An almost-sure winning strategy is to sample until each of the 51 cards has74

been revealed at least once, then to make a correct guess. It is easy to see that the strategy75

wins with probability 1, even if there exist scenarios (though with probability 0) where some76

of the 51 cards are never revealed and no correct guess is made. Hence the MEMDP is77

almost-sure winning, and we say that it is not sure winning because a losing scenario exists78
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Figure 2 Multiple-environment MDP for the duplicate card (over 3-card deck). Each M [ei]
represents the behavior of the MEMDP under environment ei where card i has been duplicated.
The environment can be identified limit-surely (with probability arbitrarily close to 1).

in every strategy. Consider now an environment consisting of 53 cards, obtained by adding79

one duplicate card c to the standard deck, and the same action set and rules of the game,80

except that a correct guess is now the duplicate card x = c (see Figure 2). The strategy81

that samples for a long time and then makes a guess based on the most frequent card wins82

with probability close to 1 – and closer to 1 as the sampling time is longer – but not equal83

to 1, since no matter how long is the sampling phase there is always a nonzero probability84

that the duplicate card does not have the highest frequency at the time of the guess. In85

this case, the MEMDP is limit-sure winning, but not almost-sure winning. Intuitively, the86

solution of almost-sure winning relies on the analysis of revealing transitions, which give a87

sure information allowing to exclude some environment (seeing card c is a guarantee that we88

are not in the environment where c is missing); the solution of limit-sure winning involves89

learning by sampling, which also allows to exclude some environment, but possibly with a90

nonzero probability to be mistaken.91

For MEMDPs with two environments, it is known that the almost-sure and limit-sure92

problem for parity objectives are solvable in polynomial time [21, Theorem 33, Theorem 40],93

while the gap problem is decidable in 2-fold exponential space [21, Theorem 30] and is94

NP-hard, even for acyclic MEMDPs with two environments [21, Theorem 26]. With an95

arbitrary number of environments, the almost-sure problem becomes PSPACE-complete [22,96

Theorem 41], even for reachability objectives [23, Lemma 11]. For comparison, in the close97

model of POMDP, the decidability frontier lies between limit-sure winning and almost-sure98

winning: with reachability objectives, the almost-sure problem is decidable (and EXPTIME-99

complete [2]), whereas the limit-sure problem is undecidable [12]. The gap problem is also100

undecidable [16].101

In this paper, we consider the limit-sure problem and the gap problem for parity objectives102

in MEMDPs with an arbitrary number of environments. Our main result is to show that103

(a) the limit-sure problem is PSPACE-complete and can be solved in polynomial time for a104

fixed number of environments, and (b) the gap problem can be solved in double exponential105

space. Correspondingly, our algorithms significantly extend the solutions that are known for106

two environments, relying on a non-trivial recursive (inductive) analysis.107

The PSPACE upper bound is obtained by a characterization of limit-sure winning for108

a subclass of MEMDPs, in terms of almost-sure winning conditions (Lemma 14). A pre-109

processing phase transforms general MEMDPs into the subclass. We present a PSPACE110

algorithm to compute the pre-processing and verify the characterization. Since our algorithm111

relies on almost-sure winning, we also give a new characterization of almost-sure winning112

for parity objectives in MEMDPs (Lemma 3), which gives a conceptually simple alternative113
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algorithm to the known solution [22]. The PSPACE lower bound straightforwardly follows114

from the same reduction as for almost-sure winning [22, Theorem 7]. A corollary of our115

characterizations is a refined strategy complexity: pure (non-randomized) strategies are116

sufficient for both limit-sure and almost-sure winning, which was known only for acyclic117

MEMDPs and almost-sure reachability objectives [23, Lemma 12], and exponential memory118

is sufficient. In the last part of the paper, we present an algorithm running in double119

exponential space for solving the gap problem, by computing an approximation of the value120

of the MEMDP. To win with probability at least λ in all environments, randomized strategies121

are more powerful [21, Lemma 3], and thus need to be considered for solving the gap problem.122

In conclusion, the model of MEMDP is a valuable alternative to POMDPs, from a123

theoretical perspective since the limit-sure problem and gap problem are undecidable for124

POMDPs whereas our results establish decidability for MEMDPs, and from a practical125

perspective since many applications of POMDPs can be expressed by MEMDPs, as was126

observed previously [1, 23].127

2 Definitions128

A probability distribution on a finite set Q is a function d : Q→ [0, 1] such that
∑

q∈Q d(q) = 1.129

The support of d is Supp(d) = {q ∈ Q | d(q) > 0}. A Dirac distribution assigns probability 1130

to some q ∈ Q. We denote by D(Q) the set of all probability distributions on Q.131

2.1 Markov Decision Processes132

A Markov decision process (MDP) over a finite set A of actions is a tuple M = ⟨Q, (Aq)q∈Q, δ⟩133

consisting of a finite set Q of states, a nonempty set Aq ⊆ A of actions for each state q ∈ Q,134

and a partial probabilistic transition function δ : Q×A→ D(Q). We say that (q, a, q′) is a135

transition if δ(q, a)(q′) > 0. A state q ∈ Q is a sink if δ(q, a)(q) = 1 for all a ∈ Aq.136

A run of M from an initial state q0 ∈ Q is an infinite sequence π = q0a0q1a1 . . . of137

interleaved states and actions such that ai ∈ Aqi and δ(qi, ai)(qi+1) > 0 for all i ≥ 0. Finite138

prefixes ρ = q0a0 . . . qn of runs ending in a state are called histories and we denote by139

last(ρ) = qn the last state of ρ. We denote by Histω(M) (resp., Hist(M)) the set of all runs140

(resp., histories) of M , and by Inf(π) the set of states that occur infinitely often along the141

run π.142

A sub-MDP of M is an MDP M ′ = ⟨Q′, (A′
q)q∈Q′ , δ⟩ such that Q′ ⊆ Q and Supp(δ(q, a)) ⊆143

Q′ for all states q ∈ Q′ and actions a ∈ A′
q (recall the requirement that A′

q ̸= ∅). Consider a144

set Q′ ⊆ Q such that for all q ∈ Q′, there exists a ∈ Aq with Supp(δ(q, a)) ⊆ Q′. We define145

the sub-MDP of M induced by Q′, denoted by M |Q′ , as the sub-MDP M ′ = ⟨Q′, (A′
q)q∈Q′ , δ⟩146

where A′
q = {a ∈ Aq | Supp(δ(q, a)) ⊆ Q′} for all q ∈ Q′.147

End-components An end-component of M = ⟨Q, (Aq)q∈Q, δ⟩ is a pair (Q′, (A′
q)q∈Q′)148

such that (Q′, (A′
q)q∈Q′ , δ′) is a sub-MDP of M , where δ′ denotes the restriction of δ to149

{(q, a) | q ∈ Q′, a ∈ A′
q}, and where the graph ⟨Q′, E′⟩ with E′ = {(q, q′) ∈ Q′ ×Q′ | ∃a ∈150

A′
q : δ(q, a)(q′) > 0} is strongly connected [9, 3]. We often identify an end-component as151

the set Q′ ∪ {(q, a) | q ∈ Q′, a ∈ Aq} of states and state-action pairs, and we say that it is152

supported by the set Q′ of states. The (componentwise) union of two end-components with153

nonempty intersection is an end-component, thus one can define maximal end-components.154

We denote by MEC(M) the set of maximal end-components of M , which is computable in155

polynomial time [9], and by EC(M) the set of all end-components of M .156

Histories and Strategies A strategy is a function σ : Hist(M) → D(A) such that157
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Supp(σ(ρ)) ⊆ Aq for all histories ρ ∈ Hist(M) ending in last(ρ) = q. A strategy is pure if158

all histories are mapped to Dirac distributions. A strategy σ is memoryless if σ(ρ) = σ(ρ′)159

for all histories ρ, ρ′ such that last(ρ) = last(ρ′). We sometimes view memoryless strategies160

as functions σ : Q → D(A). A strategy σ uses finite memory (of size k) if there exists a161

right congruence ≈ over Hist(M) (i.e., such that if ρ ≈ ρ′, then ρ · a · q ≈ ρ′ · a · q for all162

ρ, ρ′ ∈ Hist(M) and (a, q) ∈ A×Q) of finite index k such that σ(ρ) = σ(ρ′) for all histories163

ρ ≈ ρ′ with last(ρ) = last(ρ′).164

Objectives An objective φ is a Borel set of runs. We denote by Pσ
q (M, φ) the standard165

probability measure on the sigma-algebra over the set of (infinite) runs of M with initial state q,166

generated by the cylinder sets spanned by the histories [3]. Given a history ρ = q0a0q1 . . . qk,167

the cylinder set Cyl(ρ) = ρ(AQ)ω has probability Pσ
q (M, Cyl(ρ)) =

∏k−1
i=0 σ(q0a0q1 . . . qi)(ai) ·168

δ(qi, ai)(qi+1) if q0 = q, and probability 0 otherwise. We say that a run ρ is compatible with169

strategy σ if Pσ
q (M, Cyl(ρ)) > 0.170

We consider the following standard objectives for an MDP M :171

safety objective: given a set T ⊆ Q of states, let Safe(T ) = {q0a0q1a1 . . . ∈ Histω(M) |172

∀i ≥ 0 : qi ∈ T};173

reachability objective: given a set T ⊆ Q of states, let Reach(T ) = {q0a0q1a1 . . . ∈174

Histω(M) | ∃i ≥ 0 : qi ∈ T};175

parity objective: given a priority function p : Q → N, let Parity(p) = {π ∈ Histω(M) |176

min{p(q) | q ∈ Inf(π)} is even}.177

It is standard to cast safety and reachability objectives as special cases of parity objectives,178

using sink states. Given an objective φ, we denote by ¬φ = Histω(M) \ φ the complement of179

φ. We say that a run π ∈ Histω(M) satisfies φ if π ∈ φ, and that it violates φ otherwise.180

It is known that under arbitrary strategies, with probability 1 the set Inf(π) of states181

occurring infinitely often along a run π is the support of an end-component [8, 9].182

▶ Lemma 1 ([8, 9]). Given an MDP M , for all states q ∈ Q and all strategies σ, we have183

Pσ
q (M, {π | Inf(π) is the support of an end-component}) = 1.184

An end-component D ∈ EC(M) is positive under strategy σ from q if Pσ
q (M, {π | Inf(π) =185

D}) > 0. By Lemma 1, we have
∑

D∈EC(M) Pσ
q (M, {π | Inf(π) = D}) = 1.186

Value and qualitative satisfaction A strategy σ is winning for objective φ from q with187

probability (at least) α if Pσ
q (M, φ) ≥ α. We denote by Val∗q(M, φ) = supσ Pσ

q (M, φ) the188

value of objective φ from state q. A strategy σ is optimal if Pσ
q (M, φ) = Val∗q(M, φ).189

We consider the following classical qualitative modes of winning. Given an objective φ, a190

state q is:191

almost-sure winning if there exists a strategy σ such that is winning with probability 1,192

that is Pσ
q (M, φ) = 1.193

limit-sure winning if Val∗q(M, φ) = 1, or equivalently for all ε > 0 there exists a strategy σ194

such that Pσ
q (M, φ) ≥ 1− ε.195

We denote by AS(M, φ) and LS(M, φ) the set of almost-sure and limit-sure winning196

states, respectively. In MDPs, it is known that AS(M, φ) = LS(M, φ) and pure memoryless197

optimal strategies exist for parity objectives φ [19, 8].198

We recall that the value of a parity objective φ = Parity(p) from every state of an199

end-component D is the same, and is either 0 or 1, which does not depend on the precise200

value of the (non-zero) transition probabilities, but only on the supports Supp(δ(q, a)) of the201

transition function at the state-action pairs (q, a) in D [9]. When the value 1, there exists a202
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pure memoryless strategy σ such that Pσ
q (M, φ) = 1 for all states q ∈ D. If such a strategy203

exists, then D is said to be φ-winning, and otherwise φ-losing.204

2.2 Multiple-Environment MDP205

A multiple-environment MDP (MEMDP) over a finite set E of environments is a tuple206

M = ⟨Q, (Aq)q∈Q, (δe)e∈E⟩, where M [e] = ⟨Q, (Aq)q∈Q, δe⟩ is an MDP that models the207

behaviour of the system in the environment e ∈ E. The state space is identical in all M [e]208

(e ∈ E), only the transition probabilities may differ. We sometimes refer to the environments209

of M as the MDPs {M [e] | e ∈ E} rather than the set E itself. For E′ ⊂ E, let M [E′] be210

the MEMDP M over set E′ of environments. We denote by M [¬e] the MEMDP M over211

environments E \ {e}, and by ∪e∈EM [e] the MDP ⟨Q, (Aq)q∈Q, δ∪⟩ such that δ∪(q, a) is the212

uniform distribution over
⋃

e∈E Supp(δe(q, a)) for all q ∈ Q and a ∈ A.213

A transition t = (q, a, q′) is revealing in M if Kt = {e ∈ E | q′ ∈ Supp(δe(q, a))} is214

a strict subset of E (Kt ⊊ E). We say that Kt, which is the set of environments where215

the transition t = (q, a, q′) is possible, is the knowledge after observing transition t. An216

MEMDP is in revealed form if for all revealing transitions t = (q, a, q′), the state q′ is a sink217

in all environments, that is Supp(δe(q′, a)) = {q′} for all environments e ∈ E and all actions218

a ∈ Aq′ . By extension, we call knowledge after a history ρ the set of environments in which219

all transitions of ρ are possible.220

Decision Problems We are interested in synthesizing a single strategy σ with guarantees221

in all environments, without knowing in which environment σ is executing. We consider222

reachability, safety, and parity objectives.223

A state q is almost-sure winning in M for objective φ if there exists a strategy σ such224

that in all environments e ∈ E, we have Pσ
q (M [e], φ) = 1, and we call such a strategy σ225

almost-sure winning. A state q is limit-sure winning in M for objective φ if for all ε > 0,226

there exists a strategy σ such that in all environments e ∈ E we have Pσ
q (M [e], φ) ≥ 1− ε,227

and we say that such a strategy σ is (1− ε)-winning.228

We denote by AS(M, φ) (resp., LS(M, φ)) the set of all almost-sure (resp., limit-sure)229

winning states in M for objective φ. We consider the membership problem for almost-sure230

(resp., limit-sure) winning, which asks whether a given state q is almost-sure (resp., limit-sure)231

winning in M for objective φ. We refer to these membership problems as qualitative problems.232

We are also interested in the quantitative problems. Given MEMDP M , a parity objective233

φ, and probability threshold α ≥ 0, we are interested in the existence of a strategy σ satisfying234

Pσ
q (M [e], φ) ≥ α for all e ∈ E. We present an approximation algorithm for the quantitative235

problem, solving the gap problem consisting, given MEMDP M , state q, parity objective φ,236

and thresholds 0 < α < 1 and ε > 0, in answering237

Yes if there exists a strategy σ such that for all e ∈ E, we have Pσ
q (M [e], φ) ≥ α,238

No if for all strategies σ, there exists e ∈ E with Pσ
q (M [e], φ) < α− ε,239

and arbitrarily otherwise.240

The gap problem is an instance of promise problems which guarantee a correct answer in241

two disjoint sets of inputs, namely positive and negative instances – which do not necessarily242

cover all inputs, while giving no guarantees in the rest of the input [10, 13].243

Results We solve the membership problem for limit-sure winning with parity objectives φ244

(i.e., deciding whether a given state q is limit-sure winning, that is q ∈ LS(M, φ)), providing a245

PSPACE algorithm with a matching complexity lower bound, and showing that the problem246

is solvable in polynomial time when the number of environments is fixed. Our solution247
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relies on the solution of almost-sure winning, which is known to be PSPACE-complete for248

reachability [23] and Rabin objectives [22]. We revisit the solution of almost-sure winning249

and give a simple characterization for safety objectives (which is also PSPACE-complete),250

that can easily be extended to parity objectives. A corollary of our characterization is that251

pure (non-randomized) strategies are sufficient for both limit-sure and almost-sure winning,252

which was known only for acyclic MEMDPs and reachability objectives [23, Lemma 12].253

