2.9 Verification of dynamic and parameterized systems

Lecture 4: Energy games with partial observation

4.1. Observations and labeled game graphs. In partial-observation games, a coloring of the state space defines classes of indistinguishable states called *observations*. Player 1 does not see the current state of the game, but only its color. Edges of the game graph carry a label which is used by player 1 to select edges. Player 2 resolves the non-determinism.

A partial-observation game $G = \langle Q, \Sigma, \Delta \rangle$ with weight function $w : \Delta \to \mathbb{Z}$ and observations $\mathsf{Obs} \subseteq 2^Q$ consists of

Q a finite set of states,

 Σ a finite alphabet of actions,

 $\Delta \subseteq Q \times \Sigma \times Q$ a set of labeled transitions such that for all $q \in Q$ and $\sigma \in \Sigma$, there exists (at least one) $q' \in Q$ such that $(q, \sigma, q') \in \Delta$,

Obs a partition of Q, and for each $q \in Q$, let obs(q) the unique observation $o \in Obs$ such that $q \in o$.

For $s \subseteq L$ and $\sigma \in \Sigma$, we denote by $\mathsf{post}_{\sigma}^{G}(s) = \{q' \in Q \mid \exists q \in s : (q, \sigma, q') \in \Delta\}$ the set of σ -successors of s. A game with *perfect observation* is such that $\mathsf{Obs} = \{\{q\} \mid q \in Q\}$. A partial-observation game is *blind* if $\mathsf{Obs} = \{Q\}$.

The game is played in rounds. In each round, if the current state is q, player 1 does not see the state q but gets the observation obs(q). Player 1 selects an action $\sigma \in \Sigma$, and then player 2 chooses a state q' such that $(q, \sigma, q') \in \Delta$. The game proceeds to the next round in state q'.

4.2. Example. In the following (unweighted) partial-observation game, the observations are $o_1 = \{q_1\}$, $o_2 = \{q_2, q'_2\}$, $o_3 = \{q_3, q'_3\}$, and $o_4 = \{q_4\}$. From the initial state q_1 , there is no winning strategy for player 1 to reach $\mathcal{T} = \{q_4\}$. This is because no matter the observation-based strategy α for player 1, there exists a play ρ compatible with α that never visits q_4 . The play ρ is of the form $(q_1 \Sigma q_x \sigma_x q_3 \Sigma)^{\omega}$ where $q_x = q_2$ if $\sigma_x = a$, and $q_x = q'_2$ if $\sigma_x = b$. Note that this definition has no circularity because the value of σ_x (chosen by α) is independent of $q_x \in \{q_2, q'_2\}$ since $\mathsf{obs}(q_2) = \mathsf{obs}(q'_2)$.

4.3. Winning strategy. A strategy for player 1 is a function $\alpha : (Q \cdot \Sigma)^*Q \to \Sigma$ such that for all $\rho = q_0 \sigma_0 q_1 \sigma_1 q_2 \dots q_n$ and $\rho' = q'_0 \sigma_0 q'_1 \sigma_1 q'_2 \dots q'_n$, if $\mathsf{obs}(q_i) = \mathsf{obs}'(q_i)$ for all $0 \le i \le n$, then $\alpha(\rho) = \alpha(\rho')$. We say that strategies are observation-based.

Laurent Doven

2011

An infinite play $\rho = q_0 \sigma_0 q_1 \sigma_1 q_2 \dots$ is *compatible* with a strategy α if $\sigma_i = \alpha(q_0 \sigma_0 q_1 \dots q_i)$ and $(q_i, \sigma_i, q_{i+1}) \in \Delta$ for all $i \ge 0$.

Given an initial credit $c_0 \in \mathbb{N}$, the energy level of a play $\rho = q_0 \sigma_0 q_1 \sigma_1 q_2 \dots$ at position $k \geq 0$ is $\mathsf{EL}(\rho, k) = \sum_{i=0}^{k-1} w(q_i, \sigma_i, q_{i+1})$.

A strategy α for player 1 is winning from state q with initial credit c_0 for the *energy* objective if for all plays ρ from q compatible with α , we have $c_0 + \mathsf{EL}(\rho, k) \ge 0$ for all $k \ge 0$.

