A Lattice Theory for Solving Games of | mperfect
I nformation *

Martin De Wulf, Laurent Doyen**, and Jean-Frangois Raskin

Département d’Informatique
Université Libre de Bruxelles

Abstract. In this paper, we propose a fixed point theory to solve games of imper-
fect information. The fixed point theory is defined on the lattice of antichains of
sets of states. Contrary to the classical solution proposed by Reif [Rei84], our new
solution does not involve determinization. As a consequence, it is readily applica-
ble to classes of systems that do not admit determinization. Notable examples of
such systems are timed and hybrid automata. As an application, we show that the
discrete control problem for games of imperfect information defined by rectan-
gular automata is decidable. This result extends a result by Henzinger and Kopke
in [HK99].

1 Introduction

Timed and hybrid systems are dynamical systems with both discrete and continuous
components. A paradigmatic example of a hybrid system is a digital control program
for an analog plant environment, like a furnace or an airplane: the controller state moves
discretely between control modes, and in each control mode, the plant state evolves
continuously according to physical laws. A natural model for hybrid systems is the
hybrid automaton, which represents discrete components using finite-state machines
and continuous components using real-numbered variables whose evolution is governed
by differential equations or differential inclusions [ACH95].

The distinction between continuous evolutions of the plant state (which is given by
the real-numbered variables of a hybrid automaton) and discrete switches of the con-
troller state (which is given by the location, or control mode, of the hybrid automaton)
permits a natural formulation of the safety control problem: given an unsafe set U of
plant states, is there a strategy to switch the controller state in real time so that the plant
can be prevented from entering U? In other words, the hybrid automaton specifies a set
of possible control modes, together with the plant behavior resulting from each mode,
and the control problem asks for deriving a switching strategy between control modes
that keeps the plant out of trouble.

In the literature, there are algorithms or semi-algorithms (termination is not always
guaranteed) to derive such switching strategy. Those semi-algorithms usually comes
in the form of symbolic fixed point computations that manipulate sets of states using a

* Supported by the FRFC project “Centre Fédéré en Veérification” funded by the Belgian Na-
tional Science Fundation (FNRS) under grant nr 2.4530.02
** Research fellow supported by the Belgian National Science Foundation (FNRS).

well-suited monotonic function like the controllable predecessor operator [AHK02,MPS95].
Those algorithms make a strong hypothesis: they consider that the controller that exe-
cutes the switching strategy has a perfect information about the state of the controlled
system. Unfortunately, this is usually an unreasonable hypothesis. Indeed, when the
switching strategy has to be implemented by a real hardware, the controller typically
acquires information about the state of the system by reading values on sensors. Those
sensors have finite precision, and so the information about the state in which the system
lies is imperfect. Let us illustrate this. Consider a controller that monitors the tempera-
ture of a tank, and has to maintain the temperature between given bounds by switching
on and off a gas burner. The temperature of the tank is the state of the continuous system
to control. Assume that the temperature is sensed through a thermometer that returns
an integer number and ensures a deviation bounded by one degree Celsius. So, when
the sensor returns the temperature c, the controller only knows that the temperature lies
in the interval (¢ — 1, ¢ + 1) degrees. We say that the sensor reading is an observation
of the system. This observation gives an imperfect information about the state of the
system.

Now, if we fix a set of possible observations of the system to control, the control
problem that we want to solve is the safety control problem with imperfect information:
“given an unsafe set U of plant states, a set of observations, is there an observation based
strategy to switch the controller state in real time so that the plant can be prevented from
entering U?”. While it is well-known that safety games of perfect information can be
won using memoryless strategies, it is not the case for games of imperfect informa-
tion [Rei84]. In that paper, Reif studies games of incomplete information which are a
subclass of safety games of imperfect information where the set of observations is a par-
tition of the state space. Notice that this is not the case of our tank example since when
the temperature of the water is d, the thermometer may return either [d] or |d]. To win
such games, memory is sometimes necessary: the controller has to remember (part of)
the history of observations that he has made so far. In the finite state case, games of
incomplete information can be solved algorithmically. Reif proposes an algorithm that
first transforms the game of incomplete information into a game of perfect information
using a kind of determinization procedure.

In this paper, we propose an alternative method to solve games of imperfect (and in-
complete) information. Our method comes in the form of a fixed point (semi-)algorithm
that iterates a monotone operator on the lattice of antichains of sets of states. The great-
est fixed point of this operator contains exactly the information needed to determine the
states from which an observation based control strategy exists and to synthesize such a
strategy. We prove that our algorithm has an optimal complexity for finite state games
and we identify a class of infinite state games for which the greatest fixed point of the
operator is computable. Using this class of games and results from [HK99], we show
that the discrete-time control problem with imperfect information is decidable for the
class of rectangular automata. Strategies that win those games have some robustness
properties as they can be implemented using hardware that senses its environment with
finite precision.