For the gap problem, we present an double exponential-space procedure to approximate254

the value α that can be achieved in all environments, up to an arbitrary precision ε.255

3 Almost-Sure Winning256

It is known that the membership problem for almost-sure winning in MEMDPs is PSPACE-257

complete with reachability objectives [23] as well as with Rabin objectives [22], an expressively258

equivalent of the parity objectives. We revisit the membership problem for almost-sure259

winning with parity and safety objectives, as it will be instrumental to the solution of limit-260

sure winning. We present a conceptually simple characterization of the winning region for261

almost-sure winning, from which we derive a PSPACE algorithm, thus matching the known262

complexity for almost-sure Rabin objectives. A corollary of our characterization is that pure263

(non-randomized) strategies are sufficient for both limit-sure and almost-sure winning, which264

was known only for acyclic MEMDPs and reachability objectives [23, Lemma 12].265

▶ Theorem 2 ([23],[22]). The membership problem for almost-sure winning in MEMDPs266

with a reachability, safety, or Rabin objective is PSPACE-complete.267

To solve the membership problem for a safety or parity objective φ, we first convert M268

into an MEMDP M ′ in revealed form with state space Q ⊎ {qwin, qlose} and each revealing269

transition t = (q, a, q′) in M is redirected in M ′ to qwin if q′ ∈ AS(M [Kt], φ) is almost-sure270

winning when the set of environments is the knowledge Kt after observing transition t, and271

to qlose otherwise. In order to decide if q′ ∈ AS(M [Kt], φ), we need to solve the membership272

problem for an MEMDP with strictly fewer environments than in M as Kt ⊊ E, which273

will lead to a recursive algorithm. The base case of the solution is MEMDPs with one274

environment, which is equivalent to plain MDPs.275

It is easy to see that AS(M, φ)∪{qwin} = AS(M ′, φ∪Reach(qwin)) for all prefix-independent276

objectives φ, and we can transform the objective φ ∪ Reach(qwin) into an objective of the277

same type as φ (for example, if φ is a parity objective then assigning the smallest even278

priority to qwin turns the objective φ ∪ Reach(qwin) into a pure parity objective).279

Hence, the main difficulty is to solve the membership problem for MEMDP in revealed280

form.281

3.1 Safety282

Although safety objectives are subsumed by parity objectives which we solve in the next283

section, we give here a simpler algorithm specifically for safety, and also prove PSPACE-284

hardness in this case.285

The safety objective has the property that almost-sure winning is equivalent to sure286

winning, where a strategy is sure winning if all runs compatible with the strategy satisfy287

the objective. Intuitively, if some runs does not satisfy the safety objective Safe(T ), then it288

contains a state outside T after a finite prefix, thus with positive probability (the probability289

of the finite prefix). In the sure-winning mode, we can consider the probabilistic choices to290
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be adversarial, which entails that only the support of the probability distributions in the291

transition function is relevant.292

It follows that, as long as the knowledge remains the set E of all environments a winning293

strategy for a safety objective can play all actions that are safe (i.e., that ensure the successor294

state remains in the winning region) in all environments. We obtain the following property:295

almost-sure winning for a safety objective in a MEMDP M in revealed form is equivalent to296

almost-sure winning in the MDP ∪e∈EM [e].297

An algorithm for solving almost-sure safety is as follows: (1) for each revealing transition298

t = (q, a, q′) in M , decide if q′ ∈ AS(M [Kt], Safe(T )) (using a recursive call), and redirect299

the transition t to qwin or qlose accordingly, transforming M into revealed form; (2) assuming300

M is in revealed form, compute the almost-sure winning states W = AS(M∪, Safe(T )) where301

M∪ = ∪e∈EM [e] is an MDP. Return W \ {qwin}. The depth of recursive calls is bounded302

by the number of environments, and the almost-sure safety in MDPs can be solved in303

polynomial time, namely, in time O(|Q|2|A|). It follows that almost-sure safety in MEMDPs304

can be solved in PSPACE, and in time O(|Q|2 · |A| · 2|E|). A PSPACE lower bound can be305

established by a similar reduction from QBF as for reachability, the constructed MEMDP306

being acyclic [23].307

Note that for a fixed number of environments, the membership problem for almost-sure308

safety in MEMDPs is solvable in polynomial time by our algorithm since the depth of the309

recursion is then constant. This is also the case in Theorem 2 as shown in [23].310

3.2 Parity311

By definition, the almost-sure winning region W = AS(M, Parity(p)) for a parity objective312

in an MEMDP M is such that there exists a strategy σ that is almost-sure winning for the313

parity objective from every state q ∈W in every MDP M [e] (where e is an environment of314

M). In contrast, we show the following characterization (note the order of the quantifiers).315

▶ Lemma 3. Given an MEMDP M in revealed form with state space Q, if W ⊆ Q is such316

that in every environment e, from every state q ∈W , there exists a strategy σe that is almost-317

sure winning for the parity objective Parity(p) in M |W [e] from q, then W ⊆ AS(M, Parity(p)).318

Moreover, for all q ∈W , there exists a pure (|Q| · |E|)-memory strategy ensuring Parity(p)319

from q in M .320

Proof. For each environment M [e], consider a memoryless strategy σe almost-surely winning321

for the objective Parity(p) in M |W [e] from every state of W . Recall that almost-sure winning322

strategies can be assumed to be memoryless in MDPs with single environments; and that323

one can build a single memoryless strategy that is almost-surely winning from all winning324

states. Let EC(σe) = {D ∈ EC(M [e]) | ∃q ∈ W : Pσe
q (M [e], Inf = D) > 0} be the set of325

positive end-components under strategy σe. Note that the least priority in an end-component326

D ∈ EC(σe) is even since the parity objective is satisfied with probability 1.327

Let E = {1, . . . , k} be the set of environments of M . We construct a pure almost-sure328

winning strategy σ for the MEMDP M as follows, where initially e = 1:329

(1) play according to σe for |W | steps;330

(2) if the current state is qwin or belongs to a positive end-component D ∈ EC(σe), keep331

playing according to σe forever. Otherwise, increment e (modulo k) and go to (1).332

The strategy σ uses memory of size at most |Q| · |E| since W ⊆ Q.333

Fix environment f ∈ E. We show that strategy σ is almost-sure winning in M [f ]. Because334

all strategies σe are defined in M |W , the region W is never left while playing σ, and during335
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phase (1) of the strategy there is a lower-bounded probability to reach an end-component336

D ∈ EC(σe) when e = f .337

We show that eventually phase (2) is executed forever with probability 1, that is, some338

end-component D ∈ EC(σe) for some e is reached with probability 1. Towards contradiction,339

assume that phase (1) of the strategy σ is executed infinitely often with positive probability340

p. Then phase (1) for e = f and σf is also executed infinitely often and it follows that,341

conditioned on phase (1) being executed infinitely often, a positive end-component D ∈ EC(σf )342

is reached with probability 1; hence phase (2) is executed forever from that point on. Thus343

with probability 1 − p + p = 1 phase (1) is executed only finitely often, contradicting our344

assumption.345

As phase (2) of the strategy σ is eventually executed forever with probability 1, let e be346

the corresponding environment (i.e., such that σ plays according to σe) and let D ̸= {qwin}347

be the reached end-component of M [e] (the other case where qwin is reached is trivial). If348

some transition of D is not present in f , then it must be a revealing transition in e, thus349

leading in M [e] to qwin outside D, which is impossible since D is an end-component in M [e].350

Hence all transitions of D are present in all environments.351

We show that σ is almost-sure winning in f . The result is immediate if D is an end-352

component of M [f ] (in particular if f = e). If D is not an end-component of M [f ], then in353

M [f ] the strategy would leave D and reach qwin, thus σ is almost-sure winning as well in354

that case. ◀355

The characterization in the first part of Lemma 3 holds simply because parity objectives356

are prefix-independent (runs that differ by a finite prefix are either both winning or both357

losing), and thus the characterization holds for all prefix-independent objectives.358

The converse of Lemma 3 is immediate, which entails that the almost-sure winning region359

W = AS(M, Parity(p)) is the largest set of states satisfying the condition in Lemma 3. We360

exploit this characterization in Algorithm 1 to compute the winning region for almost-sure361

parity. After transforming the MEMDP into revealed form (through recursive calls to the362

algorithm), we compute the winning region for almost-sure parity in each environment363

(line 11), and then the set P ′ of states from which we can remain in the intersection P of all364

these winning regions (line 12). We iterate this process on M |P ′ until a fixpoint P = P ′ is365

reached.366

It is easy to see that the fixpoint satisfies the characterization of Lemma 3, and thus367

P ′ ⊆ AS(M, Parity(p)) ∪ {qwin}. Also by the proof of Lemma 3, we can construct a pure368

almost-sure winning (|Q| · |E|)-memory strategy from all states in P ′, and define (recursively,369

for each subset of the environments) a pure almost-sure winning strategy from the states that370

were replaced by qwin in the revealed form, with a total memory size at most |Q| · |E| · 2|E|,371

corresponding to the memory bound from Lemma 3 for each subset K ⊆ E of environments372

(representing the belief, i.e., the set of environments where the current history is possible).373

To show the converse inclusion, we show the invariant that every state q ∈ Q \ P ′ is not374

almost-sure winning in M : for all strategies σ from q, in some environment M [e] the set P375

is left with positive probability (along some history ρ). Given a state q′ ∈ Q \ P reached376

in M [e], there is an environment f ∈ E where the parity objective is violated with positive377

probability under σ from q′. The crux is to show that the state q′ is reached with positive378

probability in M [f ] as well. Towards contradiction, assume that the history ρ from q to379

q′ (in M [e]) is not possible in M [f ]. Then ρ contains a revealing transition in M [e], and380

q′ = qwin ∈ P , which is a contradiction since q′ ∈ Q \ P . Hence, in M [f ] with strategy σ the381

parity objective is violated with positive probability.382
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Algorithm 1 AS_Parity(M, p)
Input : M = ⟨Q, (Aq)q∈Q, (δe)e∈E⟩ an MEMDP, p : Q→ N a priority function.
Output: The winning region AS(M, Parity(p)) for almost-sure parity.
begin

/* pre-processing */
1 M ′ ←M

2 add two sink states qwin, qlose to M ′

3 define p(qwin) = 0 and p(qlose) = 1
4 foreach revealing transition t = (q, a, q′) in M do

/* Kt ⊊ E */
5 if q′ ∈ AS_Parity(M [Kt], p) then

6 replace t by (q, a, qwin) in M ′

else

7 replace t by (q, a, qlose) in M ′

8 M ←M ′

/* M is in revealed form */
9 P ← ∅; P ′ ← ∅

10 repeat

11 P ← ∩e∈E AS(M [e], Parity(p)) /* M [e] and ∪e∈EM [e]
12 P ′ ← AS(∪e∈EM [e], Safe(P )) are MDPs */
13 M ← M |P ′

until P ′ is unchanged
14 return P ′ \ {qwin}

end

Algorithm 1 can be implemented in PSPACE by a similar argument as for almost-sure383

safety: the depth of recursive calls is bounded by the number of environments, both almost-384

sure safety and almost-sure parity can be solved in polynomial time in MDPs, and the385

repeat-loop runs at most |Q| times. The algorithm runs in polynomial time if the number of386

environments is fixed. The PSPACE-hardness follows from Theorem 2.387

▶ Theorem 4. The membership problem for almost-sure parity in MEMDPs is PSPACE-388

complete. Pure exponential-memory strategies are sufficient for almost-sure winning in389

MEMDPs with parity (thus also reachability and safety) objectives. When the number of390

environments is fixed, the problem is solvable in polynomial time.391

The time complexity of Algorithm 1 is established as follows. Each recursive call,392

corresponds to a subset of the initial environment set E that we can compute once and393

tabulate. In each call, the second loop runs at most |Q| times, and the set of almost-sure394

winning states for parity conditions (that is, the set AS(M [e], Parity(p))) can be computed in395

time O(|Q| · |δ|) [3]. Since |δ| is in O(|Q|2 · |A|), each recursive call takes O(|Q|4 · |E| · |A|)396

time, and overall, this is O(|Q|4 · |E| · |A| · 2|E|).397

Note that pure exponential-memory strategies for almost-sure parity in MEMDPs are398

provided by Lemma 3. The algorithm for almost-sure parity can be used to solve almost-sure399

safety with optimal PSPACE complexity, although the specific algorithm for safety is slightly400

simpler (the repeat-loop can be replaced by just line 12 where P = T is the set of states401



K. Chatterjee et al. XX:11

defining the safety objective Safe(T )).402

The PSPACE procedure can be implemented in exponential time by solving all subprob-403

lems and storing their solutions. Moreover, for large numbers of environments, the exponent404

in the complexity can be made to depend only on the size of M . In fact, intuitively, two405

environments with identical supports yield the same result so one can derive a dynamic406

programming solution where at most one environment per support is solved.407

Define the support of a probabilistic transition relation δ : Q×A→ D(Q) as the family408

of supports of its transitions, that is, Supp(δ) = (Supp(δ(q, a)))(q,a)∈Q×A. Define the support409

of a family of transition relations as Supp((δe)e∈E) = {Supp(δe) | e ∈ E}.410

Two environments δe and δf are said to be equivalent if they have the same support. One411

can check whether two environments are equivalent in polynomial time, by going through all412

triples (q, a, q′) and verifying that δe(q, a, q′) = 0 iff δf (q, a, q′) = 0.413

Almost sure parity in MEMDPs does not depend on the precise probability values in the414

given environments in M but only on their supports.415

In addition to Theorem 4, we can obtain a complexity bound whose exponent is inde-416

pendent of the number of environments (Theorem 6), using the following result: if in two417

environments, the support of the transition relation is the same, we can discard one of the418

environment (all strategies that are almost-sure winning in one are also almost-sure winning419

in the other one, as shown in Lemma 5) and thus consider at most one environment for each420

support. Here, we denote by Supp((δe)e∈E) = (Supp(δe))e∈E where Supp(δe) denotes the set421

of transitions with positive probability under δe.422

▶ Lemma 5. Consider two MEMDPs Mi = ⟨Q, (Aq)q∈Q, (δe)e∈Ei
⟩ for i = 1, 2, with the same423

state and action sets, and with the same supports of their transition relation, Supp((δe)e∈E1) =424

Supp((δe)e∈E2). Given a parity condition Parity(p), for all states q and all finite-memory425

strategies σ, the following equivalence holds: Pσ
q [M1[e], Parity(p)] = 1 for all e ∈ E1 if426

and only if Pσ
q [M2[e], Parity(p)] = 1 for all e ∈ E2. In particular, AS(M1, Parity(p)) =427

AS(M2, Parity(p)).428

Proof. Given state q and finite-memory strategy σ, assume that Pσ
q [M1[e1], Parity(p)] = 1429

for all e1 ∈ E1. Consider any e2 ∈ E2, and let e1 ∈ E1 be such that Supp(δe1) = Supp(δe2);430

such a e2 exists by the hypothesis Supp((δe)e∈E1) = Supp((δe)e∈E2). Consider the Markov431

chain obtained as the product of the MDP M1[e1] with the Moore machine describing the432

finite-memory strategy σ. Because Pσ
q [M1[e1], Parity(p)] = 1, all bottom strongly connected433

components (BSCC) in this product are winning for Parity(p) (i.e., the smallest priority of434

their states is even). But the product of M2[e2] and the Moore machine for σ have the same435

set of BSCCs since the supports are identical. It follows that Pσ
q [M2[e2], Parity(p)] = 1. By436

symmetry, this proves the first statement.437

It follows that AS(M1, Parity(p)) = AS(M2, Parity(p)) since finite-memory strategies suffice438

for almost-sure parity in MEMDPs by Theorem 4.439

◀440

▶ Theorem 6. The membership problem for almost-sure parity for an MEMDP M =441

⟨Q, (Aq)q∈Q, (δe)e∈E⟩ can be solved in time O((|E|2 + |Q|4 · |E| · |A|) · 2min(|E|,2|Q|2·|A|)).442

Proof. Consider an MEMDP M = ⟨Q, (Aq)q∈Q, (δe)e∈E⟩ and a parity objective φ. If443

|E| ≤ 2|Q|2|A|, then we apply the PSPACE procedure from Theorem 4. The number of444

recursive calls is then bounded by 2|E|, and each call itself takes polynomial time, so the445

result follows.446
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Figure 3 An end-component {q1, q2} with different transition probabilities in environments e1

and e2.