The fixed initial credit problem asks to decide, given a partial-observation energy game, an initial state q and initial credit c_0 , whether there exists a winning strategy for player 1 for the energy objective.

The unknown initial credit problem asks to decide, given a partial-observation energy game and an initial state q whether there exists an initial credit and a winning strategy for player 1 for the energy objective.

4.4. Fixed initial credit.

For an initial state $q \in Q$ and a fixed initial credit $c_0 \in \mathbb{N}$, we solve energy games by a reduction to safety games of perfect observation.

Let \mathcal{F} be the set of functions $f: Q \to \mathbb{Z} \cup \{\bot\}$. The support of f is $\operatorname{supp}(f) = \{q \in Q \mid f(q) \neq \bot\}$. A function $f \in \mathcal{F}$ stores the possible current states of the game G together with their worst-case energy level. We say that a function f is nonnegative if $f(q) \ge 0$ for all $q \in \operatorname{supp}(f)$. Initially, we set $f_{c_0}(q_0) = c_0$ and $f_{c_0}(q) = \bot$ for all $q \neq q_0$. The set \mathcal{F} is ordered by the relation \preceq such that $f_1 \preceq f_2$ if $\operatorname{supp}(f_1) = \operatorname{supp}(f_2)$ and $f_1(q) \le f_2(q)$ for all $q \in \operatorname{supp}(f_1)$.

For $\sigma \in \Sigma$, we say that $f_2 \in \mathcal{F}$ is a σ -successor of $f_1 \in \mathcal{F}$ if there exists an observation $o \in \mathsf{Obs}$ such that $\mathsf{supp}(f_2) = \mathsf{post}_{\sigma}^G(\mathsf{supp}(f_1)) \cap o$ and $f_2(q) = \min\{f_1(q') + w(q', \sigma, q) \mid q' \in \mathsf{supp}(f_1) \land (q', \sigma, q) \in \Delta\}$ for all $q \in \mathsf{supp}(f_2)$. Given a sequence $x = f_0 \sigma_0 f_1 \sigma_1 \dots f_n$, let $f_x = f_n$ be the last function in x. Define the safety game $H = \langle Q^H, \Sigma, \Delta^H \rangle$ with initial state f_{c_0} where Q^H is the smallest subset of $(\mathcal{F} \cdot \Sigma)^* \cdot \mathcal{F}$ such that

1. $f_{c_0} \in Q^H$, and

2. for each sequence $x \in Q^H$, if (i) f_x is nonnegative, and (ii) there is no strict prefix y of x such that $f_y \preceq f_x$, then $x \cdot \sigma \cdot f_2 \in Q^H$ for all σ -successors f_2 of f_x .

The transition relation Δ^H contains the corresponding triples $(x, \sigma, x \cdot \sigma \cdot f_2)$, and the game is made total by adding self-loops (x, σ, x) to sequences x without outgoing transitions. We call such sequences the *leaves* of H. Note that the game H is acyclic, except for the self-loops on the leaves.

Since the relation \leq on nonnegative functions is a *well quasi order*, the state space Q^H is finite by König's Lemma.

Define the safety objective $\mathsf{Safe}(\mathcal{T})$ in H where $\mathcal{T} = \{x \in Q^H \mid f_x \text{ is nonnegative}\}$. Intuitively, a winning strategy in the safety game H can be extended to an observation-based winning strategy in the energy game G because whenever a leaf of H is reached, there exists a \preceq -smaller ancestor that Player 1 can use to go on in G using the strategy played from the ancestor in H. The correctness argument is based on the fact that if Player 1 is winning from state f in H, then he is also winning from all $f' \succeq f$.

Theorem 4A. Let G be an energy game with partial observation, and let $c_0 \in \mathbb{N}$ be an initial credit. There exists a winning observation-based strategy in G for the energy objective with initial credit c_0 if and only if there exists a winning strategy in H for the objective $Safe(\mathcal{T})$. Hence the fixed initial credit problem is decidable.

4.5. Unknown initial credit.

We show that the unknown initial credit problem is undecidable using a reduction from the halting problem for deterministic 2-counter Minsky machines.

Theorem 4B. The unknown initial credit problem for energy games with partial observation is undecidable, even for blind games.

