
2.9 Verification of dynamic and parameterized systems 2011

Lecture 2: Monotonic Games Laurent Doyen

2.1. Monotonic Games. We drop the assumption that Q is a finite set1. Let �⊆ (Q1 × Q1) ∪ (Q2 × Q2)
be a decidable well-quasi order. A game 〈Q, E〉 is monotonic with respect to � if for all q1, q2, q3 ∈ Q, if
q1 � q2 and (q1, q3) ∈ E, then there exists q4 ∈ Q such that q3 � q4 and (q2, q4) ∈ E.

Games on VASS (Vector-Addition System with States) induce monotonic games. A game on VASS
consists of a game graph 〈Q, E〉 and a function w : E → Z

d where d is the number of counters. It induces
an infinite game graph 〈Q × N

d, E′〉 where (q, v), (q′, v′) ∈ E′ if (q, q′) ∈ E and v′ = v + w(q, q′). Note the
implicit requirement that v′ ≥ 0 (and v ≥ 0).

q0q1 q2

(0, 0)

(0, 0)

(−1, 1)

(1,−1)

(−2, 0)

VASS games can be used to simulate 2-counter Minsky machines 2CM. A 2-counter machine M consists
of a finite set of control states Q, an initial state qI ∈ Q, a final state qF ∈ Q, a set C of counters (|C| = 2)
and a finite set δM of instructions manipulating two integer-valued counters. Instructions are of the form

q : c := c + 1 goto q′

q : if c = 0 then goto q′ else c := c − 1 goto q′′.

Formally, instructions are tuples (q, α, c, q′) where q, q′ ∈ Q are source and target states respectively, the
action α ∈ {inc, dec, 0?} applies to the counter c ∈ C. We assume that M is deterministic: for every state
q ∈ Q, either there is exactly one instruction (q, α, ·, ·) ∈ δM and α = inc, or there are two instructions
(q, dec, c, ·), (q, 0?, c, ·) ∈ δM .

A configuration of M is a pair (q, v) where q ∈ Q and v : C → N is a valuation of the counters. An
accepting run of M is a finite sequence π = (q0, v0)δ0(q1, v1)δ1 . . . δn−1(qn, vn) where δi = (qi, αi, ci, qi+1) ∈
δM are instructions and (qi, vi) are configurations of M such that q0 = qI , v0(c) = 0 for all c ∈ C, qn = qF ,
and for all 0 ≤ i < n, we have vi+1(c) = vi(c) for c 6= ci, and (a) if α = inc, then vi+1(ci) = vi(ci) + 1 (b)
if α = dec, then vi(ci) 6= 0 and vi+1(ci) = vi(ci) − 1, and (c) if α = 0?, then vi+1(ci) = vi(ci) = 0. The
corresponding run trace of π is the sequence of instructions π̄ = δ0δ1 . . . δn−1.

The halting problem is to decide, given a 2-counter machine M , whether M has an accepting run. This
problem is undecidable.

In the simulation of 2CM by game on VASS, Player 1 simulates the execution of the 2CM, and player 2
checks the faithful simulation of zero tests. A transition with a zero-test on counter x

q1 q2
x = 0

is replaced by the gadget:

1However, we assume finite branching i.e., the set E(q) = {q′ | (q, q′) ∈ E} is finite for all q ∈ Q.

1

q1

/

q2

x := x − 1

And transitions with a non-zero test on counter x

q1 q2

x 6= 0

are replaced by the gadget:

q1 q2
x := x − 1 x := x + 1

Edges to sink states are added to avoid deadlock states. Since the halting problem for 2CM is undecidable
we have the following result.

Theorem 2A. Safety and reachability VASS games are undecidable.

2.2. Downward-closed Games. A game 〈Q, E〉 is �-downward-closed if for all q1, q2, q3 ∈ Q, if q1 � q2

and (q1, q3) ∈ E, then (q2, q3) ∈ E. We assume that E ⊆ (Q1 × Q2) ∪ (Q2 × Q1), i.e. the players strictly
alternate. Note that downward-closed games are monotonic.

Given a safety objective Safe(T), and an initial state q0, consider the tree T with root labeled by q0

constructed as follows. For each node n with label q in the tree:

if q ∈ Q \ T then n is a leaf, declared unsuccessful.

otherwise, if q ∈ Q1 and an ancestor node of n has label q′ � q then n is a leaf, declared successful

otherwise, we expand the node n, adding successors labeled by the set {q′ | (q, q′) ∈ E} of successors
of q.

Since � is a well-quasi order, this tree is finite by König’s Lemma. The tree T defines a finite safety
game where nodes labeled by states in Q1 belong to player 1, and nodes labeled by states in Q2 belong to
player 2. The safety objective is to avoid unsuccessful leaves.

A winning strategy in a �-downward-closed game can be mapped to a winning strategy in the tree T.
And a winning strategy σT in the tree T can be mapped to a winning strategy σ in a �-downward-closed
game as follows.

By induction, we assume that the strategy σ is already defined for play prefixes of length 1, . . . , k and
we construct σ(ρ) for play prefixes ρ of length k + 1 as follows. We assume that ρ is compatible with the
strategy σ. Consider a stack on which we push the states in ρ, and such that the content of the stack is
always a path in T. Whenever we push state q corresponding to a leaf of T, there exists a state q′ in the stack
such that q′ � q. We remove all states above q′ before pushing the next state. In this way, after processing
ρ the stack contains a path in T, and we define σ(ρ) as the state chosen by σT on this path. The strategy σ

is well defined (why?) and since non-target states are avoided by σT in T, the strategy σ is winning for the
safety objective Safe(T) from q0.

Theorem 2B. Safety downward-closed games are decidable.

2