Otherwise, we scan the set of environments given as input, and store a subset E′ of these:447

we include an environment e in E′ if and only if none of the previously stored environments448

is equivalent to e. This takes O(|E|2) time. This yields a subset with at most 2|Q|2|A|449

environments, with at most one representative for each possible support. We then apply the450

recursive algorithm on the MEMDP M [E′], which yields the same result as if it was applied451

to M = M [E] by Lemma 5. ◀452

4 Limit-Sure Winning453

We refer to the examples of the duplicate card and the missing card in Section 1 to illustrate454

the difference between limit-sure and almost-sure winning. We present in Section 4.1 two455

other scenarios where limit-sure winning and almost-sure winning do not coincide, which will456

be useful to illustrate the key ideas in the algorithmic solution.457

4.1 Examples458

In the example of Figure 3, the set D = {q1, q2} is an end-component in both environments459

e1 and e2 (the actions are shown in the figures only when relevant, that is in q2). However,460

the transition probabilities from q1 are different in the two environments e1 and e2, and461

intuitively we can learn (with high probability) in which environment we are by playing c462

for a long enough (but finite) time and collecting the frequency of the visits to q1 and q2.463

Then, in order to reach the target q3, if there are more q1’s than q2’s in the history we play464

a in q2, otherwise b. The intuition is that the histories with more q1’s than q2’s have a high465

probability (more than 1− ε) in M [e1] and a small probability (less than ε) in M [e2], where466

ε can be made arbitrarily small (however not 0) by playing c for sufficiently long. Hence q1467

is limit-sure winning, but not almost-sure winning.468

In the second scenario (Figure 4), the transition probabilities do not matter. The objective469

is to visit some state in {q3, q4, q5} infinitely often (those states have priority 0, the other470

states have priority 1). The state q1 is limit-sure winning, but not almost-sure winning. To471

win with probability 1 − ε, a strategy can play a (in q2) for a sufficiently long time, then472

switch to playing b (unless q5 was reached before that). The crux is that playing a does473

not harm, as it does not leave the limit-sure winning region, but ensures in at least one474

environment (namely, e1) that the objective is satisfied with probability 1 (by reaching q5).475

This allows to “discard” the environment e1 if q5 was not reached, and to switch to a strategy476

that is winning with probability at least 1− ε in e2, namely by playing b. With an arbitrary477
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Figure 4 The set {q1, q2} is an end-component in e2, not in e1.

number of environments, the difficulty is to determine in which order the environments can478

be “discarded”.479

Note that the transition (q2, a, q1) is not revealing, since it is present in both environments.480

However, after crossing this transition a large number of times, we can still learn that the481

environment is e2 (and be mistaken with arbitrarily small probability). In contrast, the482

transition (q2, a, q5) is revealing and the environment is e1 with certainty upon crossing that483

transition.484

To solve the membership problem for limit-sure parity, we first convert M into a revealed-485

form MEMDP M ′, similar to the case of almost-sure winning, with the obvious difference that486

revealing transitions t = (q, a, q′) of M [e] are redirected in M ′[e] to qwin if q′ ∈ LS(M [Kt], φ)487

is limit-sure winning when the set of environments is the knowledge Kt after observing488

transition t. Thus, we aim for a recursive algorithm, where the base case is limit-sure winning489

in MEMDPs with one environment, which are equivalent to plain MDPs, for which limit-sure490

and almost-sure parity coincide. Note that the examples of Figure 3 and Figure 4 are in491

revealed form.492

4.2 Common End-Components and Learning493

A common end-component (CEC) of an MEMDP M = ⟨Q, (Aq)q∈Q, (δe)e∈E⟩ is a pair (Q′, A′)494

that is an end-component in M [e] for all environments e ∈ E. A CEC D is trivial if it495

contains a single state. D is said winning for a parity condition Parity(p), if for all e ∈ E,496

there is a strategy in M [e] which, when started inside D, ensures Parity(p) with probability 1.497

Notice that since D is a common end-component, such a strategy ensures Parity(p) with498

probability 1 in M [e] iff it does in M [e′].499

We note that the common end-components of an MEMDP are the end-components of the500

MDP ∪e∈EM [e] assuming M is in revealed form, and thus can be computed using standard501

algorithm for end-components [9].502

▶ Lemma 7. Consider an MEMDP M in revealed form. The common end-components of M503

are exactly the end-components of ∪e∈EM [e].504

Proof. Consider a common end-component D of M . Because in each M [e], all state-action505
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pairs in D stay inside D, and D is strongly connected, this is also the case in ∪e∈EM [e];506

thus D is an end-component of the latter.507

Conversely, consider an end-component D of ∪e∈EM [e]. If D consists of a single sink508

state, then it is indeed a common end-component. Otherwise D contains more than one509

state. We show that all state-action pairs (q, a) of D must have the same support in all510

environments, and it follows that D is an end-component in every environment, thus a511

common end-component. By contradiction, if a transition (q, a, q′) with (q, a) ∈ D exists in512

M [e] but not in M [f ], then it is revealing and q′ is a sink state. Hence D is not strongly513

connected in ∪e∈EM [e] because D does not consist of a single sink state. ◀514

A CEC may have different transition probabilities in different environments. We call a515

CEC distinguishing if it contains a transition (q, a, q′) (called a distinguishing transition)516

such that δe(q, a)(q′) ̸= δf (q, a)(q′) for some environments e, f ∈ E. Given a distinguishing517

transition (q, a, q′) and environment e, define K1 = {f ∈ E | δf (q, a)(q′) = δe(q, a)(q′)} and518

K2 = E \K1. We say that (K1, K2) is a distinguishing partition of D that is induced by the519

distinguishing transition (q, a, q′) and environment e.520

Distinguishing transitions can be used to learn the partition (K1, K2), that is to guess521

(correctly with high probability) whether the current environment is in K1 or K2, as in the522

example of Figure 3, where the set D = {q1, q2} is a distinguishing end-component with523

distinguishing transition (q1, ·, q2) and partition ({e1}, {e2}). A distinguishing CEC may524

have several distinguishing transitions and induced partitions.525

We formalize how a strategy can distinguish between K1 and K2 with high probability526

inside a distinguishing CEC. First let us recall Hoeffding’s inequality.527

▶ Theorem 8 (Hoeffding’s Inequality [14]). Let X1, X2, . . . , Xn be a sequence of independent528

and identical Bernoulli variables with P[Xi] = p, and write Sn = X1 + . . .+Xn. For all t > 0,529

P[Sn − E[Sn] ≥ t] ≤ e−2t2/n, and P[E[Sn]− Sn ≥ t] ≤ e−2t2/n.530

Given a distinguishing CEC with distinguishing partition (K1, K2) induced by a transition531

(q, a, q′), a strategy can sample the distribution δe(q, a) by repeating the following two phases:532

first, use a pure memoryless strategy to almost-surely visit q, then play action a; by repeating533

this long enough (the precise bound depends on a given ε and is derived from Theorem 8)534

while storing the frequency of visits to q′ in the second phase, we can learn and guess in535

which block Ki belongs the environment, with sufficiently small probability of mistake to536

ensure winning with probability 1− ε.537

▶ Lemma 9. Given an MEMDP M containing a distinguishing common end-component D538

with partition (K1, K2) induced by a distinguishing transition, and parity objective φ, for all539

states q0 in D, all pairs of strategies σ1, σ2, and all ε > 0, there exists a strategy σ such that:540

Pσ
q0(M [e], φ) ≥ (1− ε)Pσ1

q0 (M [e], φ) for all e ∈ K1,541

Pσ
q0(M [e], φ) ≥ (1− ε)Pσ2

q0 (M [e], φ) for all e ∈ K2.542

Moreover, the strategy σ is pure if both σi are pure; and if each strategy σi uses543

a memory of size mi, then σ uses finite memory of size m1 + m2 + ⌈8 log(1/ε)
η2

2
⌉ where544

η = min ({|δe(q, a)(q′)− δf (q, a)(q′)| | e, f ∈ E, q, q′ ∈ Q, a ∈ A} \ {0}).545

Proof. Consider M = ⟨Q, (Aq)q∈Q, (δe)e∈E⟩ and D = (Q′, (A′
q)q∈Q′) as in the statement of546

the lemma, and let q0 ∈ D.547

Consider a distinguishing transition (q, a, q′) and environment e0 that induces the distin-548

guishing partition (K1, K2). Consider ε > 0, and define N = ⌈ 2 log(1/ε)
η2 ⌉,549
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The strategy σ runs in two phases. In the first phase, the goal is to estimate the550

distribution of (q, a, q′). For this, it executes a pure memoryless strategy which has a nonzero551

probability of reaching q while staying in D (such a strategy can be defined based on the552

supports of state-action pairs of D) and keeps two counters: cq,a that counts the number of553

times the state-action pair (q, a) is selected; and cq,a,q′ the number of times the transition554

(q, a, q′) is observed. The second round of the strategy starts when cq,a = N . Note that this555

happens with probability 1. Then, we go back to q0 (with probability 1), and we switch to556

σ1 if
∣∣∣ cq,a,q′

cq,a
− δe0(q, a)(q′)

∣∣∣ < η/2,557

σ2 otherwise.558

We now analyze this strategy and show that because N is sufficiently large, the estimation559

error is bounded, so that we obtain the desired result.560

In each environment e, at each visit at q and choice of a, we have a Bernoulli trial with561

mean δe(q, a)(q′), and cq,a,q′ is the number of successful trials. By Hoeffding’s inequality562

(Theorem 8), we have563

Pσ
q0

(
M [e], |cq,a,q′/cq,a − δe(q, a)(q′)| ≥ η/2

∣∣ cq,a = N
)
≤ e−2N( η

2 )2
≤ ε.564

Thus, in M [e] with e ∈ Ki, the probability of not switching to σi is at most ε. It follows565

that Pσ
q0(M [e], φ) ≥ (1− ε)Pσi

q0 (M [e], φ).566

The memory requirement comes from the fact that σ must store two counters up to N567

values, and it has two modes (before and after reaching cq,a = N). ◀568

It follows that the membership problem for limit-sure winning can be decomposed into569

subproblems where the set of environments is one of the blocks Ki in the partition.570

▶ Lemma 10. Given an MEMDP M containing a distinguishing common end-component571

D with a partition (K1, K2) induced by a distinguishing transition, and a parity objective572

φ the following equivalence holds: D ⊆ LS(M, φ) if and only if D ⊆ LS(M [K1], φ) and573

D ⊆ LS(M [K2], φ).574

Proof. Immediate consequence of Lemma 9. ◀575

4.3 Characterization and Algorithm576

Here, we assume that MEMDPs are in revealed form with sink states qwin and qlose.577

We show that the winning region W = LS(M, φ) for limit-sure parity is a closed set: from578

every state q ∈W , there exists an action a ensuring in all environments that all successors579

of q are in W . We call such actions limit-sure safe for q. We show in Lemma 11 that a580

limit-sure safe action always exists in limit-sure winning states. Note that playing actions581

that are not limit-sure safe may be useful for limit-sure winning, as in the example of Figure 3582

where action a is limit-sure safe, but action b is not (from q2).583

By definition of limit-sure winning, if a state q is not limit-sure winning, there exists εq > 0584

such that for all strategies σ, there exists an environment e ∈ E such that Pσ
q (M [e], φ) < 1−εq.585

We denote by ε0 = min{εq | q ∈ Q \ LS(M, φ)} a uniform bound.586

▶ Lemma 11. Given an MEMDP M (in revealed form) over environments E, a parity587

objective φ, and a state q, if q ∈ LS(M, φ) is limit-sure winning, then there exists an588

action a such that for all environments e ∈ E, all successors of q are limit-sure winning, i.e589

Supp(δe(q, a)) ⊆ LS(M, φ).590
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Proof. Consider q ∈ LS(M, φ) and let 0 < ε < νε0
|A| , where A is the set of actions in M , and ν591

is a lower bound on the smallest nonzero transition probability (in all environments), and ε0592

is the uniform bound defined above. Let σ be a strategy ensuring φ from q with probability593

at least 1− ε in all environments.594

Towards contradiction, assume that there is no limit-sure safe action from state q. Let595

a be the action chosen by σ with the highest probability at the history q, that is a =596

arg maxa σ(q)(a), and thus σ(q)(a) ≥ 1
|A| . By our assumption, there exists an environment597

e ∈ E and a state t ̸∈ LS(M, φ) (in particular t ̸= qwin) such that δe(q, a)(t) > 0, hence598

δe(q, a)(t) ≥ ν. It is immediate that t ̸= qlose as otherwise the strategy σ would ensure φ with599

probability at most 1− ν ≤ 1− ε from q. So t ̸∈ {qwin, qlose} and therefore δe(q, a)(t) ≥ ν in600

all environments e. By definition of the uniform bound ε0, there exists an environment e such601

that Pσ
t (M [e], φ) ≤ 1− ε0, hence from q we have Pσ

q (M [e],¬φ) ≥ νε0
|A| > ε, in contradiction602

to σ ensuring φ with probability at least 1 − ε from q. We conclude that there exists a603

limit-sure safe action from q. ◀604

Given an MEMDP M , consider the limit-sure winning region W = LS(M, φ) for φ =605

Parity(p). For the purpose of the analysis, consider the (memoryless) randomized strategy606

σLS that plays uniformly at random all limit-sure safe actions in every state q ∈W , which is607

well-defined by Lemma 11.608

Consider an arbitrary environment e, and an end-component D in M [e] that is positive609

under σLS (recall Lemma 1 and the definition afterward). There are three possibilities:610

1. D is not a common end-component (as in the example of Figure 4, for D = {q1, q2}611

in M [e2]), that is, D is not an end-component in some environment e′ (in the example612

e′ = e1), then we can learn (and be mistaken with arbitrarily small probability) that we613

are not in e′, reducing the problem to an MEMDP with fewer environments (namely,614

M [¬e′]);615

2. D is a common end-component and is distinguishing (as in the example of Figure 3, for616

D = {q1, q2}), then we can also learn a distinguishing partition (K1, K2) and reduce the617

problem to MEMDPs with fewer environments (namely, M [K1] and M [K2]);618

3. D is a common end-component and is non-distinguishing, then we show in Lemma 12619

below that D is almost-sure winning (D ⊆ AS(M, φ)), obviously in all environments.620

▶ Lemma 12. Given an MEMDP M over environments E (in revealed form), a parity objec-621

tive φ, and a state q, if q ∈ LS(M, φ), then all non-distinguishing common end-components622

D that are positive under strategy σLS from q in M [e] (for some e ∈ E) are almost-sure623

winning for φ (that is D ⊆ AS(M, φ)).624

Proof. Consider a positive non-distinguishing common end-component D as in the statement625

of the lemma. Using Lemma 11, note that D ⊆ LS(M, φ) since σLS plays only limit-sure safe626

actions and D is a common end-component.627

Assume towards contradiction that D is not almost-sure winning for the parity objective628

