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Lecture 4: Energy games with partial observation Laurent Doyen

4.1. Observations and labeled game graphs. In partial-observation games, a coloring of the state space
defines classes of indistinguishable states called observations. Player 1 does not see the current state of the
game, but only its color. Edges of the game graph carry a label which is used by player 1 to select edges.
Player 2 resolves the non-determinism.

A partial-observation game G = (Q, ¥, A) with weight function w : A — Z and observations Obs C 2¢
consists of

Q) a finite set of states,

Y a finite alphabet of actions,

A CQ x3xQ aset of labeled transitions such that for all ¢ € Q and o € X, there exists (at least
one) ¢’ € Q such that (q,0,¢") € A,

Obs a partition of @, and for each ¢ € @, let obs(gq) the unique observation o € Obs such that ¢ € o.

For s C L and o € %, we denote by postS(s) = {¢' € Q| 3¢ € s: (¢,0,¢') € A} the set of o-successors of s.
A game with perfect observation is such that Obs = {{q} | ¢ € Q}.
A partial-observation game is blind if Obs = {Q}.

The game is played in rounds. In each round, if the current state is ¢, player 1 does not see the state ¢
but gets the obbservation obs(g). Player 1 selects an action o € X, and then player 2 chooses a state ¢’ such
that (¢,0,q") € A. The game proceeds to the next round in state ¢’.

4.2. Example. In the following (unweighted) partial-observation game, the observations are o1 = {q1},
02 = {q2,¢5}, 03 = {qg3,4¢4}, and o4 = {q4}. From the initial state g1, there is no winning strategy for
player 1 to reach 7 = {q4}. This is because no matter the observation-based strategy « for player 1, there
exists a play p compatible with « that never visits g4. The play p is of the form (q1 X ¢, 0 g3 X)* where
gz = g2 if 0, = a, and ¢, = ¢} if 0, = b. Note that this definition has no circularity because the value of o,
(chosen by «) is independent of ¢, € {q2, ¢5} since obs(gz) = obs(g5).

4.3. Winning strategy. A strategy for player 1 is a function « : (@ - £)*@Q — X such that for all p =
q000q101G2--.qn and p' =gl 00 ¢, 01 b .. .q,, if obs(q;) = obs'(g;) for all 0 < i < n, then a(p) = a(p’). We
say that strategies are observation-based.



An infinite play p = goooq101G2... is compatible with a strategy « if 0, = a(goooq1-..q;) and
(¢i,04,Gi+1) € A for all 4 > 0.

Given an initial credit ¢yg € N, the energy level of a play p = qoooq101¢2... at position k& > 0 is
EL(p, k) = S w(gs, 04, gis1)-

A strategy « for player 1 is winning from state ¢ with initial credit ¢y for the energy objective if for all
plays p from ¢ compatible with «, we have ¢o + EL(p, k) > 0 for all k£ > 0.

The fized initial credit problem asks to decide, given a partial-observation energy game, an initial state ¢
and initial credit cg, whether there exists a winning strategy for player 1 for the energy objective.

The unknown initial credit problem asks to decide, given a partial-observation energy game and an initial
state ¢ whether there exists an initial credit and a winning strategy for player 1 for the energy objective.

4.4. Fixed initial credit.

For an initial state ¢ € @ and a fixed initial credit ¢y € N, we solve energy games by a reduction to safety
games of perfect observation.

Let F be the set of functions f : Q@ — Z U {L}. The support of f is supp(f) ={q€ Q| f(q) # L}. A
function f € F stores the possible current states of the game G together with their worst-case energy level.
We say that a function f is nonnegative if f(q) > 0 for all ¢ € supp(f). Initially, we set f.,(qo) = co and
feo(q) = L for all ¢ # go. The set F is ordered by the relation < such that f1 < fo if supp(f1) = supp(f2)
and f1(q) < f2(q) for all g € supp(f1).

For o € X, we say that fo € F is a o-successor of f; € F if there exists an observation o € Obs such that
supp(fa) = postS(supp(f1)) No and fa(q) = min{fi(q') +w(q,0,q) | ¢ € supp(f1) A (¢',0,q) € A} for all
q € supp(f2). Given a sequence z = fooof101 ... fn, let fo = f, be the last function in . Define the safety
game H = (Q" %, Af) with initial state f., where Q¥ is the smallest subset of (F - X)* - F such that

1. f., € Q" and

2. for each sequence x € Q' if (i) f, is nonnegative, and (ii) there is no strict prefix y of  such that
fy = fo, then z -0 - f2 € QF for all o-successors fz of f,.

The transition relation A¥ contains the corresponding triples (z,0,2 - o - f2), and the game is made total
by adding self-loops (z, o, z) to sequences = without outgoing transitions. We call such sequences the leaves
of H. Note that the game H is acyclic, except for the self-loops on the leaves.

