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Lecture 4: Energy games with partial observation Laurent Doyen

4.1. Observations and labeled game graphs. In partial-observation games, a coloring of the state space
defines classes of indistinguishable states called observations. Player 1 does not see the current state of the
game, but only its color. Edges of the game graph carry a label which is used by player 1 to select edges.
Player 2 resolves the non-determinism.

A partial-observation game G = 〈Q, Σ, ∆〉 with weight function w : ∆ → Z and observations Obs ⊆ 2Q

consists of

Q a finite set of states,

Σ a finite alphabet of actions,

∆ ⊆ Q × Σ × Q a set of labeled transitions such that for all q ∈ Q and σ ∈ Σ, there exists (at least
one) q′ ∈ Q such that (q, σ, q′) ∈ ∆,

Obs a partition of Q, and for each q ∈ Q, let obs(q) the unique observation o ∈ Obs such that q ∈ o.

For s ⊆ L and σ ∈ Σ, we denote by postGσ (s) = {q′ ∈ Q | ∃q ∈ s : (q, σ, q′) ∈ ∆} the set of σ-successors of s.

A game with perfect observation is such that Obs = {{q} | q ∈ Q}.

A partial-observation game is blind if Obs = {Q}.

The game is played in rounds. In each round, if the current state is q, player 1 does not see the state q

but gets the obbservation obs(q). Player 1 selects an action σ ∈ Σ, and then player 2 chooses a state q′ such
that (q, σ, q′) ∈ ∆. The game proceeds to the next round in state q′.

4.2. Example. In the following (unweighted) partial-observation game, the observations are o1 = {q1},
o2 = {q2, q

′

2}, o3 = {q3, q
′

3}, and o4 = {q4}. From the initial state q1, there is no winning strategy for
player 1 to reach T = {q4}. This is because no matter the observation-based strategy α for player 1, there
exists a play ρ compatible with α that never visits q4. The play ρ is of the form (q1 Σ qx σx q3 Σ)ω where
qx = q2 if σx = a, and qx = q′2 if σx = b. Note that this definition has no circularity because the value of σx

(chosen by α) is independent of qx ∈ {q2, q
′

2} since obs(q2) = obs(q′2).
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4.3. Winning strategy. A strategy for player 1 is a function α : (Q · Σ)∗Q → Σ such that for all ρ =
q0 σ0 q1 σ1 q2 . . . qn and ρ′ = q′0 σ0 q′1 σ1 q′2 . . . q′n, if obs(qi) = obs′(qi) for all 0 ≤ i ≤ n, then α(ρ) = α(ρ′). We
say that strategies are observation-based.
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An infinite play ρ = q0 σ0 q1 σ1 q2 . . . is compatible with a strategy α if σi = α(q0 σ0 q1 . . . qi) and
(qi, σi, qi+1) ∈ ∆ for all i ≥ 0.

Given an initial credit c0 ∈ N, the energy level of a play ρ = q0 σ0 q1 σ1 q2 . . . at position k ≥ 0 is
EL(ρ, k) = Σk−1

i=0 w(qi, σi, qi+1).

A strategy α for player 1 is winning from state q with initial credit c0 for the energy objective if for all
plays ρ from q compatible with α, we have c0 + EL(ρ, k) ≥ 0 for all k ≥ 0.

The fixed initial credit problem asks to decide, given a partial-observation energy game, an initial state q

and initial credit c0, whether there exists a winning strategy for player 1 for the energy objective.
The unknown initial credit problem asks to decide, given a partial-observation energy game and an initial

state q whether there exists an initial credit and a winning strategy for player 1 for the energy objective.

4.4. Fixed initial credit.

For an initial state q ∈ Q and a fixed initial credit c0 ∈ N, we solve energy games by a reduction to safety
games of perfect observation.

Let F be the set of functions f : Q → Z ∪ {⊥}. The support of f is supp(f) = {q ∈ Q | f(q) 6= ⊥}. A
function f ∈ F stores the possible current states of the game G together with their worst-case energy level.
We say that a function f is nonnegative if f(q) ≥ 0 for all q ∈ supp(f). Initially, we set fc0

(q0) = c0 and
fc0

(q) = ⊥ for all q 6= q0. The set F is ordered by the relation � such that f1 � f2 if supp(f1) = supp(f2)
and f1(q) ≤ f2(q) for all q ∈ supp(f1).

For σ ∈ Σ, we say that f2 ∈ F is a σ-successor of f1 ∈ F if there exists an observation o ∈ Obs such that
supp(f2) = postGσ (supp(f1)) ∩ o and f2(q) = min{f1(q

′) + w(q′, σ, q) | q′ ∈ supp(f1) ∧ (q′, σ, q) ∈ ∆} for all
q ∈ supp(f2). Given a sequence x = f0σ0f1σ1 . . . fn, let fx = fn be the last function in x. Define the safety
game H = 〈QH , Σ, ∆H〉 with initial state fc0

where QH is the smallest subset of (F · Σ)∗ · F such that

1. fc0
∈ QH , and

2. for each sequence x ∈ QH , if (i) fx is nonnegative, and (ii) there is no strict prefix y of x such that
fy � fx, then x · σ · f2 ∈ QH for all σ-successors f2 of fx.