φ. It follows that in M , all strategies that play only limit-sure safe actions ensure the parity629

objective φ with probability 0 from all states in D (in all environments since D is a common630

end-component).631

Denote by Ωsafe the set of all runs that contain only limit-sure safe actions. For all632

strategies σ (in M), and q ∈ D we have Pσ
q (M [e], φ | Ωsafe) = 0 (for all e ∈ E) and therefore:633
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Pσ
q (M [e], φ) = Pσ

q (M [e], φ | Ωsafe) · Pσ
q (M [e], Ωsafe)634

+ Pσ
q (M [e], φ | ¬Ωsafe) · Pσ

q (M [e],¬Ωsafe)635

= Pσ
q (M [e], φ | ¬Ωsafe) · Pσ

q (M [e],¬Ωsafe)636

≤ 1− Pσ
q (M [e],¬φ | ¬Ωsafe)637

Given ε < ε0·ν
|E| where ν is the smallest positive probability in M , we show that there638

exists an environment e ∈ E such that Pσ
q (M [e], φ) < 1 − ε, which entails that q is not639

limit-sure winning for φ, establishing a contradiction since q ∈ D ⊆ LS(M, φ). It will follow640

that D is almost-sure winning for φ and conclude the proof.641

By definition of limit-sure safe actions, to every pair (q, a) such that a ∈ Aq is not
limit-sure safe in q, we can associate an environment e such that:

Supp(δe(q, a)) ∩ (Q \ LS(M, φ)) ̸= ∅,

and thus from some state q′ ∈ Supp(δe(q, a)), we have Pσ
q′(M [e], φ) ≤ 1− ε0 where ε0 is the642

uniform bound for non-limit-sure winning states. Assuming that a non-limit-sure safe action643

is played by σ, since there are finitely many environments, by the pigeonhole principle there644

is an environment e such that with probability at least 1
|E| an action that is not limit-sure645

safe and associated with e is played, which leads with probability at least ν to a state outside646

LS(M, φ). It follows that Pσ
q (M [e],¬φ | ¬Ωsafe) ≥ ε0 · ν

|E| > ε and thus Pσ
q (M [e], φ) < 1− ε,647

which concludes the proof. ◀648

Our approach to compute the limit-sure winning states is to first identify the distinguishing649

CECs that are limit-sure winning. We can compute the maximal CECs using Lemma 7, and650

note that a maximal CEC containing a distinguishing CEC is itself distinguishing, so it is651

sufficient to consider maximal CECs. By Lemma 10, we can decide if a given distinguishing652

CEC is limit-sure winning using a recursive procedure on MEMDPs with fewer environments.653

We show in Lemma 13 below that we can replace the limit-sure CECs by a sink state qwin.654

▶ Lemma 13. Given an MEMDP M with parity objective φ and a set T ⊆ LS(M, φ) of655

limit-sure winning states, we have LS(M, φ) = LS(M, φ ∪ Reach(T )).656

Proof. The inclusion LS(M, φ) ⊆ LS(M, φ∪Reach(T )) is immediate since φ ⊆ φ∪Reach(T ).657

To show the converse inclusion, consider q ∈ LS(M, φ ∪ Reach(T )) and show that q ∈658

LS(M, φ). Given ε > 0, let ε1 = ε
2 and let σ be a strategy such that Pσ

q (M, φ ∪ Reach(T )) ≥659

1 − ε1. We construct a strategy τ that satisfies the objective φ with probability at least660

1 − ε as follows: for all histories ρ, if ρ does not visit T , then let τ(ρ) = σ(ρ); otherwise,661

consider the suffix ρ′ of ρ after the first visit to a state t ∈ T , and let σt be strategy662

that ensures φ is satisfied with probability at least 1 − ε1 from t (such a strategy exists663

since T ⊆ LS(M, φ)). Define τ(ρ) = σt(ρ′). We easily show below that Pτ
q (M, φ) ≥ 1 − ε,664

establishing that q ∈ LS(M, φ):665

Pτ
q (M, φ) = Pτ

q (M, φ ∩ Reach(T )) + Pτ
q (M, φ ∩ ¬Reach(T ))666

= Pτ
q (M, φ | Reach(T )) · Pτ

q (M, Reach(T )) + Pτ
q (M, φ ∩ ¬Reach(T ))667

= Pτ
q (M, φ | Reach(T )) · Pσ

q (M, Reach(T )) + Pσ
q (M, φ ∩ ¬Reach(T ))668

(since τ agrees with σ as long as T is not reached)669

≥ (1− ε1) · Pσ
q (M, Reach(T )) + Pσ

q (M, φ ∩ ¬Reach(T ))670

≥ (1− ε1) · Pσ
q (M, Reach(T )) + (1− ε1) · Pσ

q (M, φ ∩ ¬Reach(T ))671

≥ (1− ε1) · Pσ
q (M, φ ∪ Reach(T )) ≥ (1− ε1)2 ≥ 1− ε.672
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◀673

We can now assume that MEMDPs contain no limit-sure winning distinguishing CEC,674

and present a characterization for the remaining possibility, illustrated by the scenario of675

Figure 4, where playing the action a (in q2, forever) ensures, in some environment (namely,676

e1), almost-sure satisfaction of the parity objective while remaining inside the limit-sure677

winning region in all other environments.678

▶ Lemma 14. Consider an MEMDP M (in revealed form) over environments E with679

|E| ≥ 2, that contains no limit-sure winning distinguishing common end-component, and680

a parity objective φ. Writing Te = LS(M [¬e], φ), we have the following: LS(M, φ) =681

AS
(

M, Reach
(⋃

e∈E AS(M [e], φ ∩ Safe(Te))
))

.682

Proof. First we show the inclusion683

LS(M, φ) ⊆ AS(M, Reach(
⋃

e∈E AS(M [e], φ ∩ Safe(Te)))).684

Consider the (memoryless) strategy σLS that plays all limit-sure safe actions uniformly at685

random from every state in LS(M, φ). The strategy σLS is well-defined by Lemma 11 and686

to establish the inclusion, we show that, from every state q ∈ LS(M, φ), it is almost-sure687

winning (in all environments e′ ∈ E) for the objective Reach(
⋃

e∈E AS(M [e], φ ∩ Safe(Te))).688

Consider an arbitrary environment e′ ∈ E and an arbitrary end-component D that is689

positive under σLS in M [e′]. Since positive end-components are reached with probability 1690

(Lemma 1), it is sufficient to show that for all such D, there exists an environment e ∈ E691

such that every state in D is almost-sure winning for the objective φ ∩ Safe(Te) in M [e]. We692

consider two cases:693

if D is a common end-component, then we show that D is non-distinguishing. Note that694

D must be limit-sure winning, by definition of limit-sure safe actions (played by σLS).695

It follows by the assumption of the lemma that D is non-distinguishing and therefore696

almost-sure winning for φ (in all environments) by Lemma 12. We take e = e′ and it is697

easy to see that there exists an almost-sure winning strategy for φ from D (that stays in698

D), which is also almost-sure winning for φ ∩ Safe(Te).699

otherwise D is not a common end-component, and there exists an environment e where700

D is not an end-component. We first show that all transitions of D are present in M [e],701

since otherwise D would contain a revealing transition, thus leading to a state that is a702

sink in all environments (revealed form). Then D being strongly connected would not703

contain another state, and thus in particular all transitions in D would be present in704

M [e].705

It follows that playing σLS from D in M [e] ensures with probability 1 that a (revealing)706

transition not present in M [e′] is executed, which leads to qwin since σLS never leaves the707

limit-sure winning region (by definition of limit-sure safe actions). Hence φ is satisfied708

with probability 1 in M [e] while playing only limit-sure safe actions, thus remaining in709

the limit-sure winning region LS(M, φ) ⊆ LS(M [¬e], φ) = Te, thereby satisfying Safe(Te)710

as well. This shows that in M [e], the states in D are almost-sure winning for the objective711

φ ∩ Safe(Te).712

For the converse inclusion, given a state q and a pure1 strategy σ that is almost-sure713

winning for objective Reach(
⋃

e∈E AS(M [e], φ ∩ Safe(Te))) (in all environments), we show714

1 By Theorem 4, pure strategies are sufficient for almost-sure winning in MEMDPs.
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that for all ε > 0 there is a pure strategy τ that ensures that φ is satisfied with probability715

at least 1− ε (from q in all environments).716

Given ε > 0, let τ be the strategy that plays as follows:717

(1) play like σ until a state t ∈
⋃

e∈E AS(M [e], φ ∩ Safe(Te)) is reached, and let e ∈ E be an718

environment such that from t there is a (pure memoryless) strategy σt that is almost-sure719

winning in M [e] for the objective φ ∩ Safe(Te);720

(2) play like σt for k · |Q| steps, where k is such that (1− ν|Q|)k ≤ ε (where ν is the smallest721

positive probability in M);722

(3) if the current state belongs to a positive end-component Dt of σt (in M [e]), then keep723

playing like σt (forever); otherwise switch to a strategy that ensures that φ is satisfied724

with probability at least 1− ε from the current state in all environments of E \ {e} – such725

a strategy exists because from t the strategy σt ensures the objective Safe(Te) is satisfied726

almost-surely (and thus surely as well).727

Consider an arbitrary environment e ∈ E, and show that Pτ
q (M [e], φ) ≥ 1 − ε, which728

establishes that q is limit-sure wining, q ∈ LS(M, φ).729

First note that phase (2) (and thus also phase (3)) is reached with probability 1, and730

let et be the environment corresponding to the state t reached at the end of phase (1). We731

consider two cases:732

if et = e, then by standard analysis the probability that after phase (2) a positive733

end-component of σt is not yet reached is at most (1− ν|Q|)k ≤ ε since within |Q| steps a734

positive end-component is reached with probability at least ν|Q|. Hence with probability735

at least 1− ε, a positive (winning since σt almost-sure winning in M [e] for the objective736

φ) end-component of σt is reached and the strategy σt is played forever in phase (3), thus737

winning with probability at least 1− ε.738

otherwise et ̸= e and we consider the following cases in phase (3):739

(a) if the strategy σt is played forever, then either the set Dt (which is an end-component740

in M [et]) is never left, or it is left (via a revealing transition, as Dt is not left in M [et])741

and since σt ensures Safe(Tet
) the sink qwin is reached in M [e], thus in both cases the742

objective φ is satisfied (with probability 1);743

(b) otherwise, by construction the strategy τ switches to a strategy that ensures φ is744

satisfied with probability at least 1− ε.745

In all cases, the objective φ holds with probability at least 1−ε, showing that Pτ
q (M [e], φ) ≥746

1− ε as claimed.747

◀748

Algorithm Overview Given a MEMDP M = (Q, (Aq)q∈Q, (δe)e∈E), the algorithm proceeds749

by recursion on the size of the environment set E (Algorithm 2). The base case is that of a750

singleton set E where LS(M, φ) = AS(M, φ) and this can be computed in polynomial time.751

Assume |E| ≥ 2. We first convert M into an MEMDP M ′ in revealed form with state space752

Q ⊎ {qwin, qlose} and each revealing transition t = (q, a, q′) in M is redirected in M ′ to qwin if753

q′ ∈ LS(M [Kt], φ) is limit-sure winning when the set of environments is the knowledge Kt754

after observing transition t, and to qlose otherwise. Notice that each query q′ ∈ LS(M [Kt], φ)755

uses a set Kt that is strictly smaller than E.756

We now assume that M is in revealed form and we compute the maximal end-components757

of the MDP ∪e∈EM [e]; these are maximal common end-components of M by Lemma 7.758

For each distinguishing maximal CEC D, we determine whether it is limit-sure winning759
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Algorithm 2 LS_Parity(M, p)
Input : M = ⟨Q, (Aq)q∈Q, (δe)e∈E⟩ an MEMDP, p : Q→ N a priority function.
Output: The winning region LS(M, Parity(p)) for limit-sure parity.
begin

1 if |E| = 1 then return AS(M, Parity(p))
/* pre-processing */

2 put M in revealed form (defined in Section 3)
3 MEC← maximal end-components of the MDP ∪e∈EM ′[e]
4 for D ∈ MEC do

5 if D is distinguishing in M then

6 Let (K1, K2) be a distinguishing partition in D

7 if D ⊆ LS_Parity(M [K1], p) ∩ LS_Parity(M [K2], p) then

8 replace D by sink qwin in M with p(qwin) = 0

/* M is in revealed form and Lemma 14 applies */
9 for e ∈ E do

10 Te = LS_Parity(M [¬e], p)

11 Q← AS
(

M, Reach
(⋃

e∈E AS(M [e], Parity(p) ∩ Safe(Te))
))

12 return Q \ {qwin}
end

using the condition of Lemma 10, namely that D ⊆ LS(M [Ki], φ) (for i = 1, 2) where760

(K1, K2) is a partition of E induced by a distinguishing transition of D, which is computed761

by a recursive calls to the algorithm. We replace D by qwin if it is limit-sure winning,762

which yields an MEMDP without limit-sure winning distinguishing CECs, and we can apply763

Lemma 14: for each environment e ∈ E, we compute Te = LS(M [¬e], φ) which is done by764

|E| separate recursive calls, and we compute the sets AS(M [e], φ ∩ Safe(Te)) using standard765

MDP algorithms (we restrict the state space to Te and compute the almost-sure winning766

states for φ). We then solve the almost-sure reachability problem in M for the target set767 ⋃
e∈E AS(M [e], φ ∩ Safe(Te)).768

Thus each recursive step takes polynomial time (besides the recursive calls), and because769

each recursive call decreases the size of E, the depth of the recursion is bounded by |E|. It770

follows that the procedure runs in polynomial space. The PSPACE lower bound follows771

from the same reduction as for almost-sure winning [22, Theorem 7], since the MEMDP772

constructed in the reduction is acyclic, thus almost-sure and limit-sure winning coincide.773

Note that Lemma 14 constructs a pure strategy that achieves the objective with probability774

at least 1 − ε from the limit-sure winning states, and that the strategies constructed in775

Lemmas 10 and 13 to witness limit-sure winning are also pure (in Lemma 10, the construction776

assumes that pure strategies are sufficient for fewer environments, which allows a proof by777

induction since pure strategies are sufficient in MDPs, i.e. in a single environment).778

▶ Theorem 15. The membership problem for limit-sure parity objectives in MEMDPs is779

PSPACE-complete and pure exponential-memory strategies are sufficient, i.e., if a state q is780

limit-sure winning, then for all ε > 0 there exists a pure exponential-memory strategy that781

ensures the objective is satisfied with probability at least 1− ε from q. When the number of782
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environments is fixed, the problem is solvable in polynomial time.783

The time complexity of Algorithm 2 is established as follows. Let us consider a single784

recursive call. The maximal end-components of ∪e∈EM ′[e] can be computed in O(|Q| · |δ|)785

where |δ| denotes the number of transitions. Then, determining whether each MEC is786

distinguishing, and replacing them with sink states can be done in time O(|δ| · |E|) since787

one needs to go over each transition and check whether their probability differs in two788

environments. The last step requires solving almost-sure parity and safety for MDPs defined789

for each e ∈ E, which can be done in time O(|E| · |Q| · |δ|) (similarly as in the discussion790

following Theorem 4). The most costly operation is almost-sure reachability for the MEMDP791

M , which by Theorem 4 takes O(|Q|4 · |E| · |A| · 2|E|). There are 2|E| recursive calls (the792

algorithm can be run once for each subset of E using memoization), so overall we get793

O(|Q|4 · |E| · |A| · 22|E|).794

We do not know if a technique similar to that of Theorem 6 can be used for the limit-sure795

case to obtain an exponent independent of |E|.796

5 The Gap Problem797

The goal of this section is to give a procedure that solves the gap problem for parity objectives.798

For this, we show that an arbitrary strategy in M can be imitated by a finite-memory one799

(with a computable bound on the memory size) while achieving the same probability of800

winning up to ε in all environments. Once this is established, we show how to guess a801

finite-memory strategy of the appropriate size in order to solve the gap problem.802