Our fixed point method has several advantages over the algorithmic method pro-
posed by Reif. First, as it does not require determinization, our (semi-)algorithm is read-

ily applicable to classes of systems for which determinization is not effective: timed and
hybrid automata are notable examples [AD94]. Second, we show that there are families
of games on which the Reif’s algorithm needs exponential time when our algorithm
only needs polynomial time. Third, as our method is based on a lattice theory, abstract
interpretation methods can be used to derive in a systematic way approximation algo-
rithms [CC77].

Our paper is structured as follows. In Section 2, we recall the definition of the lattice
of antichains. In Section 3, we show how to use this lattice to solve games of imperfect
information. In Section 4, we give a fixed point algorithm that is EXPTIME for finite
state games and we compare with the technique of Reif. Finally, in Section 5, we solve
games of imperfect information for rectangular automata. Due to lack of space, the
proofs of most of the theorems have been omitted and can be found in [?]

2 ThelLattice of Antichains

First we recall what is the lattice of antichains. An antichain on a partially ordered set
(X,<)isaset X’ C X such that for any z1,z2 € X’ with z; # x5 we have neither
x1 < 9 nor ze < 1, that is X’ is a set of incomparable elements of X. We define
similarly a chain to be a set of comparable elements of X.

Let ¢,¢' € 22° and define gC ¢ ifandonlyifvs € q: 35" € ¢ : s C &',
This relation is a preorder but is not antisymmetric. Since we need a partial order, we
construct the set Z C 22° for which C is antisymmetric on L. The set L is the set of
antichains on (2, C).

We say that a set s C S is dominated in ¢ if and only if 3s’ € ¢ : s C s’. The set of
dominated elements of ¢ is denoted Dom(q). The reduced form of ¢ is [¢] = ¢\Dom(q)
and dually the expanded form of ¢ is]¢[= ¢ U Dom(q). The set [¢] is an antichain of
(25, C). Observe that Dom([q]) = 0, thatis Vs, s’ € [q] : if s1 C s then s; = so.
The relation C has the useful following properties:

Lemmal Letq,q' €22°.1f¢ C ¢/ theng C ¢'.

Lemma 2 vQ7q/ € 2257VQ1aQQ € {Q7 |—Q‘|v]Q(}aniaQQ € {q/v |—q/-|a -|q/|—} tq1 C q2
is equivalent to ¢f C g5.

We can now define formally L as the set {[¢] | ¢ € 225}.

Lemma 3 The relation CC L x L is a partial ordering and (L,LC) is a partially
ordered set.

Lemma 4 For q,q’ € L, the greatest lower bound of g and ¢’ is¢[]¢' = [{sns’ | s €
g N s’ € ¢'}] and the least upper boundof gand ¢" isq| |¢' = [{s|s€ qV s € d'}].

For @ C L, we have [1Q = [{(N,cq8q | 8¢ € ¢} and [JQ = [{s | 3¢ €
Q : s € q}|. The least element of L is L = []L = § and the greatest element of L
isT=||]L={S}

Lemma5 (L,C,| |,[],L,T)isacomplete lattice.

This lattice is the lattice of antichains.

3 Gamesof Imperfect | nformation

3.1 Definitions

Notations Given a finite sequence @ = ag, a1, - . ., a,, We denote by [a] = n + 1 the
length of @, by @, = ao, - . ., ar the sequence of the first £ + 1 elements of @ (and @_,
is the empty sequence) and by last(a) = a,, the last element of @.

Definition 6 [Two-player games] A two-player game is a tuple (S, Sy, X'¢, X% —)
where S is a set of states, Sy C S is the set of initial states, X'¢ (resp.) is a finite
alphabet of controllable (resp. uncontrollable) actions, and —C S x (X¢UX%) x S is
a transition relation.

The game is turn-based and played by a controller against an environment. To ini-
tialize the game, the environment chooses a state = € Sy and the controller takes the
first turn. A turn of the controller consists of choosing a controllable action o that is
enabled in the current state x. If no such action exists, the controllers loses. A turn of
the environment then consists of determining a state y such that 2 = y and of choosing
an uncontrollable action « and a state z such that 4 — z. If no enabled action u exists
the environment loses. If the game continues forever, the controller wins.

Foro € X<U X% letEnabled(c) ={z € S| 32’ € S: (z,0,2’) €—} be the set
of states in which the action o is enabled, and for s C S let Post, (s) = {z' € S | 3z €
s : (z,0,2") €—} be the set of successor states of s by the action o. Furthermore,
givenaset & C ¥¢ U X, we define the notation Postx(s) to mean |, y, Post, (s).