Given a (deterministic) 2-counter machine M, we construct a blind energy game G_M such that M has an accepting run if and only if there exists an initial credit $c_0 \in \mathbb{N}$ such that Player 1 has a winning strategy

Figure 1: Gadget to check that the first symbol is $\sigma_1 \in \Sigma$.

Figure 3: Gadget to check that # is played infinitely often.

in G_M for the energy objective. In particular, a strategy that plays a sequence $\#\bar{\pi}_0\#\bar{\pi}_1\dots$ (where $\bar{\pi}_i$'s are run traces of M) is winning in G_M if and only if all but finitely many π_i 's are accepting run traces of M.

The alphabet of G_M is $\Sigma = \delta_M \cup \{\#\}$. The game G_M consists of an initial nondeterministic choice between several gadgets described below. Each gadget checks one property of the sequence of actions played in order to ensure that a trace of an accepting run in M is eventually played. Since the game is blind, it is not possible for player 1 to see which gadget is executed, and therefore the strategy has to fulfill all properties simultaneously.

The gadget in Figure 1 with $\sigma_1 = \#$ checks that the first symbol is a #. If the first symbol is not #, then the energy level drops below 0 no matter the initial credit. The gadget in Figure 2 checks that a certain symbol σ_1 is always followed by a symbol σ_2 , and it is used to ensure that # is followed by an instruction $(q_I, \cdot, \cdot, \cdot)$, and that every instruction (q, \cdot, \cdot, q') is followed by an instruction (q', \cdot, \cdot, q'') , or by # if $q' = q_F$. The gadget in Figure 3 ensures that # is played infinitely often (and a bit more...). If # is played only finitely many times, then the gadget can guess the last # and jump to the middle state where no initial credit would allow to survive.

Finally, we use the gadget in Figure 4 to check that the tests on counter c are correctly executed. It can accumulate in the energy level the increments and decrements of a counter c between the start of a run (i.e., when # occurs) and a zero test on c. A positive cheat occurs when $(\cdot, 0?, c, \cdot)$ is played while the counter c has positive value. Likewise, a negative cheat occurs when (\cdot, dec, c, \cdot) is played while the counter c has value 0. On reading the symbol #, the gadget can guess that there will be a positive or negative cheat by moving to the states q_1 and q_2 , respectively. In q_1 , the energy level simulates the operations on the counter c but with opposite effect, thus accumulating the opposite of the counter value. When a positive cheat occurs, the gadget returns to the initial state, thus decrementing the energy level. The state q_2 of the gadget is symmetric. A negative cheat costs one unit of energy. Note that the gadget has to go back to its initial state before the next #, as otherwise Player 1 wins. This ensures that the gadget does not monitor a zero-test accross two different runs.

The game G_M has such gadgets for each counter. Thus, a strategy in G_M which cheats infinitely often on a counter would not survive no matter the value of the initial credit.

The correctness of this construction is established as follows. First, assume that M has an accepting run

$$\Sigma, 0$$

$$\#, 0$$

$$\#, 0$$

$$\#, 0$$

$$(\cdot, 0?, c, \cdot), 0$$

$$\#, 0$$

$$(\cdot, 0?, c, \cdot), 0$$

$$\#, 0$$

$$(\cdot, dec, c, \cdot), -1$$

$$(\cdot, dec, c, \cdot), -1$$

$$\#, 0$$

$$(\cdot, dec, c, \cdot), -1$$

Figure 4: Gadget to check the zero tests on counter c (assuming σ ranges over $\Sigma \setminus \{\#\}$).

 π with trace $\bar{\pi}$. Then, the strategy playing $(\#\bar{\pi})^{\omega}$ is winning for the energy objective with initial credit $|\bar{\pi}|$ because an initial credit $|\bar{\pi}|$ is sufficient to survive in the " ∞ -many #" gadget of Figure 3, as well as in the zero-test gadget of Figure 4 because all zero tests are correct in π and the counter values are bounded by $|\bar{\pi}|$. Second, if there exists a winning strategy in G_M with some finite initial credit, then the sequence played by this strategy can be decomposed into run traces separated by #, and since the strategy survived in the gadget of Figure 4, there must be a point where all run traces played correspond to faithful simulation of M with respect to counter values, thus M has an accepting run.