To establish the memory bound for such an ε-approximation, we need a few intermediate803

lemmas. First, we define a transformation on MEMDPs consisting in collapsing non-804

distinguishing maximal CECs (MCECs) of the MEMDP M ; the resulting MEMDP is denoted805

purge(M). We show that M and purge(M) have the same probabilities of satisfaction of the806

considered parity objective under all environments.807

Intuitively, removing non-distinguishing MCECs ensures that in purge(M), under all808

strategies, with high probability, within a fixed number of steps, either a maximal CEC809

is reached (which is either distinguishing, or non-distinguishing but trivial – recall that a810

trivial CEC contains a single absorbing state.) or enough samples are gathered to improve811

the knowledge about the current environment, as shown in Section 5.2 This observation will812

help us constructing the finite-memory strategy inductively since in each case the knowledge813

can be improved correctly with high probability: in trivial MCECs, the strategy is extended814

arbitrarily; inside distinguishing MCECs, the strategy can be extended so that it stays815

inside the MCEC while sampling distinguishing transitions with any desired precision as in816

Lemma 9; last, if no MCECs are reached but enough samples are gathered along the way, we817

prove that the knowledge can also be improved with high probability. The final strategy is818

obtained by combining finite-memory strategies constructed inductively for smaller sets of819

environments. This is done in Section 5.3820

Maximal Common End-Components Revisited821

We extend the definition of common end-components (CEC) which, in Section 4.2, were822

defined assuming MEMDPs are in revealed form. In this section, MEMDPs are not assumed823

to be in revealed form: in fact, upon observing a revealing transition, we cannot conclude824

recursively since we cannot determine which value vector must be achieved in the recursive825

call. Here, we define a CEC for MEMDP M = ⟨Q, A, (δe)e∈E⟩ as a pair (Q′, A′) such that826
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for all e ∈ E, ⟨Q′, A′, δe⟩ is an end-component of M [e]. A maximal CEC (MCEC) is a CEC827

which does not contain a smaller CEC.828

There are two types of MCECs:829

MCEC (Q′, A′) is non-distinguishing if for all q ∈ Q′, and a ∈ A′(q), the distributions830

δe(q, a) and δe′(q, a) are identical for all e, e′ ∈ E;831

MCEC (Q′, A′) is distinguishing otherwise.832

While non-distinguishing MCECs have state-action pairs with identical supports in all833

environments, a distinguishing MCEC may contain revealing transitions, that is, state-action834

pairs (q, a) with different supports in different environments. This is the difference with835

Section 4. The only result we need from Section 4.2 is Lemma 9 which holds for the new836

definition of distinguishing MCECs: in fact, we do require that (Q′, A′) is an end-component837

(i.e., closed and strongly connected) in all environments, so revealing transitions are simply838

seen as distinguishing transitions, and thanks to the strong connectivity of (Q′, A′) in all839

environments, one can define a strategy that samples a distinguishing transition a desired840

number of times.841

As previously, a MCEC D is trivial if it contains a single state.842

In terms of computability, we cannot use Lemma 7 to compute MCECs since this is843

only valid for MEMDPs in revealed form. The ε-gap procedure given in this section does844

not actually compute MCECs; these are only used in the proof of the existence of a finite-845

memory strategy (Lemma 24). Nevertheless, for completeness, let us describe how MCECs846

can be computed in polynomial time. For |E| = 1, the MCECs are exactly the maximal847

end-components (MECs) of M [e] where E = {e}. For |E| ≥ 2, we pick an environment848

e ∈ E, and compute the MECs of M [e]. For each MEC D of M [e], we recursively compute849

the MCECs of D in the MEMDP M [E \ {e}]. This is sound because a MCEC, being an850

end-component in all environments, is necessarily a subset of some MEC in each M [e]; so by851

restricting the search for MCECs to MECs of some M [e], we do not discard any MCECs.852

Furthermore, each recursive call splits the state space to disjoint sets, so we get an overall853

polynomial-time complexity.854

Given an MEMDP M over environments E, the notation Pσ
q (M, φ) refers to the vector855

of probability values (Pσ
q (M [e], φ))e∈E .856

5.1 Purge: Removing Non-Distinguishing MCECs857

We first describe a transformation that collapses non-distinguishing MCECs, and keeps858

only trivial ones. Since all trivial MCECs can be classified into winning and losing for the859

objective φ, we assume that the only non-distinguishing MCECs in the resulting MEMDP are860

called qwin and qlose. The intuition is that non-distinguishing MCECs are not useful to refine861

information in order to distinguish environments, so when a strategy visits such a MCEC,862

one can assume that it will either stay inside forever (either if the MCEC is φ-winning, or if863

there is no outgoing transition), or leave it as soon as possible (if the MCEC is φ-losing).864

Observe that a distinguishing MCEC can contain a smaller non-distinguishing CEC. The865

transformation described here only collapses MCECs that are non-distinguishing, and not866

those smaller non-distinguishing CECs that are contained in MCECs.867

Given an MEMDP M = ⟨Q, A, (δe)e∈E⟩, define the MEMDP purge(M) = ⟨Q′, A′, (δ′
e)e∈E⟩868

where Q′ contains all states of Q except those that belong to non-distinguishing MCECs;869

and for each non-distinguishing MCEC D, we add a fresh state sD to Q′, and redirect all870

transitions that enter a state of D in M to sD in M ′. We define the map f : Q → Q′ by871
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Figure 5 An MEMDP M with two environments (left) and the construction purge(M) (right).
Transition probabilities are uniform. Here D is the MCEC defined by the pairs {(q3, a), (q4, a)}, and
D′ is the MCEC defined by {(q5, a), (q6, a)}. The priority function is omitted, we assume that D is
winning (e.g., by assigning priority 0 to q3 and q4) and that D′ is losing (e.g., by assigning priority 1
to q5 and q6).

mapping all states of non-distinguishing MCECs D to sD, and as the identity for other872

states.873

We add a fresh action stay which from sD goes to a winning absorbing state qwin if874

D is φ-winning, and to a losing absorbing state qlose otherwise. For each pair (q, a) ∈ D875

such that Supp(δ(q, a)) is not included in D, we add a fresh action F(q,a) from sD with876

δ′
e(sD, F(q,a))(q′) =

∑
q′′∈f−1(q′) δe(q, a, q′′) for all e ∈ E. (These state-action pairs can leave877

D in some environments, so F stands for the frontier of D.)878

Given the set of MCECs, purge(M) can be computed in polynomial time. However, the879

ε-gap procedure we give does not actually compute purge(M); this construction is only used880

for proving the existence of a finite-memory strategy of bounded memory size.881

▶ Example 16. An example of this construction is given in Fig. 5 for MEMDP M with882

two environments e1, e2. Here {(q2, b)} is an end-component in M [e2] but not in M [e1]883

due to the edge to q3 so this is not a CEC, and is not collapsed in purge(M). The884

MCEC D defined by {(q3, a), (q4, a)} has a single frontier action F(q4,b). In M [e1], we885

have δ′
e1(sD, F(q4,b), sD′) = 2/3 since δe1(q4, b, q5) + δe1(q4, b, q6) = 2/3 (since the probabil-886

ities are uniform), and δ′
e1(sD, F(q4,b), sD) = 1/3. In M [e2], the latter edge is missing, so887

δ′
e2(sD, F(q4,b), sD′) = 1.888

▶ Lemma 17. For all MEMDPs M , the only non-distinguishing MCECs of purge(M) are889

the trivial qwin and qlose.890

Proof. Let D = (Q′, A′) be any non-distinguishing MCEC in M ′. D must contain a state891

of the form sD′ since otherwise this is also a MCEC of M , and the construction would892

have collapsed it. We consider the component in M given by the inverse image of D by f .893
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Formally, let Q′′ = f−1(Q′) ⊆ Q, and for each q′′ ∈ Q′′, define A′′(q′′) = {a ∈ A(q′′) | ∀e ∈894

E : Supp(δe(q, a)) ⊆ Q′′}.895

Then for each state of the form qD′ in D, (Q′′, A′′) contains all state-action pairs of D′.896

But D is strongly connected in each M ′[e], and all non-distinguishing MCECs D′ of M897

that were collapsed are also strongly connected in each M [e] by definition, (Q′′, A′′) is also898

strongly connected in each M [e], thus a MCEC in M .899

Now, (Q′′, A′′) cannot be distinguishing, since the construction only collapses MCECs, so900

no subset of (Q′′, A′′) can be collapsed in M ′; and (Q′′, A′′) would remain untouched and901

be distinguishing in M ′ as well. So (Q′′, A′′) is non-distinguishing; but in this case, it is902

collapsed into a trivial MCEC in M ′, so D is trivial. ◀903

To relate the histories of M to those of purge(M), we introduce the function h 7→904

purge(h) which, intuitively, maps the state of a non-distinguishing MCECs D to the state905

sD, removes the state-actions pairs that stay in D, and replaces the state-action pairs (q, a)906

having a transition that leaves D by a new action F(q,a). Formally, purge(h) is obtained907

from h = q1a1 . . . qn by applying the following transformation: for each non-distinguishing908

MCEC D = (Q′, A′) of M ,909

1. Replace the maximal suffix of h of the form qiai . . . qn such that for all i ≤ k ≤ n, qk ∈ Q′910

and ak ∈ A′(qk), if such a suffix exists, by sD;911

2. Remove all maximal factors of h of the form qiai . . . qjaj satisfying qk ∈ Q′ and ak ∈ A′(qk)912

for all i ≤ k ≤ j;913

3. Replace each pair qiai with qi ∈ Q′ and ai ̸∈ A′(qi) by sDF(qi,ai);914

▶ Example 18. In the MEMDP of Fig. 5, with D containing the pairs (q3, a) and (q4, a),915

for h = q1aq3aq4aq3aq4bq4bq5, we get purge(h) = q1asDFq4,bsDFq4,bq5. Here we first apply916

rule 2 above to the factor q3aq4aq3a, and get q1aq4bq4bq5; then an application of rule 3917

yields purge(h) = q1asDFq4,bsDFq4,bq5. For the history h′ = q1aq3aq4aq3aq4, we would get918

by rule 1, purge(h′) = q1asD.919

We establish a relation between M and purge(M) in Lemmas 19 and 20. These will be920

used to give a memory bound for strategies for the quantitative case in Lemma 24.921

In the Lemma 19, we only establish an inequality. This is because a given strategy σ of922

M may not be optimal within a non-distinguishing MCEC, while the construction purge(M)923

is based on the assumption that optimal strategies are used within each MCECs.924

▶ Lemma 19. Consider an MEMDP M = ⟨Q, A, (δe)e∈E⟩, and objective φ = Parity(p), and925

the map f : Q→ Q′ relating states of M and those of purge(M) = ⟨Q′, A′, (δ′
e)e∈E⟩. For all926

q ∈ Q, and strategy σ for M , there exists σ′ with Pσ
q (M, φ) ≤ Pσ′

f(q)(purge(M), φ).927

Proof. Let us write M ′ = purge(M). Consider q ∈ Q, and a strategy σ for M . We define σ′928

for M ′ as follows. For all histories h of M ′, and action a ∈ A′(last(h)), we define929

σ′(h)(a) = Pσ
q

[
M [e], purge−1(ha) | purge−1(h)

]
930

for some arbitrary e ∈ E for which Pσ
q

[
M [e], purge−1(h)

]
> 0, if such e ∈ E exists; and931

otherwise define σ′(h) arbitrarily. This quantity does not depend on e since, assuming932
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Pσ
q

[
M [e], purge−1(h)

]
> 0,933

Pσ
q

[
M [e], purge−1(ha) | purge−1(h)

]
934

=
∑

ρ∈purge−1(h)

Pσ
q [M [e], ρa′ | ρ]Pσ

q

[
M [e], ρ | purge−1(h)

]
935

=
∑

ρ∈purge−1(h)

σ(ρ)(a′)Pσ
q

[
M [e], ρ | purge−1(h)

]
,936

where a′ = b if a has the form F(_,b), and a′ = a otherwise (in which case we have937

a ∈ A(last(ρ))). Moreover, Pσ
q [M [e], ρ | purge−1(h)] does not depend on e here since938

purge−1(h) determines the outcomes of all transitions whose probability distributions differ939

among environments because these were not erased by purge(·), and these probability940

distributions are identical in the remaining transitions since they belong to non-distinguishing941

MCECs.942

For a history h of M ′ that ends in a state of the form sD, and with Pσ
q

[
M [e], purge−1(h)

]
>943

0, we let σ′ take the action stay with probability Pσ
q [M [e], purge−1(h)Dω | purge−1(h)], where944

Dω denotes the set of all runs that stay inside D. This probability is similarly independent945

from the particular choice of e.946

We prove that for all histories h of M ′ that do not contain stay, a ∈ A′(last(h)) \ {stay},947

and e ∈ E,948

Pσ′
f(q) [M ′[e], h] = Pσ

q

[
M [e], purge−1(h)

]
, (1)949

Pσ′
f(q) [M ′[e], h · a] = Pσ

q

[
M [e], purge−1(h · a)

]
, (2)950

Pσ′
f(q) [M ′[e], h · stay] = Pσ

q

[
M [e], purge−1(h)Dω

]
. (3)951

We proceed by induction on the length of h to prove the above three properties.952

Initially, if |h| = 1, then h = f(q) and purge−1(h) = {q}. Then (1) follows trivially since953

both sides are equal to 1. To see (2), note that, by definition of σ′,954

σ′(h)(a) = Pσ
q

[
M [e], purge−1(h · a) | purge−1(h)

]
= Pσ

q

[
M [e], purge−1(h · a)

]
955

since h = f(q) here. Furthermore,956

Pσ′
f(q) [M ′[e], h · a] = Pσ′

f(q) [M ′[e], a | h]Pσ′
f(q) [M ′[e], h]957

= σ′(h)(a)958

since Pσ′
f(q) [M ′[e], h] = 1; which yields (2).959

Last, assume that stay ∈ A′(f(q)), that is f(q) has the form sD for some non-distinguishing960

MCEC D.961

Pσ′
f(q) [M ′[e], h · stay] = σ′(h)(stay)Pσ′

f(q) [M ′[e], h]962

= Pσ
q [M [e], purge−1(h)Dω | purge−1(h)]963

= Pσ
q [M [e], purge−1(h)Dω],964

which proves (3).965
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Assume now that |h| > 1, and let us write h = h′ar for a history h′, a ∈ A′(last(h′)).966

Pσ′
f(q) [M ′[e], h′a] = Pσ′

f(q) [M ′[e], h′a | h′]Pσ′
f(q) [M ′[e], h′]967

= Pσ′
f(q) [M ′[e], h′a | h′]Pσ

q

[
M ′[e], purge−1(h′)

]
968

= σ′(h′)(a)Pσ
q

[
M ′[e], purge−1(h′)

]
969

= Pσ
q

[
M [e], purge−1(h′a) | purge−1(h′)

]
970

· Pσ
q

[
M ′[e], purge−1(h′)

]
,971

= Pσ
q

[
M [e], purge−1(h′a)

]
,972

where we used the induction hypothesis to apply (1) on the second line. This proves (2).973

Consider now r ∈ Q′.974

Pσ′
f(q) [M ′[e], h′ar] = Pσ′

f(q) [M ′[e], h′ar | h′a]Pσ′
f(q) [M ′[e], h′a]975

= δ′
e(last(h′), a)(r)Pσ

q

[
M [e], purge−1(h′a)

]
.976

We distinguish two cases. If last(h) does not have the form of sD, then it also belongs to Q,977

a ∈ A(last(q)), with δe(last(h′), a)(r) = δ′
e(last(h′), a)(r). In this case, the above is equal to978

Pσ
q

[
M [e], purge−1(h′ar)

]
. Assume now that last(h) = sD for some non-distinguishing MCEC979

D, and that a = F(r′,a′) for some pair (r′, a′). Then purge−1(h′a) only contains histories that980

end at r′, followed by action a′. We have, moreover, δ′
e(last(h′), a)(r) =

∑
q∈f−1(r) δe(r′, a′)(q),981

by the definition of purge(M), so982

Pσ′
f(q) [M ′[e], h′ar] = Pσ

q

[
M [e], purge−1(h′a)f−1(r)

]
983

= Pσ
q

[
M [e], purge−1(h′ar)