The controller has an imperfect view of the game state space in that his/her choices
are based on imprecise observations of the states.

Definition 7 [Observation set] An observation set of the state space S is a couple (Obs, 7)
where v : Obs — 2% is such that for all x € S, there exists obs € Obs such
that x € ~(obs).

An observation obs is compatible with a state = if = € y(obs). When the controller
observes the current state = of the game, he/she receives one observation compatible
with z. The observation is non-deterministically chosen by the environment.

Definition 8 [Imperfectinformation] A two-player game (S, Sy, ¢, ¥*, —) equipped
with an observation set (Obs, v) of its state space defines a game of imperfect informa-
tion (S, Sy, X¢, X% —, Obs,~). The size of the game is the sum of the sizes of the
transition relation — and the set Obs.

Let G = (S, Sy, X¢, X% —, Obs,~) be a game of imperfect information. We say
that G is a game of incomplete information if for any obs;, obsy € Obs, if obs; # obs,
then v(obs;) N vy(obsz) =), that is the observations are disjoint, thus partitioning the
state space. We say that G is a game of perfect information if Obs = S and ~ is the
identity function.

The drawback of games of incomplete information is that they are not suited for
a robust modelization of sensors. Indeed, real sensors are imprecise and may return
different observations for a given state.

An observation based strategy for a game of imperfect information G = (S, Sg, X<, X,
—, Obs,) isafunction \ : Obs™ — X, The outcome of A on G'is the set Outcome) (G)
of couples (,obs) € ST x Obs™ such that (i) |z| = |obs|, (ii) zo € So, (ii7) for
all 0 < i < |z|, x; € v(obs;), and (iv) for all 1 < ¢ < ||, there exists v € X" such
that 2;; € Post, (Post, gpo.) ({zi-1})) -

Definition 9 [Winning strategy] We say that an observation based strategy A for a
game G of imperfect information is winning if for every (7, obs) € Outcome,(G),
we have last(T) € Enabled(A(obs)).

Let us call an history a couple (obsy,7—1) € Obs™ x X¢* such that 3z € S+ :
zo € Sp and forall 0 < ¢ < k we have x; € y(obs;)) and forall < ¢ < k we have
Xiy1 € Postsu(Posty, (x;)).

Let us call knowledge after an history (obs,@;_1) the function K : Obs™ x
2T, 25 defined inductively as follows.

K@O,Efl) = ’V(ObSQ) N So L
K (obsy,k—1) = y(obsk) N Postyu (Post,, , (K (obsk_1,0k—2))) fork >0

Thus, the knowledge after an history (obsy,, 51) is the set of states the player can
be sure the game is in after this history.

The imperfect information control problem for a class C of games of imperfect in-
formation is defined as follows: given a game G € C, determine whether there exists a
winning observation based strategy for G. We define similarly the incomplete informa-
tion control problem and the perfect information control problem.

Safety games We can encode the classical safety games using our winning condition.
To show that, we first need some definitions. Given a game of imperfect information G
we say that a set of state .Sy, is final if Vo € XU X% : Post,(Sy) C Sp.

We say that a strategy A is safe on a game of imperfect information G w.r.t. a final
set of bad states S, C S if for every (7, obs) € Outcome, (G) we have last(Z) ¢ Sp.

The imperfect information safety control problem for a class C of games of imperfect
information is defined as follows: given a two-player game G € C and a final set of
states .Sy of G, determine whether there exists an observation based strategy A which is
safe w.r.t Sy.

Theorem 10 The imperfect information safety control problem can be reduced to the
imperfect information control problem.

3.2 Using the Lattice of Antichains

We show how the lattice of antichains that we have introduced in Section 2 can be used
to solve games of imperfect information by iterating a predecessor operator.

Controllable predecessors For g € L, define the set of controllable predecessors of ¢
as follows:

CPre(q) = [{s € S| Jo € X¢: s C Enabled(o)
AYobs € Obs, 3s” € q : Postsu (Post, (s)) N~(obs) C s'}]

Let us consider an antichain ¢ = {sg, s, ... }. A set s belongs to CPre(q) iff (¢) there
is a controllable action o that is enabled in each state of s, (i¢) when the controller
plays o, any observation compatible with the next state reached by the game (after the
environment has played) suffices to determine in which set s’ of g that next state lies 1,
and (i7¢) s is maximal .

Lemma 11 The operator CPre : L — L is monotone for the partial ordering C.

Remark The controllable predecessor operator is also monotone w.r.t. the set of obser-
vations in the following sense: given a two-player game G, let CPre; (resp. CPres)
be the operator defined on the set of observations (Obsy,~y;) (resp. (Obsa,72)). If
{72(obs) | obs € Obsy} C {v1(obs) | obs € Obs; }, then for any ¢ € L we have
CPre;(gq) C CPres(q). That corresponds to the informal statement that it is easier to
control a system with more precise observations.