Since the relation < on nonnegative functions is a well quasi order, the state space Q¥ is finite by Konig’s
Lemma.

Define the safety objective Safe(7") in H where 7 = {x € Q! | f, is nonnegative}. Intuitively, a winning
strategy in the safety game H can be extended to an observation-based winning strategy in the energy game
G because whenever a leaf of H is reached, there exists a <-smaller ancestor that Player 1 can use to go on
in G using the strategy played from the ancestor in H. The correctness argument is based on the fact that
if Player 1 is winning from state f in H, then he is also winning from all f/ > f.

Theorem 4A. Let G be an energy game with partial observation, and let ¢y € N be an initial credit.
There exists a winning observation-based strategy in G for the energy objective with initial credit cg if and
only if there exists a winning strategy in H for the objective Safe(7"). Hence the fixed initial credit problem
is decidable.

4.5. Unknown initial credit.
We show that the unknown initial credit problem is undecidable using a reduction from the halting
problem for deterministic 2-counter Minsky machines.

Theorem 4B. The unknown initial credit problem for energy games with partial observation is unde-
cidable, even for blind games.

Given a (deterministic) 2-counter machine M, we construct a blind energy game Gjs such that M has
an accepting run if and only if there exists an initial credit ¢y € N such that Player 1 has a winning strategy
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Figure 3: Gadget to check that # is played infinitely often.

in Gy for the energy objective. In particular, a strategy that plays a sequence #7o#71 ... (where 7;’s are
run traces of M) is winning in G,y if and only if all but finitely many =;’s are accepting run traces of M.

The alphabet of Gy is ¥ = oy U {#}. The game G consists of an initial nondeterministic choice
between several gadgets described below. Each gadget checks one property of the sequence of actions played
in order to ensure that a trace of an accepting run in M is eventually played. Since the game is blind,
it is not possible for player 1 to see which gadget is executed, and therefore the strategy has to fulfill all
properties simultaneously.

The gadget in Figure 1 with o1 = # checks that the first symbol is a #. If the first symbol is not #,
then the energy level drops below 0 no matter the initial credit. The gadget in Figure 2 checks that a certain
symbol o7 is always followed by a symbol o, and it is used to ensure that # is followed by an instruction
(g1,+,-,+), and that every instruction (q,-,-,¢") is followed by an instruction (¢’,-,-,¢"), or by # if ¢ = ¢p.
The gadget in Figure 3 ensures that # is played infinitely often (and a bit more...). If # is played only
finitely many times, then the gadget can guess the last # and jump to the middle state where no initial
credit would allow to survive.

Finally, we use the gadget in Figure 4 to check that the tests on counter ¢ are correctly executed. It can
accumulate in the energy level the increments and decrements of a counter ¢ between the start of a run (i.e.,
when # occurs) and a zero test on ¢. A positive cheat occurs when (-, 07, ¢, -) is played while the counter ¢ has
positive value. Likewise, a negative cheat occurs when (-, dec, ¢, -) is played while the counter ¢ has value 0.
On reading the symbol #, the gadget can guess that there will be a positive or negative cheat by moving
to the states ¢; and g9, respectively. In g1, the energy level simulates the operations on the counter ¢ but
with opposite effect, thus accumulating the opposite of the counter value. When a positive cheat occurs,
the gadget returns to the initial state, thus decrementing the energy level. The state g2 of the gadget is
symmetric. A negative cheat costs one unit of energy. Note that the gadget has to go back to its initial state
before the next #, as otherwise Player 1 wins. This ensures that the gadget does not monitor a zero-test
accross two different runs.

The game G has such gadgets for each counter. Thus, a strategy in G which cheats infinitely often
on a counter would not survive no matter the value of the initial credit.

The correctness of this construction is established as follows. First, assume that M has an accepting run



-1 if o= (,inc,c,-)
o, ¢ 1 if o= (,decc,-)
0 otherwise
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1 ifo=(incc,-)

o,¢ -1 if o= (,dec,c,-)
0 otherwise

Figure 4: Gadget to check the zero tests on counter ¢ (assuming o ranges over X\ {#}).

7 with trace 7. Then, the strategy playing (#7)“ is winning for the energy objective with initial credit |7
because an initial credit |7| is sufficient to survive in the “co-many #” gadget of Figure 3, as well as in the
zero-test gadget of Figure 4 because all zero tests are correct in 7 and the counter values are bounded by |7|.
Second, if there exists a winning strategy in Gj; with some finite initial credit, then the sequence played
by this strategy can be decomposed into run traces separated by #, and since the strategy survived in the
gadget of Figure 4, there must be a point where all run traces played correspond to faithful simulation of M
with respect to counter values, thus M has an accepting run. B