]
.984

This proves (1).985

Last, consider history h ending at some state sD, and write986

Pσ′
f(q) [M ′[e], h · stay] = Pσ′

f(q) [M [e], h · stay | h]Pσ′
f(q) [M [e], h]987

= Pσ′
f(q) [M [e], h · stay | h]Pσ

q

[
M [e], purge−1(h)

]
988

= Pσ
q [M [e], purge−1(h)Dω | purge−1(h)]Pσ

q

[
M [e], purge−1(h)

]
989

= Pσ
q [M [e], purge−1(h)Dω],990

where we used the induction hypothesis on the second line, and the definition of σ′ on the991

third line. This proves (3).992

We now show that Pσ
q (M, φ) ≤ Pσ′

f(q)(M ′, φ) follows from these properties. In fact, for all993

e ∈ E, one can write994

Pσ′
f(q)(M ′[e], φ) =

∑
D∈EC(M [e]), φ-winning
non-distinguishing MCEC

Pσ′
f(q)(M ′[e], (Q′A′)∗ · sD · stay · qwin)

+
∑

D∈EC(M ′[e]), φ-winning
D ̸={(qwin,_)}

Pσ′
f(q)(M ′[e], Inf = D), (4)995

by separating winning end-components of M ′ into two: the winning absorbing state qwin996

reached via some sD for a non-distinguishing MCEC of M , and any other end-component of997

M ′.998
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For the first term of (4), we have, from the above properties of σ′,999 ∑
D∈EC(M [e]), φ-winning
non-distinguishing MCEC

Pσ′
f(q)(M ′[e], (Q′A′)∗ · sD · stay · qwin)1000

=
∑

D∈EC(M [e]), φ-winning
non-distinguishing MCEC

∑
D′∈EC(M [e])

D′⊆D

Pσ
q [M [e], Inf = D′]1001

≥
∑

D∈EC(M [e]), φ-winning
non-distinguishing MCEC

∑
D′∈EC(M [e]), φ-winning

D′⊆D

Pσ
q [M [e], Inf = D′]1002

=
∑

D∈EC(M [e]), φ-winning
non-distinguishing MCEC

Pσ
q [M [e], Inf = D].1003

For the second term of (4), let D ∈ EC(M ′) \ {(qwin, _)}, and observe that Inf = D does1004

not contain the action stay. Notice how we only have an inequality because σ might actually1005

have a nonzero probability of realizing Inf = D′ for some non-winning D′ included in a1006

winning D.1007

We established above that for all histories h of M ′ without the action stay, Pσ′
f(q)[M ′[e], h] =1008

Pσ
q [M [e], purge−1(h)], that is, cylinders generated by h and purge−1(h) have the same proba-1009

bilities in M ′ under σ′, and, respectively, in M under σ. It follows that1010 ∑
D∈EC(M ′[e]), φ-winning

D ̸={(qwin,_)}

Pσ′
f(q)[M ′[e], Inf = D]1011

=
∑

D∈EC(M ′[e]), φ-winning
D ̸={(qwin,_)}

Pσ
q [M [e], purge−1(Inf = D)]1012

=
∑

D∈EC(M ′[e]), φ-winning
D ̸={(qwin,_)}

∑
D′∈EC(M),f(D′)=D

Pσ
q [M [e], Inf = D′]1013

≥
∑

D∈EC(M ′[e]), φ-winning
D ̸={(qwin,_)}

∑
D′∈EC(M),f(D′)=D

D′ is φ-winning

Pσ
q [M [e], Inf = D′],1014

=
∑

D∈EC(M [e]), φ-winning
not a non-distinguishing MCEC

Pσ
q [M [e], Inf = D].1015

where we extend the definition of f to state-action pairs so that f(D′) denotes an end-1016

component of M ′.1017

Combining these bounds on both terms of (4), we conclude1018

Pσ′
f(q)(M ′[e], φ) ≥

∑
D∈EC(M [e]), φ-winning
non-distinguishing MCEC

Pσ
q [M [e], Inf = D]1019

+
∑

D∈EC(M [e]), φ-winning
not a non-distinguishing MCEC

Pσ
q [M [e], Inf = D]1020

≥ Pσ
q (M [e], φ).1021

◀1022
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The following lemma is the dual, and shows that any strategy for purge(M) can be1023

replicated in M , albeit with a bit more memory. The additional memory is required to1024

implement behaviors inside non-distinguishing MCECs.1025

▶ Lemma 20. Consider an MEMDP M = ⟨Q, A, (δe)e∈E⟩, and objective φ = Parity(p), and1026

the map f : Q→ Q′ relating states of M and that of purge(M) = ⟨Q′, A′, (δ′
e)e∈E⟩. For all1027

states q′ ∈ Q′ and strategies σ′ for purge(M), and all q ∈ f−1(q′), there exists a strategy σ1028

with Pσ
q (M, φ) = Pσ′

q′ (purge(M), φ). Furthermore, if σ′ is a m-memory strategy, σ can be1029

chosen to be a (m + |Q||A|)-memory strategy.1030

Proof. Consider q′ ∈ Q′, an m-memory strategy σ′ for M ′, and q ∈ f−1(q′), where m can1031

be finite or infinite. We show that there exists an (m + |Q||A|)-memory strategy σ with1032

Pσ
q (M, φ) = Pσ′

q′ (M ′, φ). We define σ as follows. Consider a history h of M .1033

If f(last(h)) ∈ Q, we let σ(h) = σ′(purge(h)).1034

Assume f(last(h)) = sD for some non-distinguishing MCEC D. With probability1035

σ′(purge(h))(stay), we let σ switch to a pure memoryless strategy that maximizes the1036

probability of φ inside D (this strategy is independent from the environment). For each1037

F(q,a), with probability σ′(purge(h))(F(q,a)) we let σ run a pure memoryless strategy until1038

state q is reached (which happens probability 1), and from q take a.1039

The memory bound for σ is m + |Q||A| where m is the memory size of σ′, because inside1040

each collapsed MCEC, and for each pair F(q,a), a pure memoryless strategy is executed until1041

reaching q and taking action a.1042

By construction, for all histories h that start at q in M and end outside of non-1043

distinguishing end-components, we have:1044

Pσ
q (M [e], h) = Pσ′

f(q)(M ′[e], purge(h)) for all environments e ∈ E. (5)1045

So if R denotes a measurable set of infinite runs of M such that for all ρ ∈ R, purge(ρ) is1046

infinite (in other terms, ρ does not stay inside a non-distinguishing MCEC), then1047

Pσ
q (M [e], R) = Pσ′

f(q)(M ′[e], purge(R)), (6)1048

writing purge(R) = {purge(ρ) | ρ ∈ R}.1049

Furthermore, for those histories h = h′as where q ∈ D is a non-distinguishing MCEC1050

and last(h′) ̸∈ D, we have:1051

Pσ
q (M [e], h) = Pσ′

f(q)(M ′[e], purge(h)) for all environments e ∈ E.1052

Then, by definition of σ, for a non-distinguishing MCEC D,1053 ∑
D′∈EC(M),D′⊆D

Pσ
q (M [e], Inf = D′) = Pσ′

f(q)(M ′[e], (Q′A′)∗ · sD · stay). (7)1054

Observe that any end-component D of M that is not a non-distinguishing MCEC maps1055
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to an end-component of M ′. We have for all e ∈ E,1056

Pσ
q (M [e], φ) =

∑
D∈EC(M),φ-winning

not a non-distinguishing MCEC

Pσ
q (M [e], Inf = D)1057

+
∑

D∈EC(M),φ-winning
non-distinguishing MCEC

Pσ
q (M [e], Inf = D)1058

=
∑

D∈EC(M ′),φ-winning
not a non-distinguishing MCEC

Pσ′
f(q)(M ′[e], Inf = D)1059

+
∑

D∈EC(M ′),φ-winning
non-distinguishing MCEC

Pσ′
f(q)(M ′[e], (Q′A′)∗ · sD · stay)1060

= Pσ′
f(q)(M ′[e], φ),1061

using (6) and (7). ◀1062

5.2 Learning While Playing1063

In this section, we show that after collapsing non-distinguishing MCECs, over n steps (for n1064

large enough), with high probability, we either reach a MCEC (which is either distinguishing1065

or trivial) or collect a large number of samples of distinguishing transitions whose empirical1066

average is close to their mean. Intuitively, this means that either the knowledge can be1067

improved after n steps using the collected samples while bounding the probability of error,1068

or a MCEC is reached.1069

If the MCEC is distinguishing, the strategy can improve the knowledge as in Lemma 9,1070

and if not, then the MCEC is trivial and there is a unique way to play. These results will1071

be used in the next section to build a finite-memory strategy with approximately the same1072

probability of winning, given any arbitrary strategy.1073

For a history h, let |h|q,a denote the number of occurrences of the state-action pair (q, a),1074

and |h|q,a,q′ the number of times these are followed by q′, where q′ ∈ Supp(δ(q, a)). For a1075

distinguishing transition t = (q, a, q′), we say that a history h is a bad (t, η)-classification in1076

MDP M [e] if
∣∣∣ |h|q,a,q′

|h|q,a
− δe(q, a)(q′)

∣∣∣ ≥ η/2, that is the measured and theoretical frequency of1077

t are too far apart. It is a good (t, η)-classification otherwise. Intuitively, over long histories,1078

good classifications have high probability.1079

We first prove the following technical lemma, bounding the difference between the1080

empirical average and the mean when sampling among a finite number of transitions, when1081

the transitions to sample are chosen at each step by an adversary. This adversary corresponds1082

to strategies in an MDP, is arbitrary, and can depend on the history and use randomization.1083

We state the following lemma for (single-environment) MDPs, and apply it to each1084

environment in an MEMDP.1085

▶ Lemma 21. Consider MDP M , state q0, and T = {ti = (qi, ai, q′
i)}1≤i≤k a subset of1086

transitions such that (qi, ai) = (qj , aj) implies q′
i = q′

j for all i, j. For all η, ε > 0, all n0 > k3

εη2 ,1087

and any strategy σ with Pσ
q0

[
{h :

∑
(q,a,q′)∈T |hq,a| ≥ n0}

]
= 1, the set of histories h that1088

satisfy the following conditions has probability at most ε:1089 ∑
(q,a,q′)∈T |hq,a| ≥ n01090

there exists 1≤i≤k such that |h|qi,ai
= maxi′ |h|qi′ ,ai′ and h is a bad (ti, η)-classification.1091
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Here the assumption on T simplifies the proofs since it means that for each state-action1092

pair, we will be observing the frequency of a unique successor state. The lemma also requires1093

that at least n0 occurrences of T is visited with probability 1. This hypothesis ensures that1094

we have enough samples to obtain a good approximation (that is, a good (ti, η)-classification)1095

with high probability (at least 1 − ε). In fact, if a strategy σ avoids visiting transitions1096

from T , say, with probability 1/2, then it cannot ensure a good approximation with high1097

probability because half the cases, there are just not enough samples of T .1098

The lemma is easy for k = 1. In fact, all trials are identical and independent, so one1099

can use e.g. Hoeffding’s inequality to derive a bound. When k > 1, trials are no longer1100

independent since σ might react to the success or failure of a given transition to make1101

its decisions in the future. In fact, the lemma is not trivial to prove due to the possible1102

dependency between the trials.1103

Here is such a situation of dependency. Consider a state q from which action a leads to1104

either to q1 or q2, each with probability 0.5, from which a deterministic transition comes back1105

to q. Another action b from q deterministically loops back at q. Consider σ that picks (q, a)1106

first. As long as we reach q1, σ continues to pick (q, a). Whenever q2 is reached, σ switches1107

definitively to (q, b). Now the probability of observing (q, a, q1) at step n > 1 depends on1108

the result of the first n− 1 trials. For example, conditioned on observing (q, a, q1) on the1109

first n− 1 trials, the probability of observing (q, a, q1) again is 0.5. But conditioned on not1110

observing (q, a, q1) on the (n− 1)-th trial, this probability is 0. This shows that given such σ,1111

the successive trials are not independent, and theorems such as Hoeffding’s inequality cannot1112

be applied.1113

In turns out that although the trials can be dependent, their covariance is 0. We exploit1114

this observation to derive a good bound using Chebyshev’s inequality:1115

▶ Theorem 22 (Chebyshev’s Inequality). Let X be a random variable with mean µ, and1116

standard deviation q. Then, for all a > 0, we have P[|X − µ| ≥ sa] ≤ 1
a2 .1117

This inequality clearly also applies if q is an upper bound on the standard deviation of X.1118

Proof of Lemma 21. We consider a slightly more abstract setting where there are k inde-1119

pendent arms, each with a probability of success of pi. In MDPs, each arm corresponds to a1120

state-action pair (qi, ai) and it succeeds when reaching q′
i, with probability pi = δ(qi, ai)(q′

i).1121

Consider a strategy σ that chooses, at each step, i ∈ {1, . . . , k}, an arm to pull based on1122

the full history and randomization. Consider ε, η > 0.1123

We model the problem as follows. For each i ∈ {1, . . . , k}, define a sequence X
(i)
1 , X

(i)
2 , . . .1124

of identical and independent Bernoulli variables with probability pi. Let Choicej denote the1125

arm selected by σ at step j. At each step j, Choicej selects an arm, and all types of arms1126

are pulled. While Choicej can depend on the history, X
(i)
j does not depend on the history,1127

and in particular on Choicej .1128

Define the weight of arm i at step j as the following random variable.1129

wgt(i)
j =

{
X

(i)
j − pi if Choicej = i,

0 otherwise.
1130

Define wgt(i)
≤n =

∑n
j=1 wgt(i)

j , for any n ≥ 1. Let us also define occ(i)
j = 1 iff Choicej = i, and1131

occ(i)
≤n =

∑n
j=1 occ(i)

j . Observe that1132

wgt(i)
≤n =

∑
1≤j≤n,Choicej=i

X
(i)
j − occ(i)

≤npi,1133
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that is, this is the difference between the empirical sum and the mean of the sum of the1134

subsequence of X
(i)
j where Choicej = i.1135

Then wgt(i)
≤n

occ(i)
≤n

is the difference between the empirical average of the X
(i)
j and pi, assuming1136

that occ(i)
≤n > 0.1137

We have, by the definition of variance,1138

Eσ[wgt(i)
j ] = Pσ[Choicej = i](pi(1− pi) + (1− pi)(−pi)) = 0,1139

so Eσ[wgt(i)
≤n] = 0 as well.1140

We are going to apply Theorem 22 on the variable wgt(i)
≤n; so we need a bound on the1141

variance of wgt(i)
≤n. We show that Vσ[wgt(i)

≤n] ≤ npi(1− pi). We have1142

Vσ[wgt(i)
≤n] =

n∑
j=1

Vσ[wgt(i)
j ] + 2

∑
1≤j<j′≤n

Cov(wgt(i)
j , wgt(i)

j′ )1143

For each j, because Eσ[wgt(i)
j ] = 0, we have Vσ[wgt(i)

j ] = Eσ[(wgt(i)
j )2], which can be1144

calculated as1145

Pσ[Choicej = i](pi(1− pi)2 + (1− pi)(−pi)2)1146

= Pσ[Choicej = i]pi(1− pi)((1− pi) + pi)1147

≤ pi(1− pi),1148

so that the first term of the variance is at most npi(1− pi).1149

Now, as noted above, wgt(i)
j and wgt(i)

j′ are not independent variables since σ can choose1150

the arm at step j′ depending on the result of wgt(i)
j ; we nevertheless show that the covariance1151

is equal to 0. We have Cov(wgt(i)
j , wgt(i)

j′ ) = Eσ[wgt(i)
j ·wgt(i)

j′ ]−Eσ[wgt(i)
j ][wgt(i)

j′ ] by definition1152

of covariance; so this is equal to Eσ[wgt(i)
j · wgt(i)

j′ ] which can be calculated as follows.1153

Pσ[Choicej = i ∧ Choicej′ = i ∧X
(i)
j = 1 ∧X

(i)
j′ = 1](1− pi)21154

+ Pσ[Choicej = i ∧ Choicej′ = i ∧X
(i)
j = 1 ∧X

(i)
j′ = 0](1− pi)(−pi)1155

+ Pσ[Choicej = i ∧ Choicej′ = i ∧X
(i)
j = 0 ∧X

(i)
j′ = 1](−pi)(1− pi)1156

+ Pσ[Choicej = i ∧ Choicej′ = i ∧X
(i)
j = 0 ∧X

(i)
j′ = 0](−pi)2.1157

Now X
(i)
j′ and the variables Choicej , Choicej′ , X

(i)
j are independent; in fact, the values of1158

Choicej , Choicej′ cannot depend on X
(i)
j′ since the latter is revealed after Choicej , Choicej′ .1159