Theorem 12 Let G = (S, So, X<, X%, —, Obs, v) be a game of imperfect information.
There exists an observation based strategy winning on G if and only if

{So N ~y(obs) | obs € Obs} C | |{q|q = CPre(q)}. (1)

Before proving this theorem, we give some intuition. We denote by Win the set
| I{qg | ¢ = CPre(q)} which is the greatest fixed point of CPre. Condition (1) states
that any observation of the initial state = suffices to determine in which set s of Win
the game has been started. Since Win is a fixed point of the controllable predecessor
operator, we know that in each set s of Win we have a controllable action that can be
played by the controller in every state = € s such that (¢) the state = reached after the
move of the environment lies in one of the sets s’ of Win whatever the environment
does and, such that (i) the set s’ can be determined using any observation compatible
with z. Following this, there exists a winning strategy if Condition (1) holds. The other
direction of the theorem is a direct consequence of Tarski’s Theorem.

Proof of Theorem 12.

First, we give an effective construction of a winning strategy for G, in the form
of a finite automaton. For ¢ € L and 0 € X¢, let ¢(q,0) = [{s € S | s C
Enabled(c) and Yobs € Obs,3s’ € ¢ : Postsu(Post,(s)) N ~y(obs) C s'}] be the
set of controllable predecessors of ¢ for the action o. From the greatest fixed point Win
of CPre, we define the finite state automaton A = (Q, qo, £, §) where

- Q = WinU {qo} where gy ¢ Win,

! The quantification over obs is universal since for observations that are incompatible with the
new state, the condition holds trivially.

— qo is the initial state,

- L:Q\{q} — Xcisalabeling of the states. For each s € Win, we choose o € X°
such that s € ¢(Win, o) and we fix £(s) = o (such a o exists since Win is a fixed
point of CPre).

— 0 :@Q x Obs — (@ is a transition function.

e For each obs € Obs, choose s € Win such that Sy N y(obs) C s and fix
0(qo, obs) = s;
e Foreach s € Winand obs € Obs, choose s’ € Win such that Post 5« (Post, (s))N
~(obs) C s’ where o = L(s) and fix §(s, obs) = s’.
Such sets s, s’ exist by condition (1).

In this automaton, states are labelled with actions and transitions are labelled with
observations. Intuitively, a state s of A corresponds to the minimal knowledge that is
sufficient to control the system and the label £(s) is a winning move the controller
can play having this knowledge. The next state s’ is determined by the observation obs
according to the transition relation.

Letd : Q xObs™ — (be an extension of the transition function § on words defined
recursively by §(s, obs) = d(s, obs) and é(s, obs.obs) = §(é (s, obs), obs).

The strategy defined by A is A : Obs™ — ¢ such that A(obs) = £(s) if 5(go, obs) =
5. If for some obs there is no s such that 4(g, obs) = s, then the sequence of observa-
tions obs is impossible. In this case, we can set \(obs) to any value.

Now we proceed with the proof of the theorem.

— If (1) holds. We show that the strategy) defined by A is such that for any (7, obs) €
Outcome (@), we have (i) last(Z) € &(qo, obs) and (i7) last(Z) € Enabled(\(obs))
(thus X is winning) . We show this by induction on the length of Z and obs.

1. |7| = 1. We have T = x and obs = obsy with x5 € Sy and 2o € ~(obsy).
Let s = &(qo,obsy) and o = L(s) = A(obs). By construction of A, we have
So Ny(obsy) C sand s € Win.

As x4 € s and Win is a fixed point of CPre, we have (i) last(Z) € d(qo, obso)
and (iz) zo € Enabled(A(obsp)).

2. |T| > 0.WehaveT = g, 21, ...,z and obs = obsg, obsy, ..., obs, with z;, €
*y(obsk). Let sp_1 = 5((]0,%]@_1) and o = ﬁ(Sk_l) = /\(%k—l)-

By the induction hypothesis, we have x_1 € s;_1. For obs = obsy, let s =
0(sk—1, obs). By construction of A, we have s, € Win and Post s« (Post, (sx—1))N
~(obs) C si. Therefore, we have x;, € s and by definition of £, we have

sk C Enabled(c’) where o/ = L(si) = A(obsy). This yields (i) last(Z) €
6(qo, obs) and (i4) x;, € Enabled(\(obsy)).

— If A is an observation based strategy that is winning on G. We must show that (1)
holds. Let Vi, C 2% x Obs™ be the smallest set (w.r.t. to C) such that:

e (So N ~(obs),obs) € V for every obs € Obs, and

o if (s,0bs) € Vj then (Postyu(Post, gp (s)) N v(obs), obs.obs) € Vy for
every obs € Obs.