The transition relation ∆H contains the corresponding triples (x, σ, x · σ · f2), and the game is made total
by adding self-loops (x, σ, x) to sequences x without outgoing transitions. We call such sequences the leaves

of H . Note that the game H is acyclic, except for the self-loops on the leaves.
Since the relation � on nonnegative functions is a well quasi order, the state space QH is finite by König’s

Lemma.
Define the safety objective Safe(T ) in H where T = {x ∈ QH | fx is nonnegative}. Intuitively, a winning

strategy in the safety game H can be extended to an observation-based winning strategy in the energy game
G because whenever a leaf of H is reached, there exists a �-smaller ancestor that Player 1 can use to go on
in G using the strategy played from the ancestor in H . The correctness argument is based on the fact that
if Player 1 is winning from state f in H , then he is also winning from all f ′ � f .

Theorem 4A. Let G be an energy game with partial observation, and let c0 ∈ N be an initial credit.
There exists a winning observation-based strategy in G for the energy objective with initial credit c0 if and
only if there exists a winning strategy in H for the objective Safe(T ). Hence the fixed initial credit problem
is decidable.

4.5. Unknown initial credit.

We show that the unknown initial credit problem is undecidable using a reduction from the halting
problem for deterministic 2-counter Minsky machines.

Theorem 4B. The unknown initial credit problem for energy games with partial observation is unde-
cidable, even for blind games.

Given a (deterministic) 2-counter machine M , we construct a blind energy game GM such that M has
an accepting run if and only if there exists an initial credit c0 ∈ N such that Player 1 has a winning strategy
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Figure 1: Gadget to check that the first
symbol is σ1 ∈ Σ.
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Figure 2: Gadget to check that every symbol σ1 ∈ Σ is followed
by σ2 ∈ Σ.
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Figure 3: Gadget to check that # is played infinitely often.

in GM for the energy objective. In particular, a strategy that plays a sequence #π̄0#π̄1 . . . (where π̄i’s are
run traces of M) is winning in GM if and only if all but finitely many πi’s are accepting run traces of M .

The alphabet of GM is Σ = δM ∪ {#}. The game GM consists of an initial nondeterministic choice
between several gadgets described below. Each gadget checks one property of the sequence of actions played
in order to ensure that a trace of an accepting run in M is eventually played. Since the game is blind,
it is not possible for player 1 to see which gadget is executed, and therefore the strategy has to fulfill all
properties simultaneously.

The gadget in Figure 1 with σ1 = # checks that the first symbol is a #. If the first symbol is not #,
then the energy level drops below 0 no matter the initial credit. The gadget in Figure 2 checks that a certain
symbol σ1 is always followed by a symbol σ2, and it is used to ensure that # is followed by an instruction
(qI , ·, ·, ·), and that every instruction (q, ·, ·, q′) is followed by an instruction (q′, ·, ·, q′′), or by # if q′ = qF .
The gadget in Figure 3 ensures that # is played infinitely often (and a bit more . . . ). If # is played only
finitely many times, then the gadget can guess the last # and jump to the middle state where no initial
credit would allow to survive.

Finally, we use the gadget in Figure 4 to check that the tests on counter c are correctly executed. It can
accumulate in the energy level the increments and decrements of a counter c between the start of a run (i.e.,
when # occurs) and a zero test on c. A positive cheat occurs when (·, 0?, c, ·) is played while the counter c has
positive value. Likewise, a negative cheat occurs when (·, dec, c, ·) is played while the counter c has value 0.
On reading the symbol #, the gadget can guess that there will be a positive or negative cheat by moving
to the states q1 and q2, respectively. In q1, the energy level simulates the operations on the counter c but
with opposite effect, thus accumulating the opposite of the counter value. When a positive cheat occurs,
the gadget returns to the initial state, thus decrementing the energy level. The state q2 of the gadget is
symmetric. A negative cheat costs one unit of energy. Note that the gadget has to go back to its initial state
before the next #, as otherwise Player 1 wins. This ensures that the gadget does not monitor a zero-test
accross two different runs.

The game GM has such gadgets for each counter. Thus, a strategy in GM which cheats infinitely often
on a counter would not survive no matter the value of the initial credit.

The correctness of this construction is established as follows. First, assume that M has an accepting run
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Figure 4: Gadget to check the zero tests on counter c (assuming σ ranges over Σ \ {#}).

π with trace π̄. Then, the strategy playing (#π̄)ω is winning for the energy objective with initial credit |π̄|
because an initial credit |π̄| is sufficient to survive in the “∞-many #” gadget of Figure 3, as well as in the
zero-test gadget of Figure 4 because all zero tests are correct in π and the counter values are bounded by |π̄|.
Second, if there exists a winning strategy in GM with some finite initial credit, then the sequence played
by this strategy can be decomposed into run traces separated by #, and since the strategy survived in the
gadget of Figure 4, there must be a point where all run traces played correspond to faithful simulation of M

with respect to counter values, thus M has an accepting run.
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