In contrast, X
(i)
j and Choicej′ can be dependent since the latter can depend on the value of1160

X
(i)
j .1161

We can rewrite Pσ[Choicej = i ∧ Choicej′ = i ∧X
(i)
j = 1 ∧X

(i)
j′ = 1] as follows.1162

Pσ[X(i)
j′ = 1 | Choicej = i ∧ Choicej′ = i ∧X

(i)
j = 1]Pσ[Choicej = i ∧ Choicej′ = i ∧X

(i)
j = 1]1163

= Pσ[X(i)
j′ = 1]Pσ[Choicej = i ∧ Choicej′ = i ∧X

(i)
j = 1]1164

= piPσ[Choicej = i ∧ Choicej′ = i ∧X
(i)
j = 1]1165

by independence.1166
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Applying this to all four terms, Eσ[wgt(i)
j · wgt(i)

j′ ] can be written as1167

Pσ[Choicej = i ∧ Choicej′ = i ∧X
(i)
j = 1]pi(1− pi)21168

+ Pσ[Choicej = i ∧ Choicej′ = i ∧X
(i)
j = 1](1− pi)(1− pi)(−pi)1169

+ Pσ[Choicej = i ∧ Choicej′ = i ∧X
(i)
j = 0]pi(−pi)(1− pi)1170

+ Pσ[Choicej = i ∧ Choicej′ = i ∧X
(i)
j = 0](1− pi)(−pi)2,1171

=Pσ[Choicej = i ∧ Choicej′ = i ∧X
(i)
j = 1](pi(1− pi)2 + (1− pi)(1− pi)(−pi))1172

+ Pσ[Choicej = i ∧ Choicej′ = i ∧X
(i)
j = 0](pi(−pi)(1− pi) + (1− pi)(−pi)2)1173

=0.1174

So all covariance terms are 0, and we have Vσ[wgt(i)
≤n] ≤ npi(1− pi).1175

We now apply Theorem 22: For all 1 ≤ i ≤ k, and for all a > 0,1176

Pσ
[∣∣∣wgt(i)

≤n

∣∣∣ ≥ a
√

npi(1− pi)
]
≤ 1

a2 .1177

Using P[X ∪ Y ] = P[X] + P[Y ]− P[X · Y ], it follows that1178

Pσ
[
∃i,
∣∣∣wgt(i)

≤n

∣∣∣ ≥ a
√

npi(1− pi)
]
≤ k

a2 .1179

We have,1180

Pσ

[
∃i, occ(i)

≤n = max
i′

occ(i′)
≤n ∧

∣∣∣∣∣wgt(i)
≤n

occ(i)
≤n

∣∣∣∣∣ ≥ a
√

npi(1− pi)
occ(i)

≤n

]
≤ k

a2 .1181

Here we divided the inequality by occ(i)
≤n (since for n > 0, maxi′ occ(i′)

≤n > 0); moreover,1182

the probability bound holds since each event has become smaller.1183

Notice that for all n > 0,
∑k

i=1 occ(i)
≤n = n since σ picks one of the arms at each step; so1184

maxi′ occ(i′)
≤n ≥ n/k with probability 1. We get1185

Pσ

[
∃i, occ(i)

≤n = max
i′

occ(i′)
≤n ∧

∣∣∣∣∣wgt(i)
≤n

occ(i)
≤n

∣∣∣∣∣ ≥ ak
√

pi(1− pi)√
n

]
≤ k

a2 .1186

Now, given ε, η > 0, we pick a =
√

k/ε so that k/a2 ≤ ε; and then n large enough so that1187

ak
√

pi(1−pi)√
n

≤ η/2; this means it suffices to pick n such that max1≤i≤k

(
ak
√

pi(1−pi)
η/2

)2
≤ n,1188

so ( ak
η/2 )2 = 4k3

εη2 ≤ n suffices. ◀1189

We use Lemma 21 to prove that in MEMDPs without non-trivial and non-distinguishing1190

MCECs (for example, obtained by purge(·)), after n steps, we either reach a MCEC or collect1191

a large number of samples of distinguishing transitions whose empirical average is close to1192

their mean. Given MEMDP M , let TM denote a set obtained by selecting one distinguishing1193

transition (q, a, q′) for each state-action pair (q, a) whose probability distribution differs in a1194

pair of different environments. We select one representative distinguishing transition (q, a, q′)1195

for each pair (q, a) because this simplifies the calculations. We let |h|TM
=
∑

(q,a,q′)∈TM
|h|q,a.1196

Let us fix η as follows1197

η <
1
2 min ({|δe(q, a)(q′)− δf (q, a)(q′)| | e, f ∈ E, q, q′ ∈ Q, a ∈ A} \ {0}) .1198
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Let us define the set of good histories with n0 samples, denoted Goodn0 , as the set of1199

histories h satisfying1200

|h|TM
≥ n0,1201

for all t = (q, a, _) ∈ TM satisfying |h|q,a= max(q′,a′,·)∈TM
|h|q′,a′ , h is a good (t, η)-1202

classification.1203

▶ Lemma 23. Consider an MEMDP M whose only non-distinguishing MCECs are trivial,1204

and fix ε > 0, Let n0 = ⌈ 2(|Q||A|)3

εη2 ⌉, and n ≥ 2p−2|Q| max(log( 4
ε ), n0) where p is the smallest1205

nonzero probability that appears in M . Then, from any starting state, and under any strategy,1206

with probability at least 1− ε, within n steps, the history either visits a MCEC (distinguishing1207

or trivial), or belongs to Goodn0 .1208

Proof. We show that in all M [e], under any strategy σ, from every state q0, there is a path1209

of size at most |Q| compatible with the strategy that reaches a MCEC or a distinguishing1210

transition. Consider first the case of a pure strategy σ. To prove this, towards a contraction,1211

assume that MCECs and distinguishing transitions are not visited within |Q| steps under1212

σ. Consider the execution tree that starts at q0 in M under σ: this is a tree labeled by1213

Q, in which the children of a given node at history h are labeled by all possible successors1214

Supp(δe(last(h), σ(h))) for some e ∈ E. Since all transitions are non-distinguishing, the1215

choice of e is irrelevant here. We build this tree and cut each branch whenever a MCEC or a1216

distinguishing transition is seen, or a state is repeated. Since we assumed that MCECs and1217

distinguishing transitions are not reachable under σ, all branches of this tree are cut only1218

when a state is repeated. It follows that the set of states in this tree, together with the actions1219

prescribed by σ from these histories form a closed set of states. But then a strongly-connected1220

subset must exist, which is a non-distinguishing CEC. This is thus included in a MCEC,1221

contradicting our assumption.1222

If σ is pure, then in all M [e], from every history, there is a probability of at least p|Q| of1223

either taking a distinguishing transition, or visiting a MCEC within |Q| steps, independently1224

of the current state. If σ is randomized, then the probability of such a single run can be1225

smaller since σ might assign small probabilities to its actions. In this case, since we are1226

only interested in the behaviors in the first n steps, we can see σ as a mixed strategy which1227

consists in randomly choosing among a set of pure strategies that stop after n steps. Since1228

the above argument can be applied to each pure strategy in the support of σ (when σ is seen1229

as a mixed strategy), it follows that under σ, there is a probability of at least p|Q| of taking1230

a distinguishing transition or visiting a MCEC within the next |Q| steps, as well.1231

Viewing runs as the concatenation of finite segments of size |Q|, we call each such segment1232

a trial. Consider the random Bernoulli variables X1, X2, . . . such that the value of Xi is 1 iff1233

a MCEC or a distinguishing transition is visited at the i-th trial.1234

So by Hoeffding’s inequality, for all states q0, n > 0 and t > 0, 21235

Pσ
q0

[
n∑

i=1
Xi ≤

n∑
i=1

Eσ[Xi]− t

]
≤ 2e−2 t2

n .1236

2 Note that Hoeffding’s inequality requires an independent sequence of random variables which is not
the case of the Xi’s. We can nevertheless still apply this inequality here using a coupling argument:
Define Ui as a sequence of independent and continuous variables uniformly distributed over [0, 1].
Define the Bernoulli variable Yi = 1 iff Ui ≤ p|Q|. Furthermore, define the sequence of Bernoulli
variables X̃1, X̃2, . . . inductively, by X̃i = 1 iff Ui ≤ P(Xi = 1 | X1 = X̃1, . . . , Xi−1 = X̃i−1). Because
P(Xi = 1 | h) ≥ p|Q| regardless of the history h, we have Yi ≤ X̃i. Furthermore, P(X1 = x1, . . . , Xn =
xn) = P(X̃1 = x1, . . . , X̃n = xn) for all x1, . . . , xn ∈ {0, 1}. It follows that Hoeffding’s inequality can
be applied on the i.i.d. sequence Yi, and we get for all A > 0, P[

∑
i
Xi ≤ A] ≤ P[

∑
i
Yi ≤ A].
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Given n > 0, we choose here t = np|Q|/2. This yields,1237

Pσ
q0

[
n∑

i=1
Xi ≤

n∑
i=1

Eσ[Xi]− np|Q|/2
]
≤ 2e−2 n2p2|Q|

4n ≤ ε/2,1238

which is the case since, by taking the log of both sides,1239

−np2|Q|

2 ≤ log(ε/4)1240

⇔n ≥ 2 log(4/ε)p−2|Q|.1241

Because Eσ(Xi) ≥ p|Q|,
∑n

i=1 Eσ[Xi] ≥ np|Q|. This means that with probability at least1242

1 − ε/2,
∑n

i=1 Xi ≥ np|Q|/2. As n ≥ 2⌈ 2(|Q||A|)3

εη2 ⌉p−2|Q|, we have
∑n

i=1 Xi ≥ ⌈ 2(|Q||A|)3

εη2 ⌉,1243

that is, with probability at least 1 − ε/2, either a MCEC or ⌈ 2(|Q||A|)3

εη2 ⌉ occurrences of1244

distinguishing transitions are seen (which can be good or bad classifications).1245

Let us write n0 = ⌈ 2(|Q||A|)3

εη2 ⌉. It remains to bound the probability of visiting either1246

a MCEC or Goodn0 . Let us define a tree-shaped MDP Mn from M as follows. First, we1247

unfold M by stopping each branch either when a MCEC is reached, or after n steps. Then,1248

each leaf that belongs to a MCEC is extended with fresh states and transitions so that the1249

branch contains n0 instances of distinguishing transitions. More precisely, we pick some1250

distinguishing transition (q, a, q′) of M , and extend a given leaf l0 of Mn as follows. The only1251

enabled action at l0 is a, and it goes to l′
0 with probability δe(q, a, q′) to l′

0 in Mn[e], and to1252

l′′
0 with probability 1− δe(q, a, q′); and both l′

0, l′′
0 deterministically go to l1. We repeat this1253

until n0 occurrences of distinguishing transitions are obtained. Last, all leafs are made into1254

absorbing states.1255

Let ⋄CEC denote the set of histories that reach a MCEC. For all e ∈ E,1256

Pσ
q0 [M [e], ⋄CEC ∨ Goodn0 ] ≥ Pσ

q′
0
[Mn[e], Goodn0 ]1257

where q′
0 is the root of Mn[e], since MCECs are replaced with a gadget that might not satisfy1258

Goodn0 with probability 1.1259

As an additional step, we obtain M ′
n by modifying Mn as follows: we extend each leaf1260

whose branch does not contain n0 occurrences of distinguishing transitions (nor visit a1261

MCEC), by adding fresh states and transitions as described above so that a total of n01262

distinguishing transitions is obtained at each branch. We get for all e ∈ E.1263

Pσ
q′

0
[Mn[e], Goodn0 ] ≥ Pσ

q′
0
[M ′

n[e], Goodn0 ]− ε/21264

since the probability of the modified branches was shown to be at most ε above.1265

Now, by construction, for all strategies σ and e ∈ E, n0 occurrences of distinguishing1266

transitions are seen in M ′
n[e] with probability 1. By Lemma 21 with k = |Q||A|, applied for1267

ε/2, we get1268

Pσ
q′

0
[M ′

n[e], Goodn0 ] ≥ 1− ε/2.1269

It follows that Pσ
q [M [e], ⋄CEC ∨ Goodn0 ] ≥ Pσ

q′
0
[M ′

n[e], Goodn0 ] ≥ 1 − ε for all e ∈ E, as1270

required. ◀1271

5.3 Constructing Approximate Finite-Memory Strategies1272

We are now ready to construct a finite-memory strategy that approximates an arbitrary1273

strategy σ. We construct a finite-memory strategy for purge(M) and then transfer it to M1274



K. Chatterjee et al. XX:35

using Lemmas 19-20. The finite-memory strategy we construct consists in imitating the1275

strategy σ for n steps, where n is defined in Lemma 23. Because all nontrivial MCECs of1276

purge(M) are distinguishing, when we play for n steps, with high probability, we either visit a1277

trivial MCEC (which is either winning for all environments or losing for all environments), or1278

reach a distinguishing MCEC, or observe enough samples of distinguishing transitions. The1279

strategy is extended arbitrarily in trivial MCECs. Inside distinguishing MCECs, it gathers1280

samples of distinguishing transitions as in Lemma 9, which improves the knowledge (with an1281

arbitrarily small probability of error). The knowledge is also correctly improved with high1282

probability if enough samples are gathered outside of MCECs. In both cases, the strategy1283

switches to a finite-memory strategy for the improved knowledge constructed recursively for1284

smaller sets of environments.1285

Lemma 24 formalizes this reasoning and gives a bound N on the memory of the resulting1286

strategy. In the memory bound, the term ⌈8 log(8/ε)
η2

2
⌉ comes from the application of Lemma 91287

for distinguishing MCECs for each subset of E; and the term (2|Q|)n(|E|+1) corresponds to1288

the recursive analysis, since the strategy is defined inductively for each subset of E.1289

▶ Lemma 24. Consider an MEMDP M = ⟨Q, A, (δe)e∈E⟩, state q ∈ Q, parity objec-1290

tive φ. For all strategies σ, and ε > 0, there exists a strategy σ′ using at most N =1291

(2|Q|)n(|E|+1)|A|⌈8 log(8/ε)
η2

2
⌉ memory where n =

⌈
2p−2|Q| max( 8(|Q||A|)3

εη2 , log(16/ε))
⌉
, with p1292

the smallest nonzero probability in M , and that satisfies Pσ′
q (M, φ) ≥ Pσ

q (M, φ)− ε.1293

Proof. Given ε > 0, let1294

n0 =
⌈

8(|Q||A|)3

εη2

⌉
,1295

n =
⌈
2p−2|Q| max(n0, log(16/ε))

⌉
,1296

Notice that the bounds on n and n0 come from Lemma 23 applied for ε/4. Define the1297

sequence (gi)i≥1 by g1 = 1, and gi = α(gi−1 + β) + γ where α = 2|Q|n, β = ⌈8 log(8/ε)
η2

2
⌉,1298

and γ = |Q||A|. Note that we have, for i > 1, gi = αi−1 + (γ + αβ)(αi−1−1
α−1 ). Observe that1299

gi ≤ αi−1(1 + γ + αβ).1300

We prove, by induction on |E|, that for all states q, strategies σ, there exists a g|E|-memory1301

strategy σ′ such that Pσ′
q (M, φ) ≥ Pσ

q (M, φ)− ε.1302

We have g|E| ≤ α|E|−1(1 + γ + αβ) ≤ α|E|(1 + |Q||A| + 2|Q|nβ) ≤ α|E|(3|Q|n|A|β) ≤1303