Let W = {s | (s,obs) € V)\}. Let us show that W) C CPre(W)). By Lemma 1,
it suffices to show that W, C]CPre(Wy)[. Let (s,obs) € V) with obs = obsy,
obsy, . ..,obsy and let us show that s € CPre(TWy).

Algorithm 1: Algorithm for CPre.
Data : A game of imperfect information G = (S, So, X¢, ¥*, —, Obs,) and a set

q € L.
Result : The set Z = CPre(q).
begin
1 Z —0;
2 Wait « {S};
3 while Wait # () do
4 Pick s € Wait of maximal cardinality ;
5 Wait +— Wait ;
6 if for someo € X° wehave:
(1) s C Enabled(c) and
(2) for all obs € Obs, there exists s’ € ¢ such that Postsu (Posts(s)) N
~(obs) C s’
then
7 | Z—ZU{s};
dse
8 | Wait — Wait U {s" | s’ € Children(s) AVs" € ZUWait: s Zs"};
9 return 7,
end
By definition of Vy, there exist sg, s1, . . ., si such that so = SoN~y(obsy), s = s,
and for each 1 < ¢ < ki s; = Postsgu(Posty,(s;—1)) N y(obs;) with o; =
A(obspobs; ... obs;_1). For any sequence of states T = xq, z1, ...,z With z; €

s; and (Ty,obsy) € Outcomey(G), since A is winning on G, we have x5, €
Enabled()(obs)) and thus s C Enabled(A(obs)). Also we have Post 5. (Post , 55 (5))N
~(obs) € W, for every obs € Obs by construction of V. This entails that s €
1CPre(Wy)[, showing that W, C CPre(W)), that is CPre is extensive at W and

by the Tarski’s fixed point Theorem W, T Win. The conclusion follows since
{So N ~y(obs) | obs € Obs} C Wj.

4 Gameswith Finite State Space

In this section we show that computing the greatest fixed point of CPre for finite state
games can be done in EXPTIME. We also compare our algorithm based on the lattice
of antichains with the classical technique of [Rei84].

4.1 Fixed Point Algorithm

To compute the greatest fixed point of CPre, we iterate CPre from S using Algorithm 1.
This algorithm constructs systematically subsets of .S and checks at line 6 whether they

belong to CPre(q). This is done by treating all subsets of size i before the subsets of
size ¢ — 1, so we avoid to treat the subsets of the already included subsets and the result
is in reduced form. Therefore, Algorithm 1 uses the following operator Children(s) =
{s\{z} | x € s} which returns the subsets of s of cardinality |s| — 1.

Lemma 13 Algorithm 1 computes CPre in EXPTIME in the size of the game.

Lemma 14 Anascending (or descending) chainin (L,C,| |,[], L, T) hasatmost 2"+
1 elements where n = |.S].

Theorem 15 The imperfect information control problem is EXPTIME-complete.

Proof. We first prove the upper bound. From Lemma 14 and since CPre is monotone,
we reach the greatest fixed point Win after at most O(2") iterations of CPre. From
Lemma 13 computing CPre can be done in EXPTIME. The conclusion follows. For the
lower bound, since we solve a more general problem than Reif [Rei84], we have the
EXPTIME-hardness. |

4.2 Example

Consider the two-player game G, on Fig. 1 with state space S = {1, 1’,2,2’, 3,3/, Bad},
initial state So = {2, 3}, actions X = {a, b} and X* = {u}. The observation set is
Obs = {obs;, obsz} with y(obs;) = {1,1’,2,2,Bad} and y(obss) = {1, 1/, 3,3'}.

For the controller, the goal is to avoid state Bad in which there is no controllable
action. So the controller must play an a in state 1 and 3 and a b in state 2. However the
controller cannot distinguish 1 from 2 using only the current observation. Thus, to dis-
criminate those states, the controller has to rely on its memory of the past observations.

We show below the iterations of the fixed point algorithm and the construction of
the strategy. The fixed point computation starts from T = {.S}. Each set is paired with
an action that can be played in all the states of that set:

= CPre({S}) = {{1,2,3}a}
CPre(S'l) = {{2}1)7 {17 3}(1}
= CPre(Sy) = {{1}a, {2}, {3}a}
54 = CPre(S3) =53

Since Sy = S3, we have Win = S3 = {{1}, {2}, {3}}. The existence of a winning
strategy is established by condition (1) of Theorem 12 since the sets SoN~y(obs;) = {2}
and Sy N y(obse) = {3} are dominated in Win.

From the fixed point, using the construction given in the proof of Theorem 12, we
construct the automaton of Fig. 2 which encodes a winning strategy. Indeed, when the
game starts the control is either in state 2 if the given observation is obs; or in state 3 if
the given observation is obss. In the first case, the controller plays b and in the second
case, it plays a. Then the game lies in state 1. According to the strategy automaton,
the controller plays an a and receives a new observation that allows it to determine if
the game lies now in state 2 (obs;) or in state 3 (obss). From there, the controller can
clearly iterate this strategy.

Fig. 1. A two-player game G1 with observation set {obs:, obs2 }.

4.3 Comparison with the classical technique of [Rei84]

In [Rei84] the author gives an algorithm to transform a game of incomplete information
G into a game G’ of perfect information on the histories of G.

The idea can be expressed as follows : given a game of incomplete information G =
(S, So, X, X% —1,0bs,~) define a two-player game G” = (S’, S(, X<, {e}, —2) as
follows: S’ is the set of knowledges K (obsy, @ 1) such that (obsy, @ 1) is an history
of G. S is the set of knowledges { K (obsp)|v(obsg) N So # @}. Finally the transition
relation —, is defined as follows: K (obsy, 7y _1) —+5 K(obsy,1,5%) and s =5 s
for all s € S’. To obtain the final game of perfect information G, equip G” with the
set of observation (S’, v;) where +; is the identity function. Solving the resulting game

Fig. 2. A finite state automaton A defining a winning strategy for G'1.

of perfect information G’ requires linear time in the size of S’ but there exist games of
incomplete information G requiring the construction of a game of perfect information
of size exponentially larger than the size of G.

As our algorithm does not require this determinization, it is easy to find families of
games where our method is exponentially faster than Reif’s algorithm. This is formal-
ized in the next theorem.

Theorem 16 There exist finite state games of incomplete information for which the al-
gorithm of [Rei84] requires an exponential time where our algorithm needs only poly-
nomial time.

5 Control with imperfect information of rectangular automata

In this section, we introduce the notion of infinite games with finite stable quotient.
We use this notion to show that the discrete control problem for games of imperfect in-
formation defined by rectangular automata is decidable. This result extends the results
in [HK99].

5.1 Games with Finite R-stable quotient

Here we drop the assumption that .S is finite and we consider the case where there exists
a finite quotient of .S over which the game is stable. We obtain a general decidability
result for games of imperfect information with finite stable quotients.

Let R = {ry,...,r;} be afinite partition of S. A set s C S is R-definable if s =
U,c, rforsome Z C R. We say that an antichain ¢ € L is R-definable if for every s €
q, s is R-definable.

Definition 17 [R-stable] A game of imperfect information (S, Sy, X¢, X%, —, Obs, 7)
is R-stable if for every o € X the following conditions hold: (i) Enabled(c) is R-
definable; (i:) for every r € R, Postxu (Post,(r)) is R-definable; (iii) forany r,r’ €
R, if forsome z € rand u € X" we have Post, (Post,) ({z})Nr’ # (then forany x €
r, there exists u € X* such that Post s (Post,) ({z}) N7’ # 0; (iv) furthermore, for
every obs € Obs, y(obs) is R-definable.

The next lemma states properties of R-stable games of imperfect information. They
are useful for the proof of the next theorem.

Lemma 18 Let G = (S, Sy, X¢, X", —, Obs, v) be a R-stable game of imperfect in-
formation. Let s,s’,s” C S and r € R such that (i) s’ and s” are R-definable and
(15) s Nr # . If there exists o € X° such that (ii¢) s C Enabled(o) and (iv)
Post 5w (Post,(s)) N's’ C s” then (v) » C Enabled(o) and (vi) Postsw (Post, (s U
r)ns Cs”.

Theorem 19 Let G = (S, Sy, X, X%, —,Obs,) be a R-stable game of imperfect
information. The greatest fixed point of CPre is a R-definable antichain and is com-
putable.

Proof. We show that for any R-definable antichain ¢ € L, the antichain CPre(q) is
also R-definable. Let s € CPre(q). For any r € R such that s N7 # 0, we have by
Lemma 18 that s Ur € CPre(q). Since s C s U r, we must have s = s U r. This shows
that s is R-definable. The number of R-definable antichains is finite, and so, using
Tarski’s theorem, we can compute the greatest fixed point of CPre in a finite number of
iterations. |

5.2 Rectangular automata

We first recall the definition of rectangular automata and we define their associated
game semantics. We recall a result of [HK99] that establishes the existence of a finite
bisimulation gquotient for this game semantics.