α|E|(2α|A|β), which is at most (2|Q|)n(|E|+1)|A|⌈8 log(8/ε)
η2

2
⌉, and proves the lemma.1304

The base case |E| = 1 is obvious since there exists optimal memoryless strategies for1305

parity objectives in MDPs. Assume |E| ≥ 2.1306

Let M ′ = purge(M) and σ′ be given by Lemma 19 such that Pσ
q (M, φ) ≤ Pσ′

q′ (M ′, φ)1307

where q′ = f(q). We prove the property for M ′ and transfer the result back to M using1308

Lemma 20. More precisely, we show below that there exists a (g|E| − γ)-memory strategy σ′′1309

with Pσ′′
q′ (M ′, φ) ≥ Pσ′

q′ (M ′, φ)− ε. It follows, by Lemma 19, that there exists a g|E|-memory1310

strategy σ′′′ for M such that1311

Pσ′′′
q (M, φ) = Pσ′′

q′ (M ′, φ) ≥ Pσ′
q′ (M ′, φ)− ε ≥ Pσ

q (M, φ)− ε1312

which proves the result.1313

We construct σ′′ by imitating σ′ for n steps, and stopping if a MCEC is reached (thus,1314

either trivial or distinguishing, by Lemma 17). More precisely, consider history h in M ′ that1315

starts at q′. We define σ′′(h) = σ′(h), except in the following cases where σ′′ switches to a1316

strategy as described below:1317
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1. If last(h) belongs to a trivial MCEC, then σ′′ is memoryless from that history (as there1318

is only one possible action to choose). Notice that Pσ′′
q′ (M ′, φ | h) = Pσ′

q′ (M ′, φ | h) since1319

this MCEC is either winning or losing with probability 1, in each e ∈ E.1320

2. Assume last(h) belongs to a distinguishing MCEC D with partition (K1, K2). Let1321

β⃗ = Pσ′(M ′, φ | h), the probability values achieved from history h under strategy σ′1322

starting with history h. One can define a strategy σ′
h such that β⃗ = Pσ′

h

last(h)(M ′, φ), by1323

σ′
h : h′ 7→ σ′(h · h′). By induction applied to M ′, last(h), σ′

h, environment set Ki, and1324

ε/8, there exist g|Ki|-memory strategies σi, with Pσi

last(h)(M ′[Ki], φ) ≥ β⃗|Ki
− ε/8. We1325

apply Lemma 9 to build strategy σ′′
h satisfying the following:1326

Pσ′′
h

last(h)(M
′[e], φ) ≥ Pσi

last(h)(M
′[e], φ)− ε/4 for all environments e ∈ Ki. (8)1327

At h, we let σ′′ switch to σ′′
h. It follows that Pσ′′

q′ (M ′, φ | h) ≥ Pσ′
q′ (M ′, φ | h)− ε/4.1328

3. Assume that h contains n0 occurrences of distinguishing state-action pairs, that is,1329

|h|TM′ = n0. Let (q, a, q′) ∈ TM be a distinguishing transition with the largest number of1330

occurrences in h; and let (K1, K2) be the partition of E induced by this transition. For1331

each i = 1, 2, let σi be the g|Ki|-memory strategy given by induction hypothesis applied1332

to M ′, state last(h), environment set Ki, bound ε/4, and strategy σ′
h : h′ 7→ σ′(h · h′)1333

that achieves Pσi

last(h)(M ′[Ki], φ) ≥ Pσ′
h

last(h)(M ′[Ki], φ)− ε/4 for each i = 1, 2. We let σ′′1334

switch to:1335

σ1 if
∣∣∣ |h|q,a,q′

|h|q,a
− δe(q, a)(q′)

∣∣∣ < η/2 for some e ∈ K1,1336

σ2 otherwise.1337

The above shows that if h is a good classification in e, then Pσ′′
q′ (M ′[e], φ | h) ≥1338

Pσ′
q′ (M ′[e], φ | h)− ε/4.1339

4. If |h| = n and none of the above applies, then σ′′ switches to an arbitrary memoryless1340

strategy. These histories that satisfy case 4 has probability at most ε/4 by Lemma 23.1341

Let us show that Pσ′′
q′ (M ′, φ) ≥ Pσ′

q′ (M ′, φ)− ε. To prove this, we distinguish histories h1342

according to the cases above, and relate Pσ′′
q′ (M ′, φ | h) and Pσ′

q′ (M ′, φ | h), and bound the1343

probability of some histories h.1344

Let us write1345

Pσ′′
q′ (M ′[e], φ) =

∑
h: case 1

Pσ′′
q′ (M ′[e], φ, h) +

∑
h case 2

Pσ′′
q′ (M ′[e], h)Pσ′′

q′ (M ′[e], φ | h)1346

+
∑

h: case 3
bad classification

Pσ′′
q′ (M ′[e], h)Pσ′′

q′ (M ′[e], φ | h)1347

+
∑

h: case 3
good classification

Pσ′′
q′ (M ′[e], h)Pσ′′

q′ (M ′[e], φ | h)1348

+
∑

h: case 4
Pσ′′

q′ (M ′[e], h)Pσ′′
q′ (M ′[e], φ | h).1349

1350

Since Pσ′′
q′ (M ′, h) = Pσ′

q′ (M ′, h) for histories satisfying any of the cases (because σ′′ imitates1351

σ′ until such a case occurs), and because the terms Pσ′′
q′ (M ′, h) at the second and forth lines1352
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are each at most ε/4, using the cases above, we get1353

Pσ′′
q′ (M ′[e], φ)≥

∑
h:case 1

Pσ′
q′ (M ′[e], φ, h)+

∑
h: case 2

Pσ′
q′ (M ′[e], h)(Pσ′

q′ (M ′[e], φ|h)−ε/4)1354

+

 ∑
h: case 3

bad classification

Pσ′
q′ (M ′[e], h)Pσ′

q′ (M ′[e], φ | h)

− ε/41355

+
∑

h: case 3
good classification

Pσ′
q′ (M ′[e], h)(Pσ′

q′ (M ′[e], φ | h)− ε/4)1356

+
( ∑

h: case 4
Pσ′′

q′ (M ′[e], h)Pσ′′
q′ (M ′[e], φ | h)

)
− ε/4.1357

≥ Pσ′
q′ (M ′[e], φ)− ε.1358

Last, we argue that σ′′ uses memory of size g|E|. Strategy σ′′ must store the histories until1359

one of the four cases occur: this happens in at most n steps, which means |Q|n memory is1360

required for this phase. In addition, for each history of case 2, g|E|−1 + g|E|−1 + 8 log(8/ε)
η2

2
1361

memory states are needed by Lemma 9; where the terms g|E|−1 are upper bounds on the1362

memory requirement of the strategies to which we switch, given by induction. Case 3 does1363

not require additional memory since the decision is made depending on the current history,1364

which is already in the memory. In total, we thus need |Q|n(2g|E|−1 + β) memory states,1365

which is at most α(g|E|−1 + β) = g|E| − γ. ◀1366

5.4 Approximation Algorithm1367

We now provide a procedure solving the gap problem with threshold α for parity objectives1368

in MEMDPs. Informally, given bound N , the procedure guesses an N -memory strategy by1369

solving a set of polynomial constraints over the reals, and checks that the strategy ensures1370

winning with probability at least α− ε in all environments. We first give the construction1371

for reachability, then explain the extension to parity conditions.1372

Reachability in MDPs Let us start by recalling the linear constraints that characterize1373

reachability probabilities in single-environment MDPs under memoryless strategies. Consider1374

an MDP M = ⟨Q, A, δ⟩ and objective Reach(T ). Let Qno ⊆ Q, and Q? = Q \ (Qno ∪ T ). Qno1375

will be the set of states from which the reachability probability is 0; it is necessary to make1376

sure all such states are in Qno so that the equation given below has a unique solution. Define1377

the unknown xq representing the probability of reaching T from q under the strategy that is1378

being guessed, and pq(a) the probability of the strategy to pick action a from q, for a ∈ Aq.1379

Consider the following constraints:1380

xq = 0 for all q ∈ Qno,

xq = 1 for all q ∈ T,

xq =
∑

a∈Aq
pq(a) ·

∑
q′∈Q δ(q, a, q′) · xq′ for all q ∈ Q?,

0 ≤ xq ≤ 1 and 0 ≤ pq(a) ≤ 1 for all q ∈ Q, a ∈ Aq,∑
a∈Aq

pq(a) = 1 for all q ∈ Q.

(9)1381

Any solution (x⃗, p⃗) of (9) yields a strategy σp⃗, which is defined as picking action a1382

from state q with probability pq(a). The following theorem shows that x⃗ does capture1383

the reachability probabilities of σp⃗, provided that Qno is the set of states from which the1384

reachability probability is 0.1385
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▶ Theorem 25 (Theorem 10.19, [3]). Consider any subset Qno ⊆ Q, and a solution1386

(x⃗, p⃗) of (9). If for all states q ∈ Qno, Pσp⃗

q [M, Reach(T )] = 0, then for all q ∈ Q,1387

xq = Pσp⃗

q [M, Reach(T )]. Conversely, for any memoryless strategy τ , if Qno denotes the1388

set of states q with Pτ
q [M, Reach(T )] = 0, then (9) has a unique solution (x⃗, p⃗) where τ = σp⃗,1389

and xq = Pτ
q [M, Reach(T )] for all q ∈ Q.1390

Finite-Memory Reachability in MEMDPs We now show how to solve the gap problem1391

for an instance of the quantitative reachability problem for MEMDPs. Consider MEMDP1392

M = ⟨Q, A, (δe)e∈E⟩, objective Reach(T ), a memory bound N , an initial state q0, and bounds1393

ε, α > 0. We want to check whether there exists a strategy σ such that, for all environments1394

e ∈ E, we have Pσ
q0 [M [e], Reach(T )] ≥ α, or whether for all σ, there exists an environment1395

e ∈ E with Pσ
q0 [M [e], Reach(T )] < α− ε.1396

We guess a memoryless randomized strategy on combined states (q, i) for q ∈ Q and1397

0 ≤ i < N , which correspond to N -memory strategies on M . In the sequel, we write1398

[N ] = {0, 1, . . . , N − 1}. We define the unknown variable xe
q,i for each e ∈ E, and combined1399

state (q, i) representing the probability of reaching T from state q and memory value i in1400

M [e], under the strategy that is being guessed. Furthermore, define pq,i(a, i′) for each action1401

a ∈ Aq and i′ ∈ [N ], as the unknown representing the probability of the strategy picking1402

action a from (q, i) and updating the memory value to i′.1403

Consider subsets Qno
e ⊆ Q for each e ∈ E, and let Q?

e = Q \ (Qno
e ∪ Te). We write the1404

following constraints in a slightly more general setting, where a possibly different target1405

set Te is considered for each environment e (this will be useful when generalizing to parity1406

conditions below):1407

xe
q,i = 0 for all e ∈ E, q ∈ Qno

e , i ∈ [N ],
xe

q,i = 1 for all e ∈ E, q ∈ Te, i ∈ [N ],
xe

q,i =
∑

a∈Aq
pq,i(a, i′) ·

∑
q′∈Q δe(q, a, q′) · xe

q′,i′ for all e ∈ E, q ∈ Q?
e, i ∈ [N ],

0 ≤ xe
q,i ≤ 1 for all e ∈ E, q ∈ Q, i ∈ [N ],

0 ≤ pq,i(a, i′) ≤ 1 for all q ∈ Q, a ∈ Aq, i, i′ ∈ [N ],∑
a∈Aq

∑
i′∈[N ] pq,i(a, i′) = 1 for all q ∈ Q, i ∈ [N ],

xe
q0 ≥ α− ε for all e ∈ E.

(10)1408

Notice how the choice of the action and memory updates pq,i does not depend on the1409

environment. The constraints (10) simply combine |E| copies of (9) over a state space1410

augmented with N memory values. In addition we added the constraints xe
q0 ≥ α− ε for all1411

e ∈ E, which restrict the solution sets to those strategies that ensure the threshold α− ε.1412

The Gap Problem for Reachability The full procedure is as follows. We let Te = T for1413

all e ∈ E. Let N be the memory bound given in Lemma 24.1414

We enumerate all possibles choices for the sets Qno
e . For each choice (Qno

e )e∈E , we solve1415

the corresponding constraints (10). If there is no solution, we continue with the next choice.1416

Otherwise let σp⃗ be the N -memory strategy given by the solution to this equation. If1417

Pσp⃗

q [M [e], Reach(Te)] = 0 for each e ∈ E and q ∈ Qno
e , then we return Yes; otherwise we1418

continue with the next choice (Qno
e )e∈E . We return No at the end of if no solution was found.1419

Let us show that this procedure solves the gap problem. Assume that there exists a1420

strategy τ such that for all environments e ∈ E, we have Pτ
q0 [M [e], Reach(T )] ≥ α. By1421

Lemma 24, there exists a N -memory strategy τ ′ such that in all environments e ∈ E, we1422

have Pτ ′
q0 [M [e], Reach(T )] ≥ α − ε. Hence (10) must have a solution corresponding to this1423

strategy for some choice of the sets (Qno
e )e∈E , and the procedure returns Yes. Assume now1424

that no strategy achieves the threshold α− ε. In particular, no N -memory strategy achieves1425

this threshold, and the procedure returns No.1426
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We now analyze the complexity of the procedure. The value N is double exponential in1427

the size of the input, which means that the size of (10) is also double exponential. Polynomial1428

equations can be solved in polynomial space in the size of the equations [5], so here we can1429

solve (10) in double exponential space.1430

The Gap Problem for Parity We now extend the previous procedure to solve the1431

quantitative parity gap problem based on the following observations. In M [e], any finite-1432

memory strategy σ induces a Markov chain. Then the probability Pσ
q0 [M [e], φ] of satisfying1433

a parity condition φ is equal to the probability of reaching bottom strongly connected1434

components (BSCC) that are winning3 for φ in the induced Markov chain [3]. But the set1435

of BSCCs only depends on the support of σ, that is, the set of state-action pairs that have1436

positive probability. When considering an MDP under N -memory strategies, the support is1437

the set of tuples (q, i, a, i′) such that from combined state (q, i) the strategy has a nonzero1438

probability of picking action a and updating memory to i′.1439

We proceed as follows. Given MEMDP M , initial state q0, parity condition φ, and1440

bound N , we enumerate all supports S ⊆ Q× [N ]× A× [N ]. For each support S, let T S
e1441

be the set of φ-winning BSCCs in M [e] under a strategy with support S. We apply the1442

reachability procedure described above based on (10) for the target sets (T S
e )e augmented1443

with the following constraints: for all (q, i, a, i′) ∈ S, we add the constraint pq,i(a, i′) > 0,1444

and for all others pq,i(a, i′) = 0. If the answer is Yes for some support S, then we return Yes;1445

otherwise we return No.1446

This solves the gap problem: if there is τ such that for all environments e ∈ E we have1447

Pτ
q0 [M [e], φ] ≥ α, then by Lemma 24 there exists a N -memory strategy τ ′ such that for all1448

environments e ∈ E we have Pτ ′
q0 [M [e], φ] ≥ α− ε. Let S denote the support of the strategy1449

τ ′, and let T S
e be the set of winning BSCCs in M [e] under τ . So (10), instantiated for S has1450

a solution, for some choice of the sets (Qno
e )e∈E , and the procedure returns Yes. Assume now1451

that no strategy achieves the threshold α− ε. In particular, there is no N -memory strategy1452

with any support S that achieves this threshold, and the procedure returns No.1453

There are an exponential number of possibilities for the choice of support. Moreover,1454

given a support S, each set T S
e can be determined in polynomial time. Overall, the procedure1455

remains in double exponential space.1456

▶ Theorem 26. The gap problem can be solved in double exponential space for MEMDPs1457

with parity objectives.1458
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