Let X = {a1,...,2,} be a set of real-valued variables. A rectangular inequality
over X is a formula of the form xz; ~ ¢, where c is an integer constant, and ~ is one of
the following: <, <, >, >. A rectangular predicate over X is a conjunction of rectan-
gular inequalities. The set of all rectangular predicates over X is denoted Rect(X). The
rectangular predicate ¢ defines the set of vectors [¢]= {y € R"|¢[X := y]is true}.
For 1 < i < n, let [¢]; be the projection on variable z; of the set [¢]. A set of the
form [¢], where ¢ is a rectangular predicate, is called a rectangle. Given a nonnegative
integer m € N, the rectangular predicate ¢ and the rectangle [¢] are m-bounded if
|c| < m for every conjunct z; ~ ¢ of ¢. Let us denote Rect,,, (X) the set of m-bounded
rectangular predicate on X.

Definition 20 [Rectangular automaton] A rectangular automaton H is a tuple (Loc, Lab,
Edg, X, Init, Inv, Flow, Jump) where:

- Loc = {t,...,¢,} is afinite set of locations;

— Lab is a finite set of labels;

— Edg C Loc x Lab x Loc is a finite set of edges;

- X ={x1,...,x,} is afinite set of variables;

— Init : Loc — Rect(X) gives the initial condition Init(¢) of location ¢. The automa-
ton can start in ¢ with an initial valuation v lying in [Init(¢)];

— Inv : Loc — Rect(X) gives the invariant condition Inv(¢) of location ¢. The au-
tomaton can stay in ¢ as long as the values of its variables lie in [Inv(¢)];

— Flow : Loc — Rect(X) governs the evolution of the variables in each location.

— Jump maps each edge e € Edg to a predicate Jump(e) of the form ¢ A ¢’ A
NigUpdate(e) (T; = @), Where ¢ € Rect(X) and ¢' € Rect(X’) and Update(e) C
{1,...,n}. The variables in X’ refer to the updated values of the variables after the
edge has been traversed. Each variable x; with i € Update(e) is updated nondeter-
ministically to an arbitrary new value in the interval [¢'];.

A rectangular automaton is m-bounded if all its rectangular constraints are m-
bounded.

Definition 21 [Nondecreasing and bounded variables] Let H be a rectangular automa-
ton,and leti € {1,...,n}. The variable x; of H is nondecreasing if for every control
mode ¢ € Loc, the invariant interval [Inv(¢)]; and the flow interval [Flow(¢)]; are
subsets of the nonnegative reals. The variable x; is bounded if for every control mode
¢ € Loc, the invariant interval [Inv(¢)]; is a bounded set. The automaton H has nonde-
creasing (resp. bounded; nondecreasing or bounded) variables if all n variables of H
are nondecreasing (resp. bounded; either nondecreasing or bounded).

In the sequel, all the rectangular automata that we consider are assumed to be with
nondecreasing or bounded variables.
We now associate a game semantics to each rectangular automaton.

Definition 22 [Discrete game semantics of rectangular automata] The game semantics
of a rectangular automaton H = (Loc, Lab, Edg, X, Init, Inv, Flow, Jump) is the game
[H]= (S, So, X, X* —) where S = Loc x R" is the state space (with n = |X]|),
So = {(¢,v) € S | v €[Init(£)]} is the initial space, ¥'¢ = Lab, X* = {1} and —
contains all the tuples ((¢, v), o, (¢/,v")) such that:
— either there exists e = (¢, 0, ¢’) € Edg such that (v, v’) € [Jump(e)],
—or¢ = (¢ and o = 1 and there exists a continuously differentiable function f :
[0,1] —[Inv(£)] such that f(0) = v, f(1) = o’ and for all t € (0,1): f(t) €
[Flow(£)].

Games constructed from rectangular automata are played as follows. The game
is started in a location ¢ with a valuation v for the continuous variables such that
v €[Init(¢)]. At each round, the controller decides to take one of the enabled edges
if one exists. Then the environment updates the continuous variables by letting time
elapse for 1 time unit as specified by the (nondeterministic) flow predicates. A new
round is started from there. As for the games that we have considered previously, the
goal of the controller is to avoid to reach states where he does not have an enabled
transition to propose.

The next definition recalls the notion of bisimulation.

Definition 23 [Bisimulation] A simulation on the game G = (5, Sy, X, X%, —) is a
binary relation ~ on the state set S such that s; ~ sy implies that Vo € X°¢ U X%, if
s1 2 s then there exists s, such that s, > s} and s} ~ s}. Such a relation is called
a bisimulation if it is symmetric.

We consider the following equivalence relation between states of rectangular au-
tomata.

Definition 24 Given the game semantics [H]= (S, So, Lab, {1}, —) of a m-bounded
rectangular automaton H, define the equivalence relation ~,,, on S by (¢, v)~,, (¢',v")
iff ¢ = ¢ and forall 1 <4 < neither |v;] = |v}] and [v;] = [v}] or both v; and v/ are
greater than m. Let us call R, the set of equivalence classes of ~,,, on S.

The next lemma states that the number of equivalence classes for this relation is
finite for any rectangular automata.

Lemma 25 [HK99] Let H be a m-bounded rectangular automaton. The equivalence
relation =~,,, is the largest bisimulation of the game semantics [H].

5.3 Control of Rectangular Automata with imperfect information

We are now in position to extend the result of [HK99] to the case of imperfect informa-
tion.

Given H = (Loc, Lab, Edg, X, Init, Inv, Flow, Jump), a m-bounded rectangular au-
tomaton, we say that the observation set (Obs,) is m-bounded if for each obs € Obs,
~(obs) is definable as a finite union of sets of the form {({,v) | v € g} where g is
m-bounded rectangle.

Theorem 26 For any m-bounded rectangular automaton H with game semantics [H]=
(S, Sy, X, X% —), for any m-bounded observation set (Obs, v), the game of imper-
fect information (S, Sy, X¢, X% — Obs,v) is R, -stable.

As corollary of Theorem 19 and Theorem 26, we have that:

Corollary 1. The discrete control problem for games of imperfect information defined
by m bounded rectangular automata and m-bounded observation sets is decidable (in
2EXPTIME).

So far, we do not have a hardness result but we conjecture that the problem is
2EXPTIME-complete. Now, let us illustrate the discrete control problem for games
of imperfect information defined by rectangular automata on an example.

x > 260

Slow
i € [-10, -9
x € [250, 300]

=300

Fast
a & € [—-30, —25] b
x € [210, 300]

Fig. 3. A rectangular automaton modeling a cooling system.

Fig. 4. A finite state automaton defining a winning strategy for the cooling system.

Example We have implemented our fixed point algorithm using HY TECH and its script
language [HHWT95]. We illustrate the use of the algorithm on a simple example. Fig. 3
shows a rectangular automaton with four locations and one continuous variable x.

In this example, the game models a cooling system that controls the temperature
2. When requested to start, the system begins to cool down. There are two modes of
cooling, either fast or slow, among which the environment chooses. The controller can
only observe the system through two observations: H with v(H) = {(¢,z) | z > 280}
and L with y(L) = {(¢,z) | < 285}. Thus, only the continuous variable 2 can be
observed imperfectly, not the modes. Depending on the mode however, the timing and
action to stop the system are different. In the slow mode, the controller has to issue an
action a when the temperature is below 280. In the fast mode, the controller has to issue
an action b when the temperature is below 270.

The controller must use its memory of the past observations to make the correct
action in time. If the first two observations are H, H then the controller knows that the
mode is Slow. If the first two observations are H, L then the controller knows that the
mode is Fast.

The greatest fixed point, given below, allows the computation of the deterministic
strategy depicted in Fig. 4. The whole process has been automated in HY TECH. The
correspondence between state numbers in the figure and states of the fixed point is the
following:

State 0 = (Stop, z = 0), (Slow, 295 < = < 300)

State 1 = (Slow, 270 < 2 < 300)

(Not depicted) State 2 = (Slow, 295 < = < 300), (Fast, 290 < x < 300)
State 3 = (Slow, 260 < = < 289), (Slow, 295 < z < 300)

— State 4 = (Slow, 295 < = < 300), (Fast, 260 < z < 295)
— State 5 = (Start, z = 300)

— State 6 = (Slow, 250 < = < 280)

— State 7 = (Fast, 210 < z < 270)

As before, the strategy associates an action to each set of the fixed point and the
observations give the next state of the strategy.

References

[ACH'95] R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P.-H. Ho, X. Nicollin,

[AD94]
[AHKO2]

[cCT7]

A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems.
Theoretical Computer Science, 138:3-34, 1995.

Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer
Science, 126(2):183-235, 1994,

R. Alur, T.A. Henzinger, and O. Kupferman. Alternating-time temporal logic. Jour-
nal of the ACM, 49:672-713, 2002.

Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice model
for static analysis of programs by construction or approximation of fixpoints. In
POPL, pages 238-252, 1977.

[HHWT95] T.A. Henzinger, P.-H. Ho, and H. Wong-Toi. A user guide to HYTECH. In TACAS

[HK99]
[MPS95]

[Rei84]

95: Tools and Algorithms for the Construction and Analysis of Systems, Lecture
Notes in Computer Science 1019, pages 41-71. Springer-Verlag, 1995.

T.A. Henzinger and P.W. Kopke. Discrete-time control for rectangular hybrid au-
tomata. Theoretical Computer Science, 221:369-392, 1999.

O. Maler, A. Pnueli, and J. Sifakis. On the synthesis of discrete controllers for timed
systems. In STACS 95, volume 900 of LNCS pages 229-242. Springer, 1995.

John H. Reif. The complexity of two-player games of incomplete information. Jour-
nal of Computer and System Sciences, 29(2):274-301, 1984.

